Deep Neural Networks approaches for detecting and cla

Neurocomputing 423, 721-734 DOI: 10.1016/j.neucom.2020.02.123

Citation Report

#	Article	IF	CITATIONS
1	PICCOLO White-Light and Narrow-Band Imaging Colonoscopic Dataset: A Performance Comparative of Models and Datasets. Applied Sciences (Switzerland), 2020, 10, 8501.	1.3	41
2	Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. Current Oncology, 2021, 28, 1581-1607.	0.9	78
3	Automatic colonic polyp detection using integration of modified deep residual convolutional neural network and ensemble learning approaches. Computer Methods and Programs in Biomedicine, 2021, 206, 106114.	2.6	24
4	An improved automatic system for aiding the detection of colon polyps using deep learning. , 2021, , .		1
5	Deep neural network approaches for detecting gastric polyps in endoscopic images. Medical and Biological Engineering and Computing, 2021, 59, 1563-1574.	1.6	12
6	Real-time polyp detection model using convolutional neural networks. Neural Computing and Applications, 2022, 34, 10375-10396.	3.2	29
7	Artificial Intelligence and Deep Learning, Important Tools in Assisting Gastroenterologists. Intelligent Systems Reference Library, 2022, , 197-213.	1.0	4
8	Improving Colonoscopy Lesion Classification Using Semi-Supervised Deep Learning. IEEE Access, 2021, 9, 631-640.	2.6	12
9	Automated Colorectal Polyp Classification Using Deep Neural Networks with Colonoscopy Images. International Journal of Fuzzy Systems, 2022, 24, 2525-2537.	2.3	3
10	Automated Bowel Polyp Detection Based on Actively Controlled Capsule Endoscopy: Feasibility Study. Diagnostics, 2021, 11, 1878.	1.3	10
11	Artificial intelligence for the early detection of colorectal cancer: A comprehensive review of its advantages and misconceptions. World Journal of Gastroenterology, 2021, 27, 6399-6414.	1.4	14
12	An interpretable deep neural network for colorectal polyp diagnosis under colonoscopy. Knowledge-Based Systems, 2021, 234, 107568.	4.0	14
13	AUTOMATED POLYP DETECTION IN COLONOSCOPY VIDEOS USING IMAGE ENHANCEMENT AND SALIENCY DETECTION ALGORITHM. Biomedical Engineering - Applications, Basis and Communications, 0, , .	0.3	1
14	Automated colorectal polyp detection based on image enhancement and dual-path CNN architecture. Biomedical Signal Processing and Control, 2022, 73, 103465.	3.5	22
15	Artificial Intelligence for Colorectal Polyps in Colonoscopy. , 2021, , 1-15.		2
16	Classification of the Confocal Microscopy Images of Colorectal Tumor and Inflammatory Colitis Mucosa Tissue Using Deep Learning. Diagnostics, 2022, 12, 288.	1.3	0
17	Artificial Intelligence for Colorectal Polyps in Colonoscopy. , 2022, , 967-981.		2
18	Artificial intelligence in colorectal cancer screening in patients with inflammatory bowel disease. Artificial Intelligence in Gastrointestinal Endoscopy, 2022, 3, 1-8.	0.2	2

