Progress in modelling solidification microstructures in dendrites from 2001 to 2018

International Materials Reviews 66, 30-76 DOI: 10.1080/09506608.2020.1757894

Citation Report

#	Article	IF	CITATIONS
1	On Directional Dendritic Growth and Primary Spacingâ \in "A Review. Crystals, 2020, 10, 627.	2.2	33
2	The Growth Pattern of Co3Sn2 in Directional Solidification of Co-Sn Hypereutectic Alloy Melts. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 6346-6354.	2.2	6
3	Phase-field lattice Boltzmann method with two-relaxation-time model for dendrite growth of a binary alloy with melt convection. Computational Materials Science, 2021, 186, 110070.	3.0	17
4	DenMap single crystal solidification structure feature extraction: Automation and application. Materials Characterization, 2021, 171, 110763.	4.4	5
5	Computational modelling of process–structure–property–performance relationships in metal additive manufacturing: a review. International Materials Reviews, 2022, 67, 1-46.	19.3	56
6	GPU-Accelerated Cellular Automaton Model for Grain Growth during Directional Solidification of Nickel-Based Superalloy. Metals, 2021, 11, 298.	2.3	4
7	The formation mechanism of special globular surface grain during the solidification of laser surface remelted near β titanium alloys. Computational Materials Science, 2021, 191, 110353.	3.0	4
8	Modelling of defects in aluminium cast products. Progress in Materials Science, 2022, 123, 100824.	32.8	33
9	Material Databases and Validation in Modelling the Structure of Castings Using the Cellular Automaton Method. Materials, 2021, 14, 3055.	2.9	0
10	The shape of dendritic tips: a test of theory with computations and experiments. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200326.	3.4	22
11	Multi-phase-field lattice Boltzmann model for polycrystalline equiaxed solidification with motion. Computational Materials Science, 2021, 197, 110658.	3.0	14
12	Multiple dendrite tip tracking for in-situ directional solidification: Experiments and comparisons to theory. Materials Today Communications, 2021, 29, 102807.	1.9	2
13	Interface kinetics modeling of binary alloy solidification by considering correlation between thermodynamics and kinetics. Transactions of Nonferrous Metals Society of China, 2021, 31, 306-316.	4.2	0
14	Single Ice Crystal Growth with Controlled Orientation during Directional Freezing. Journal of Physical Chemistry B, 2021, 125, 970-979.	2.6	22
15	General hierarchical structure to solve transport phenomena with dissimilar time scales: Application in large-scale three-dimensional thermosolutal phase-field problems. Physical Review E, 2020, 102, 043313.	2.1	8
16	Dendritic crystallization from the undercooled melts: effect of tiny amount of impurity. European Physical Journal: Special Topics, 2020, 229, 2885-2890.	2.6	1
17	Microstructural evolution in directional solidification of Nb-doped Co-Sn/Ni–Sn eutectic alloys. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	3
18	Approximate analytical solution of the integroâ€differential model of bulk crystallization in a metastable liquid with mass supply (heat dissipation) and crystal withdrawal mechanism. Mathematical Methods in the Applied Sciences, 2022, 45, 8170-8178.	2.3	4

