Dual metabolomic profiling uncovers Toxoplasma maniand the discovery of a novel parasite metabolic capability

PLoS Pathogens 16, e1008432 DOI: 10.1371/journal.ppat.1008432

Citation Report

#	Article	IF	CITATIONS
1	Dual-Stage Picolinic Acid-Derived Inhibitors of <i>Toxoplasma gondii</i> . ACS Medicinal Chemistry Letters, 2020, 11, 2382-2388.	1.3	3
2	The RESTRICTION checkpoint: a window of opportunity governing developmental transitions in Toxoplasma gondii. Current Opinion in Microbiology, 2020, 58, 99-105.	2.3	11
3	Host sensing and signal transduction during <i>Toxoplasma</i> stage conversion. Molecular Microbiology, 2021, 115, 839-848.	1.2	19
4	Comparisons of the Sexual Cycles for the Coccidian Parasites Eimeria and Toxoplasma. Frontiers in Cellular and Infection Microbiology, 2020, 10, 604897.	1.8	16
5	Minireview: Applications of NMRâ€based metabolomics for the detection and characterisation of toxoplasmosis in felids. Analytical Science Advances, 2021, 2, 295-298.	1.2	1
6	Metabolite salvage and restriction during infection — a tug of war between Toxoplasma gondii and its host. Current Opinion in Biotechnology, 2021, 68, 104-114.	3.3	6
7	Amino Acid Metabolism in Apicomplexan Parasites. Metabolites, 2021, 11, 61.	1.3	27
8	Transcriptomics analysis of Toxoplasma gondii-infected mouse macrophages reveals coding and noncoding signatures in the presence and absence of MyD88. BMC Genomics, 2021, 22, 130.	1.2	9
9	NOD-Like Receptors: Guards of Cellular Homeostasis Perturbation during Infection. International Journal of Molecular Sciences, 2021, 22, 6714.	1.8	12
11	Liquid Chromatography-Mass Spectrometry for Clinical Metabolomics: An Overview. Advances in Experimental Medicine and Biology, 2021, 1336, 179-213.	0.8	3
12	Phosphoproteomic Comparison of Four Eimeria tenella Life Cycle Stages. International Journal of Molecular Sciences, 2021, 22, 12110.	1.8	6
13	Study on the effect of koumiss on the intestinal microbiota of mice infected with Toxoplasma gondii. Scientific Reports, 2022, 12, 1271.	1.6	9
14	Temporal transcriptomic changes in long non-coding RNAs and messenger RNAs involved in the host immune and metabolic response during Toxoplasma gondii lytic cycle. Parasites and Vectors, 2022, 15, 22.	1.0	5
15	Impact of Plant-Based Foods and Nutraceuticals on Toxoplasma gondii Cysts: Nutritional Therapy as a Viable Approach for Managing Chronic Brain Toxoplasmosis. Frontiers in Nutrition, 2022, 9, 827286.	1.6	2
16	In vitro maturation of Toxoplasma gondii bradyzoites in human myotubes and their metabolomic characterization. Nature Communications, 2022, 13, 1168.	5.8	20
17	Epigenetic Reprogramming in Host-Parasite Coevolution: The <i>Toxoplasma</i> Paradigm. Annual Review of Microbiology, 2022, 76, 135-155.	2.9	7
18	Investigation of urine metabolome of BALB/c mouse infected with an avirulent strain of Toxoplasma gondii. Parasites and Vectors, 2022, 15, .	1.0	5
19	Metabolic flexibilities and vulnerabilities in the pentose phosphate pathway of the zoonotic pathogen Toxoplasma gondii. PLoS Pathogens, 2022, 18, e1010864.	2.1	7

	C	CITATION REPORT		
#	Article	IF	CITATIONS	
20	Molecular mechanisms of cellular quiescence in apicomplexan parasites. Current Opinion in Microbiology, 2022, 70, 102223.	2.3	0	
21	Global Metabolomic Profiling of Host Red Blood Cells Infected with Babesia divergens Reveals Novel Antiparasitic Target Pathways. Microbiology Spectrum, 2023, 11, .	1.2	2	