Structure-based design of antiviral drug candidates target protease

Science 368, 1331-1335 DOI: 10.1126/science.abb4489

Citation Report

#	Article	IF	CITATIONS
1	Evaluation of NGS-based approaches for SARS-CoV-2Âwhole genome characterisation. Virus Evolution, 2020, 6, veaa075.	4.9	124
2	Quantitative Structure–Activity Relationship Machine Learning Models and their Applications for Identifying Viral 3CLpro- and RdRp-Targeting Compounds as Potential Therapeutics for COVID-19 and Related Viral Infections. ACS Omega, 2020, 5, 27344-27358.	3.5	31
3	Antiviral activity of traditional medicinal plants from Ayurveda against SARS-CoV-2 infection. Journal of Biomolecular Structure and Dynamics, 2022, 40, 1719-1735.	3.5	26
4	Treatment for COVID-19: An overview. European Journal of Pharmacology, 2020, 889, 173644.	3.5	226
5	Role of proteolytic enzymes in the COVID-19 infection and promising therapeutic approaches. Biochemical Pharmacology, 2020, 182, 114225.	4.4	83
6	Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic. Bioorganic Chemistry, 2020, 104, 104315.	4.1	30
7	Potential use of polyphenols in the battle against COVID-19. Current Opinion in Food Science, 2020, 32, 149-155.	8.0	105
8	Toward Understanding Molecular Bases for Biological Diversification of Human Coronaviruses: Present Status and Future Perspectives. Frontiers in Microbiology, 2020, 11, 2016.	3.5	11
9	Antiviral Drug Discovery To Address the COVID-19 Pandemic. MBio, 2020, 11, .	4.1	7
10	2020 update on human coronaviruses: One health, one world. Medicine in Novel Technology and Devices, 2020, 8, 100043.	1.6	21
11	Many small steps towards a COVID-19 drug. Nature Communications, 2020, 11, 5048.	12.8	18
12	Potential therapeutic use of corticosteroids as SARS CoV-2 main protease inhibitors: a computational study. Journal of Biomolecular Structure and Dynamics, 2022, 40, 2053-2066.	3.5	14
13	Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, 2020, 587, 657-662.	27.8	818
14	Biochemical screening for SARS-CoV-2 main protease inhibitors. PLoS ONE, 2020, 15, e0240079.	2.5	84
15	A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduction and Targeted Therapy, 2020, 5, 237.	17.1	427
16	Ebselen, Disulfiram, Carmofur, PX-12, Tideglusib, and Shikonin Are Nonspecific Promiscuous SARS-CoV-2 Main Protease Inhibitors. ACS Pharmacology and Translational Science, 2020, 3, 1265-1277.	4.9	194
17	Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 137 crystal structures using algebraic topology and deep learning. Chemical Science, 2020, 11, 12036-12046.	7.4	62
18	Discovery of Ketone-Based Covalent Inhibitors of Coronavirus 3CL Proteases for the Potential Therapeutic Treatment of COVID-19. Journal of Medicinal Chemistry, 2020, 63, 12725-12747.	6.4	371

ARTICLE IF CITATIONS Unusual zwitterionic catalytic site of SARSâ€"CoV-2 main protease revealed by neutron crystallography. 19 3.4 97 Journal of Biological Chemistry, 2020, 295, 17365-17373. Alkaloids from <i>Cryptolepis sanguinolenta</i> as Potential Inhibitors of SARS-CoV-2 Viral Proteins: 54 An <i>In Silico</i> Study. BioMed Research International, 2020, 2020, 1-14. Evaluation of SARS-CoV-2 3C-like protease inhibitors using self-assembled monolayer desorption 21 4.1 33 ionization mass spectrometry. Antiviral Research, 2020, 182, 104924. Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface. Computational Biology and Chemistry, 2020, 89, 107372. Structural insight into the recognition of S-adenosyl-L-homocysteine and sinefungin in SARS-CoV-2 Nsp16/Nsp10 RNA cap 2â€2-O-Methyltransferase. Computational and Structural Biotechnology Journal, 23 4.1 25 2020, 18, 2757-2765. Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product databases. Journal of Biomolecular Structure and Dynamics, 2022, 40, 1363-1386. 3.5 COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nature Reviews 25 13.7 999 Cardiology, 2020, 17, 543-558. In crystallo-screening for discovery of human norovirus 3C-like protease inhibitors. Journal of 1.3 26 Structural Biology: X, 2020, 4, 100031. Minireview of progress in the structural study of SARS-CoV-2 proteins. Current Research in Microbial 27 2.3 43 Sciences, 2020, 1, 53-61. Current and Perspective Diagnostic Techniques for COVID-19. ACS Infectious Diseases, 2020, 6, 3.8 1998-2016. The increasing impact of Chinese innovative drug research on the global stage with a focus on drug 29 2 5.0discovery. Expert Opinion on Drug Discovery, 2020, 15, 1115-1120. Current and Future Direct-Acting Antivirals Against COVID-19. Frontiers in Microbiology, 2020, 11, 3.5 587944. Determination of potential inhibitors based on isatin derivatives against SARS-CoV-2 main protease (m^{pro}): a molecular docking, molecular dynamics and structure-activity relationship $\mathbf{31}$ 3.5 41 studies. Journal of Biomolecular Structure and Dynamics, 2022, 40, 3110-3128. Overcoming nonstructural protein 15-nidoviral uridylate-specific endoribonuclease (nsp15/NendoU) activity of SARS-CoV-2. Future Drug Discovery, 2020, 2, . 2.1 Exploring the Mechanism of Covalent Inhibition: Simulating the Binding Free Energy of α-Ketoamide 33 2.545 Inhibitors of the Main Protease of SARS-CoV-2. Biochemistry, 2020, 59, 4601-4608. Amino acid interacting network in the receptor-binding domain of SARS-CoV-2 spike protein. RSC Advances, 2020, 10, 39831-39841. 34 Cordycepin: a bioactive metabolite of Cordyceps militaris and polyadenylation inhibitor with 35 3.5 30 therapeutic potential against COVID-19. Journal of Biomolecular Structure and Dynamics, 2020, , 1-8. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Frontiers in Cellular and Infection Microbiology, 2020, 10, 587269.

#	Article	IF	CITATIONS
37	Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site. Nature Communications, 2020, 11, 5877.	12.8	141
38	Analysis of the efficacy of HIV protease inhibitors against SARS-CoV-2′s main protease. Virology Journal, 2020, 17, 190.	3.4	73
39	Synthetic flavonoids as potential antiviral agents against SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics, 2022, 40, 3777-3788.	3.5	20
40	Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be. Frontiers in Molecular Biosciences, 2020, 7, 605236.	3.5	159
41	Docking Characterization and in vitro Inhibitory Activity of Flavan-3-ols and Dimeric Proanthocyanidins Against the Main Protease Activity of SARS-Cov-2. Frontiers in Plant Science, 2020, 11, 601316.	3.6	74
42	Advances toward COVID-19 Therapies Special Issue Call for Papers. Journal of Medicinal Chemistry, 2020, 63, 15073-15074.	6.4	1
43	Drugs Repurposing Using QSAR, Docking and Molecular Dynamics for Possible Inhibitors of the SARS-CoV-2 Mpro Protease. Molecules, 2020, 25, 5172.	3.8	42
44	Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities. Journal of Medicinal Chemistry, 2022, 65, 2716-2746.	6.4	149
45	Assessing potential inhibitors of SARS-CoV-2 main protease from available drugs using free energy perturbation simulations. RSC Advances, 2020, 10, 40284-40290.	3.6	21
46	Interactive Molecular Dynamics in Virtual Reality Is an Effective Tool for Flexible Substrate and Inhibitor Docking to the SARS-CoV-2 Main Protease. Journal of Chemical Information and Modeling, 2020, 60, 5803-5814.	5.4	30
47	Dissecting the Drug Development Strategies Against SARS-CoV-2 Through Diverse Computational Modeling Techniques. Methods in Pharmacology and Toxicology, 2020, , 329-431.	0.2	4
48	Computational Studies of SARS-CoV-2 3CLpro: Insights from MD Simulations. International Journal of Molecular Sciences, 2020, 21, 5346.	4.1	48
49	Potential treatment of COVID-19 by inhibitors of human dihydroorotateÂdehydrogenase. Protein and Cell, 2020, 11, 699-702.	11.0	18
50	The development of Coronavirus 3C-Like protease (3CLpro) inhibitors from 2010 to 2020. European Journal of Medicinal Chemistry, 2020, 206, 112711.	5.5	119
51	Dynamical properties of enzyme–substrate complexes disclose substrate specificity of the SARS-CoV-2 main protease as characterized by the electron density descriptors. Physical Chemistry Chemical Physics, 2020, 22, 19069-19079.	2.8	29
52	Substance Use Disorder in the COVID-19 Pandemic: A Systematic Review of Vulnerabilities and Complications. Pharmaceuticals, 2020, 13, 155.	3.8	88
53	Targeting SARSâ€CoVâ€2 RBD Interface: a Supervised Computational Dataâ€Driven Approach to Identify Potential Modulators. ChemMedChem, 2020, 15, 1921-1931.	3.2	7
54	Therapeutic Strategies Against COVID-19 and Structural Characterization of SARS-CoV-2: A Review. Frontiers in Microbiology, 2020, 11, 1723.	3.5	69

#	Article	IF	CITATIONS
55	While We Wait for a Vaccine Against SARS-CoV-2, Why Not Think About Available Drugs?. Frontiers in Physiology, 2020, 11, 820.	2.8	13
56	Potential treatment methods targeting 2019-nCoV infection. European Journal of Medicinal Chemistry, 2020, 205, 112687.	5.5	32
57	Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacologica Sinica, 2020, 41, 1167-1177.	6.1	314
58	Tackling COVID-19: identification of potential main protease inhibitors via structural analysis, virtual screening, molecular docking and MM-PBSA calculations. Journal of Biomolecular Structure and Dynamics, 2021, 39, 6689-6704.	3.5	11
59	Probing <scp>3CL</scp> protease: Rationally designed chemical moieties for <scp>COVID</scp> â€19. Drug Development Research, 2020, 81, 911-918.	2.9	10
60	Potent inhibitors of SARS-CoV-2 3C-like protease derived from N-substituted isatin compounds. European Journal of Medicinal Chemistry, 2020, 206, 112702.	5.5	45
61	Potential Therapeutic Agents and Associated Bioassay Data for COVID-19 and Related Human Coronavirus Infections. ACS Pharmacology and Translational Science, 2020, 3, 813-834.	4.9	25
62	Roles of flavonoids against coronavirus infection. Chemico-Biological Interactions, 2020, 328, 109211.	4.0	252
63	Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy. Virus Research, 2020, 288, 198102.	2.2	79
64	Hordatines as a Potential Inhibitor of COVID-19 Main Protease and RNA Polymerase: An In-Silico Approach. Natural Products and Bioprospecting, 2020, 10, 453-462.	4.3	11
65	Malleability of the SARS-CoV-2 3CL Mpro Active-Site Cavity Facilitates Binding of Clinical Antivirals. Structure, 2020, 28, 1313-1320.e3.	3.3	108
66	Identification of 14 Known Drugs as Inhibitors of the Main Protease of SARS-CoV-2. ACS Medicinal Chemistry Letters, 2020, 11, 2526-2533.	2.8	176
67	Secondary metabolites from spice and herbs as potential multitarget inhibitors of SARS-CoV-2 proteins. Journal of Biomolecular Structure and Dynamics, 2022, 40, 2264-2283.	3.5	68
68	Molecular Basis of SARS-CoV-2 Infection and Rational Design of Potential Antiviral Agents: Modeling and Simulation Approaches. Journal of Proteome Research, 2020, 19, 4291-4315.	3.7	68
69	Computational studies reveal mechanism by which quinone derivatives can inhibit SARS-CoV-2. Study of embelin and two therapeutic compounds of interest, methyl prednisolone and dexamethasone. Journal of Infection and Public Health, 2020, 13, 1868-1877.	4.1	34
70	Drug binding dynamics of the dimeric SARS-CoV-2 main protease, determined by molecular dynamics simulation. Scientific Reports, 2020, 10, 16986.	3.3	54
71	Structure-based lead optimization of herbal medicine rutin for inhibiting SARS-CoV-2's main protease. Physical Chemistry Chemical Physics, 2020, 22, 25335-25343.	2.8	34
72	Optimization Rules for SARS-CoV-2 Mpro Antivirals: Ensemble Docking and Exploration of the Coronavirus Protease Active Site. Viruses, 2020, 12, 942.	3.3	34

#	Article	IF	Citations
73	Managing the COVID-19 Pandemic: Research Strategies Based on the Evolutionary and Molecular Characteristics of Coronaviruses. SN Comprehensive Clinical Medicine, 2020, 2, 1767-1776.	0.6	3
74	What is holding back the development of antiviral metallodrugs? A literature overview and implications for SARS-CoV-2 therapeutics and future viral outbreaks. Dalton Transactions, 2020, 49, 16004-16033.	3.3	58
75	Proposing a fungal metabolite-flaviolin as a potential inhibitor of 3CL ^{pro} of novel coronavirus SARS-CoV-2 identified using docking and molecular dynamics. Journal of Biomolecular Structure and Dynamics, 2022, 40, 348-360.	3.5	20
76	Identification of SARS-CoV-2 3CL Protease Inhibitors by a Quantitative High-Throughput Screening. ACS Pharmacology and Translational Science, 2020, 3, 1008-1016.	4.9	162
77	Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nature Communications, 2020, 11, 4417.	12.8	394
78	Several coumarin derivatives and their Pd(<scp>ii</scp>) complexes as potential inhibitors of the main protease of SARS-CoV-2, an <i>in silico</i> approach. RSC Advances, 2020, 10, 35099-35108.	3.6	37
79	Advanced drug delivery systems can assist in targeting coronavirus disease (COVID-19): A hypothesis. Medical Hypotheses, 2020, 144, 110254.	1.5	33
80	Design and Synthesis of Antiviral Drug Candidates Targeting SARS-CoV-2 Main Protease. Synfacts, 2020, 16, 1105.	0.0	0
81	Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nature Communications, 2020, 11, 4282.	12.8	334
82	Dynamics of the ACE2–SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms. Scientific Reports, 2020, 10, 14214.	3.3	211
83	Development of a Fluorescence-Based, High-Throughput SARS-CoV-2 3CL ^{pro} Reporter Assay. Journal of Virology, 2020, 94, .	3.4	85
84	Promising inhibitors targeting Mpro: an ideal strategy for anti-SARS-CoV-2 drug discovery. Signal Transduction and Targeted Therapy, 2020, 5, 173.	17.1	11
85	Rapid prediction of possible inhibitors for SARS-CoV-2 main protease using docking and FPL simulations. RSC Advances, 2020, 10, 31991-31996.	3.6	30
86	Impact of Early Pandemic Stage Mutations on Molecular Dynamics of SARS-CoV-2 M ^{pro} . Journal of Chemical Information and Modeling, 2020, 60, 5080-5102.	5.4	62
87	Repurposing of FDA-Approved Toremifene to Treat COVID-19 by Blocking the Spike Glycoprotein and NSP14 of SARS-CoV-2. Journal of Proteome Research, 2020, 19, 4670-4677.	3.7	55
88	On the intrinsic reactivity of highly potent trypanocidal cruzain inhibitors. RSC Medicinal Chemistry, 2020, 11, 1275-1284.	3.9	7
89	Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: an <i>in silico</i> repurposing study. Future Medicinal Chemistry, 2020, 12, 1815-1828.	2.3	66
90	Progress in Developing Inhibitors of SARS-CoV-2 3C-Like Protease. Microorganisms, 2020, 8, 1250.	3.6	90

CITATION	REPORT
CHAHON	REPORT

#	Article	IF	CITATIONS
91	Structure-Based Virtual Screening and Biochemical Validation to Discover a Potential Inhibitor of the SARS-CoV-2 Main Protease. ACS Omega, 2020, 5, 33151-33161.	3.5	27
92	Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. Frontiers in Molecular Biosciences, 2020, 7, 616341.	3.5	83
93	Nuclear Medicine in Times of COVID-19: How Radiopharmaceuticals Could Help to Fight the Current and Future Pandemics. Pharmaceutics, 2020, 12, 1247.	4.5	10
94	Role of different tautomers in the base-pairing abilities of some of the vital antiviral drugs used against COVID-19. Physical Chemistry Chemical Physics, 2020, 22, 28115-28122.	2.8	39
95	Ruthenium-Catalyzed C–H Activations for the Synthesis of Indole Derivatives. Catalysts, 2020, 10, 1253.	3.5	17
96	Highlights in the fight against COVID-19: does autophagy play a role in SARS-CoV-2 infection?. Autophagy, 2020, 16, 2123-2127.	9.1	27
97	Computer aided identification of potential SARS CoV-2 main protease inhibitors from diterpenoids and biflavonoids of <i>Torreya nucifera</i> leaves. Journal of Biomolecular Structure and Dynamics, 2022, 40, 2647-2662.	3.5	34
98	Structure and inhibition of the SARS-CoV-2 main protease reveal strategy for developing dual inhibitors against M ^{pro} and cathepsin L. Science Advances, 2020, 6, .	10.3	297
99	The Origin, Transmission, and Clinical Therapies in the Management of Coronavirus Diseases. Methods in Pharmacology and Toxicology, 2020, , 25-44.	0.2	1
100	SARS-CoV-2 Cysteine-like Protease Antibodies Can Be Detected in Serum and Saliva of COVID-19–Seropositive Individuals. Journal of Immunology, 2020, 205, 3130-3140.	0.8	32
101	Immune response to SARSâ€CoVâ€2 and mechanisms of immunopathological changes in COVIDâ€19. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1564-1581.	5.7	828
102	<i>In Silico</i> Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2's Main Protease. Journal of Physical Chemistry Letters, 2020, 11, 4413-4420.	4.6	118
103	Immunology of COVID-19: Current State of the Science. Immunity, 2020, 52, 910-941.	14.3	1,387
104	Virtual screening, ADME/Tox predictions and the drug repurposing concept for future use of old drugs against the COVID-19. Life Sciences, 2020, 256, 117963.	4.3	58
105	Repurposing cefuroxime for treatment of COVID-19: a scoping review of <i>in silico</i> studies. Journal of Biomolecular Structure and Dynamics, 2021, 39, 4547-4554.	3.5	35
106	Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Research, 2020, 30, 678-692.	12.0	662
107	Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors – an <i>in silico</i> docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 2021, 39, 4362-4374.	3.5	216
108	Topological analysis of SARS CoV-2 main protease. Chaos, 2020, 30, 061102.	2.5	47

