Nickel sulfide-based energy storage materials for highcapacitors

Rare Metals 40, 353-373 DOI: 10.1007/s12598-020-01470-w

Citation Report

#	Article	IF	CITATIONS
1	Synthesis of reduced graphene oxide supported nickel-cobalt-layered double hydroxide nanosheets for supercapacitors. Journal of Colloid and Interface Science, 2021, 588, 637-645.	5.0	156
2	Superior supercapacitive performance of Cu ₂ MnSnS ₄ asymmetric devices. Nanoscale Advances, 2021, 3, 486-498.	2.2	31
3	Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries. Chemical Engineering Journal, 2021, 421, 127759.	6.6	57
4	Covalent modified reduced graphene oxide: Facile fabrication and high rate supercapacitor performances. Electrochimica Acta, 2021, 369, 137700.	2.6	20
5	Disclosure of charge storage mechanisms in molybdenum oxide nanobelts with enhanced supercapacitive performance induced by oxygen deficiency. Rare Metals, 2021, 40, 2447-2454.	3.6	36
6	Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte. Nano Research, 2021, 14, 4857-4864.	5.8	61
7	Well-dispersed NiCoS2 nanoparticles/rGO composite with a large specific surface area as an oxygen evolution reaction electrocatalyst. Rare Metals, 2021, 40, 3156-3165.	3.6	51
8	Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. Journal of Physics Condensed Matter, 2021, 33, 303002.	0.7	65
9	Overlapped T-Nb ₂ O ₅ /Graphene Hybrid for a Quasi-Solid-State Asymmetric Supercapacitor with a High Rate Capacity. Energy & Fuels, 2021, 35, 12546-12555.	2.5	4
10	Scalable synthesis of macroscopic porous carbon sheet anode for potassium-ion capacitor. Chinese Chemical Letters, 2022, 33, 1463-1467.	4.8	9
11	Rate Balance Design and Construction of a Conductive Ni _{0.5} Co _{0.5} MoO ₄ Solid-Solution Microspherical Superstructure toward Advanced Hybrid Supercapacitors. ACS Applied Energy Materials, 2021, 4, 9470-9478.	2.5	7
12	Construction of NiCo ₂ O ₄ /O-g-C ₃ N ₄ Nanocomposites: A Battery-Type Electrode Material for High-Performance Supercapacitor Application. ACS Applied Nano Materials, 2021, 4, 10173-10184.	2.4	22
13	Hybrid materials based on pyrrhotite, troilite, and few-layered graphitic nanostructures: Synthesis, characterization, and cyclic voltammetry studies. Applied Surface Science, 2021, 563, 150327.	3.1	4
14	Multi-interfacial engineering of hierarchical CoNi2S4/WS2/Co9S8 hybrid frameworks for robust all-pH electrocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2021, 297, 120455.	10.8	50
15	Nickel sulfide/activated carbon nanotubes nanocomposites as advanced electrode of high-performance aqueous asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 885, 160979.	2.8	44
16	Boosting lithium-ion storage performance by ultrafine bimetal carbides nanoparticles coupled with Hollow-like carbon composites. Journal of Colloid and Interface Science, 2022, 607, 676-683.	5.0	4
17	Editorial for advanced energy storage and conversion materials and technologies. Rare Metals, 2021, 40, 246-248.	3.6	19
18	Evolution and recent developments of high performance electrode material for supercapacitors: A review. Journal of Energy Storage, 2021, 44, 103366.	3.9	80

