Learning Tracking Control Over Unknown Fading Chan

IEEE Transactions on Neural Networks and Learning Systems 32, 2721-2732 DOI: 10.1109/tnnls.2020.3007765

Citation Report

#	Article	IF	CITATIONS
1	Noisy-Output-Based Direct Learning Tracking Control With Markov Nonuniform Trial Lengths Using Adaptive Gains. IEEE Transactions on Automatic Control, 2022, 67, 4123-4130.	5.7	27
2	Batch-Based Learning Consensus of Multiagent Systems With Faded Neighborhood Information. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 2965-2977.	11.3	2
3	A Probabilistically Quantized Learning Control Framework for Networked Linear Systems. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 7559-7573.	11.3	22
4	Iterative learning guaranteed cost control based on twoâ€dimensional Roesser systems subject to denialâ€ofâ€service attacks and fading measurements. International Journal of Robust and Nonlinear Control, 2022, 32, 6441-6462.	3.7	3
5	Accelerated Learning Control for Point-to-Point Tracking Systems. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 1265-1277.	11.3	3
6	Second-order Quantized ILC for a class of Nonlinear Nonaffine Systems. , 2022, , .		0
7	Finiteâ€level uniformly quantized learning control with random data dropouts. International Journal of Robust and Nonlinear Control, 2023, 33, 4056-4075.	3.7	1
8	Predictive compensation based quantization iterativeÂlearning control for nonlinear nonaffine discreteâ€ŧime systems. International Journal of Robust and Nonlinear Control, 0, , .	3.7	0
9	Distributed Terminal Iterative Learning Strategy for a Convex Optimization with Application to Resource Allocation. , 2023, , 134-144.		0
10	Distributed Quadratic Optimization With Terminal Consensus Iterative Learning Strategy. Neurocomputing, 2023, , .	5.9	1
11	Observer-based data-driven consensus control for nonlinear multiagent systems with faded neighborhood information. Information Sciences, 2023, 649, 119679.	6.9	0
12	Q-learning based fault estimation and fault tolerant iterative learning control for MIMO systems. ISA Transactions, 2023, 142, 123-135.	5.7	12
13	A novel iterative learning control scheme based on Broyden lass optimization method. International Journal of Robust and Nonlinear Control, 2024, 34, 321-340.	3.7	0
14	Iterative learning control for differential inclusion systems with random fading channels by varying average technique. Chaos, 2024, 34, .	2.5	0