Spatial distribution of quality of groundwater and prob from a rural dry climatic region of South India

Environmental Geochemistry and Health 43, 971-993 DOI: 10.1007/s10653-020-00621-3

Citation Report

#	Article	IF	CITATIONS
1	Impact of groundwater contamination on human health. Environmental Geochemistry and Health, 2021, 43, 643-647.	3.4	20
2	Evaluation of groundwater quality using pollution index of groundwater (PIG) and non-carcinogenic health risk assessment in part of the Gangetic Basin. Acta Geochimica, 2021, 40, 419-440.	1.7	11
4	Geochemical characteristics and quality of groundwater evaluation for drinking, irrigation, and industrial purposes from a part of hard rock aquifer of South India. Environmental Science and Pollution Research, 2021, 28, 31941-31961.	5.3	77
5	Discussion on the existing methodology of entropy-weights in water quality indexing and proposal for a modification of the expected conflicts. Environmental Science and Pollution Research, 2021, 28, 53983-54001.	5.3	10
6	Hydrochemical characteristics and groundwater quality in the thick loess deposits of China. Environmental Science and Pollution Research, 2022, 29, 8831-8850.	5.3	5
7	Distributions, origins, and health-risk assessment of nitrate in groundwater in typical alluvial-pluvial fans, North China Plain. Environmental Science and Pollution Research, 2022, 29, 17031-17048.	5.3	14
8	Occurrence and Distribution of Groundwater Fluoride and Manganese in the Weining Plain (China) and Their Probabilistic Health Risk Quantification. Exposure and Health, 2022, 14, 263-279.	4.9	81
9	Predictive modeling of groundwater nitrate pollution and evaluating its main impact factors using random forest. Chemosphere, 2022, 290, 133388.	8.2	101
10	Pollution assessment and estimation of the percentages of toxic elements to be removed to make polluted drinking water safe: a case from Nigeria. Toxin Reviews, 2023, 42, 146-160.	3.4	21
11	A water quality assessment of Arpa River under Bilaspur-Arpa basin area, of Chhattisgarh state. International Journal of River Basin Management, 2023, 21, 443-452.	2.7	0
12	Judging the sources of inferior groundwater quality and health risk problems through intake of groundwater nitrate and fluoride from a rural part of Telangana, India. Environmental Science and Pollution Research, 2022, 29, 49070-49091.	5.3	48
13	Predicting Regional-Scale Elevated Groundwater Nitrate Contamination Risk Using Machine Learning on Natural and Human-Induced Factors. ACS ES&T Engineering, 2022, 2, 689-702.	7.6	14
14	Estimation of groundwater pollution levels and specific ionic sources in the groundwater, using a comprehensive approach of geochemical ratios, pollution index of groundwater, unmix model and land use/land cover – A case study. Journal of Contaminant Hydrology, 2022, 248, 103990.	3.3	46
15	Appraisal of groundwater from lithological diversity of the western coastal part, Maharashtra, India: An integrated hydrogeochemical, geospatial and statistical approaches. Marine Pollution Bulletin, 2022, 178, 113595.	5.0	5
16	Geospatial distribution of groundwater quality using entropy water quality index and statistical assessment: A study from a tropical climate river basin. Environmental Quality Management, 2022, 32, 269-285.	1.9	3
17	Geospatial and statistical approaches to nitrate health risk and groundwater quality assessment of an alluvial aquifer in SE Nigeria for drinking and irrigation purposes. Journal of the Indian Chemical Society, 2022, 99, 100479.	2.8	32
18	Determination of the Physicochemical Quality of Groundwater and its Potential Health Risk for Drinking in Oromia, Ethiopia. Environmental Health Insights, 2022, 16, 117863022210960.	1.7	2
19	Assessment of human health risk arising due to fluoride and nitrate in groundwater: a case study of Bhokardan tehsil of Maharashtra. Human and Ecological Risk Assessment (HERA), 2022, 28, 594-620.	3.4	4