#	Article	IF	CITATIONS
109	Recent Understandings Toward Coronavirus Disease 2019 (COVID-19): From Bench to Bedside. Frontiers in Cell and Developmental Biology, 2020, 8, 476.	3.7	27
110	Severe Acute Respiratory Syndrome Coronavirus 2: From Gene Structure to Pathogenic Mechanisms and Potential Therapy. Frontiers in Microbiology, 2020, 11, 1576.	3.5	32
111	Class A G Protein-Coupled Receptor Antagonist Famotidine as a Therapeutic Alternative against SARS-CoV2: An In Silico Analysis. Biomolecules, 2020, 10, 954.	4.0	43
112	The SARS-CoV-2 main protease as drug target. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127377.	2.2	550
113	Research progress on repositioning drugs and specific therapeutic drugs for SARS-CoV-2. Future Medicinal Chemistry, 2020, 12, 1565-1578.	2.3	22
114	Antiviral mechanisms of candidate chemical medicines and traditional Chinese medicines for SARS-CoV-2 infection. Virus Research, 2020, 286, 198073.	2.2	35
115	Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nature Communications, 2020, 11, 3202.	12.8	334
116	Coronavirus in Continuous Flux: From SARS oV to SARS oVâ€2. Advanced Science, 2020, 7, 2001474.	11.2	14
117	Revealing the molecular mechanisms of proteolysis of SARS-CoV-2 M ^{pro} by QM/MM computational methods. Chemical Science, 2020, 11, 10626-10630.	7.4	130
118	Emerging Prevention and Treatment Strategies to Control COVID-19. Pathogens, 2020, 9, 501.	2.8	22
119	Structural Basis of SARS-CoV-2– and SARS-CoV–Receptor Binding and Small-Molecule Blockers as Potential Therapeutics. Annual Review of Pharmacology and Toxicology, 2021, 61, 465-493.	9.4	36
120	Recent insights for the emerging COVID-19: Drug discovery, therapeutic options and vaccine development. Asian Journal of Pharmaceutical Sciences, 2021, 16, 4-23.	9.1	46
121	Screening Malaria-box compounds to identify potential inhibitors against SARS-CoV-2 Mpro, using molecular docking and dynamics simulation studies. European Journal of Pharmacology, 2021, 890, 173664.	3.5	25
122	Quantum chemical insight into molecular structure, NBO analysis of the hydrogen-bonded interactions, spectroscopic (FT–IR, FT–Raman), drug likeness and molecular docking of the novel anti COVID-19 molecule 2-[(4,6-diaminopyrimidin-2-yl)sulfanyl]-N-(4-fluorophenyl)acetamide - dimer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 244, 118825.	3.9	26
123	Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Phytomedicine, 2021, 85, 153364.	5.3	102
124	DockCoV2: a drug database against SARS-CoV-2. Nucleic Acids Research, 2021, 49, D1152-D1159.	14.5	42
125	COVID-19: Discovery, diagnostics and drug development. Journal of Hepatology, 2021, 74, 168-184.	3.7	302
126	Why Does the Novel Coronavirus Spike Protein Interact so Strongly with the Human ACE2? A Thermodynamic Answer. ChemBioChem, 2021, 22, 865-875.	2.6	31

#	Article	IF	CITATIONS
127	Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Bioorganic and Medicinal Chemistry, 2021, 29, 115860.	3.0	126
128	Coronavirus disease 2019 (COVIDâ€19): An overview of the immunopathology, serological diagnosis and management. Scandinavian Journal of Immunology, 2021, 93, e12998.	2.7	201
129	Mechanism of inhibition of SARS-CoV-2 M ^{pro} by N3 peptidyl Michael acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity. Chemical Science, 2021, 12, 1433-1444.	7.4	87
130	Drug repurposing approach to combating coronavirus: Potential drugs and drug targets. Medicinal Research Reviews, 2021, 41, 1375-1426.	10.5	28
131	The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Biochemical and Biophysical Research Communications, 2021, 538, 63-71.	2.1	30
132	Potential molecular targets of nonstructural proteins for the development of antiviral drugs against SARS-CoV-2 infection. Biomedicine and Pharmacotherapy, 2021, 133, 111035.	5.6	24
133	The future of covalent inhibition. Annual Reports in Medicinal Chemistry, 2021, 56, 267-284.	0.9	0
134	Potential inhibitors of SARS-CoV-2: recent advances. Journal of Drug Targeting, 2021, 29, 349-364.	4.4	27
135	Microsecond MD Simulation and Multiple-Conformation Virtual Screening to Identify Potential Anti-COVID-19 Inhibitors Against SARS-CoV-2 Main Protease. Frontiers in Chemistry, 2020, 8, 595273.	3.6	32
136	A Quick Route to Multiple Highly Potent SARS oVâ€⊋ Main Protease Inhibitors**. ChemMedChem, 2021, 16, 942-948.	3.2	92
137	Potential SARS-CoV-2 main protease inhibitors. Drug Discovery Today, 2021, 26, 804-816.	6.4	128
138	Computational study on peptidomimetic inhibitors against SARS-CoV-2 main protease. Journal of Molecular Liquids, 2021, 322, 114999.	4.9	26
139	Recent Insights into Emerging Coronavirus: SARS-CoV-2. ACS Infectious Diseases, 2021, 7, 1369-1388.	3.8	27
140	Protease inhibitors targeting the main protease and papain-like protease of coronaviruses. Expert Opinion on Therapeutic Patents, 2021, 31, 309-324.	5.0	25
141	Computer-aided approaches reveal trihydroxychroman and pyrazolone derivatives as potential inhibitors of SARS-CoV-2 virus main protease. Acta Pharmaceutica, 2021, 71, 325-333.	2.0	4
142	Eine Strategie zur Ligandenselektion identifiziert chemische Sonden für die Markierung von SARSâ€CoVâ€2â€Proteasen. Angewandte Chemie, 2021, 133, 6874-6881.	2.0	2
143	A Ligand Selection Strategy Identifies Chemical Probes Targeting the Proteases of SARSâ€CoVâ€2. Angewandte Chemie - International Edition, 2021, 60, 6799-6806.	13.8	14
144	In Silico Study of Coumarins and Quinolines Derivatives as Potent Inhibitors of SARS-CoV-2 Main Protease. Frontiers in Chemistry, 2020, 8, 595097.	3.6	28

ARTICLE IF CITATIONS # Crystal structure of SARS-CoV-2 main protease in complex with the natural product inhibitor 145 9.0 41 shikonin illuminates a unique binding mode. Science Bulletin, 2021, 66, 661-663. Functional and druggability analysis of the SARS-CoV-2 proteome. European Journal of Pharmacology, 146 3.5 34 2021, 890, 173705. The recent outbreaks of human coronaviruses: A medicinal chemistry perspective. Medicinal Research 147 10.5 31 Reviews, 2021, 41, 72-135. Severe acute respiratory syndromeâ€coronavirusâ€2: Current advances in therapeutic targets and drug 148 development. Reviews in Medical Virology, 2021, 31, e2174. Structure of SARS-CoV-2 main protease in the apo state. Science China Life Sciences, 2021, 64, 656-659. 149 4.9 15 SARSâ€CoVâ€2: Mechanism of infection and emerging technologies for future prospects. Reviews in 8.3 Medical Virology, 2021, 31, e2168. History and Recent Advances in Coronavirus Discovery. Methods in Pharmacology and Toxicology, 151 0.2 3 2021, , 3-24. Peptidomimetic nitrile warheads as SARS-CoV-2 3CL protease inhibitors. RSC Medicinal Chemistry, 2021, 3.9 40 12, 1722-1730. Reviews on Biological Activity, Clinical Trial and Synthesis Progress of Small Molecules for the 153 5.8 15 Treatment of COVID-19. Topics in Current Chemistry, 2021, 379, 4. Search, Identification, and Design of Effective Antiviral Drugs Against Pandemic Human 154 1.6 Coronaviruses. Advances in Experimental Medicine and Biology, 2021, 1322, 219-260. One Year of SARS-CoV-2: How Much Has the Virus Changed?. Biology, 2021, 10, 91. 155 2.8 91 Zinc thiotropolone combinations as inhibitors of the SARS-CoV-2 main protease. Dalton Transactions, 3.3 2021, 50, 12226-12233. What coronavirus 3Câ€like protease tells us: From structure, substrate selectivity, to inhibitor design. 157 10.5 73 Medicinal Research Reviews, 2021, 41, 1965-1998. Therapeutic targets and potential agents for the treatment of COVIDâ€19. Medicinal Research <u>Reviews</u>, 2021, 41, 1775-1797. Computational analysis of dynamic allostery and control in the SARS-CoV-2 main protease. Journal of 159 37 3.4 the Royal Society Interface, 2021, 18, 20200591. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug 12.8 196 discovery. Nature Communications, 2021, 12, 488. Asymmetric dynamics of dimeric SARS-CoV-2 and SARS-CoV main proteases in an apo form: Molecular dynamics study on fluctuations of active site, catalytic dyad, and hydration water. BBA Advances, 2021, 161 1.6 4 1, 100016. A phytochemical-based medication search for the SARS-CoV-2 infection by molecular docking models towards spike glycoproteins and main proteases. RSC Advances, 2021, 11, 12003-12014.

~			_	
Сіт	ATIC	л Г	2 F D(דסר
	π in			

#	Article	IF	CITATIONS
163	Computational simulations on the binding and reactivity of a nitrile inhibitor of the SARS-CoV-2 main protease. Chemical Communications, 2021, 57, 9096-9099.	4.1	32
164	Resources and computational strategies to advance small molecule SARS-CoV-2 discovery: Lessons from the pandemic and preparing for future health crises. Computational and Structural Biotechnology Journal, 2021, 19, 2537-2548.	4.1	18
165	A review on potential of natural products in the management of COVID-19. RSC Advances, 2021, 11, 16711-16735.	3.6	59
166	The role of chemical biology in the fight against SARS-CoV-2. Biochemical Journal, 2021, 478, 157-177.	3.7	2
167	Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. Journal of Biomedical Science, 2021, 28, 9.	7.0	167
169	Molecular design of anticancer drugs from marine fungi derivatives. RSC Advances, 2021, 11, 20173-20179.	3.6	9
170	Protein Structure, Dynamics and Assembly: Implications for Drug Discovery. , 2021, , 91-122.		1
171	Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic Strategies. Frontiers in Physiology, 2021, 12, 593223.	2.8	113
172	Similarities and Dissimilarities of COVID-19 and Other Coronavirus Diseases. Annual Review of Microbiology, 2021, 75, 19-47.	7.3	52
173	First structure–activity relationship analysis of SARS-CoV-2 virus main protease (Mpro) inhibitors: an endeavor on COVID-19 drug discovery. Molecular Diversity, 2021, 25, 1827-1838.	3.9	33
174	Drug repurposing and computational modeling for discovery of inhibitors of the main protease (M ^{pro}) of SARS-CoV-2. RSC Advances, 2021, 11, 23450-23458.	3.6	15
175	Ligand-based approach for predicting drug targets and for virtual screening against COVID-19. Briefings in Bioinformatics, 2021, 22, 1053-1064.	6.5	27
176	<i>In silico</i> and <i>in vitro</i> evaluation of kaempferol as a potential inhibitor of the <scp>SARSâ€CoV</scp> â€2 main protease (<scp>3CLpro</scp>). Phytotherapy Research, 2021, 35, 2841-2845.	5.8	80
177	The Main Protease of SARS COV-2 and Its Specific Inhibitors. , 2021, , 121-147.		2
178	An overview of potential inhibitors targeting non-structural proteins 3 (PLpro and Mac1) and 5 (3CLpro/Mpro) of SARS-CoV-2. Computational and Structural Biotechnology Journal, 2021, 19, 4868-4883.	4.1	39
179	Structures of SARS-CoV-2 RNA-Binding Proteins and Therapeutic Targets. Intervirology, 2021, 64, 55-68.	2.8	36
180	The immunodominant and neutralization linear epitopes for SARS-CoV-2. Cell Reports, 2021, 34, 108666.	6.4	65
181	Recent biotechnological advances as potential intervention strategies against COVID-19. 3 Biotech, 2021, 11, 41.	2.2	10

	Сітатіс	on Report	
#	Article	IF	Citations
182	Binding of inhibitors to the monomeric and dimeric SARS-CoV-2 Mpro. RSC Advances, 2021, 11, 2926-2934	ł. 3.6	19
183	Computational Determination of Potential Multiprotein Targeting Natural Compounds for Rational Drug Design Against SARS-COV-2. Molecules, 2021, 26, 674.	3.8	27
184	Innate immune evasion mediated by picornaviral 3C protease: Possible lessons for coronaviral 3Câ€like protease?. Reviews in Medical Virology, 2021, 31, 1-22.	8.3	18
185	Computational estimation of potential inhibitors from known drugs against the main protease of SARS-CoV-2. RSC Advances, 2021, 11, 17478-17486.	3.6	17
186	Crystal Structure of SARS-CoV-2 Main Protease in Complex with the Non-Covalent Inhibitor ML188. Viruses, 2021, 13, 174.	3.3	80
187	A Global Review on Short Peptides: Frontiers and Perspectives. Molecules, 2021, 26, 430.	3.8	190
188	Covalent and non-covalent binding free energy calculations for peptidomimetic inhibitors of SARS-CoV-2 main protease. Physical Chemistry Chemical Physics, 2021, 23, 6746-6757.	2.8	30
189	Covalent Antiviral Agents. Advances in Experimental Medicine and Biology, 2021, 1322, 285-312.	1.6	2
190	SARS-CoV-2 protein drug targets landscape: a potential pharmacological insight view for the new drug development. Expert Review of Clinical Pharmacology, 2021, 14, 225-237.	3.1	18
191	Potency, Safety, and Pharmacokinetic Profiles of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Frontiers in Pharmacology, 2020, 11, 630500.	3.5	32
193	Investigation of the inhibitory activity of some dietary bioactive flavonoids against SARS-CoV-2 using molecular dynamics simulations and MM-PBSA calculations. Journal of Biomolecular Structure and Dynamics, 2022, 40, 6755-6770.	3.5	10
194	Challenges for Targeting SARS-CoV-2 Proteases as a Therapeutic Strategy for COVID-19. ACS Infectious Diseases, 2021, 7, 1457-1468.	3.8	75
195	A Comparative Analysis of SARS-CoV-2 Antivirals Characterizes 3CL ^{pro} Inhibitor PF-00835231 as a Potential New Treatment for COVID-19. Journal of Virology, 2021, 95, .	3.4	94
196	Role of biomaterials in the diagnosis, prevention, treatment, and study of corona virus disease 2019 (COVID-19). Emergent Materials, 2021, 4, 35-55.	5.7	19
197	A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. IScience, 2021, 24, 102021.	4.1	66
198	Potent Noncovalent Inhibitors of the Main Protease of SARS-CoV-2 from Molecular Sculpting of the Drug Perampanel Guided by Free Energy Perturbation Calculations. ACS Central Science, 2021, 7, 467-475.	11.3	182
199	De novo design and bioactivity prediction of SARS-CoV-2 main protease inhibitors using recurrent neural network-based transfer learning. BMC Chemistry, 2021, 15, 8.	3.8	49
200	Structural basis for the inhibition of the SARS-CoV-2 main protease by the anti-HCV drug narlaprevir. Signal Transduction and Targeted Therapy, 2021, 6, 51.	17.1	20

