Hydration-induced reversible deformation of biological

Nature Reviews Materials 6, 264-283

DOI: 10.1038/s41578-020-00251-2

Citation Report

#	Article	IF	CITATIONS
1	Wood Composite Plates with Reversible Humidity-driven Deformation. Journal of Physics: Conference Series, 2021, 1906, 012055.	0.3	0
2	Natural Cornstalk Pith as an Effective Energy Absorbing Cellular Material. Journal of Bionic Engineering, 2021, 18, 600-610.	2.7	5
3	Plant-Morphing Strategies and Plant-Inspired Soft Actuators Fabricated by Biomimetic Four-Dimensional Printing: A Review. Frontiers in Materials, 2021, 8, .	1.2	10
4	Design of MXene Composites with Biomimetic Rapid and Self-Oscillating Actuation under Ambient Circumstances. ACS Applied Materials & Interfaces, 2021, 13, 31978-31985.	4.0	44
5	Engineering with keratin: A functional material and a source of bioinspiration. IScience, 2021, 24, 102798.	1.9	51
7	One-Step, Continuous Three-Dimensional Printing of Multi-Stimuli-Responsive Bilayer Microactuators via a Double-Barreled Theta Pipette. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43396-43403.	4.0	8
8	Ion-responsive chitosan hydrogel actuator inspired by carrotwood seed pod. Carbohydrate Polymers, 2022, 276, 118759.	5.1	34
9	3D printed ultra-fast photothermal responsive shape memory hydrogel for microrobots. International Journal of Extreme Manufacturing, 2022, 4, 015302.	6.3	34
10	Spontaneous Electro-Feedback Vaporesponsive Actuation Film Inspired by Mammal Hair. SSRN Electronic Journal, 0, , .	0.4	0
11	Antifatigue Hydration-Induced Polysaccharide Hydrogel Actuators Inspired by Crab Joint Wrinkles. ACS Applied Materials & Dinterfaces, 2022, 14, 6251-6260.	4.0	11
12	Spontaneous electro-feedback vaporesponsive actuation film inspired by mammal hair. Nano Energy, 2022, 94, 106933.	8.2	1
13	Recent advances in materials and applications for bioelectronic and biorobotic systems. View, 2022, 3, .	2.7	18
14	Design of untethered soft material micromachine for life-like locomotion. Materials Today, 2022, 53, 197-216.	8.3	38
15	High Energy and Power Density Peptidoglycan Muscles through Superâ€Viscous Nanoconfined Water. Advanced Science, 2022, 9, e2104697.	5.6	14
16	Hierarchically non-uniform structures determine the hydro-actuated bending deformation of camel hair. Cell Reports Physical Science, 2022, 3, 100793.	2.8	2
17	Dandelion pappus morphing is actuated by radially patterned material swelling. Nature Communications, 2022, 13, 2498.	5.8	15
18	Bioinspired Robust Mechanical Properties for Advanced Materials. Small Structures, 2022, 3, .	6.9	17
19	Graded biological materials and additive manufacturing technologies for producing bioinspired graded materials: An overview. Composites Part B: Engineering, 2022, 242, 110086.	5.9	42

#	Article	IF	CITATIONS
20	Multifunctional artificial nacre via biomimetic matrix-directed mineralization., 2022, 52, 1.		0
21	Review: Tertiary cell wall of plant fibers as a source of inspiration in material design. Carbohydrate Polymers, 2022, 295, 119849.	5.1	8
22	3D Printing of Polymer Hydrogels—From Basic Techniques to Programmable Actuation. Advanced Functional Materials, 2022, 32, .	7.8	43
23	Equine hoof wall: Structure, properties, and bioinspired designs. Acta Biomaterialia, 2022, 151, 426-445.	4.1	8
24	Regulation of the Inevitable Water-Responsivity of Silk Fibroin Biopolymer by Polar Amino Acid Activation. ACS Nano, 2022, 16, 17274-17288.	7.3	1
25	Optimization of the process of seed extraction from the Larix decidua Mill. cones including evaluation of seed quantity and quality. Scientific Reports, 2022, 12, .	1.6	0
26	Hygroscopy of Singleâ€Stranded DNA Nanoâ€Brushes: Atomic Workings of its Hydrationâ€Induced Deformation. Advanced Materials Interfaces, 2022, 9, .	1.9	1
27	Advances in shape memory polymers: Remote actuation, multi-stimuli control, 4D printing and prospective applications. Materials Science and Engineering Reports, 2022, 151, 100702.	14.8	34
29	Unperceivable motion mimicking hygroscopic geometric reshaping of pine cones. Nature Materials, 2022, 21, 1357-1365.	13.3	11
30	How weak hydration interfaces simultaneously strengthen and toughen nanocellulose materials. Extreme Mechanics Letters, 2023, 58, 101947.	2.0	2
31	Four-Dimensional Printing and Shape Memory Materials in Bone Tissue Engineering. International Journal of Molecular Sciences, 2023, 24, 814.	1.8	12
32	Controllable Transition Metal-Directed Assembly of [Mo ₂ O ₂ S ₂ sub>2+Building Blocks into Smart Molecular Humidity-Responsive Actuators. Journal of the American Chemical Society, 2023, 145, 2243-2251.	6.6	12
33	From adaptive plant materials toward hygro-actuated wooden building systems: A review. Construction and Building Materials, 2023, 369, 130479.	3.2	3
34	Bioinspired gradient structured soft actuators: From fabrication to application. Chemical Engineering Journal, 2023, 461, 141966.	6.6	28
35	Vapor-Responsive Shape-Memory Material Based on Carbon Nanotube Sponge Dominated by Pressure-Induced Conformational Transition of Spidroin. ACS Applied Polymer Materials, 2023, 5, 2490-2500.	2.0	1
36	Lightweight Structural Biomaterials with Excellent Mechanical Performance: A Review. Biomimetics, 2023, 8, 153.	1.5	2
39	Hygroscopic Tunable Multishape Memory Effect in Cellulosic Macromolecular Networks with a Supramolecular Mesophase. ACS Macro Letters, 2023, 12, 835-840.	2.3	1
48	Bioinspired strategies for biomimetic actuators from ultrafast to ultraslow. Nano Research, 2024, 17, 570-586.	5.8	0

3

Article IF Citations