#	Article	IF	CITATIONS
19	Parallel-GPU-accelerated adaptive mesh refinement for three-dimensional phase-field simulation of dendritic growth during solidification of binary alloy. Materials Theory, 2022, 6, .	4.3	20
20	Effects of Growth and Cooling Rates Via Horizontal Solidification of an AlCuNb Alloy: A Thermal, Microstructural and Mechanical Analysis. Transactions of the Indian Institute of Metals, 2022, 75, 1429-1439.	1.5	3
21	New efficient time-stepping schemes for the anisotropic phase-field dendritic crystal growth model. Computers and Mathematics With Applications, 2022, 109, 204-215.	2.7	5
22	Enhanced mechanical properties of Al-4.5Âwt.% Cu single crystals with seaweed morphology. Journal of Materials Research and Technology, 2022, 17, 2410-2418.	5.8	4
23	Promotion or Suppression of Eutectic and Peri-Eutectic Growth in Containerlessly Processed Fe–Ni–Ti Alloys. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2022, 53, 1351-1363.	2.1	4
24	Analysis of the boundary integral equation for the growth of a parabolic/paraboloidal dendrite with convection. Journal of Physics Condensed Matter, 2022, 34, 244002.	1.8	3
25	Stochastic multi-fidelity surrogate modeling of dendritic crystal growth. Computer Methods in Applied Mechanics and Engineering, 2022, 393, 114799.	6.6	1
26	Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: A phase field study. Materials and Design, 2022, 216, 110555.	7.0	92
28	Dendrite-resolved, full-melt-pool phase-field simulations to reveal non-steady-state effects and to test an approximate model. Computational Materials Science, 2022, 207, 111262.	3.0	5
29	Inverse analysis of anisotropy of solid-liquid interfacial free energy based on machine learning. Computational Materials Science, 2022, 207, 111294.	3.0	0
30	Equiaxed grain structure formation during directional solidification of a refined Al-20wt.%Cu alloy: In situ analysis of temperature gradient effects. Journal of Crystal Growth, 2022, 587, 126645.	1.5	2
31	Numerical modelling of equiaxed dendritic growth with sedimentation in the melt of binary alloys by using an anisotropic lattice Boltzmann-phase field model. International Journal of Thermal Sciences, 2022, 178, 107592.	4.9	2
32	Hybrid Cellular Automaton - Parabolic Thick Needle model for equiaxed dendritic solidification. Journal of Materials Science and Technology, 2022, 124, 26-40.	10.7	6
33	ICME framework to simulate microstructure evolution during laser powder bed fusion of Haynes 282 nickel-based superalloy. Journal of Materials Science, 2022, 57, 9693-9713.	3.7	9
34	Thermodynamic coupling in the computation of dendrite growth kinetics for multicomponent alloys. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2022, 77, 102429.	1.6	8
35	Alloy solidification: Assessment and improvement of an easy-to-apply model. Journal of Materials Science and Technology, 2022, 130, 1-11.	10.7	6
36	Effect of anisotropic interface kinetics on morphological pattern of a particle in an undercooled melt. Chinese Journal of Physics, 2022, 78, 155-168.	3.9	2
37	Determining Alloy Nucleation Core Origin and Grain Refinement Strategy Based on the Dependence Degree of Content Difference. Metals, 2022, 12, 946.	2.3	0

#	Article	IF	CITATIONS
38	Non-regular dendritic pattern selection induced by interface energy anisotropy in the directional solidification of Al-3Âwt% Mg single crystals. Materials Letters, 2022, 324, 132731.	2.6	0
39	Effects of undercooling on atomic crystallization behaviors and growth mechanisms of pure metals. Journal of Applied Physics, 2022, 132, .	2.5	2
40	Theory and <i>In Situ</i> Diagnosis of Growth Kinetics of Dendritic Crystals in Alloy Solidification. Crystal Growth and Design, 0, , .	3.0	0
41	Sharp phase-field modeling of isotropic solidification with a super efficient spatial resolution. Engineering With Computers, 2023, 39, 1699-1709.	6.1	6
42	Establishing reduced-order process-structure linkages from phase field simulations of dendritic grain growth during solidification. Computational Materials Science, 2022, 214, 111694.	3.0	3
43	Acceleration of RBF-FD meshless phase-field modelling of dendritic solidification by space-time adaptive approach. Computers and Mathematics With Applications, 2022, 126, 77-99.	2.7	5
44	Data assimilation with phase-field lattice Boltzmann method for dendrite growth with liquid flow and solid motion. Computational Materials Science, 2022, 215, 111776.	3.0	7
45	The growth direction selection of inclined dendrites induced by solute interaction: A phase-field study. Materials Today Communications, 2022, 33, 104365.	1.9	1
46	The Growth Direction Selection of Inclined Dendrites Induced by Solute Interaction: A Phase-Field Study. SSRN Electronic Journal, 0, , .	0.4	0
47	Research on Mesoscale Nucleation and Growth Processes in Solution Crystallization: A Review. Crystals, 2022, 12, 1234.	2.2	4
48	Competitive growth during directional solidification experiments ofÂã€^1 1 1〉ÂDendrites. Journal of Crystal Growth, 2022, 599, 126893.	1.5	3
49	Frictionless Motion of Diffuse Interfaces by Sharp Phase-Field Modeling. Crystals, 2022, 12, 1496.	2.2	2
50	The Tip of Dendritic Crystal in an Inclined Viscous Flow. Crystals, 2022, 12, 1590.	2.2	4
51	Molecular dynamics simulations of nanoscale solidification in the context of Ni additive manufacturing. Materialia, 2023, 27, 101639.	2.7	3
52	Distinct difference between peri-eutectic and eutectic growth in ternary Fe-Ni-Ti alloy. Scripta Materialia, 2023, 226, 115193.	5.2	2
53	Xâ€ray Tomography and Tomoscopy on Metals: A Review. Advanced Engineering Materials, 2023, 25, .	3.5	4
54	Seaweed pattern formation in the non-axially directional solidification of 2D-like and 3D Al-3 wt.% Mg single crystal. Journal of Materials Science and Technology, 2023, 147, 1-5.	10.7	2
55	Microstructure distribution and orientation-structure topology optimization of metallic materials for laser additive manufacturing. International Journal of Mechanics and Materials in Design, 0, , .	3.0	0