#	Article	IF	CITATIONS
201	The Hydroalcoholic Extract of Uncaria tomentosa (Cat's Claw) Inhibits the Infection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) In Vitro. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-11.	1.2	16
203	Update on Antiviral Strategies Against COVID-19: Unmet Needs and Prospects. Frontiers in Immunology, 2020, 11, 616595.	4.8	20
204	Field-Template, QSAR, Ensemble Molecular Docking, and 3D-RISM Solvation Studies Expose Potential of FDA-Approved Marine Drugs as SARS-CoVID-2 Main Protease Inhibitors. Molecules, 2021, 26, 936.	3.8	16
205	Crystallographic models of SARS-CoV-2 3CL ^{pro} : in-depth assessment of structure quality and validation. IUCrJ, 2021, 8, 238-256.	2.2	21
206	Reply to Ma and Wang: Reliability of various in vitro activity assays on SARS-CoV-2 main protease inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
207	Deep Learning-Based Potential Ligand Prediction Framework for COVID-19 with Drug–Target Interaction Model. Cognitive Computation, 2021, , 1-13.	5.2	9
208	A Comprehensive Review of Viral Characteristics, Transmission, Pathophysiology, Immune Response, and Management of SARS-CoV-2 and COVID-19 as a Basis for Controlling the Pandemic. Frontiers in Immunology, 2021, 12, 631139.	4.8	117
209	Repurposing of Sitagliptin- Melittin Optimized Nanoformula against SARS-CoV-2; Antiviral Screening and Molecular Docking Studies. Pharmaceutics, 2021, 13, 307.	4.5	28
210	Nucleoside Analogs and Nucleoside Precursors as Drugs in the Fight against SARS-CoV-2 and Other Coronaviruses. Molecules, 2021, 26, 986.	3.8	60
211	COVID-19: Diagnostics, Therapeutic Advances, and Vaccine Development. Current Clinical Microbiology Reports, 2021, 8, 152-166.	3.4	15
212	Overview of antiviral drug candidates targeting coronaviral 3Câ€like main proteases. FEBS Journal, 2021, 288, 5089-5121.	4.7	28
213	Drug Repurposing and Polypharmacology to Fight SARS-CoV-2 Through Inhibition of the Main Protease. Frontiers in Pharmacology, 2021, 12, 636989.	3.5	28
214	A drug repurposing screen identifies hepatitis C antivirals as inhibitors of the SARS-CoV2 main protease. PLoS ONE, 2021, 16, e0245962.	2.5	43
215	Ginkgolic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases. Cell and Bioscience, 2021, 11, 45.	4.8	47
216	Virtual screening and molecular dynamics simulation study of plant-derived compounds to identify potential inhibitors of main protease from SARS-CoV-2. Briefings in Bioinformatics, 2021, 22, 1402-1414.	6.5	75
217	Computational Selectivity Assessment of Protease Inhibitors against SARS-CoV-2. International Journal of Molecular Sciences, 2021, 22, 2065.	4.1	3
218	Molecular Docking of Quinine Derivative as Inhibitor in Sars-Cov-2. Journal of Physics: Conference Series, 2021, 1819, 012053.	0.4	5
219	The race to treat COVID-19: Potential therapeutic agents for the prevention and treatment of SARS-CoV-2. European Journal of Medicinal Chemistry, 2021, 213, 113157.	5.5	35

#	Article	IF	CITATIONS
220	Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Frontiers in Molecular Biosciences, 2021, 8, 639587.	3.5	21
222	SARS-CoV-2 Genome from the Khyber Pakhtunkhwa Province of Pakistan. ACS Omega, 2021, 6, 6588-6599.	3.5	6
223	Repurposing of Some Natural Product Isolates as SARS-COV-2 Main Protease Inhibitors via In Vitro Cell Free and Cell-Based Antiviral Assessments and Molecular Modeling Approaches. Pharmaceuticals, 2021, 14, 213.	3.8	45
224	Protein structural heterogeneity: A hypothesis for the basis of proteolytic recognition by the main protease of SARS-CoV and SARS-CoV-2. Biochimie, 2021, 182, 177-184.	2.6	10
225	A computational framework of host-based drug repositioning for broad-spectrum antivirals against RNA viruses. IScience, 2021, 24, 102148.	4.1	10
226	Structural insights of key enzymes into therapeutic intervention against SARS-CoV-2. Journal of Structural Biology, 2021, 213, 107690.	2.8	8
227	A Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library Screening Guided by Analysis of Protein Dynamics. ACS Pharmacology and Translational Science, 2021, 4, 1079-1095.	4.9	44
229	Repurposed Therapeutic Strategies towards COVID-19 Potential Targets Based on Genomics and Protein Structure Remodeling. , 0, , .		2
230	Multiscale Simulations of SARS-CoV-2 3CL Protease Inhibition with Aldehyde Derivatives. Role of Protein and Inhibitor Conformational Changes in the Reaction Mechanism. ACS Catalysis, 2021, 11, 4157-4168.	11.2	40
231	The Inhibitory Effects of Plant Derivate Polyphenols on the Main Protease of SARS Coronavirus 2 and Their Structure–Activity Relationship. Molecules, 2021, 26, 1924.	3.8	39
232	Identification of mutation resistance coldspots for targeting the SARS oV2 main protease. IUBMB Life, 2021, 73, 670-675.	3.4	30
233	Targeting the Main Protease of SARSâ€CoVâ€2: From the Establishment of High Throughput Screening to the Design of Tailored Inhibitors. Angewandte Chemie - International Edition, 2021, 60, 10423-10429.	13.8	95
234	SARS-CoV-2 M ^{pro} inhibitors with antiviral activity in a transgenic mouse model. Science, 2021, 371, 1374-1378.	12.6	324
236	Direct Observation of Protonation State Modulation in SARS-CoV-2 Main Protease upon Inhibitor Binding with Neutron Crystallography. Journal of Medicinal Chemistry, 2021, 64, 4991-5000.	6.4	36
237	Die Hauptprotease von SARSâ€CoVâ€2 als Zielstruktur: Von der Etablierung eines Hochdurchsatzâ€Screenings zum Design maßgeschneiderter Inhibitoren. Angewandte Chemie, 2021, 133, 10515-10521.	2.0	3
238	Exploration of Some Naturally Occurring Fungal-Derived Bioactive Molecules as Potential SARS-CoV-2 Main Protease (MPro) Inhibitors Through In-silico Approach. Journal of Computational Biophysics and Chemistry, 2021, 20, 251-266.	1.7	1
239	<i>De novo</i> design of new chemical entities for SARS-CoV-2 using artificial intelligence. Future Medicinal Chemistry, 2021, 13, 575-585.	2.3	66
240	Recent Advances in the Discovery of Potent Proteases Inhibitors Targeting the SARS Coronaviruses. Current Topics in Medicinal Chemistry, 2021, 21, 307-328.	2.1	4

CITATION	DEDODT
CHAHON	KEPUKI

#	Article	IF	CITATIONS
241	Drug discovery and development targeting the life cycle of SARS-CoV-2. Fundamental Research, 2021, 1, 151-165.	3.3	9
242	Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Scientific Reports, 2021, 11, 5543.	3.3	63
243	Precision therapeutic targets for COVID-19. Virology Journal, 2021, 18, 66.	3.4	40
244	Knowing and combating the enemy: a brief review on SARS-CoV-2 and computational approaches applied to the discovery of drug candidates. Bioscience Reports, 2021, 41, .	2.4	16
245	Kinetic Characterization and Inhibitor Screening for the Proteases Leading to Identification of Drugs against SARS-CoV-2. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	27
246	Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Frontiers in Chemistry, 2021, 9, 622898.	3.6	213
247	Identification of natural compounds as potent inhibitors of SARS-CoV-2 main protease using combined docking and molecular dynamics simulations. Saudi Journal of Biological Sciences, 2021, 28, 2423-2431.	3.8	47
248	Highlights from a year in a pandemic. Journal of Experimental Medicine, 2021, 218, .	8.5	4
249	Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts. Journal of Ethnopharmacology, 2021, 270, 113869.	4.1	103
250	Detecting SARS-CoV-2 3CLpro expression and activity using a polyclonal antiserum and a luciferase-based biosensor. Virology, 2021, 556, 73-78.	2.4	24
251	Current diagnostic and therapeutic strategies for COVID-19. Journal of Pharmaceutical Analysis, 2021, 11, 129-137.	5.3	11
252	Prevention of SARS-CoV-2 Proliferation with a Novel and Potent Main Protease Inhibitor by Docking, ADMET, MM-PBSA, and Molecular Dynamics Simulation. Journal of Computational Biophysics and Chemistry, 2021, 20, 305-322.	1.7	8
253	The dimer-monomer equilibrium of SARS-CoV-2 main protease is affected by small molecule inhibitors. Scientific Reports, 2021, 11, 9283.	3.3	48
254	Insights into SARS-CoV-2: Medicinal Chemistry Approaches to Combat Its Structural and Functional Biology. Topics in Current Chemistry, 2021, 379, 23.	5.8	6
	Molecular structure, NBO analysis of the hydrogen-bonded interactions, spectroscopic (FT–IR,) Tj ETQq0 0 0 rg	BT /Overlo	ck 10 Tf 50 1
255	(2E)-N-methyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]-hydrazinecarbothioamide (Dimer) - quantum chemical approach. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 251, 119388.	3.9	9
256	In-silico analysis of the inhibition of the SARS-CoV-2 main protease by some active compounds from selected African plants. Journal of Taibah University Medical Sciences, 2021, 16, 162-176.	0.9	28
257	An Updated Review on SARS-CoV-2 Main Proteinase (MPro): Protein Structure and Small-Molecule Inhibitors. Current Topics in Medicinal Chemistry, 2021, 21, 442-460.	2.1	30
258	Benchmark of Popular Free Energy Approaches Revealing the Inhibitors Binding to SARS-CoV-2 Mpro. Journal of Chemical Information and Modeling, 2021, 61, 2302-2312.	5.4	66

#	Article	IF	CITATIONS
259	Identification of a novel inhibitor of SARS-CoV-2 3CL-PRO through virtual screening and molecular dynamics simulation. PeerJ, 2021, 9, e11261.	2.0	24
260	Binding ability of arginine, citrulline, N-acetyl citrulline and thiocitrulline with SARS COV-2 main protease using molecular docking studies. Network Modeling Analysis in Health Informatics and Bioinformatics, 2021, 10, 28.	2.1	1
261	Development of a chiral HPLC method for the separation and quantification of hydroxychloroquine enantiomers. Scientific Reports, 2021, 11, 8017.	3.3	10
262	A Non-Linear Biostatistical Graphical Modeling of Preventive Actions and Healthcare Factors in Controlling COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 2021, 18, 4491.	2.6	12
263	The Computational Intervention of Macrolide Antibiotics in the Treatment of COVID-19. Current Pharmaceutical Design, 2021, 27, 1202-1210.	1.9	7
264	Structural insights into SARS-CoV-2 infection and therapeutics development. Stem Cell Research, 2021, 52, 102219.	0.7	7
265	SARS-CoV-2: Pathogenesis, Molecular Targets and Experimental Models. Frontiers in Pharmacology, 2021, 12, 638334.	3.5	14
267	Inhibition of SARS-CoV-2 main protease: a repurposing study that targets the dimer interface of the protein. Journal of Biomolecular Structure and Dynamics, 2022, 40, 7167-7182.	3.5	5
268	Protease targeted COVID-19 drug discovery: What we have learned from the past SARS-CoV inhibitors?. European Journal of Medicinal Chemistry, 2021, 215, 113294.	5.5	26
269	In-Silico Structure-Based Drug Discovery of Candidate Drugs against Novel Protein Receptor Complex Nsp10-Nsp16 of SARS-CoV-2 using Drug Repurposing Approach. Coronaviruses, 2021, 2, 255-264.	0.3	1
271	SARS-CoV-2 Mpro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors. Biomolecules, 2021, 11, 607.	4.0	97
272	The time to offer treatments for COVID-19. Expert Opinion on Investigational Drugs, 2021, 30, 505-518.	4.1	20
273	Design, Synthesis, and Biological Evaluation of Peptidomimetic Aldehydes as Broad-Spectrum Inhibitors against Enterovirus and SARS-CoV-2. Journal of Medicinal Chemistry, 2022, 65, 2794-2808.	6.4	52
274	Lead compounds for the development of SARS-CoV-2 3CL protease inhibitors. Nature Communications, 2021, 12, 2016.	12.8	65
275	Molecular modeling-guided optimization of acetylcholinesterase reactivators: A proof for reactivation of covalently inhibited targets. European Journal of Medicinal Chemistry, 2021, 215, 113286.	5.5	2
276	Xanthohumol ameliorates Diet-Induced Liver Dysfunction via Farnesoid X Receptor-Dependent and Independent Signaling. Frontiers in Pharmacology, 2021, 12, 643857.	3.5	20
277	Coronavirus 2019 Infectious Disease Epidemic: Where We Are, What Can Be Done and Hope For. Journal of Thoracic Oncology, 2021, 16, 546-571.	1.1	25
278	Elucidation of Cryptic and Allosteric Pockets within the SARS-CoV-2 Main Protease. Journal of Chemical Information and Modeling, 2021, 61, 3495-3501.	5.4	51

#	Article	IF	CITATIONS
279	Scrutinizing Coronaviruses Using Publicly Available Bioinformatic Tools: The Viral Structural Proteins as a Case Study. Frontiers in Molecular Biosciences, 2021, 8, 671923.	3.5	0
280	Virtual screening of quinoline derived library for SARS-COV-2 targeting viral entry and replication. Journal of Biomolecular Structure and Dynamics, 2022, 40, 8464-8493.	3.5	4
281	Quantum biochemistry, molecular docking, and dynamics simulation revealed synthetic peptides induced conformational changes affecting the topology of the catalytic site of SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics, 2022, 40, 8925-8937.	3.5	8
282	Rational design of potent anti-COVID-19 main protease drugs: An extensive multi-spectrum in silico approach. Journal of Molecular Liquids, 2021, 330, 115636.	4.9	10
283	Reckoning Î ³ -Glutamyl-S-allylcysteine as a potential main protease (m ^{pro}) inhibitor of novel SARS-CoV-2 virus identified using docking and molecular dynamics simulation. Drug Development and Industrial Pharmacy, 2021, 47, 699-710.	2.0	8
284	Therapeutic approaches for SARS-CoV-2 infection. Methods, 2021, 195, 29-43.	3.8	14
285	Discovery of novel inhibitors against main protease (Mpro) of SARS-CoV-2 via virtual screening and biochemical evaluation. Bioorganic Chemistry, 2021, 110, 104767.	4.1	21
286	In silico structural elucidation of the rabies RNA-dependent RNA polymerase (RdRp) toward the identification of potential rabies virus inhibitors. Journal of Molecular Modeling, 2021, 27, 183.	1.8	1
287	COVID-19 and cardiovascular complications $\hat{a} \in$ the preliminary results of the LATE-COVID study. Archives of Medical Science, 2021, 17, 818-822.	0.9	39
288	Robust classification-based molecular modelling of diverse chemical entities as potential SARS-CoV-2 3CL ^{pro} inhibitors: theoretical justification in light of experimental evidences. SAR and QSAR in Environmental Research, 2021, 32, 473-493.	2.2	9
289	ALC-097111, a potent and selective SARS-CoV-2 3-chymotrypsin-like cysteine protease inhibitor exhibits inÂvivo efficacy in a Syrian Hamster model. Biochemical and Biophysical Research Communications, 2021, 555, 134-139.	2.1	30
290	Viral Proteases as Targets for Coronavirus Disease 2019 Drug Development. Journal of Pharmacology and Experimental Therapeutics, 2021, 378, 166-172.	2.5	19
291	An update review of emerging small-molecule therapeutic options for COVID-19. Biomedicine and Pharmacotherapy, 2021, 137, 111313.	5.6	52
292	Graphene Oxide Nanosheets Interact and Interfere with SARSâ€CoVâ€2 Surface Proteins and Cell Receptors to Inhibit Infectivity. Small, 2021, 17, e2101483.	10.0	46
293	Binding mode characterization of 13b in the monomeric and dimeric states of SARS-CoV-2 main protease using molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2022, 40, 9287-9305.	3.5	12
294	In silico screening of potent bioactive compounds from honeybee products against COVID-19 target enzymes. Environmental Science and Pollution Research, 2021, 28, 40507-40514.	5.3	48
295	Current Strategies of Antiviral Drug Discovery for COVID-19. Frontiers in Molecular Biosciences, 2021, 8, 671263.	3.5	75
296	Prospective Role of Peptide-Based Antiviral Therapy Against the Main Protease of SARS-CoV-2. Frontiers in Molecular Biosciences, 2021, 8, 628585.	3.5	31

#	Article	IF	CITATIONS
297	<i>In silico</i> Studies on the Interaction between Mpro and PLpro From SARSâ€CoVâ€2 and Ebselen, its Metabolites and Derivatives. Molecular Informatics, 2021, 40, e2100028.	2.5	33
298	Interaction of small molecules with the SARS-CoV-2 papain-like protease: In silico studies and inÂvitro validation of protease activity inhibition using an enzymatic inhibition assay. Journal of Molecular Graphics and Modelling, 2021, 104, 107851.	2.4	29
299	Isolation and In Silico Anti-COVID-19 Main Protease (Mpro) Activities of Flavonoids and a Sesquiterpene Lactone from Artemisia sublessingiana. Journal of Chemistry, 2021, 2021, 1-8.	1.9	22
300	The Contribution of Biophysics and Structural Biology to Current Advances in COVID-19. Annual Review of Biophysics, 2021, 50, 493-523.	10.0	12
301	Olive-Derived Triterpenes Suppress SARS COV-2 Main Protease: A Promising Scaffold for Future Therapeutics. Molecules, 2021, 26, 2654.	3.8	36
302	Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nature Communications, 2021, 12, 3061.	12.8	149
303	Benchmarking the Ability of Common Docking Programs to Correctly Reproduce and Score Binding Modes in SARS-CoV-2 Protease Mpro. Journal of Chemical Information and Modeling, 2021, 61, 2957-2966.	5.4	50
304	Virtual screening for small molecular non-covalent binders of the SARS-CoV-2 main protease. Archives of Medical Science, 2021, 17, 838-842.	0.9	0
305	Flavonoids are promising safe therapy against COVID-19. Phytochemistry Reviews, 2022, 21, 291-312.	6.5	87
306	Human endeavor for anti-SARS-CoV-2 pharmacotherapy: A major strategy to fight the pandemic. Biomedicine and Pharmacotherapy, 2021, 137, 111232.	5.6	7
308	Catalytic Dyad Residues His41 and Cys145 Impact the Catalytic Activity and Overall Conformational Fold of the Main SARS-CoV-2 Protease 3-Chymotrypsin-Like Protease. Frontiers in Chemistry, 2021, 9, 692168.	3.6	75
309	Interfering with the Reactive Cysteine Proteome in COVID-19. Current Medicinal Chemistry, 2022, 29, 1657-1663.	2.4	2
310	Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Nature Communications, 2021, 12, 3623.	12.8	111
311	Discovery of chebulagic acid and punicalagin as novel allosteric inhibitors of SARS-CoV-2 3CLpro. Antiviral Research, 2021, 190, 105075.	4.1	44
312	Inhibitors of Coronavirus 3CL Proteases Protect Cells from Protease-Mediated Cytotoxicity. Journal of Virology, 2021, 95, e0237420.	3.4	27
313	COVID-19: Innovative Antiviral Drugs Required for Long-Term Prevention and Control of Coronavirus Diseases. Current Medicinal Chemistry, 2021, 28, 3554-3567.	2.4	2
314	The Current Status and Challenges in the Development of Vaccines and Drugs against Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2). BioMed Research International, 2021, 2021, 1-20.	1.9	13
315	A Multidisciplinary Approach to Coronavirus Disease (COVID-19). Molecules, 2021, 26, 3526.	3.8	14