#	Article	IF	CITATIONS
20	Non-carcinogenic health risk assessment of nitrate and fluoride contamination in the groundwater of Noyyal basin, India. Geodesy and Geodynamics, 2022, 13, 619-631.	2.2	11
21	Investigating the hydrogeochemistry, corrosivity and scaling tendencies of groundwater in an agrarian area (Nigeria) using graphical, indexical and statistical modelling. Arabian Journal of Geosciences, 2022, 15, .	1.3	24
22	Understanding the factors contributing to groundwater salinity in the coastal region of Andhra Pradesh, India. Journal of Contaminant Hydrology, 2022, 250, 104053.	3.3	36
23	Nitrate contamination in water resources, human health risks and its remediation through adsorption: a focused review. Environmental Science and Pollution Research, 2022, 29, 69137-69152.	5.3	19
24	Hydrogeochemical characteristics and processes of thermokarst lake and groundwater during the melting of the active layer in a permafrost region of the Qinghai–Tibet Plateau, China. Science of the Total Environment, 2022, 851, 158183.	8.0	5
25	Hydro-chemical assessment of fluoride and nitrate in groundwater from east and west coasts of Bangladesh and India. Journal of Cleaner Production, 2022, 372, 133675.	9.3	56
26	Monitoring the causes of pollution using groundwater quality and chemistry before and after the monsoon. Physics and Chemistry of the Earth, 2022, 128, 103228.	2.9	27
28	Groundwater quality monitoring for assessment of pollution levels and potability using WPI and WQI methods from a part of Guntur district, Andhra Pradesh, India. Environment, Development and Sustainability, 2023, 25, 14785-14815.	5.0	26
29	A unified multivariate statistical approach for the assessment of deep groundwater quality of rapidly growing city of Maharashtra Province, India, with potential health risk. Environmental Monitoring and Assessment, 2022, 194, .	2.7	1
30	Investigating the relationship between groundwater augmentation and water quality in the 6000Âha watershed in Telangana state, India. Groundwater for Sustainable Development, 2022, 19, 100857.	4.6	2
31	Sobol sensitivity analysis for non-carcinogenic health risk assessment and water quality index for Kohgiluyeh and Boyer-Ahmad Province, Western Iran. Arabian Journal of Chemistry, 2022, 15, 104342.	4.9	6
32	Hydro-chemical assessment of groundwater pollutant and corresponding health risk in the Ganges delta, Indo-Bangladesh region. Journal of Cleaner Production, 2023, 382, 135229.	9.3	25
33	Major ion hydrogeochemistry and health risk of groundwater nitrate in selected rural areas of the Guanzhong Basin, China. Human and Ecological Risk Assessment (HERA), 2023, 29, 701-727.	3.4	14
34	Simulation of groundwater resource quantity and quality and assessment of the effects of alluvial material dissolution on the changes of qualitative parameters of the Zanjan Plain, Iran. Arabian Journal of Geosciences, 2023, 16, .	1.3	3
35	Evaluation of the groundwater quality index (GWQI) and the human health risk (HHR) on fluoride concentration in Namakkal district, South India. International Journal of Civil Environmental and Agricultural Engineering, 0, , 1-31.	0.2	0
36	Groundwater chemistry and health hazard risk valuation of fluoride and nitrate enhanced groundwater from a semi-urban region of South India. Environmental Science and Pollution Research, 2023, 30, 43554-43572.	5.3	6
37	Assessment of groundwater potability and health risk due to fluoride and nitrate in groundwater of Churu District of Rajasthan, India. Environmental Geochemistry and Health, 2023, 45, 4219-4241.	3.4	14
38	Groundwater fluoride and nitrate contamination and associated human health risk assessment in South Punjab, Pakistan. Environmental Science and Pollution Research, 2023, 30, 61606-61625.	5.3	12

CITATION REPORT

.