#	Article	IF	CITATIONS
56	Microstructural Pattern Formation during Far-from-Equilibrium Alloy Solidification. Physical Review Letters, 2023, 130, .	7.8	15
57	Wire arc additive manufacturing of light metals: From experimental investigation to numerical process simulation and microstructural modeling. , 2023, , 487-546.		0
58	Large-scale phase-field simulations for dendrite growth: A review on current status and future perspective. IOP Conference Series: Materials Science and Engineering, 2023, 1274, 012009.	0.6	0
59	Multi-fidelity Bayesian optimization to solve the inverse Stefan problem. Computer Methods in Applied Mechanics and Engineering, 2023, 410, 115946.	6.6	5
60	Droplet solidification: Physics and modelling. Applied Thermal Engineering, 2023, 228, 120515.	6.0	6
61	Solidification modes during additive manufacturing of steel revealed by high-speed X-ray diffraction. Acta Materialia, 2023, 246, 118713.	7.9	16
62	The criterion of planar instability in alloy solidification under varying conditions: A viewpoint from free energy. Journal of Applied Physics, 2023, 133, .	2.5	1
63	On the Continuous Mechanics First and Second-Order Formulations for Nonequilibrium Nucleation: Derivation and Applications. International Journal of Thermophysics, 2023, 44, .	2.1	3
64	Cell invasion during competitive growth of polycrystalline solidification patterns. Nature Communications, 2023, 14, .	12.8	4
65	SPATIAL-TEMPORAL INHOMOGENEITIES AT THE PHASE BOUNDARY OF HIGH-SPEED CRYSTALLIZATION OF A UNDERCOOLED MELT. , 2023, , 56-64.		0
66	Application of a meshless space-time adaptive approach to phase-field modelling of polycrystalline solidification. IOP Conference Series: Materials Science and Engineering, 2023, 1281, 012057.	0.6	0
67	Hierarchical structure formation by crystal growth-front instabilities during ice templating. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	5
68	A coupled domain–boundary type meshless method for phase-field modelling of dendritic solidification with the fluid flow. International Journal of Numerical Methods for Heat and Fluid Flow, 2023, 33, 2963-2981.	2.8	2
69	Modeling Segregation of Fe–C Alloy in Solidification by Phase-Field Method Coupled with Thermodynamics. Metals, 2023, 13, 1148.	2.3	1
70	Nuclear Physics Study of the Composition of Surface Layers of Rapidly Solidified Foils of Al–Mg–Li–Sc–Zr Alloy after Heat Treatment. Journal of Surface Investigation, 2023, 17, 192-201.	0.5	0
71	Surface Nanorelief of Thin Films of Al–Mn and Al–Ni Alloys in the Case of Ion-Assisted Deposition on Glass. Journal of Surface Investigation, 2023, 17, 338-351.	0.5	0
72	Development of a data assimilation system for the investigation of the dendrite solidification process by integrating in situ X-ray imaging and phase-field simulation. IOP Conference Series: Materials Science and Engineering, 2023, 1281, 012049.	0.6	0
73	Phase-field lattice Boltzmann simulation of three-dimensional settling dendrite with natural convection during nonisothermal solidification of binary alloy. IOP Conference Series: Materials Science and Engineering, 2023, 1281, 012053.	0.6	0