#	Article	IF	CITATIONS
316	An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19. BioMed Research International, 2021, 2021, 1-18.	1.9	95
317	Therapeutic Potential of Glycosyl Flavonoids as Anti-Coronaviral Agents. Pharmaceuticals, 2021, 14, 546.	3.8	18
318	Identification of non-covalent 3C-like protease inhibitors against severe acute respiratory syndrome coronavirus-2 via virtual screening of a Korean compound library. Bioorganic and Medicinal Chemistry Letters, 2021, 42, 128067.	2.2	5
319	Structure-based drug design of an inhibitor of the SARS-CoV-2 (COVID-19) main protease using free software: A tutorial for students and scientists. European Journal of Medicinal Chemistry, 2021, 218, 113390.	5.5	24
320	Drug targets, mechanisms of drug action, and therapeutics against SARS-CoV-2. Chemical Physics Impact, 2021, 2, 100011.	3.5	18
321	Science's Response to CoVIDâ€19. ChemMedChem, 2021, 16, 2288-2314.	3.2	15
322	Identification of Naturally Occurring Antiviral Molecules for SARS-CoV-2 Mitigation. The Open Covid Journal, 2021, 1, 38-46.	0.2	7
323	Efficiency Improvements and Discovery of New Substrates for a SARS-CoV-2 Main Protease FRET Assay. SLAS Discovery, 2021, 26, 1189-1199.	2.7	14
324	Dynamic Profiling of β-Coronavirus 3CL M ^{pro} Protease Ligand-Binding Sites. Journal of Chemical Information and Modeling, 2021, 61, 3058-3073.	5.4	35
325	Virtual screening of peptides with high affinity for SARS-CoV-2 main protease. Computers in Biology and Medicine, 2021, 133, 104363.	7.0	5
326	De novo ssRNA Aptamers against the SARS-CoV-2 Main Protease: In Silico Design and Molecular Dynamics Simulation. International Journal of Molecular Sciences, 2021, 22, 6874.	4.1	8
327	Food Containing Bioactive Flavonoids and Other Phenolic or Sulfur Phytochemicals With Antiviral Effect: Can We Design a Promising Diet Against COVID-19?. Frontiers in Nutrition, 2021, 8, 661331.	3.7	20
328	Clinically relevant cell culture models and their significance in isolation, pathogenesis, vaccine development, repurposing and screening of new drugs for SARS-CoV-2: a systematic review. Tissue and Cell, 2021, 70, 101497.	2.2	33
329	Search for Non-Protein Protease Inhibitors Constituted with an Indole and Acetylene Core. Molecules, 2021, 26, 3817.	3.8	6
330	Discovery of SARS-CoV-2 Papain-like Protease Inhibitors through a Combination of High-Throughput Screening and a FlipGFP-Based Reporter Assay. ACS Central Science, 2021, 7, 1245-1260.	11.3	115
331	SARS-CoV-2: Origin, Evolution, and Targeting Inhibition. Frontiers in Cellular and Infection Microbiology, 2021, 11, 676451.	3.9	21
332	Myricetin Inhibits SARS-CoV-2 Viral Replication by Targeting Mpro and Ameliorates Pulmonary Inflammation. Frontiers in Pharmacology, 2021, 12, 669642.	3.5	58
333	Plant-Based Phytochemical Screening by Targeting Main Protease of SARS-CoV-2 to Design Effective Potent Inhibitors. Biology, 2021, 10, 589.	2.8	46

#	Article	IF	CITATIONS
334	Identification of proteasome and caspase inhibitors targeting SARS-CoV-2 Mpro. Signal Transduction and Targeted Therapy, 2021, 6, 214.	17.1	17
335	Scaffold Hopping of α-Rubromycin Enables Direct Access to FDA-Approved Cromoglicic Acid as a SARS-CoV-2 MPro Inhibitor. Pharmaceuticals, 2021, 14, 541.	3.8	17
336	New insights into the catalytic mechanism of the SARS-CoV-2 main protease: an ONIOM QM/MM approach. Molecular Diversity, 2022, 26, 1373-1381.	3.9	17
337	SARSâ€CoVâ€2 and hypertension. Physiological Reports, 2021, 9, e14800.	1.7	11
338	Dissecting the novel mechanism of reduning injection in treating Coronavirus Disease 2019 (COVID-19) based on network pharmacology and experimental verification. Journal of Ethnopharmacology, 2021, 273, 113871.	4.1	23
339	"ldentification of Nafamostat and VR23 as COVID-19 drug candidates by targeting 3CLpro and PLpro". Journal of Molecular Structure, 2021, 1233, 130094.	3.6	17
340	Inhibition of the 3CL Protease and SARS-CoV-2 Replication by Dalcetrapib. ACS Omega, 2021, 6, 16584-16591.	3.5	17
342	SARS-CoV-2 Antiviral Therapy. Clinical Microbiology Reviews, 2021, 34, e0010921.	13.6	64
343	MPI8 is Potent against SARSâ€CoVâ€2 by Inhibiting Dually and Selectively the SARSâ€CoVâ€2 Main Protease and the Host Cathepsin L**. ChemMedChem, 2022, 17, .	3.2	41
344	Ebsulfur and Ebselen as highly potent scaffolds for the development of potential SARS-CoV-2 antivirals. Bioorganic Chemistry, 2021, 112, 104889.	4.1	46
345	Identification of Vitamin K3 and its analogues as covalent inhibitors of SARS-CoV-2 3CLpro. International Journal of Biological Macromolecules, 2021, 183, 182-192.	7.5	22
346	Supramolecular Cylinders Target Bulge Structures in the 5′ UTR of the RNA Genome of SARSâ€CoVâ€2 and Inhibit Viral Replication**. Angewandte Chemie - International Edition, 2021, 60, 18144-18151.	13.8	12
347	Interaction of selected terpenoids with two SARS-CoV-2 key therapeutic targets: An in silico study through molecular docking and dynamics simulations. Computers in Biology and Medicine, 2021, 134, 104538.	7.0	25
349	Advances in the computational landscape for repurposed drugs against COVID-19. Drug Discovery Today, 2021, 26, 2800-2815.	6.4	19
351	Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Acta Pharmaceutica Sinica B, 2022, 12, 1591-1623.	12.0	57
352	The interaction of the bioflavonoids with five SARS-CoV-2 proteins targets: An in silico study. Computers in Biology and Medicine, 2021, 134, 104464.	7.0	9
353	A fast protein binding site comparison algorithm for proteomeâ€wide protein function prediction and drug repurposing. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1541-1556.	2.6	9
354	Supramolecular Cylinders Target Bulge Structures in the 5′ UTR of the RNA Genome of SARS oVâ€2 and Inhibit Viral Replication**. Angewandte Chemie, 2021, 133, 18292-18299.	2.0	3

#	Article	IF	CITATIONS
355	In Silico Design of Peptide-Based SARS-CoV-2 Fusion Inhibitors That Target WT and Mutant Versions of SARS-CoV-2 HR1 Domains. Biophysica, 2021, 1, 311-327.	1.4	8
356	Biochemical features and mutations of key proteins in SARS-CoV-2 and their impacts on RNA therapeutics. Biochemical Pharmacology, 2021, 189, 114424.	4.4	27
357	3CL Protease Inhibitors with an Electrophilic Arylketone Moiety as Anti-SARS-CoV-2 Agents. Journal of Medicinal Chemistry, 2022, 65, 2926-2939.	6.4	75
358	In silico investigation of potential inhibitors to main protease and spike protein of SARS-CoV-2 in propolis. Biochemistry and Biophysics Reports, 2021, 26, 100969.	1.3	21
359	Production of Proteins of the SARS-CoV-2 Proteome for Drug Discovery. ACS Omega, 2021, 6, 19983-19994.	3.5	6
360	A Fungal Defensin Targets the SARSâ^'CoVâ^'2 Spike Receptorâ^'Binding Domain. Journal of Fungi (Basel,) Tj ETQ	q1 <u>1</u> 0.784	I314 rgBT /○
361	Coronavirus Porcine Epidemic Diarrhea Virus Nucleocapsid Protein Interacts with p53 To Induce Cell Cycle Arrest in S-Phase and Promotes Viral Replication. Journal of Virology, 2021, 95, e0018721.	3.4	34
362	Peptidomimetic α-Acyloxymethylketone Warheads with Six-Membered Lactam P1 Glutamine Mimic: SARS-CoV-2 3CL Protease Inhibition, Coronavirus Antiviral Activity, and <i>in Vitro</i> Biological Stability. Journal of Medicinal Chemistry, 2022, 65, 2905-2925.	6.4	71
363	Quantum simulations of SARS-CoV-2 main protease Mpro enable high-quality scoring of diverse ligands. Journal of Computer-Aided Molecular Design, 2021, 35, 963-971.	2.9	13
364	Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science, 2021, 373, 931-936.	12.6	173
365	An update review of globally reported SARS-CoV-2 vaccines in preclinical and clinical stages. International Immunopharmacology, 2021, 96, 107763.	3.8	35
366	Structure-Guided Design of Conformationally Constrained Cyclohexane Inhibitors of Severe Acute Respiratory Syndrome Coronavirus-2 3CL Protease. Journal of Medicinal Chemistry, 2021, 64, 10047-10058.	6.4	38
367	Postinfection treatment with a protease inhibitor increases survival of mice with a fatal SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	61
368	Structure-Based Discovery of Novel Nonpeptide Inhibitors Targeting SARS-CoV-2 M ^{pro} . Journal of Chemical Information and Modeling, 2021, 61, 3917-3926.	5.4	52
369	Rational design of flavonoid based potential inhibitors targeting SARS-CoV 3CL protease for the treatment of COVID-19. Journal of Molecular Structure, 2021, 1237, 130380.	3.6	12
370	Iterated Virtual Screening-Assisted Antiviral and Enzyme Inhibition Assays Reveal the Discovery of Novel Promising Anti-SARS-CoV-2 with Dual Activity. International Journal of Molecular Sciences, 2021, 22, 9057.	4.1	14
371	Targeting Some Enzymes with Repurposing Approved Pharmaceutical Drugs for Expeditious Antiviral Approaches Against Newer Strains of COVID-19. AAPS PharmSciTech, 2021, 22, 214.	3.3	5
372	Comprehensive Analysis of SARS-COV-2 Drug Targets and Pharmacological Aspects in Treating the COVID-19. Current Molecular Pharmacology, 2022, 15, 393-417.	1.5	6

#	Article	IF	CITATIONS
373	Putative Role of Vitamin D for COVID-19 Vaccination. International Journal of Molecular Sciences, 2021, 22, 8988.	4.1	32
374	Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends in Food Science and Technology, 2021, 114, 11-24.	15.1	96
375	Unmasking of crucial structural fragments for coronavirus protease inhibitors and its implications in COVID-19 drug discovery. Journal of Molecular Structure, 2021, 1237, 130366.	3.6	6
376	Sterenin M as a potential inhibitor of SARS-CoV-2 main protease identified from MeFSAT database using molecular docking, molecular dynamics simulation and binding free energy calculation. Computers in Biology and Medicine, 2021, 135, 104568.	7.0	22
377	Vitamin D and lumisterol novel metabolites can inhibit SARS-CoV-2 replication machinery enzymes. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E246-E251.	3.5	38
378	Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations. Journal of Chemical Information and Modeling, 2021, 61, 4733-4744.	5.4	9
379	Improved Synthesis of a Cyclic Glutamine Analogue Used in Antiviral Agents Targeting 3C and 3CL Proteases Including SARS-CoV-2 Mpro. Journal of Organic Chemistry, 2021, 86, 13104-13110.	3.2	8
380	Exploring peptide studies related to SARS-CoV to accelerate the development of novel therapeutic and prophylactic solutions against COVID-19. Journal of Infection and Public Health, 2021, 14, 1106-1119.	4.1	4
381	Near-physiological-temperature serial crystallography reveals conformations of SARS-CoV-2 main protease active site for improved drug repurposing. Structure, 2021, 29, 1382-1396.e6.	3.3	28
382	The impact of high-resolution structural data on stemming the COVID-19 pandemic. Current Opinion in Virology, 2021, 49, 127-138.	5.4	2
383	Structure-Based Optimization of ML300-Derived, Noncovalent Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus 3CL Protease (SARS-CoV-2 3CL ^{pro}). Journal of Medicinal Chemistry, 2022, 65, 2880-2904.	6.4	78
384	The current state of validated small molecules inhibiting SARS-CoV-2 nonstructural proteins. Turkish Journal of Biology, 2021, 45, 469-483.	0.8	1
386	Molecular mechanism of anti-SARS-CoV2 activity of Ashwagandha-derived withanolides. International Journal of Biological Macromolecules, 2021, 184, 297-312.	7.5	30
387	Ugonin J Acts as a SARS-CoV-2 3C-like Protease Inhibitor and Exhibits Anti-inflammatory Properties. Frontiers in Pharmacology, 2021, 12, 720018.	3.5	11
388	Reducing SARS-CoV-2 pathological protein activity with small molecules. Journal of Pharmaceutical Analysis, 2021, 11, 383-397.	5.3	11
389	Recognition of Divergent Viral Substrates by the SARS-CoV-2 Main Protease. ACS Infectious Diseases, 2021, 7, 2591-2595.	3.8	55
390	Theobroma cacao L. compounds: Theoretical study and molecular modeling as inhibitors of main SARS-CoV-2 protease. Biomedicine and Pharmacotherapy, 2021, 140, 111764.	5.6	17
391	Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection. Current Opinion in Virology, 2021, 49, 36-40.	5.4	100

#	Article	IF	CITATIONS
392	Construction of a Noninfectious SARS-CoV-2 Replicon for Antiviral-Drug Testing and Gene Function Studies. Journal of Virology, 2021, 95, e0068721.	3.4	25
393	Inhibition of Cysteine Proteases by 6,6′-Dihydroxythiobinupharidine (DTBN) from Nuphar lutea. Molecules, 2021, 26, 4743.	3.8	3
394	Phytomolecules Repurposed as Covid-19 Inhibitors: Opportunity and Challenges. Current Microbiology, 2021, 78, 3620-3633.	2.2	9
395	The Promising Enzymes for Inhibitors Development against COVID-19. Mini-Reviews in Medicinal Chemistry, 2021, 21, .	2.4	0
396	Exploring the Binding Mechanism of PF-07321332 SARS-CoV-2 Protease Inhibitor through Molecular Dynamics and Binding Free Energy Simulations. International Journal of Molecular Sciences, 2021, 22, 9124.	4.1	76
397	Could Probiotics and Postbiotics Function as "Silver Bullet―in the Post-COVID-19 Era?. Probiotics and Antimicrobial Proteins, 2021, 13, 1499-1507.	3.9	12
398	Venetoclax: a promising repurposed drug against SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics, 2022, 40, 12088-12099.	3.5	3
399	Non-competitive interactions between hydroxychloroquine and azithromycin: Systematic density functional, molecular dynamics, and docking calculations. Chemical Physics Letters, 2021, 777, 138745.	2.6	5
400	Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Acta Pharmaceutica Sinica B, 2022, 12, 581-599.	12.0	33
401	Molecular Docking Analysis of the Phytochemicals from Tinospora Cordifolia as Potential Inhibitor Against Multi Targeted SARS-CoV-2 & Cytokine Storm. Journal of Computational Biophysics and Chemistry, 2021, 20, 559-580.	1.7	2
402	Structure-guided design of a perampanel-derived pharmacophore targeting the SARS-CoV-2 main protease. Structure, 2021, 29, 823-833.e5.	3.3	43
403	Exploring the SARS-Cov-2 Main Protease (Mpro) and RdRp Targets by Updating Current Structure-based Drug Design Utilizing Co-crystals to Combat COVID-19. Current Drug Targets, 2022, 23, 802-817.	2.1	2
404	Discovery and Mechanism of SARS-CoV-2 Main Protease Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 2866-2879.	6.4	59
406	Design and Evaluation of Bispidine-Based SARS-CoV-2 Main Protease Inhibitors. ACS Medicinal Chemistry Letters, 2022, 13, 140-147.	2.8	35
407	Antiviral peptides against the main protease of SARS-CoV-2: A molecular docking and dynamics study. Arabian Journal of Chemistry, 2021, 14, 103315.	4.9	48
408	Discovery of novel inhibitors of SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics, 2022, 40, 12526-12534.	3.5	2
409	On the Origin of the Different Reversible Characters of Salinosporamide A and Homosalinosporamide A in the Covalent Inhibition of the <i>Human</i> 20S Proteasome. ACS Catalysis, 2021, 11, 11806-11819.	11.2	5
410	Evaluation of Inhibitory Activity In Silico of In-House Thiomorpholine Compounds between the ACE2 Receptor and S1 Subunit of SARS-CoV-2 Spike. Pathogens, 2021, 10, 1208.	2.8	0