CITATION REPORT

#	Article	IF	CITATIONS
39	Hydrochemical characteristics and quality assessment of groundwater in Guangxi coastal areas, China. Marine Pollution Bulletin, 2023, 188, 114564.	5.0	7
40	Identifying factors affecting irrigation metrics in the Haor basin using integrated Shannon's entropy, fuzzy logic and automatic linear model. Environmental Research, 2023, 226, 115688.	7.5	10
41	Sources and geochemistry of high fluoride groundwater in hard rock aquifer of the semi-arid region. A special focus on human health risk assessment. , 2023, 5, 100026.		3
42	Delineation of seawater intrusion and groundwater quality assessment in coastal aquifers: The Korba coastal aquifer (Northeastern Tunisia). Marine Pollution Bulletin, 2023, 188, 114643.	5.0	3
43	Assessment of groundwater quality in Vavuniya and Mullaitivu, Sri Lanka using multivariate statistical techniques and a Water Quality Index. Water Science and Technology: Water Supply, 2023, 23, 867-883.	2.1	2
44	Hydrochemical evolution characteristics, controlling factors, and high nitrate hazards of shallow groundwater in a typical agricultural area of Nansi Lake Basin, North China. Environmental Research, 2023, 223, 115430.	7.5	10
45	Potential health risk assessment and distribution of fluoride in groundwater of Munger, Bihar India: a case study. Human and Ecological Risk Assessment (HERA), 2023, 29, 757-776.	3.4	3
46	Hydrogeochemical Characterization and Appraisal of Groundwater Quality in Yisr River Catchment, Blue Nile River Basin, Ethiopia, by Using the GIS, WQI, and Statistical Techniques. Journal of Chemistry, 2023, 2023, 1-28.	1.9	0
47	Evaluation of groundwater quality for drinking and irrigation purposes using proxy indices in the Gunabay watershed, Upper Blue Nile Basin, Ethiopia. Heliyon, 2023, 9, e15263.	3.2	5
48	Groundwater quality in Zagora southeast of Morocco by using physicochemical analysis and geospatial techniques. Environmental Monitoring and Assessment, 2023, 195, .	2.7	1
49	Nitrate contamination in groundwater and its health implications in a semi-urban region of Titrol block, Jagatsinghpur district, Odisha, India. Physics and Chemistry of the Earth, 2023, 132, 103424.	2.9	8
50	Fluoride and nitrate enrichment in coastal aquifers of the Eastern Province, Saudi Arabia: The influencing factors, toxicity, and human health risks. Chemosphere, 2023, 336, 139083.	8.2	11
51	Extent of anthropogenic influence on groundwater quality and human health-related risks: an integrated assessment based on selected physicochemical characteristics. Geocarto International, 2023, 38, .	3.5	18
52	Study of hydrogeochemical factors affecting groundwater quality used for land reclamation: application of multivariate statistical analysis. Stochastic Environmental Research and Risk Assessment, 2023, 37, 4719-4735.	4.0	1
53	Identifying the hydrochemical features, driving factors, and associated human health risks of high-fluoride groundwater in a typical Yellow River floodplain, North China. Environmental Geochemistry and Health, 2023, 45, 8709-8733.	3.4	1
54	Determining groundwater quality based on volcanic terrain: A case study from the Island of Tenerife, Spain. Journal of African Earth Sciences, 2023, 207, 105059.	2.0	Ο
55	Source identification and potential health risks of fluoride and nitrate in groundwater of a typical alluvial plain. Science of the Total Environment, 2023, 904, 166920.	8.0	1
56	Statistical Appraisal of Major Ion Chemistry of Groundwater: A Case Study from a River-Bounded Rural Area. Journal of the Geological Society of India, 2023, 99, 1253-1262.	1.1	О

#	Article	IF	CITATIONS
57	Hydrochemical analysis and groundwater suitability for drinking and irrigation in an arid agricultural area of the Northwest China. Journal of Contaminant Hydrology, 2023, 259, 104256.	3.3	1
58	Groundwater geochemistry and risk assessment to human health in North Karanpura Coalfield, India. Environmental Nanotechnology, Monitoring and Management, 2023, 20, 100897.	2.9	0
59	Application of machine learning models in groundwater quality assessment and prediction: progress and challenges. Frontiers of Environmental Science and Engineering, 2024, 18, .	6.0	0
60	Statistical and Geochemical Evaluation of Fluoride-rich Groundwater from North Coastal Part of Odisha. Journal of the Geological Society of India, 2023, 99, 1705-1715.	1.1	0
61	Hydrochemical characterization and water quality perspectives for groundwater management for urban development. Groundwater for Sustainable Development, 2024, 24, 101071.	4.6	0
62	Spatioâ€ŧemporal variability of public water supply characteristics and associated health hazards for children and adults in selected locations of Ambala, India. Water Environment Research, 2024, 96, .	2.7	0
63	Unravelling groundwater contamination and health-related implications in semi-arid and cold regions of India. Journal of Contaminant Hydrology, 2024, 261, 104303.	3.3	0
64	Ecosystem richness degradation assessment from elevated hydro-chemical properties of Chilka Lake, India. Hydrological Sciences Journal, 2024, 69, 377-389.	2.6	0
65	Sustainability assessment of groundwater in south-eastern parts of the western region of Ghana for water supply , 2024, , 100007.		0
66	More about making profits or providing safe drinking water? A state-of-the-art review on sachet water contamination in Nigeria. Journal of Environmental Science and Health, Part C: Toxicology and Carcinogenesis, 0, , 1-43.	0.7	0
67	Hydrogeochemical characteristics of Thrissur Kole Wetland, Southwest India. International Journal of River Basin Management, 0, , 1-14.	2.7	0
68	Research on groundwater science and management in India. Proceedings of the Indian National Science Academy, 0, , .	1.4	0

CITATION REPORT