#	Article	IF	CITATIONS
74	Understanding and design of metallic alloys guided by phase-field simulations. Npj Computational Materials, 2023, 9, .	8.7	54
75	A Review of Large-Scale Simulations of Microstructural Evolution during Alloy Solidification. Metals, 2023, 13, 1169.	2.3	2
76	Simulation of dendritic grain structures with Cellular Automaton–Parabolic Thick Needle model. Computational Materials Science, 2023, 229, 112360.	3.0	1
77	Electromagnetic levitation containerless processing of metallic materials in microgravity: rapid solidification. Npj Microgravity, 2023, 9, .	3.7	4
78	The Stray Grains from Fragments in the Rejoined Platforms of Ni-Based Single-Crystal Superalloy. Metals, 2023, 13, 1470.	2.3	1
79	Morphological/Dynamic Instability of Directional Crystallization in a Finite Domain with Intense Convection. Crystals, 2023, 13, 1276.	2.2	2
80	Validation and application of cellular automaton model for microstructure evolution in IN718 during directed energy deposition. Computational Materials Science, 2023, 230, 112450.	3.0	1
81	Additive Manufacturing Using Al-Cu-Mg-Sc-TiB2 Composite Powders to Overcome the Strength–Ductility Trade-Off. Jom, 2024, 76, 71-83.	1.9	0
82	Solidification Behavior of Undercooled Fe75B25 Alloy. Metals, 2023, 13, 1450.	2.3	1
83	The impact of convection on morphological instability of a planar crystallization front. International Journal of Heat and Mass Transfer, 2023, 217, 124654.	4.8	4
84	Dendrite operating state in directional solidification of AlCu binary system: numerical benchmark test with the OpenPhase software. Physica Scripta, 2023, 98, 115014.	2.5	0
85	A viewpoint from dissipative dynamics on diffusion-controlled directional solidification. Journal of Materials Research, 0, , .	2.6	0
86	Modeling Phase Selection and Extended Solubility in Rapid Solidified Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 0, , .	2.2	0
87	Modeling the Evolution of Grain Texture during Solidification of Laser-Based Powder Bed Fusion Manufactured Alloy 625 Using a Cellular Automata Finite Element Model. Metals, 2023, 13, 1846.	2.3	0
88	Development and Numerical Testing of a Model of Equiaxed Alloy Solidification Using a Phase Field Formulation. Metals, 2023, 13, 1916.	2.3	0
89	Kinetic Effect-Dependent Seaweed Formation in Single-Crystal Al-2 WtÂPct Si Alloy by Laser Surface Remelting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 0, ,	2.2	0
90	Microstructure Evolution During Laser Surfacing of Al 7075 Alloy. Transactions of the Indian Institute of Metals, 0, , .	1.5	0
91	Effect of Forced Convection on Magnesium Dendrite: Comparison between Constant and Altering Flow Fields. Materials, 2023, 16, 7695.	2.9	О

#	Article	IF	CITATIONS
92	Modeling for free dendrite growth based on physically-informed machine learning method. Scripta Materialia, 2024, 242, 115918.	5.2	1
93	Three dimensional phase-field simulation for non-isothermal binary alloy solidification: Comparison with LKT theory. China Foundry, 2023, 20, 545-552.	1.4	0
94	The Solid–Liquid Phase Interface Dynamics in an Undercooled Melt with a Solid Wall. Mathematics, 2024, 12, 327.	2.2	0
95	Molecular Dynamics Simulation Research on Fe Atom Precipitation Behaviour of Cu-Fe Alloys during the Rapid Solidification Processes. Materials, 2024, 17, 719.	2.9	0
96	Microsegregation and homogenization behavior of CoCrFeMnNi high-entropy alloy. Materials Characterization, 2024, 209, 113737.	4.4	0
97	Investigating particle morphology, quality, flowability and performance of abrasive-grinding based powders for directed energy deposition. Powder Technology, 2024, 437, 119533.	4.2	1
98	Effect of Coupling Low-Flow Pouring with Inoculation on the As-Cast Microstructure of 7055 Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2024, 55, 1564-1575.	2.2	0
99	Grain growth competition and formation of grain boundaries during solidification of hcp alloys. Acta Materialia, 2024, 269, 119830.	7.9	Ο