Ab initio kinetic mechanism of OH-initiated atmospher

Chemosphere 263, 127850

DOI: 10.1016/j.chemosphere.2020.127850

Citation Report

#	Article	IF	Citations
1	Detailed kinetics of hydrogen abstraction from <i>trans</i> -decalin by OH radicals: the role of hindered internal rotation treatment. Physical Chemistry Chemical Physics, 2020, 22, 25740-25746.	2.8	12
2	Comment on "Atmospheric chemistry of oxazole: the mechanism and kinetic studies on oxidation reaction initiated by OH radicalsâ€-by A. Shiroudi, M. A. Abdel-Rahman, A. M. El-Nahas and M. Altarawneh, <i>New J. Chem. ⟨i⟩, 2021, ⟨b⟩ 45 ⟨ b⟩, 2237. New Journal of Chemistry, 2021, 45, 13644-13648.</i>	2.8	8
3	Atmospheric insight into the reaction mechanism and kinetics of isopropenyl methyl ether (i-PME) initiated by OH radicals and subsequent oxidation of product radicals. Environmental Science and Pollution Research, 2021, 28, 45646-45662.	5.3	4
4	Effect of alkali metal ions on the formation mechanism of HCN during pyridine pyrolysis. International Journal of Coal Science and Technology, 2021, 8, 349-359.	6.0	8
5	New Mechanistic Insights into Atmospheric Oxidation of Aniline Initiated by OH Radicals. Environmental Science & Environmental	10.0	20
6	Exploring the OH-initiated reactions of styrene in the atmosphere and the role of van der Waals complex. Chemosphere, 2021, 282, 131004.	8.2	4
7	Reaction kinetics of 1,4-cyclohexadienes with OH radicals: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2022, 24, 7836-7847.	2.8	3
8	A computational study of the HO2 + SO3 → HOSO2 + 3O2 reaction catalyzed by water monomer, water dimer and small clusters of sulfuric acid: kinetics and atmospheric implications. Physical Chemistry Chemical Physics, 0, , .	2.8	2
9	Theoretical Perspectives on the Gas-Phase Oxidation Mechanism and Kinetics of Carbazole Initiated by OH Radical in the Atmosphere. Atmosphere, 2022, 13 , 1129 .	2.3	3
10	New insights into the oxidation chemistry of pyrrole, an N-containing biomass tar component. Proceedings of the Combustion Institute, 2023, 39, 73-84.	3.9	4
11	Laminar burning velocities of pyrrole/air flames: Experimental and comprehensive modeling study. Combustion and Flame, 2022, 245, 112350.	5.2	3
12	Dinitriles and nitriles are common intermediates of pyrrole pyrolysis. Combustion and Flame, 2022, 245, 112358.	5.2	3
13	Ab initio kinetics of OH-initiated reactions of 2-furfuryl alcohol. Fuel, 2023, 338, 127325.	6.4	2
14	Experimental and kinetic model studies on the low- to moderate-temperature oxidation of N-methyl pyrrole in a jet-stirred reactor. Combustion and Flame, 2023, 251, 112694.	5.2	1
15	The reactions of 2-furfuryl alcohol with hydrogen atom: A theoretical calculation and kinetic modeling analysis. Combustion and Flame, 2023, 250, 112627.	5.2	1
16	An Ab Initio RRKM-Based Master Equation Study for Kinetics of OH-Initiated Oxidation of 2-Methyltetrahydrofuran and Its Implications in Kinetic Modeling. Energies, 2023, 16, 3730.	3.1	2
17	OH-initiated Oxidation of Vinyl Butyrate: Ab initio Insights. Physical Chemistry Chemical Physics, 0, , .	2.8	0
18	Mechanistic and Kinetic Insights into OH-Initiated Atmospheric Oxidation of Hymexazol: A Computational Study. Environmental Science & Eamp; Technology, 2023, 57, 15138-15152.	10.0	1

CITATION REPORT

#	Article	IF	CITATIONS
19	Reaction Mechanism of Nitrogen-Containing Heterocyclic Compounds Affecting Coal Spontaneous Combustion. ACS Omega, 2023, 8, 35295-35306.	3.5	0
20	Ab Initio Kinetic Insights of Atmospheric Oxidation of Vinyl Fluoride (CH ₂ CHF) with OH Radicals. ACS Earth and Space Chemistry, 2024, 8, 207-220.	2.7	0
21	Structure-dependent H-abstraction kinetics on heterorings. Chemical Physics Letters, 2024, 837, 141078.	2.6	0