#	Article	IF	CITATIONS
19	Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors. Chemical Engineering Journal, 2022, 430, 132745.	6.6	184
20	An Argyrophyllaâ€like Nanorods Co ₉ S ₈ /2Hâ€WS ₂ @NF Heterojunction with Electrons Redistribution as a Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ChemCatChem, 2022, 14, .	1.8	4
21	Hierarchical Cu0.92Co2.08O4@NiCo-layered double hydroxide nanoarchitecture for asymmetric flexible storage device. Materials Today Sustainability, 2022, 17, 100097.	1.9	10
22	NiS/activated carbon composite derived from sodium lignosulfonate for long cycle-life asymmetric supercapacitors. Journal of Alloys and Compounds, 2022, 900, 163546.	2.8	19
23	Non-lithium-based metal ion capacitors: recent advances and perspectives. Journal of Materials Chemistry A, 2022, 10, 357-378.	5.2	34
24	PPy decorated α-Fe2O3 nanosheets as flexible supercapacitor electrodes. Rare Metals, 2022, 41, 1195-1201.	3.6	31
25	Singleâ€Crystal Nanoâ€5ubunits Assembled Accordionâ€5hape WNb ₂ O ₈ Framework with High Ionic/Electronic Conductivities towards Liâ€ion Capacitors. Small, 2022, 18, e2107987.	5.2	28
26	Hollow nano- and microstructures: Mechanism, composition, applications, and factors affecting morphology and performance. Coordination Chemistry Reviews, 2022, 458, 214429.	9.5	52
27	Cobalt-based metal oxide coated with ultrathin ALD-MoS2 as an electrode material for supercapacitors. Chemical Engineering Journal, 2022, 435, 135066.	6.6	25
28	Enhanced Ionic Diffusion Interface in Hierarchical Metal-Organic Framework@Layered Double Hydroxide for High-Performance Hybrid Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
29	Synthesis of P-doped NiS as an electrode material for supercapacitors with enhanced rate capability and cycling stability. New Journal of Chemistry, 2022, 46, 6461-6469.	1.4	5
30	MXene-wrapped ZnCo2S4 core–shell nanospheres via electrostatic self-assembly as positive electrode materials for asymmetric supercapacitors. Rare Metals, 2022, 41, 2633-2644.	3.6	26
31	Rationally designed hierarchical tree-like Fe-Co-P@Ni(OH)2 hybrid nanoarrays for high energy density asymmetric supercapacitors. Applied Surface Science, 2022, 588, 152857.	3.1	17
32	Design and synthesis of three-dimensional CoNi2S4@MoS2@rGO nanocomposites and its application in electrochemical supercapacitors. Journal of Alloys and Compounds, 2022, 906, 164278.	2.8	18
33	Strongly coupled carbon quantum dots/NiCo-LDHs nanosheets on carbon cloth as electrode for high performance flexible supercapacitors. Applied Surface Science, 2022, 591, 153161.	3.1	45
34	Chitosan-Based Synthesis of O, N, and P Codoped Hierarchical Porous Carbon as Electrode Materials for Supercapacitors. Energy & Fuels, 2021, 35, 20339-20348.	2.5	15
35	NiCo2S4 decorated multilayer titanium carbide MXene electrode for asymmetric supercapacitor. Ionics, 2022, 28, 2979-2989.	1.2	17
36	Synergistical heterointerface engineering of Fe-Se nanocomposite for high-performance sodium-ion hybrid capacitors. Rare Metals, 2022, 41, 2470-2480.	3.6	10

CITATION REPORT

#	Article	IF	Citations
37	A facile method synthesizing marshmallow ZnS grown on Ti3C2 MXene for high-performance asymmetric supercapacitors. Journal of Energy Storage, 2022, 50, 104652.	3.9	14
38	Laser synthesis of cobalt-doped Ni3S4-NiS/Ni as high-efficiency supercapacitor electrode and urea oxidation electrocatalyst. Applied Surface Science, 2022, 596, 153600.	3.1	19
39	NiCoSe ₄ nanoparticles derived from nickel–cobalt Prussian blue analogues on N-doped reduced graphene oxide for high-performance asymmetric supercapacitors. Nanotechnology, 2022, 33, 345401.	1.3	4
40	Chalcogenides Based Nano Composites for Supercapacitors. Advances in Material Research and Technology, 2022, , 375-396.	0.3	1
41	Facile preparation of Nb2O5 microspheres and their excellent electrochemical performance in aqueous zinc-ion hybrid supercapacitors. Rare Metals, 2022, 41, 3129-3141.	3.6	13
42	A critical review on nickel sulfide-based electrode materials for supercapacitors. Critical Reviews in Solid State and Materials Sciences, 2023, 48, 502-518.	6.8	8
43	Preparation and electrochemical capacitance of binder-free different micromorphology nickel sulfide on nickel foam for asymmetric supercapacitor. Journal of Nanoparticle Research, 2022, 24, .	0.8	3
44	Graphene oxide-based modified electrodes for high-performance supercapacitors. , 2022, , 239-266.		0
45	Binderâ€free ternary transition metal sulfides for energy storage applications. International Journal of Energy Research, 2022, 46, 15696-15708.	2.2	1
46	Enhanced ionic diffusion interface in hierarchical metal-organic framework@layered double hydroxide for high-performance hybrid supercapacitors. Nano Research, 2022, 15, 8983-8990.	5.8	19
47	Flower-like Ni3Sn2@Ni3S2 with core–shell nanostructure as electrode material for supercapacitors with high rate and capacitance. Journal of Colloid and Interface Science, 2022, 626, 951-962.	5.0	7
48	Formation of monoclinic α-Bi2O3 nanosheet-assembled hollow spheres as a high-performance electrode for supercapacitor. Ionics, 2022, 28, 4769-4777.	1.2	3
49	Electrochemical supercapacitor performance of NiCo2O4 nanoballs structured electrodes prepared via hydrothermal route with varying reaction time. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653, 129901.	2.3	24
50	A review on polyaniline and graphene nanocomposites for supercapacitors. Polymer-Plastics Technology and Materials, 2022, 61, 1871-1907.	0.6	30
51	Preparation of layered interconnected Si-Li2MnSiO4 electrode materials for the positive electrode of battery-type capacitors. Ionics, 2022, 28, 5189-5198.	1.2	1
52	Controllable construction of boron and nitrogen co-doping honeycomb porous carbon as promising materials for CO2 capture and supercapacitors. Journal of Energy Storage, 2022, 55, 105687.	3.9	5
53	Amorphous Ni-Co Binary Hydroxide Nanospheres with Super-Long Cycle Life and Ultrahigh Rate Capability as Asymmetric Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
54	Laser irradiation of graphite foils as robust current collectors for high-mass loaded electrodes of supercapacitors. Rare Metals, 2022, 41, 4094-4103.	3.6	4