ARTICLE IF CITATIONS In Silico Prediction of Novel Inhibitors of SARS-CoV-2 Main Protease through Structure-Based Virtual 3.8 21 411 Screening and Molecular Dynamic Simulation. Pharmaceuticals, 2021, 14, 896. Ethacridine inhibits SARS-CoV-2 by inactivating viral particles. PLoS Pathogens, 2021, 17, e1009898. 4.7 22-Hydroxyhopane, a novel multitargeted phytocompound against SARS-CoV-2 from Adiantum 413 1.8 6 latifolium Lam. Natural Product Research, 2021, , 1-6. Molecular docking studies of HIV TAT and sitagliptin nano-formula as potential therapeutic targeting 414 SARS-CoV2 protease. Journal of the Indian Chemical Society, 2021, 98, 100119. Special Features of COVID-19 in the FMODB: Fragment Molecular Orbital Calculations and Interaction Energy Analysis of SARS-CoV-2-Related Proteins. Journal of Chemical Information and Modeling, 2021, 415 5.4 10 61, 4594-4612. Effects of different corticosteroid therapy on severe COVID-19 patients: a meta-analysis of randomized controlled trials. Expert Review of Respiratory Medicine, 2022, 16, 79-89. 2.5 A Novel Class of Norovirus Inhibitors Targeting the Viral Protease with Potent Antiviral Activity In 417 3.3 7 Vitro and In Vivo. Viruses, 2021, 13, 1852. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies 418 258 and mechanisms., 2021, 225, 107843. Rapid structure-based identification of potential SARS-CoV-2 main protease inhibitors. Future 419 2.3 9 Medicinal Chemistry, 2021, 13, 1435-1450. Drug repurposing for COVID-19 based on an integrative meta-analysis of SARS-CoV-2 induced gene 2.5 signature in human airway epithelium. PLoS ONE, 2021, 16, e0257784. NMR spectroscopy of the main protease of SARSâ€CoVâ€2 and fragmentâ€based screening identify three 421 2 2.0 protein hotspots and an antiviral fragment. Angewandte Chemie, 2021, 133, 25632. Host metabolic reprogramming in response to SARS-CoV-2 infection: A systems biology approach. 2.9 44 Microbial Pathogenesis, 2021, 158, 105114. Janus Allâ€<i>Cis</i>2,3,4,5,6â€Pentafluorocyclohexyl Building Blocks Applied to Medicinal Chemistry and 423 3.3 11 Bioactives Discovery Chemistry. Chemistry - A European Journal, 2021, 27, 16000-16005. Repurposing an Antiviral Drug against SARS oVâ€2 Main Protease. Angewandte Chemie - International Edition, 2021, 60, 23492-23494. 424 13.8 Crystal structures of human coronavirus NL63 main protease at different pH values. Acta 425 0.8 3 Crystallographica Section F, Structural Biology Communications, 2021, 77, 348-355. Repurposing an Antiviral Drug against SARSâ€CoVâ€2 Main Protease. Angewandte Chemie, 2021, 133, 23684-23686. 426 Computationally repurposed drugs and natural products against RNA dependent RNA polymerase as 427 4.4 10 potential COVID-19 therapies. Molecular Biomedicine, 2021, 2, 28. Screening of cryptogamic secondary metabolites as putative inhibitors of SARS-CoV-2 main protease and ribosomal binding domain of spike glycoprotein by molecular docking and molecular dynamics approaches. Journal of Molecular Structure, 2021, 1240, 130506.

#	Article	IF	CITATIONS
429	Structural biology of SARS-CoV-2 and implications for therapeutic development. Nature Reviews Microbiology, 2021, 19, 685-700.	28.6	259
430	Molecular modelling studies unveil potential binding sites on human serum albumin for selected experimental and in silico COVID-19 drug candidate molecules. Saudi Journal of Biological Sciences, 2022, 29, 53-64.	3.8	10
431	Structure-based virtual screening, in silico docking, ADME properties prediction and molecular dynamics studies for the identification of potential inhibitors against SARS-CoV-2 Mpro. Molecular Diversity, 2022, 26, 1645-1661.	3.9	6
432	Addressing the â€~hypoxia paradox' in severe COVID-19: literature review and report of four cases treated with erythropoietin analogues. Molecular Medicine, 2021, 27, 120.	4.4	9
433	Separable Microneedle Patch to Protect and Deliver DNA Nanovaccines Against COVID-19. ACS Nano, 2021, 15, 14347-14359.	14.6	73
434	Repurposing the antibacterial drugs for inhibition of SARS-CoV2-PLpro using molecular docking, MD simulation and binding energy calculation. Molecular Diversity, 2022, 26, 2189-2209.	3.9	8
435	NMR Spectroscopy of the Main Protease of SARSâ€CoVâ€2 and Fragmentâ€Based Screening Identify Three Protein Hotspots and an Antiviral Fragment. Angewandte Chemie - International Edition, 2021, 60, 25428-25435.	13.8	22
436	A head-to-head comparison of the inhibitory activities of 15 peptidomimetic SARS-CoV-2 3CLpro inhibitors. Bioorganic and Medicinal Chemistry Letters, 2021, 48, 128263.	2.2	20
437	Viral 3CLpro as a Target for Antiviral Intervention Using Milk-Derived Bioactive Peptides. International Journal of Peptide Research and Therapeutics, 2021, 27, 2703-2716.	1.9	10
438	Structure-Based Discovery and Structural Basis of a Novel Broad-Spectrum Natural Product against the Main Protease of Coronavirus. Journal of Virology, 2022, 96, JVI0125321.	3.4	20
439	Inhibition Mechanism of SARSâ€CoVâ€2 Main Protease with Ketoneâ€Based Inhibitors Unveiled by Multiscale Simulations. Insights for Improved Designs. Angewandte Chemie, 0, , .	2.0	0
440	Sub-Micromolar Inhibition of SARS-CoV-2 3CLpro by Natural Compounds. Pharmaceuticals, 2021, 14, 892.	3.8	16
441	SARS-COV-2 M ^{pro} conformational changes induced by covalently bound ligands. Journal of Biomolecular Structure and Dynamics, 2022, 40, 12347-12357.	3.5	15
442	Local topology and bifurcation hot-spots in proteins with SARS-CoV-2 spike protein as an example. PLoS ONE, 2021, 16, e0257886.	2.5	1
443	Inhibition Mechanism of SARSâ€CoVâ€2 Main Protease with Ketoneâ€Based Inhibitors Unveiled by Multiscale Simulations: Insights for Improved Designs**. Angewandte Chemie - International Edition, 2021, 60, 25933-25941.	13.8	24
444	Improved SARS-CoV-2 Mpro inhibitors based on feline antiviral drug GC376: Structural enhancements, increased solubility, and micellar studies. European Journal of Medicinal Chemistry, 2021, 222, 113584.	5.5	57
445	A cyclic peptide inhibitor of the SARS-CoV-2 main protease. European Journal of Medicinal Chemistry, 2021, 221, 113530.	5.5	22
446	Challenges of short substrate analogues as SARS-CoV-2 main protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 2021, 50, 128333.	2.2	26

#	Article	IF	CITATIONS
447	Protein engineering design from directed evolution to de novo synthesis. Biochemical Engineering Journal, 2021, 174, 108096.	3.6	24
448	Recent progress in covalent warheads for in vivo targeting of endogenous proteins. Bioorganic and Medicinal Chemistry, 2021, 47, 116386.	3.0	26
449	Rooibos, a supportive role to play during the COVID-19 pandemic?. Journal of Functional Foods, 2021, 86, 104684.	3.4	7
450	Discovery of novel oxazole-based macrocycles as anti-coronaviral agents targeting SARS-CoV-2 main protease. Bioorganic Chemistry, 2021, 116, 105363.	4.1	10
451	A short survey of dengue protease inhibitor development in the past 6Âyears (2015–2020) with an emphasis on similarities between DENV and SARS-CoV-2 proteases. Bioorganic and Medicinal Chemistry, 2021, 49, 116415.	3.0	10
452	Neutron crystallography for the elucidation of enzyme catalysis. Current Opinion in Structural Biology, 2021, 71, 36-42.	5.7	9
453	Discovery of juglone and its derivatives as potent SARS-CoV-2 main proteinase inhibitors. European Journal of Medicinal Chemistry, 2021, 225, 113789.	5.5	25
454	Identification of a dual acting SARS-CoV-2 proteases inhibitor through in silico design and step-by-step biological characterization. European Journal of Medicinal Chemistry, 2021, 226, 113863.	5.5	22
455	3CLpro and PLpro affinity, a docking study to fight COVID19 based on 900 compounds from PubChem and literature. Are there new drugs to be found?. Journal of Molecular Structure, 2021, 1245, 130968.	3.6	15
456	Virus structure and structure-based antivirals. Current Opinion in Virology, 2021, 51, 16-24.	5.4	9
457	Evaluating anti-coronavirus activity of some phosphoramides and their influencing inhibitory factors using molecular docking, DFT, QSAR, and NCI-RDG studies. Journal of Molecular Structure, 2022, 1248, 131481.	3.6	29
458	Computational strategies towards developing novel SARS-CoV-2 Mpro inhibitors against COVID-19. Journal of Molecular Structure, 2022, 1247, 131378.	3.6	11
459	Viral Proteases. , 2021, , 1-9.		0
460	Co-crystallization and structure determination: An effective direction for anti-SARS-CoV-2 drug discovery. Computational and Structural Biotechnology Journal, 2021, 19, 4684-4701.	4.1	27
461	A review of the latest research on M ^{pro} targeting SARS-COV inhibitors. RSC Medicinal Chemistry, 2021, 12, 1026-1036.	3.9	37
462	Dinitrosyl iron complexes (DNICs) as inhibitors of the SARS-CoV-2 main protease. Chemical Communications, 2021, 57, 8352-8355.	4.1	9
463	Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-Coronavirus. Results in Chemistry, 2021, 3, 100087.	2.0	14
464	Inhibitor binding influences the protonation states of histidines in SARS-CoV-2 main protease. Chemical Science, 2021, 12, 1513-1527.	7.4	47

#	Article	IF	CITATIONS
465	Perspectives for antivirals to limit SARS-CoV-2 infection (COVID-19). Microbiology Australia, 2021, 42, 47.	0.4	2
466	A critical overview of computational approaches employed for COVID-19 drug discovery. Chemical Society Reviews, 2021, 50, 9121-9151.	38.1	128
467	Electrostatic features for nucleocapsid proteins of SARS-CoV and SARS-CoV-2. Mathematical Biosciences and Engineering, 2021, 18, 2372-2383.	1.9	8
468	Allosteric inhibition of SARS-CoV-2 3CL protease by colloidal bismuth subcitrate. Chemical Science, 2021, 12, 14098-14102.	7.4	19
470	Diagnostic, Prognostic, and Therapeutic Use of Radiopharmaceuticals in the Context of SARS-CoV-2. ACS Pharmacology and Translational Science, 2021, 4, 1-7.	4.9	6
471	Recent progress in the development of potential drugs against SARS-CoV-2. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100057.	3.6	7
472	Development and application of therapeutic antibodies against COVID-19. International Journal of Biological Sciences, 2021, 17, 1486-1496.	6.4	47
473	SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerging Microbes and Infections, 2021, 10, 178-195.	6.5	178
474	<i>Scutellaria baicalensis</i> extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease <i>inÂvitro</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 497-503.	5.2	206
475	Proposing high-affinity inhibitors from <i>Glycyrrhiza glabra</i> L. against SARS-CoV-2 infection: virtual screening and computational analysis. New Journal of Chemistry, 2021, 45, 15977-15995.	2.8	14
476	A microscopic description of SARS-CoV-2 main protease inhibition with Michael acceptors. Strategies for improving inhibitor design. Chemical Science, 2021, 12, 3489-3496.	7.4	40
477	Evolutionary Multi-objective Design of SARS-CoV-2 Protease Inhibitor Candidates. Lecture Notes in Computer Science, 2020, , 357-371.	1.3	5
478	An Overview of the Crystallized Structures of the SARS-CoV-2. Protein Journal, 2020, 39, 600-618.	1.6	32
479	Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorganic Chemistry, 2020, 104, 104269.	4.1	74
480	COVID-19 therapy: What weapons do we bring into battle?. Bioorganic and Medicinal Chemistry, 2020, 28, 115757.	3.0	22
481	Unraveling the SARS-CoV-2 Main Protease Mechanism Using Multiscale Methods. ACS Catalysis, 2020, 10, 12544-12554.	11.2	107
482	Uncovering Flexible Active Site Conformations of SARS-CoV-2 3CL Proteases through Protease Pharmacophore Clusters and COVID-19 Drug Repurposing. ACS Nano, 2021, 15, 857-872.	14.6	38
483	The sprint to solve coronavirus protein structures — and disarm them with drugs. Nature, 2020, 581, 252-255.	27.8	30

#	Article	IF	CITATIONS
484	Accelerating the repurposing of FDA-approved drugs against coronavirus disease-19 (COVID-19). RSC Advances, 2020, 10, 40867-40875.	3.6	17
485	A pocket guide on how to structure SARS-CoV-2 drugs and therapies. Biochemical Society Transactions, 2020, 48, 2625-2641.	3.4	10
486	Crippling life support for SARS-CoV-2 and other viruses through synthetic lethality. Journal of Cell Biology, 2020, 219, .	5.2	20
487	The impact of structural bioinformatics tools and resources on SARS-CoV-2 research and therapeutic strategies. Briefings in Bioinformatics, 2021, 22, 742-768.	6.5	29
488	Identifying the natural polyphenol catechin as a multi-targeted agent against SARS-CoV-2 for the plausible therapy of COVID-19: an integrated computational approach. Briefings in Bioinformatics, 2021, 22, 1346-1360.	6.5	62
521	Room-temperature X-ray crystallography reveals the oxidation and reactivity of cysteine residues in SARS-CoV-2 3CL M ^{pro} : insights into enzyme mechanism and drug design. IUCrJ, 2020, 7, 1028-1035.	2.2	49
522	Computational screening for potential drug candidates against the SARS-CoV-2 main protease. F1000Research, 2020, 9, 514.	1.6	12
523	Computational screening for potential drug candidates against the SARS-CoV-2 main protease. F1000Research, 2020, 9, 514.	1.6	10
524	Fractional-Order Susceptible-Infected Model: Definition and Applications to the Study of COVID-19 Main Protease. Fractional Calculus and Applied Analysis, 2020, 23, 635-655.	2.2	13
526	Progress in Studies on Structural and Remedial Aspects of Newly Born Coronavirus, SARS-CoV-2. Current Topics in Medicinal Chemistry, 2020, 20, 2362-2378.	2.1	6
527	Novel Drugs Targeting the SARS-CoV-2/COVID-19 Machinery. Current Topics in Medicinal Chemistry, 2020, 20, 1423-1433.	2.1	36
528	Computational studies of drugs for possible action against Covid-19 infections. Journal of Drug Delivery and Therapeutics, 2020, 10, 99-105.	0.5	3
531	Blocking Effect of Demethylzeylasteral on the Interaction between Human ACE2 Protein and SARS-CoV-2 RBD Protein Discovered Using SPR Technology. Molecules, 2021, 26, 57.	3.8	27
532	An overview of potential therapeutic agents to treat COVID-19. BioScience Trends, 2020, 14, 318-327.	3.4	5
533	Computational anti-COVID-19 drug design: progress and challenges. Briefings in Bioinformatics, 2022, 23, .	6.5	8
534	The role of vitamin B12 in viral infections: a comprehensive review of its relationship with the muscle–gut–brain axis and implications for SARS-CoV-2 infection. Nutrition Reviews, 2022, 80, 561-578.	5.8	31
535	Development of a Novel Pharmacophore Model Guided by the Ensemble of Waters and Small Molecule Fragments Bound to SARS oVâ€⊋ Main Protease. Molecular Informatics, 2022, 41, e2100178.	2.5	3
536	Repositioning Ivermectin for Covid-19 treatment: Molecular mechanisms of action against SARS-CoV-2 replication. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166294.	3.8	28