CITATION REPORT

#	Article	IF	CITATIONS
19	Polyp detection in video colonoscopy using deep learning. Journal of Intelligent and Fuzzy Systems, 2022, 43, 1751-1759.	0.8	2
20	COLORECTAL POLYP DETECTION USING IMAGE ENHANCEMENT AND SCALED YOLOv4 ALGORITHM. Biomedical Engineering - Applications, Basis and Communications, 0, , .	0.3	2
21	Performance of Convolutional Neural Networks for Polyp Localization on Public Colonoscopy Image Datasets. Diagnostics, 2022, 12, 898.	1.3	13
22	Novel Pixelwise Co-Registered Hematoxylin-Eosin and Multiphoton Microscopy Image Dataset for Human Colon Lesion Diagnosis. Journal of Pathology Informatics, 2022, 13, 100012.	0.8	5
23	Applications and Techniques for Fast Machine Learning in Science. Frontiers in Big Data, 2022, 5, 787421.	1.8	20
24	Boundary Constraint Network With Cross Layer Feature Integration for Polyp Segmentation. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4090-4099.	3.9	31
25	In Defense of Kalman Filtering for Polyp Tracking from Colonoscopy Videos. , 2022, , .		1
26	Adversarial Contrastive Fourier Domain Adaptation for Polyp Segmentation. , 2022, , .		3
27	Semantic segmentation in medical images through transfused convolution and transformer networks. Applied Intelligence, 2023, 53, 1132-1148.	3.3	26
28	A deep ensemble learning method for colorectal polyp classification with optimized network parameters. Applied Intelligence, 2023, 53, 2410-2433.	3.3	20
29	Examining the effect of synthetic data augmentation in polyp detection and segmentation. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 1289-1302.	1.7	5
30	A novel AI device for real-time optical characterization of colorectal polyps. Npj Digital Medicine, 2022, 5, .	5.7	20
31	Artificial intelligence and machine learning in colorectal cancer. Artificial Intelligence in Gastrointestinal Endoscopy, 2022, 3, 31-43.	0.2	0
32	Surgical Tool Datasets for Machine Learning Research: A Survey. International Journal of Computer Vision, 2022, 130, 2222-2248.	10.9	10
33	Double-Balanced Loss for Imbalanced Colorectal Lesion Classification. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-14.	0.7	0
34	Gastrointestinal Tract Polyp Anomaly Segmentation on Colonoscopy Images Using Graft-U-Net. Journal of Personalized Medicine, 2022, 12, 1459.	1.1	7
35	Colorectal polyp detection in colonoscopy videos using image enhancement and discrete orthonormal stockwell transform. Sadhana - Academy Proceedings in Engineering Sciences, 2022, 47, .	0.8	0
36	Artificial intelligence and automation in endoscopy and surgery. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 171-182.	8.2	22

CITATION REPORT

#	Article	IF	CITATIONS
37	An ensemble framework of deep neural networks for colorectal polyp classification. Multimedia Tools and Applications, 2023, 82, 18925-18946.	2.6	3
38	Object dimension measurement based on monocular endoscope and 5-DOF sensor. Measurement: Journal of the International Measurement Confederation, 2023, 206, 112293.	2.5	1
39	Calibrating the Dice Loss to Handle Neural Network Overconfidence for Biomedical Image Segmentation. Journal of Digital Imaging, 2023, 36, 739-752.	1.6	8
40	Role of artificial intelligence in risk prediction, prognostication, and therapy response assessment in colorectal cancer: current state and future directions. Frontiers in Oncology, 0, 13, .	1.3	6
41	Development and deployment of Computer-aided Real-Time feedback for improving quality of colonoscopy in a Multi-Center clinical trial. Biomedical Signal Processing and Control, 2023, 83, 104609.	3.5	1
42	On the Analyses of Medical Images Using Traditional Machine Learning Techniques and Convolutional Neural Networks. Archives of Computational Methods in Engineering, 2023, 30, 3173-3233.	6.0	16
43	Effect of selection bias on Automatic Colonoscopy Polyp Detection. Biomedical Signal Processing and Control, 2023, 85, 104915.	3.5	4
44	Role of Al-Based Methods in Colorectal Cancer Diagnostics. Advances in Medical Technologies and Clinical Practice Book Series, 2023, , 54-75.	0.3	Ο
45	Negative Samples for Improving Object Detection—A Case Study in Al-Assisted Colonoscopy for Polyp Detection. Diagnostics, 2023, 13, 966.	1.3	0
46	A Review of the Technology, Training, and Assessment Methods for the First Real-Time AI-Enhanced Medical Device for Endoscopy. Bioengineering, 2023, 10, 404.	1.6	7
47	Semi-supervised Bladder Tissue Classification in Multi-Domain Endoscopic Images. IEEE Transactions on Biomedical Engineering, 2023, , 1-12.	2.5	1
48	Deep Learning Empowers Endoscopic Detection and Polyps Classification: A Multiple-Hospital Study. Diagnostics, 2023, 13, 1473.	1.3	1
49	Approach of artificial intelligence in colorectal cancer and in precision medicine. , 2023, , 59-71.		1
56	Man vs. Al: An in silico study of polyp detection performance. , 2023, , .		Ο
57	Open-Source Datasets for Colonoscopy Polyps and Its AI-Enabled Techniques. Lecture Notes in Networks and Systems, 2023, , 63-76.	0.5	0
59	CNN Architecture-Based Image Retrieval of Colonoscopy Polyp Frames. Lecture Notes on Data Engineering and Communications Technologies, 2023, , 15-23.	0.5	Ο
64	Improving a Deep Neural Network Accelerator using FPGA for Diagnosing Malaria Diseased Blood Cells. , 2023, , .		0
65	Deep Learning-Assisted Techniques for Detection and Prediction of Colorectal Cancer From Medical Images and Microbial Modality. Microorganisms for Sustainability, 2024, , 151-169.	0.4	О