CITATION REPORT

	CITATION	ITATION REPORT	
#	Article	IF	Citations
55	A porous carbon based on the surface and structural regulation of wasted lignin for long-cycle lithium-ion battery. International Journal of Biological Macromolecules, 2022, 222, 1414-1422.	3.6	12
56	K ⁺ intercalated MnO ₂ with ultra-long cycling life for high-performance aqueous magnesium-ion hybrid supercapacitors. Sustainable Energy and Fuels, 2022, 6, 5290-5299.	2.5	8
57	Electrochemical performance of all-solid-state asymmetric supercapacitors based on Cu/Ni-Co(OH)2/Co4S3 self-supported electrodes. Chemical Engineering Journal, 2023, 453, 139714.	6.6	24
58	Amorphous Ni-Co binary hydroxide with super-long cycle life and ultrahigh rate capability as asymmetric supercapacitors. Nanotechnology, 0, , .	1.3	1
59	In-situ grown of FeCo2O4 @ 2D-Carbyne coated nickel foam - A newer nanohybrid electrode for high performance asymmetric supercapacitors. Journal of Energy Storage, 2022, 56, 105943.	3.9	9
60	Recent progress in the development of smart supercapacitors. SmartMat, 2023, 4, .	6.4	39
61	Materials design and preparation for high energy density and high power density electrochemical supercapacitors. Materials Science and Engineering Reports, 2023, 152, 100713.	14.8	54
62	Promotive Effect of MWCNTs on α-NiS Microstructure and Their Application in Aqueous Asymmetric Supercapacitor. Energy & Fuels, 2022, 36, 15210-15220.	2.5	6
63	A Lignin-Based Carbon Anode with Long-Cycle Stability for Li-Ion Batteries. International Journal of Molecular Sciences, 2023, 24, 284.	1.8	3
64	Coral-like porous microspheres comprising polydopamine-derived N-doped C-coated MoSe2 nanosheets composited with graphitic carbon as anodes for high-rate sodium- and potassium-ion batteries. Chemical Engineering Journal, 2023, 456, 141118.	6.6	20
65	Manganese (Sulfide/Oxide) based electrode materials advancement in supercapattery devices. Materials Science in Semiconductor Processing, 2023, 158, 107366.	1.9	22
66	On physical analysis of free Gibb's energy based on topological indices for nickel sulfide. Journal of Molecular Structure, 2023, 1281, 135117.	1.8	2
67	Facile synthesis of copper cobalt sulfide and nickel hydroxide tube-like composites as battery-type active material of energy storage devices. Journal of Energy Storage, 2023, 65, 107330.	3.9	1
68	A Review on Thermal Behaviors and Thermal Management Systems for Supercapacitors. Batteries, 2023, 9, 128.	2.1	10
69	Tailoring the interface magnetron sputtered silver/tungsten disulfide for battery-supercapacitor hybrids: Electrochemical assessment of redox activity. Journal of Energy Storage, 2023, 66, 107333.	3.9	4