#	Article	IF	CITATIONS
537	High predictive QSAR models for predicting the SARS coronavirus main protease inhibition activity of ketone-based covalent inhibitors. Journal of the Iranian Chemical Society, 2022, 19, 1865-1876.	2.2	6
538	Michaelis-like complex of SARS-CoV-2 main protease visualized by room-temperature X-ray crystallography. IUCrJ, 2021, 8, 973-979.	2.2	25
539	Imaging and visualizing SARS-CoV-2 in a new era for structural biology. Interface Focus, 2021, 11, 20210019.	3.0	5
540	In Silico Identification and Validation of Organic Triazole Based Ligands as Potential Inhibitory Drug Compounds of SARS-CoV-2 Main Protease. Molecules, 2021, 26, 6199.	3.8	9
541	In Silico Target Analysis of Treatment for COVID-19 Using Huang-Lian-Shang-Qing-Wan, a Traditional Chinese Medicine Formula. Natural Product Communications, 2021, 16, 1934578X2110308.	0.5	0
542	Molecular Insights of SARS-CoV-2 Infection and Molecular Treatments. Current Molecular Medicine, 2022, 22, 621-639.	1.3	2
543	Mechanistic insights into COVID-19 by global analysis of the SARS-CoV-2 3CLpro substrate degradome. Cell Reports, 2021, 37, 109892.	6.4	60
544	<scp>Crystalâ€structuresâ€guided</scp> design of <scp>fragmentâ€based</scp> drugs for inhibiting the main protease of <scp>SARSâ€CoV</scp> â€2. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1081-1089.	2.6	5
545	Screening of Potent Phytochemical Inhibitors Against SARS-CoV-2 Main Protease: An Integrative Computational Approach. Frontiers in Bioinformatics, 2021, 1, .	2.1	14
547	Repurposing drug molecule against SARS-Cov-2 (COVID-19) through molecular docking and dynamics: a quick approach to pick FDA-approved drugs. Journal of Molecular Modeling, 2021, 27, 312.	1.8	10
548	Predicting Mutational Effects on Receptor Binding of the Spike Protein of SARS-CoV-2 Variants. Journal of the American Chemical Society, 2021, 143, 17646-17654.	13.7	39
549	Drug Repurposing to Identify Nilotinib as a Potential SARS-CoV-2 Main Protease Inhibitor: Insights from a Computational and <i>In Vitro</i> Study. Journal of Chemical Information and Modeling, 2021, 61, 5469-5483.	5.4	26
550	DINC-COVID: A webserver for ensemble docking with flexible SARS-CoV-2 proteins. Computers in Biology and Medicine, 2021, 139, 104943.	7.0	8
551	COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks. International Journal of Biological Macromolecules, 2021, , .	7.5	14
552	A computational methodology to diagnose sequence-variant dynamic perturbations by comparing atomic protein structures. Bioinformatics, 2021, , .	4.1	0
553	Novel Molecules derived from 3-O-(6-galloylglucoside) inhibit Main Protease of SARS-CoV 2 In Silico. Chemical Papers, 2021, , 1-12.	2.2	6
554	Discovery and Nanosized Preparations of (<i>S</i> , <i>R</i>)-Tylophorine Malate as Novel anti-SARS-CoV-2 Agents. ACS Medicinal Chemistry Letters, 2021, 12, 1840-1846.	2.8	8
555	Natural Polyphenols Inhibit the Dimerization of the SARS-CoV-2 Main Protease: The Case of Fortunellin and Its Structural Analogs. Molecules, 2021, 26, 6068.	3.8	11

#	Article	IF	CITATIONS
559	Investigating an Emerging Virus During a Sudden Pandemic Outbreak. Rambam Maimonides Medical Journal, 2020, 11, e0023.	1.0	0
563	Structural, Electronic, and Electrostatic Determinants for Inhibitor Binding to Subsites S1 and S2 in SARS-CoV-2 Main Protease. Journal of Medicinal Chemistry, 2021, 64, 17366-17383.	6.4	32
567	Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332. Protein and Cell, 2022, 13, 689-693.	11.0	136
568	Unveiling the Effect of Low pH on the SARS-CoV-2 Main Protease by Molecular Dynamics Simulations. Polymers, 2021, 13, 3823.	4.5	8
569	Potent Anti-SARS-CoV-2 Activity by the Natural Product Gallinamide A and Analogues via Inhibition of Cathepsin L. Journal of Medicinal Chemistry, 2022, 65, 2956-2970.	6.4	46
576	Working goal of Brazilein sappan wood as a candidate for SARS-coV-2 antivirus drug against spike (S) glycoprotein, papain-like proteinase, and main protease: study. Journal of Advanced Pharmaceutical Technology and Research, 2021, 12, 298-304.	1.0	1
577	Current Trends in SPR Biosensing of SARS-CoV-2 Entry Inhibitors. Chemosensors, 2021, 9, 330.	3.6	6
578	Ligand-based quantitative structural assessments of SARS-CoV-2 3CLpro inhibitors: An analysis in light of structure-based multi-molecular modeling evidences. Journal of Molecular Structure, 2022, 1251, 132041.	3.6	12
579	Both Baicalein and Gallocatechin Gallate Effectively Inhibit SARS-CoV-2 Replication by Targeting Mpro and Sepsis in Mice. Inflammation, 2022, 45, 1076-1088.	3.8	23
580	Xanthohumol Is a Potent Pan-Inhibitor of Coronaviruses Targeting Main Protease. International Journal of Molecular Sciences, 2021, 22, 12134.	4.1	19
581	Perspectives on SARS-CoV-2 Main Protease Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 16922-16955.	6.4	63
582	Carbon fullerene and nanotube are probable binders to multiple targets of SARS-CoV-2: Insights from computational modeling and molecular dynamic simulation studies. Infection, Genetics and Evolution, 2021, 96, 105155.	2.3	21
583	Current status of therapeutic approaches and vaccines for SARS-CoV-2. Future Microbiology, 2021, 16, 1319-1326.	2.0	2
584	Structure-Function Characteristics of SARS-CoV-2 Proteases and Their Potential Inhibitors from Microbial Sources. Microorganisms, 2021, 9, 2481.	3.6	19
585	Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations. Journal of Molecular Structure, 2022, 1250, 131879.	3.6	16
587	Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection. Journal of Advanced Research, 2022, 36, 201-210.	9.5	57
588	Heparin interacts with the main protease of SARS-CoV-2 and inhibits its activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 267, 120595.	3.9	12
589	Structural and theoretical investigations, Hirshfeld surface analysis and anti-SARS CoV-2 of nickel (II) coordination complex. Journal of Biomolecular Structure and Dynamics, 2023, 41, 402-422.	3.5	9

#	Article	IF	CITATIONS
590	Design of modular autoproteolytic gene switches responsive to anti-coronavirus drug candidates. Nature Communications, 2021, 12, 6786.	12.8	13
591	Discovery of Diverse Natural Products as Inhibitors of SARS-CoV-2 M ^{pro} Protease through Virtual Screening. Journal of Chemical Information and Modeling, 2021, 61, 6094-6106.	5.4	14
592	Novel dynamic residue network analysis approaches to study allosteric modulation: SARS-CoV-2 Mpro and its evolutionary mutations as a case study. Computational and Structural Biotechnology Journal, 2021, 19, 6431-6455.	4.1	14
593	Computational and In Vitro Experimental Investigations Reveal Anti-Viral Activity of Licorice and Glycyrrhizin against Severe Acute Respiratory Syndrome Coronavirus 2. Pharmaceuticals, 2021, 14, 1216.	3.8	13
594	Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols. Food Chemistry, 2022, 373, 131594.	8.2	65
595	Discovery of 9,10-dihydrophenanthrene derivatives as SARS-CoV-2 3CLpro inhibitors for treating COVID-19. European Journal of Medicinal Chemistry, 2022, 228, 114030.	5.5	19
597	Discovery of Di- and Trihaloacetamides as Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity. Journal of the American Chemical Society, 2021, 143, 20697-20709.	13.7	87
598	Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules. Chemical Science, 2021, 12, 15960-15974.	7.4	36
600	Chemical Pattern Recognition for Quality Analysis of Lonicerae Japonicae Flos and Lonicerae Flos Based on Ultra-High Performance Liquid Chromatography and Anti-SARS-CoV2 Main Protease Activity. Frontiers in Pharmacology, 2021, 12, 810748.	3.5	4
601	Evaluation of Xa inhibitors as potential inhibitors of the SARS-CoV-2 Mpro protease. PLoS ONE, 2022, 17, e0262482.	2.5	7
602	Screening for Inhibitors of Main Protease in SARS-CoV-2: In Silico and In Vitro Approach Avoiding Peptidyl Secondary Amides. Journal of Chemical Information and Modeling, 2022, 62, 350-358.	5.4	15
605	Structure-based inhibitor design and repurposing clinical drugs to target SARS-CoV-2 proteases. Biochemical Society Transactions, 2022, 50, 151-165.	3.4	8
606	Discovery of highly potent SARS-CoV-2 Mpro inhibitors based on benzoisothiazolone scaffold. Bioorganic and Medicinal Chemistry Letters, 2022, 58, 128526.	2.2	13
607	Efficient discovery of potential inhibitors for SARS-CoV-2 3C-like protease from herbal extracts using a native MS-based affinity-selection method. Journal of Pharmaceutical and Biomedical Analysis, 2022, 209, 114538.	2.8	18
608	Atualizações dos estudos atuais sobre medicamentos para combater a COVID-19 Brazilian Journal of Implantology and Health Sciences, 2020, 2, 01-09.	0.1	1
610	Reactivity-guided de novo molecular design and high throughput virtual screening of a targeted library of peptidomimetic compounds reveals charge-based structure-activity relationship of potential covalent inhibitors of the main protease of SARS-CoV-2. Journal of Student Research, 2020, 9,	0.1	0
611	Searching and designing potential inhibitors for SARS-CoV-2 Mpro from natural sources using atomistic and deep-learning calculations. RSC Advances, 2021, 11, 38495-38504.	3.6	11
612	Viral Proteases. , 2021, , 1548-1557.		0

#	Article	IF	CITATIONS
613	Antiviral activities of natural compounds and ionic liquids to inhibit the Mpro of SARS-CoV-2: a computational approach. RSC Advances, 2022, 12, 3687-3695.	3.6	12
614	Antiviral Effects of Artemisinin and Its Derivatives against SARS-CoV-2 Main Protease: Computational Evidences and Interactions with ACE2 Allelic Variants. Pharmaceuticals, 2022, 15, 129.	3.8	23
615	Discovery of SARS-CoV-2 main protease covalent inhibitors from a DNA-encoded library selection. SLAS Discovery, 2022, 27, 79-85.	2.7	19
616	Naturally occurring anthraquinones as potential inhibitors of SARS-CoV-2 main protease: an integrated computational study. Biologia (Poland), 2022, 77, 1121-1134.	1.5	5
617	Structure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19. Acta Pharmacologica Sinica, 2022, 43, 3021-3033.	6.1	65
618	Unbinding ligands from SARS-CoV-2 Mpro via umbrella sampling simulations. Royal Society Open Science, 2022, 9, 211480.	2.4	9
619	Targeted protein degradation: from small molecules to complex organelles—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2022, 1510, 79-99.	3.8	5
620	Apigenin analogues as SARS-CoV-2 main protease inhibitors: <i>In-silico</i> screening approach. Bioengineered, 2022, 13, 3350-3361.	3.2	18
621	Beyond structural analysis of molecular enzyme-inhibitor interactions. Electronic Structure, 2022, 4, 014006.	2.8	2
622	JIB-04 Has Broad-Spectrum Antiviral Activity and Inhibits SARS-CoV-2 Replication and Coronavirus Pathogenesis. MBio, 2022, 13, e0337721.	4.1	14
623	Insights into the binding and covalent inhibition mechanism of PF-07321332 to SARS-CoV-2 M ^{pro} . RSC Advances, 2022, 12, 3729-3737.	3.6	19
625	A Computer-Aided Approach for the Discovery of D-Peptides as Inhibitors of SARS-CoV-2 Main Protease. Frontiers in Molecular Biosciences, 2021, 8, 816166.	3.5	8
626	Binding mechanism of inhibitors to SARS-CoV-2 main protease deciphered by multiple replica molecular dynamics simulations. Physical Chemistry Chemical Physics, 2022, 24, 1743-1759.	2.8	25
627	Colorimetric and Electrochemical Methods for the Detection of SARS-CoV-2 Main Protease by Peptide-Triggered Assembly of Gold Nanoparticles. Molecules, 2022, 27, 615.	3.8	22
628	Isatin derivatives as broad-spectrum antiviral agents: the current landscape. Medicinal Chemistry Research, 2022, 31, 244-273.	2.4	28
629	Newly Emerging Strategies in Antiviral Drug Discovery: Dedicated to Prof. Dr. Erik De Clercq on Occasion of His 80th Anniversary. Molecules, 2022, 27, 850.	3.8	15
630	Pandemic strategies with computational and structural biology against COVID-19: A retrospective. Computational and Structural Biotechnology Journal, 2022, 20, 187-192.	4.1	6
632	Structural insights into the substrateâ€binding site of main protease for the structureâ€based COVIDâ€19 drug discovery. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1090-1101.	2.6	5

#	Article	IF	CITATIONS
633	Targeting SARS-CoV-2 Proteases for COVID-19 Antiviral Development. Frontiers in Chemistry, 2021, 9, 819165.	3.6	51
634	Biochemical Screening of Potent Zika Virus Protease Inhibitors. ChemMedChem, 2022, 17, e202100695.	3.2	7
635	Evaluation of SARS-CoV-2 Main Protease Inhibitors Using a Novel Cell-Based Assay. ACS Central Science, 2022, 8, 192-204.	11.3	30
636	Structurally diverse glycosides of secoiridoid, bisiridoid, and triterpene-bisiridoid conjugates from the flower buds of two Caprifoliaceae plants and their ATP-citrate lyase inhibitory activities. Bioorganic Chemistry, 2022, 120, 105630.	4.1	4
637	Non-nucleoside structured compounds with antiviral activity—past 10 years (2010–2020). European Journal of Medicinal Chemistry, 2022, 231, 114136.	5.5	6
638	In silico screening-based discovery of novel covalent inhibitors of the SARS-CoV-2 3CL protease. European Journal of Medicinal Chemistry, 2022, 231, 114130.	5.5	16
639	Discovering potent inhibitors against the Mpro of the SARS-CoV-2. A medicinal chemistry approach. Computers in Biology and Medicine, 2022, 143, 105235.	7.0	11
640	Systems pharmacology-based drug discovery and active mechanism of natural products for coronavirus pneumonia (COVID-19): An example using flavonoids. Computers in Biology and Medicine, 2022, 143, 105241.	7.0	15
641	Newly synthesized series of oxoindole–oxadiazole conjugates as potential anti-SARS-CoV-2 agents: <i>in silico</i> and <i>in vitro</i> studies. New Journal of Chemistry, 2022, 46, 5078-5090.	2.8	42
644	Identification of Potential Antiviral Inhibitors from Hydroxychloroquine and 1,2,4,5-Tetraoxanes Analogues and Investigation of the Mechanism of Action in SARS-CoV-2. International Journal of Molecular Sciences, 2022, 23, 1781.	4.1	11
646	Socio-demographic Heterogeneity in Prevalence of SARS-COV-2 Infection and Death Rate: Relevance to Black College Student Knowledge of COVID-19 and SARS-COV-2. Journal of Racial and Ethnic Health Disparities, 2022, , 1.	3.2	2
647	SAR and QSAR of COVID-19 Main Protease–Inhibitor Interactions of Recently X-ray Crystalized Complexes. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2022, 92, 281-291.	1.0	2
648	Case Study of High-Throughput Drug Screening and Remote Data Collection for SARS-CoV-2 Main Protease by Using Serial Femtosecond X-ray Crystallography. Crystals, 2021, 11, 1579.	2.2	9
649	The expression of interleukin-1β and nuclear factor erythroid-2 in the periodontitis after treatment of liquid smoke rice hull. Journal of Advanced Pharmaceutical Technology and Research, 2022, 13, 95.	1.0	2
650	Mutations in Main Protease of SARS CoV-2 Decreased Boceprevir Affinity. Brazilian Archives of Biology and Technology, 0, 64, .	0.5	1
651	Antiviral cyclic peptides targeting the main protease of SARS-CoV-2. Chemical Science, 2022, 13, 3826-3836.	7.4	29
652	Selective covalent targeting of SARS-CoV-2 main protease by enantiopure chlorofluoroacetamide. Chemical Science, 2022, 13, 3027-3034.	7.4	19
653	Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature's toolbox of bioactive compounds. Computational and Structural Biotechnology Journal, 2022, 20, 1306-1344.	4.1	38

#	Article	IF	CITATIONS
655	Discovery of SARS-CoV-2 3CLPro Peptidomimetic Inhibitors through the Catalytic Dyad Histidine-Specific Protein–Ligand Interactions. International Journal of Molecular Sciences, 2022, 23, 2392.	4.1	3
656	Mechanism of Action of Small-Molecule Agents in Ongoing Clinical Trials for SARS-CoV-2: A Review. Frontiers in Pharmacology, 2022, 13, 840639.	3.5	17
657	Non-covalent SARS-CoV-2 Mpro inhibitors developed from in silico screen hits. Scientific Reports, 2022, 12, 2505.	3.3	41
658	A new inactive conformation of SARS-CoV-2 main protease. Acta Crystallographica Section D: Structural Biology, 2022, 78, 363-378.	2.3	13
660	Fullerenes against COVID-19: Repurposing C60 and C70 to Clog the Active Site of SARS-CoV-2 Protease. Molecules, 2022, 27, 1916.	3.8	11
661	Targeting two potential sites of SARS-CoV-2 main protease through computational drug repurposing. Journal of Biomolecular Structure and Dynamics, 2023, 41, 3014-3024.	3.5	5
663	SARSâ€CoVâ€2 3CL ^{pro} displays faster selfâ€maturation <i>in vitro</i> than SARSâ€CoV 3CL ^{pro} due to faster Câ€ŧerminal cleavage. FEBS Letters, 2022, 596, 1214-1224.	2.8	3
664	Dynamic allostery highlights the evolutionary differences between the CoV-1 and CoV-2 main proteases. Biophysical Journal, 2022, 121, 1483-1492.	0.5	7
666	The naturallyâ€derived alkaloids as a potential treatment for <scp>COVID</scp> â€19: A scoping review. Phytotherapy Research, 2022, 36, 2686-2709.	5.8	12
667	From quantumâ€derived principles underlying cysteine reactivity to combating the <scp>COVID</scp> â€19 pandemic. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	14.6	33
669	Computational Repurposing of Drugs and Natural Products Against SARS-CoV-2 Main Protease (Mpro) as Potential COVID-19 Therapies. Frontiers in Molecular Biosciences, 2022, 9, 781039.	3.5	7
670	Systematic Tracing of Susceptible Animals to SARS-CoV-2 by a Bioinformatics Framework. Frontiers in Microbiology, 2022, 13, 781770.	3.5	4
671	Curcumin and Its Analogs as a Therapeutic Strategy in Infections Caused by RNA Genome Viruses. Food and Environmental Virology, 2022, 14, 120-137.	3.4	7
672	In vitro Evaluation of Antiviral Efficacy of a Standardized Hydroalcoholic Extract of Poplar Type Propolis Against SARS-CoV-2. Frontiers in Microbiology, 2022, 13, 799546.	3.5	4
673	Oridonin Inhibits SARSâ€CoVâ€2 by Targeting Its 3C‣ike Protease. Small Science, 2022, 2, .	9.9	17
674	Performance of COVIDSeq and Swift Normalase Amplicon SARS-CoV-2 Panels for SARS-CoV-2 Genome Sequencing: Practical Guide and Combining FASTQ Strategy. Journal of Clinical Microbiology, 2022, 60, e0002522.	3.9	3
675	Defining A Global Map of Functional Group-based 3D Ligand-binding Motifs. Genomics, Proteomics and Bioinformatics, 2022, 20, 765-779.	6.9	0
676	SARS-CoV-2 nsp5 Exhibits Stronger Catalytic Activity and Interferon Antagonism than Its SARS-CoV Ortholog. Journal of Virology, 2022, 96, e0003722.	3.4	19

#	Article	IF	CITATIONS
677	In Silico Drug Repositioning to Target the SARS-CoV-2 Main Protease as Covalent Inhibitors Employing a Combined Structure-Based Virtual Screening Strategy of Pharmacophore Models and Covalent Docking. International Journal of Molecular Sciences, 2022, 23, 3987.	4.1	6
678	Electrochemical Biosensor for the Detection of SARS-CoV-2 Main Protease and Its Inhibitor Ebselen. International Journal of Electrochemical Science, 0, , ArticleID:220421.	1.3	1
679	3β-Acetoxy-21α-H-hop-22(29)ene, a novel multitargeted phytocompound against SARS-CoV-2: in silico screening. Journal of Biomolecular Structure and Dynamics, 2023, 41, 3884-3891.	3.5	1
680	Structural basis for replicase polyprotein cleavage and substrate specificity of main protease from SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2117142119.	7.1	64
681	Advances in Pathogenesis, Progression, Potential Targets and Targeted Therapeutic Strategies in SARS-CoV-2-Induced COVID-19. Frontiers in Immunology, 2022, 13, 834942.	4.8	10
682	Characterization, in-silico, and in-vitro study of a new steroid derivative from Ophiocoma dentata as a potential treatment for COVID-19. Scientific Reports, 2022, 12, 5846.	3.3	6
683	Development of optimized drug-like small molecule inhibitors of the SARS-CoV-2 3CL protease for treatment of COVID-19. Nature Communications, 2022, 13, 1891.	12.8	45
684	Structural Basis of the Main Proteases of Coronavirus Bound to Drug Candidate PF-07321332. Journal of Virology, 2022, 96, e0201321.	3.4	34
685	Progress on SARS-CoV-2 3CLpro Inhibitors: Inspiration from SARS-CoV 3CLpro Peptidomimetics and Small-Molecule Anti-Inflammatory Compounds. Drug Design, Development and Therapy, 2022, Volume 16, 1067-1082.	4.3	23
686	Evaluation of binding performance of bioactive compounds against main protease and mutant model spike receptor binding domain of SARS-CoV-2: Docking, ADMET properties and molecular dynamics simulation study. Journal of the Indian Chemical Society, 2022, 99, 100417.	2.8	8
687	Improved SARS-CoV-2 main protease high-throughput screening assay using a 5-carboxyfluorescein substrate. Journal of Biological Chemistry, 2022, 298, 101739.	3.4	16
688	Label-free duplex SAMDI-MS screen reveals novel SARS-CoV-2 3CLpro inhibitors. Antiviral Research, 2022, 200, 105279.	4.1	2
689	A highly sensitive cell-based luciferase assay for high-throughput automated screening of SARS-CoV-2 nsp5/3CLpro inhibitors. Antiviral Research, 2022, 201, 105272.	4.1	9
690	Discovery of 4′-O-methylscutellarein as a potent SARS-CoV-2 main protease inhibitor. Biochemical and Biophysical Research Communications, 2022, 604, 76-82.	2.1	9
691	Multiple protonation states in ligand-free SARS-CoV-2 main protease revealed by large-scale quantum molecular dynamics simulations. Chemical Physics Letters, 2022, 794, 139489.	2.6	5
692	Antiviral activities of 4H-chromen-4-one scaffold-containing flavonoids against SARS–CoV–2 using computational and in vitro approaches. Journal of Molecular Liquids, 2022, 353, 118775.	4.9	15
693	In silico study of potential antiviral activity of copper(II) complexes with non–steroidal anti–inflammatory drugs on various SARS–CoV–2 target proteins. Journal of Inorganic Biochemistry, 2022, 231, 111805.	3.5	7
694	The Role of Molecular Modeling and Bioinformatics in Treating a Pandemic Disease: The Case of COVID-19. The Open Covid Journal, 2021, 1, 216-234.	0.2	1

#	Article	IF	CITATIONS
695	Pre-Steady-State Kinetics of the SARS-CoV-2 Main Protease as a Powerful Tool for Antiviral Drug Discovery. Frontiers in Pharmacology, 2021, 12, 773198.	3.5	5
696	Impact of Warhead Modulations on the Covalent Inhibition of SARS-CoV-2 M ^{pro} Explored by QM/MM Simulations. ACS Catalysis, 2022, 12, 698-708.	11.2	17
697	Artificial Intelligence in Vaccine and Drug Design. Methods in Molecular Biology, 2022, 2410, 131-146.	0.9	15
700	Structure-Guided Design of Potent Inhibitors of SARS-CoV-2 3CL Protease: Structural, Biochemical, and Cell-Based Studies. Journal of Medicinal Chemistry, 2021, 64, 17846-17865.	6.4	22
701	Impacting Drug Discovery Projects with Large-Scale Enumerations, Machine Learning Strategies, and Free-Energy Predictions. ACS Symposium Series, 0, , 205-226.	0.5	5
702	COVID-19: The question of genetic diversity and therapeutic intervention approaches. Genetics and Molecular Biology, 2021, 44, e20200452.	1.3	1
705	Hydrazones and Thiosemicarbazones Targeting Protein-Protein-Interactions of SARS-CoV-2 Papain-like Protease. Frontiers in Chemistry, 2022, 10, 832431.	3.6	5
706	COVID-19 and retinal degenerative diseases: Promising link "Kaempferol― Current Opinion in Pharmacology, 2022, 64, 102231.	3.5	11
707	Nirmatrelvir combined with ritonavir for preventing and treating COVID-19. The Cochrane Library, 2022, 2022, .	2.8	6
708	Fast and Effective Prediction of the Absolute Binding Free Energies of Covalent Inhibitors of SARS-CoV-2 Main Protease and 20S Proteasome. Journal of the American Chemical Society, 2022, 144, 7568-7572.	13.7	10
709	Advances in the Development of SARS-CoV-2 Mpro Inhibitors. Molecules, 2022, 27, 2523.	3.8	27
711	Repurposing of Four Drugs as Anti-SARS-CoV-2 Agents and Their Interactions with Protein Targets. Scientia Pharmaceutica, 2022, 90, 24.	2.0	7
712	Pharmaceutical Prospects of Curcuminoids for the Remedy of COVID-19: Truth or Myth. Frontiers in Pharmacology, 2022, 13, 863082.	3.5	8
713	Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E. Virology, 2022, 571, 21-33.	2.4	24
715	A threefold approach including quantum chemical, molecular docking and molecular dynamic studies to explore the natural compounds from Centaurea jacea as the potential inhibitors for COVID-19. Brazilian Journal of Biology, 2021, 83, e247604.	0.9	3
717	Implementation of level-2 biosafety for a macromolecular crystallography beamline at SSRF American Journal of Nuclear Medicine and Molecular Imaging, 2021, 11, 529-536.	1.0	0
718	A new insight into the transfer and delivery of anti-SARS-CoV-2 drug Carmofur with the assistance of graphene oxide quantum dot as a highly efficient nanovector toward COVID-19 by molecular dynamics simulation. RSC Advances, 2022, 12, 14167-14174.	3.6	4
719	Metabolomic Profiling of Plasma Reveals Differential Disease Severity Markers in COVID-19 Patients. Frontiers in Microbiology, 2022, 13, 844283.	3.5	15

#	Article	IF	CITATIONS
721	Synthesis and Applications of Nitrogen-Containing Heterocycles as Antiviral Agents. Molecules, 2022, 27, 2700.	3.8	21
722	A Review of Computational Approaches Targeting SARS-CoV-2 Main Protease to the Discovery of New Potential Antiviral Compounds. Current Topics in Medicinal Chemistry, 2023, 23, 3-16.	2.1	3
723	Nanoparticles for Coronavirus Control. Nanomaterials, 2022, 12, 1602.	4.1	9
724	Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease. Nature Communications, 2022, 13, 2268.	12.8	69
725	An orally available Mpro inhibitor is effective against wild-type SARS-CoV-2 and variants including Omicron. Nature Microbiology, 2022, 7, 716-725.	13.3	62
726	Design, synthesis and docking study of Vortioxetine derivatives as a SARS-CoV-2 main protease inhibitor. DARU, Journal of Pharmaceutical Sciences, 2022, 30, 139-152.	2.0	9
727	A Review on the Antiviral Activity of Functional Foods Against COVID-19 and Viral Respiratory Tract Infections. International Journal of General Medicine, 2022, Volume 15, 4817-4835.	1.8	5
728	The structure-based design of peptidomimetic inhibitors against SARS-CoV-2 3C like protease as Potent anti-viral drug candidate. European Journal of Medicinal Chemistry, 2022, 238, 114458.	5.5	14
729	Harnessing Natural Products by a Pharmacophoreâ€Oriented Semisynthesis Approach for the Discovery of Potential Antiâ€SARSâ€CoVâ€2 Agents. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
730	Harnessing Natural Products by a Pharmacophoreâ€Oriented Semisynthesis Approach for the Discovery of Potential Antiâ€SARSâ€CoVâ€2 Agents. Angewandte Chemie, 0, , .	2.0	0
731	Dimerization Tendency of 3CLpros of Human Coronaviruses Based on the X-ray Crystal Structure of the Catalytic Domain of SARS-CoV-2 3CLpro. International Journal of Molecular Sciences, 2022, 23, 5268.	4.1	4
732	The effect of various compounds on the COVID mechanisms, from chemical to molecular aspects. Biophysical Chemistry, 2022, 288, 106824.	2.8	5
733	Crystal structure of SARS-CoV 3C-like protease with baicalein. Biochemical and Biophysical Research Communications, 2022, 611, 190-194.	2.1	10
734	Remdesivir and GS-441524 Retain Antiviral Activity against Delta, Omicron, and Other Emergent SARS-CoV-2 Variants. Antimicrobial Agents and Chemotherapy, 2022, 66, e0022222.	3.2	39
735	Identification, optimization, and biological evaluation of 3-O-β-chacotriosyl ursolic acid derivatives as novel SARS-CoV-2 entry inhibitors by targeting the prefusion state of spike protein. European Journal of Medicinal Chemistry, 2022, 238, 114426.	5.5	9
736	Benchmarking the ability of novel compounds to inhibit SARS-CoV-2 main protease using steered molecular dynamics simulations. Computers in Biology and Medicine, 2022, 146, 105572.	7.0	28
737	Anisodamine potently inhibits SARS-CoV-2 infection inÂvitro and targets its main protease. Biochemical and Biophysical Research Communications, 2022, 616, 8-13.	2.1	5
738	Hijacking of Cellular Functions by Severe Acute Respiratory Syndrome Coronavirus-2. Permeabilization and Polarization of the Host Lipid Membrane by Viroporins. Journal of Physical Chemistry Letters, 2022, 13, 4642-4649.	4.6	3

#	Article	IF	CITATIONS
739	Synthesis and Biochemical Evaluation of 8H-Indeno[1,2-d]thiazole Derivatives as Novel SARS-CoV-2 3CL Protease Inhibitors. Molecules, 2022, 27, 3359.	3.8	1
740	Discovery of C-12 dithiocarbamate andrographolide analogues as inhibitors of SARS-CoV-2 main protease: In vitro and in silico studies. Computational and Structural Biotechnology Journal, 2022, 20, 2784-2797.	4.1	4
742	Integrated computational approach towards repurposing of antimalarial drug against SARS-CoV-2 main protease. Structural Chemistry, 0, , .	2.0	1
743	Structure-Guided Design of Potent Spirocyclic Inhibitors of Severe Acute Respiratory Syndrome Coronavirus-2 3C-like Protease. Journal of Medicinal Chemistry, 2022, 65, 7818-7832.	6.4	20
744	In Silico Identification of Potential Inhibitors of the SARS-CoV-2 Nucleocapsid Through Molecular Docking-Based Drug Repurposing. Dr Sulaiman Al Habib Medical Journal, 2022, 4, 64-76.	0.8	2
745	Exploration of potential inhibitors for SARSâ€CoVâ€2 Mpro considering its mutants via structureâ€based drug design, molecular docking, MD simulations, MM/PBSA, and DFT calculations. Biotechnology and Applied Biochemistry, 2023, 70, 439-457.	3.1	7
746	Protocetraric and Salazinic Acids as Potential Inhibitors of SARS-CoV-2 3CL Protease: Biochemical, Cytotoxic, and Computational Characterization of Depsidones as Slow-Binding Inactivators. Pharmaceuticals, 2022, 15, 714.	3.8	2
747	Luminescent Assay for the Screening of SARS oVâ€2 M ^{Pro} Inhibitors. ChemBioChem, 2022, 23, .	2.6	5
748	VE607 stabilizes SARS-CoV-2 Spike in the "RBD-up―conformation and inhibits viral entry. IScience, 2022, 25, 104528.	4.1	8
749	Discovery of 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 main protease. European Journal of Medicinal Chemistry, 2022, 238, 114508.	5.5	8
750	Immunodetection assays for the quantification of seasonal common cold coronaviruses OC43, NL63, or 229E infection confirm nirmatrelvir as broad coronavirus inhibitor. Antiviral Research, 2022, 203, 105343.	4.1	12
752	Seeking antiviral drugs to inhibit SARS-CoV-2 RNA dependent RNA polymerase: A molecular docking analysis. PLoS ONE, 2022, 17, e0268909.	2.5	1
755	Maturation of the SARS-CoV-2 virus is regulated by dimerization of its main protease. Computational and Structural Biotechnology Journal, 2022, 20, 3336-3346.	4.1	5
756	Review on development of potential inhibitors of SARS-CoV-2 main protease (MPro). Future Journal of Pharmaceutical Sciences, 2022, 8, .	2.8	10
757	Production of a functionally active recombinant SARS-CoV-2 (COVID-19) 3C-like protease and a soluble inactive 3C-like protease-RBD chimeric in a prokaryotic expression system. Epidemiology and Infection, 2022, 150, .	2.1	0
758	Primer for Designing Main Protease (M ^{pro}) Inhibitors of SARS-CoV-2. Journal of Physical Chemistry Letters, 2022, 13, 5776-5786.	4.6	8
759	Design of SARS-CoV-2 Main Protease Inhibitors Using Artificial Intelligence and Molecular Dynamic Simulations. Molecules, 2022, 27, 4020.	3.8	14
760	Acrylamide fragment inhibitors that induce unprecedented conformational distortions in enterovirus 71 3C and SARS-CoV-2 main protease. Acta Pharmaceutica Sinica B, 2022, 12, 3924-3933.	12.0	4

#	Article	IF	CITATIONS
761	Ligand-based and structure-based studies to develop predictive models for SARS-CoV-2 main protease inhibitors through the 3d-qsar.com portal. Journal of Computer-Aided Molecular Design, 2022, 36, 483-505.	2.9	4
762	Exploring the potential mechanism of emetine against coronavirus disease 2019 combined with lung adenocarcinoma: bioinformatics and molecular simulation analyses. BMC Cancer, 2022, 22, .	2.6	3
763	Human Superantibodies to 3CLpro Inhibit Replication of SARS-CoV-2 across Variants. International Journal of Molecular Sciences, 2022, 23, 6587.	4.1	3
764	Discovery of 2-thiobenzimidazoles as noncovalent inhibitors of SARS-CoV-2 main protease. Bioorganic and Medicinal Chemistry Letters, 2022, 72, 128867.	2.2	5
765	Evolutionary and Structural Insights about Potential SARS-CoV-2 Evasion of Nirmatrelvir. Journal of Medicinal Chemistry, 2022, 65, 8686-8698.	6.4	63
766	Defining the substrate envelope of SARS-CoV-2 main protease to predict and avoid drug resistance. Nature Communications, 2022, 13, .	12.8	63
767	Discovery of Triple Inhibitors of Both SARS-CoV-2 Proteases and Human Cathepsin L. Pharmaceuticals, 2022, 15, 744.	3.8	5
768	De Novo design of potential inhibitors against SARS-CoV-2 Mpro. Computers in Biology and Medicine, 2022, 147, 105728.	7.0	6
769	Bioactive prenylated phenolic compounds from the aerial parts of Glycyrrhiza uralensis. Phytochemistry, 2022, 201, 113284.	2.9	6
770	Genomic, proteomic and metabolomic profiling of severe acute respiratory syndrome-Coronavirus-2. , 2022, , 49-76.		0
771	Databases, DrugBank, and virtual screening platforms for therapeutic development. , 2022, , 291-334.		0
772	Clinically available/under trial drugs and vaccines for treatment of SARS-COV-2. , 2022, , 451-488.		0
773	BRET-Based Self-Cleaving Biosensors for SARS-CoV-2 3CLpro Inhibitor Discovery. Microbiology Spectrum, 2022, 10, .	3.0	5
774	Identification of repurposing therapeutics toward SARS-CoV-2 main protease by virtual screening. PLoS ONE, 2022, 17, e0269563.	2.5	9
775	Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	59
776	Virofree, an Herbal Medicine-Based Formula, Interrupts the Viral Infection of Delta and Omicron Variants of SARS-CoV-2. Frontiers in Pharmacology, 0, 13, .	3.5	7
777	Cytopathic SARS-CoV-2 screening on VERO-E6 cells in a large-scale repurposing effort. Scientific Data, 2022, 9, .	5.3	17
779	The Main Protease of SARS-CoV-2 as a Target for Phytochemicals against Coronavirus. Plants, 2022, 11, 1862.	3.5	13

#	Article	IF	CITATIONS
780	How Reproducible Are QM/MM Simulations? Lessons from Computational Studies of the Covalent Inhibition of the SARS-CoV-2 Main Protease by Carmofur. Journal of Chemical Theory and Computation, 2022, 18, 5056-5067.	5.3	9
781	Self-Masked Aldehyde Inhibitors of Human Cathepsin L Are Potent Anti-CoV-2 Agents. Frontiers in Chemistry, 0, 10, .	3.6	5
782	The SARSâ€CoVâ€2 main protease (M ^{pro}): Structure, function, and emerging therapies for COVIDâ€19. MedComm, 2022, 3, .	7.2	79
783	From Repurposing to Redesign: Optimization of Boceprevir to Highly Potent Inhibitors of the SARS-CoV-2 Main Protease. Molecules, 2022, 27, 4292.	3.8	10
784	Hepatitis C virus NS3/4A inhibitors and other drug-like compounds as covalent binders of SARS-CoV-2 main protease. Scientific Reports, 2022, 12, .	3.3	20
785	Fragment-based inhibitor design for SARS-CoV2 main protease. Structural Chemistry, 2022, 33, 1467-1487.	2.0	1
786	Vibrational spectroscopic signatures, effect of rehybridization and hyperconjugation on the dimer molecule of N–(4–chlorophenyl)–2–[(4,6–di–aminopyrimidin–2–yl)sulfanyl]acetamide- quantur computational approach. Spectroscopy Letters, 0, , 1-17.	n1.0	2
787	Evaluation of apigenin-based biflavonoid derivatives as potential therapeutic agents against viral protease (3CLpro) of SARS-CoV-2 via molecular docking, molecular dynamics and quantum mechanics studies. Journal of Biomolecular Structure and Dynamics, 2023, 41, 5915-5945.	3.5	7
788	Molecular docking and machine learning affinity prediction of compounds identified upon softwood bark extraction to the main protease of the SARS-CoV-2 virus. Biophysical Chemistry, 2022, 288, 106854.	2.8	6
789	A systematic exploration of boceprevir-based main protease inhibitors as SARS-CoV-2 antivirals. European Journal of Medicinal Chemistry, 2022, 240, 114596.	5.5	24
790	A multi-pronged evaluation of aldehyde-based tripeptidyl main protease inhibitors as SARS-CoV-2 antivirals. European Journal of Medicinal Chemistry, 2022, 240, 114570.	5.5	23
791	Oral antiviral treatments for COVID-19: opportunities and challenges. Pharmacological Reports, 2022, 74, 1255-1278.	3.3	31
792	Proteome-Wide Profiling of the Covalent-Druggable Cysteines with a Structure-Based Deep Graph Learning Network. Research, 2022, 2022, .	5.7	4
793	Solanaceae Family Phytochemicals as Inhibitors of 3C-Like Protease of SARS-CoV-2: An In Silico Analysis. Molecules, 2022, 27, 4739.	3.8	2
794	A Warhead Substitution Study on the Coronavirus Main Protease Inhibitor Nirmatrelvir. ACS Medicinal Chemistry Letters, 2022, 13, 1345-1350.	2.8	23
795	A ricin-based peptide BRIP from Hordeum vulgare inhibits Mpro of SARS-CoV-2. Scientific Reports, 2022, 12, .	3.3	10
796	Theaflavin 3-gallate inhibits the main protease (Mpro) of SARS-CoV-2 and reduces its count in vitro. Scientific Reports, 2022, 12, .	3.3	17
797	Factors Modulating COVID-19: A Mechanistic Understanding Based on the Adverse Outcome Pathway Framework. Journal of Clinical Medicine, 2022, 11, 4464.	2.4	13

#	Article	IF	CITATIONS
798	Ligand-based design, synthesis, computational insights, and <i>inÂvitro</i> studies of novel <i>N</i> -(5-Nitrothiazol-2-yl)-carboxamido derivatives as potent inhibitors of SARS-CoV-2 main protease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 2112-2132.	5.2	21
799	Targeting SARS-CoV-2 papain-like protease in the postvaccine era. Trends in Pharmacological Sciences, 2022, 43, 906-919.	8.7	22
800	Structure-Based Identification of Naphthoquinones and Derivatives as Novel Inhibitors of Main Protease M ^{pro} and Papain-like Protease PL ^{pro} of SARS-CoV-2. Journal of Chemical Information and Modeling, 2022, 62, 6553-6573.	5.4	19
801	COVID-19: Pathophysiology, Transmission, and Drug Development for Therapeutic Treatment and Vaccination Strategies. Current Pharmaceutical Design, 2022, 28, 2211-2233.	1.9	1
802	Evaluation of the anti-SARS-CoV-2 properties of essential oils and aromatic extracts. Scientific Reports, 2022, 12, .	3.3	9
804	Structure-based design of anti-mycobacterial drug leads that target the mycolic acid transporter MmpL3. Structure, 2022, , .	3.3	2
805	Schaftoside inhibits 3CLpro and PLpro of SARS-CoV-2 virus and regulates immune response and inflammation of host cells for the treatment of COVID-19. Acta Pharmaceutica Sinica B, 2022, 12, 4154-4164.	12.0	28
806	Functional map of SARS-CoV-2 3CL protease reveals tolerant and immutable sites. Cell Host and Microbe, 2022, 30, 1354-1362.e6.	11.0	28
807	In silico investigation and potential therapeutic approaches of natural products for COVID-19: Computer-aided drug design perspective. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	15
808	Repurposing small molecules of <i>Tephrosia purpurea</i> against SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics, 2023, 41, 6822-6833.	3.5	0
809	Identification of a Dual Inhibitor of Secreted Phospholipase A2 (GIIA sPLA2) and SARS-CoV-2 Main Protease. Pharmaceuticals, 2022, 15, 961.	3.8	3
810	Plant-derived compounds effectively inhibit the main protease of SARS-CoV-2: An in silico approach. PLoS ONE, 2022, 17, e0273341.	2.5	7
811	Beyond the vaccines: a glance at the small molecule and peptide-based anti-COVID19 arsenal. Journal of Biomedical Science, 2022, 29, .	7.0	16
812	Estimating the binding energetics of reversible covalent inhibitors of the SARS-CoV-2 main protease: an <i>in silico</i> study. Physical Chemistry Chemical Physics, 2022, 24, 23391-23401.	2.8	2
813	Deciphering the binding mechanism of inhibitors of the SARS-CoV-2 main protease through multiple replica accelerated molecular dynamics simulations and free energy landscapes. Physical Chemistry Chemical Physics, 2022, 24, 22129-22143.	2.8	16
814	Traditional Chinese Medicine JingYinGuBiao Formula Therapy Improves the Negative Conversion Rate of SARS-CoV2 in Patients with Mild COVID-19. International Journal of Biological Sciences, 2022, 18, 5641-5652.	6.4	9
815	Searching for potential inhibitors of SARS-COV-2 main protease using supervised learning and perturbation calculations. Chemical Physics, 2023, 564, 111709.	1.9	6
816	Targeting the SARS-CoV-2 Spike Protein with the Usage of an Internet of Viral and Bacterial Things. , 2022, , .		0

	CITATION R	EPORT	
#	Article	IF	CITATIONS
817	Assessing the Impact of SARS-CoV-2 Lineages and Mutations on Patient Survival. Viruses, 2022, 14, 1893.	3.3	3
818	Redox stress in COVID-19: Implications for hematologic disorders. Best Practice and Research in Clinical Haematology, 2022, 35, 101373.	1.7	0
820	Toll-like Receptor Mediation in SARS-CoV-2: A Therapeutic Approach. International Journal of Molecular Sciences, 2022, 23, 10716.	4.1	5
821	A reporter cell line for the automated quantification of SARS-CoV-2 infection in living cells. Frontiers in Microbiology, 0, 13, .	3.5	5
822	A computational study of metal–organic frameworks (MOFs) as potential nanostructures to combat SARS-CoV-2. Scientific Reports, 2022, 12, .	3.3	5
823	Labelâ€free Sensing of Main Protease Activity of SARSâ€CoVâ€2 with an Aerolysin Nanopore. Chemistry - an Asian Journal, 2022, 17, .	3.3	4
824	High-throughput screening of SARS-CoV-2 main and papain-like protease inhibitors. Protein and Cell, 0, , .	11.0	2
825	A computational insight on the inhibitory potential of 8â€Hydroxydihydrosanguinarine (8â€HDS), a pyridone containing analogue of sanguinarine, against SARS CoV2 Chemistry and Biodiversity, 0, , .	2.1	6
826	Antiviral activity of <i>Cenostigma pluviosum</i> var. <i>peltophoroides</i> extract and fractions against SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 2023, 41, 7297-7308.	3.5	5
827	Target-Specific Machine Learning Scoring Function Improved Structure-Based Virtual Screening Performance for SARS-CoV-2 Drugs Development. International Journal of Molecular Sciences, 2022, 23, 11003.	4.1	11
828	Nirmatrelvir combined with ritonavir for preventing and treating COVID-19. The Cochrane Library, 2022, 2022, .	2.8	23
829	Diastereomeric Resolution Yields Highly Potent Inhibitor of SARS-CoV-2 Main Protease. Journal of Medicinal Chemistry, 2022, 65, 13328-13342.	6.4	13
830	The Efficacy of Traditional Medicinal Plants in Modulating the Main Protease of SARS oVâ€⊋ and Cytokine Storm. Chemistry and Biodiversity, 2022, 19, .	2.1	10
831	Computational Evidence Based Perspective on the Plausible Repositioning of Fluoroquinolones for COVID-19 Treatment. Current Computer-Aided Drug Design, 2022, 18, 407-413.	1.2	2
832	A genetically encoded BRET-based SARS-CoV-2 Mpro protease activity sensor. Communications Chemistry, 2022, 5, .	4.5	9
833	Targeting SARS-CoV-2 Main Protease for Treatment of COVID-19: Covalent Inhibitors Structure–Activity Relationship Insights and Evolution Perspectives. Journal of Medicinal Chemistry, 2022, 65, 12500-12534.	6.4	49
834	Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022, 2022, 1-70.	1.9	13
835	The Natural Products Withaferin A and Withanone from the Medicinal Herb <i>Withania somnifera</i> Are Covalent Inhibitors of the SARS-CoV-2 Main Protease. Journal of Natural Products, 2022, 85, 2340-2350.	3.0	11

#	Article	IF	CITATIONS
836	Discovery and Crystallographic Studies of Trisubstituted Piperazine Derivatives as Non-Covalent SARS-CoV-2 Main Protease Inhibitors with High Target Specificity and Low Toxicity. Journal of Medicinal Chemistry, 2022, 65, 13343-13364.	6.4	36
837	Screening Active Phytochemicals of Some Ayurvedic Medicinal Plants to Identify Potential Inhibitors against SARS-CoV-2 Mpro by Computational Investigation. Letters in Drug Design and Discovery, 2023, 20, 1380-1392.	0.7	0
838	Druggable targets and therapeutic development for COVID-19. Frontiers in Chemistry, 0, 10, .	3.6	4
839	Repurposing of HIV/HCV protease inhibitors against SARS-CoV-2 3CLpro. Antiviral Research, 2022, 207, 105419.	4.1	7
840	Multi-targeted molecular docking, pharmacokinetics, and drug-likeness evaluation of coumarin based compounds targeting proteins involved in development of COVID-19. Saudi Journal of Biological Sciences, 2022, 29, 103458.	3.8	4
841	Discovery of novel SARS-CoV-2 3CL protease covalent inhibitors using deep learning-based screen. European Journal of Medicinal Chemistry, 2022, 244, 114803.	5.5	12
842	Agathisflavone, a natural biflavonoid that inhibits SARS-CoV-2 replication by targeting its proteases. International Journal of Biological Macromolecules, 2022, 222, 1015-1026.	7.5	16
843	Molecular-Level Targets for the Development of Therapies Against Coronavirus Diseases. Methods in Pharmacology and Toxicology, 2021, , 69-84.	0.2	0
844	Candidate Drugs for the Potential Treatment of Coronavirus Diseases. Methods in Pharmacology and Toxicology, 2021, , 85-114.	0.2	0
845	Recent computational drug repositioning strategies against SARS-CoV-2. Computational and Structural Biotechnology Journal, 2022, 20, 5713-5728.	4.1	3
846	Advances in research on 3C-like protease (3CL ^{pro}) inhibitors against SARS-CoV-2 since 2020. RSC Medicinal Chemistry, 2023, 14, 9-21.	3.9	15
847	Advanced approaches of developing targeted covalent drugs. RSC Medicinal Chemistry, 2022, 13, 1460-1475.	3.9	7
848	Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Molecular Aspects of Medicine, 2023, 91, 101151.	6.4	16
849	In vitro and in vivo evaluation of the main protease inhibitor FB2001 against SARS-CoV-2. Antiviral Research, 2022, 208, 105450.	4.1	13
850	A Review of Potential Therapeutic Strategies for COVID-19. Viruses, 2022, 14, 2346.	3.3	3
851	Identification of Cysteine 270 as a Novel Site for Allosteric Modulators of SARSâ€CoVâ€2 Papainâ€Like Protease**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
852	Dual-targeting cyclic peptides of receptor-binding domain (RBD) and main protease (Mpro) as potential drug leads for the treatment of SARS-CoV-2 infection. Frontiers in Pharmacology, 0, 13, .	3.5	3
853	Structural similarities between SARS-CoV2 3CLpro and other viral proteases suggest potential lead molecules for developing broad spectrum antivirals. Frontiers in Chemistry, 0, 10, .	3.6	7

#	Article	IF	CITATIONS
854	Discovery of Chlorofluoroacetamide-Based Covalent Inhibitors for Severe Acute Respiratory Syndrome Coronavirus 2 3CL Protease. Journal of Medicinal Chemistry, 2022, 65, 13852-13865.	6.4	17
855	Anticoagulants as Potential SARS-CoV-2 Mpro Inhibitors for COVID-19 Patients: In Vitro, Molecular Docking, Molecular Dynamics, DFT, and SAR Studies. International Journal of Molecular Sciences, 2022, 23, 12235.	4.1	18
856	Dual-Reporter System for Real-Time Monitoring of SARS-CoV-2 Main Protease Activity in Live Cells Enables Identification of an Allosteric Inhibition Path. ACS Bio & Med Chem Au, 2022, 2, 627-641.	3.7	1
857	Identification of Cysteine 270 as a Novel Site for Allosteric Modulators of SARSâ€CoVâ€2 Papainâ€Like Protease. Angewandte Chemie, 0, , .	2.0	0
858	Qualitative Estimation of Protein–Ligand Complex Stability through Thermal Titration Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2022, 62, 5715-5728.	5.4	17
859	Non-covalent cyclic peptides simultaneously targeting Mpro and NRP1 are highly effective against Omicron BA.2.75. Frontiers in Pharmacology, 0, 13, .	3.5	5
860	Easy access to α-ketoamides as SARS-CoV-2 and MERS Mpro inhibitors via the PADAM oxidation route. European Journal of Medicinal Chemistry, 2022, 244, 114853.	5.5	8
861	Rational design of the zonulin inhibitor AT1001 derivatives as potential anti SARS-CoV-2. European Journal of Medicinal Chemistry, 2022, 244, 114857.	5.5	7
862	Quinone and SARS-CoV-2. , 2023, , 47-81.		0
863	The Artistic and Scientific Nature of Protein Structure: A Historical Overview. Integrated Science, 2022, , 625-648.	0.2	0
864	Characterizing the ligand-binding affinity toward SARS-CoV-2 Mpro <i>via</i> physics- and knowledge-based approaches. Physical Chemistry Chemical Physics, 2022, 24, 29266-29278.	2.8	4
865	Discovery and mechanism of action of Thonzonium bromide from an FDA-approved drug library with potent and broad-spectrum inhibitory activity against main proteases of human coronaviruses. Bioorganic Chemistry, 2023, 130, 106264.	4.1	5
866	Efficacy Evaluation of Quercetin and Its Analogues on the Main Protease Enzyme of the COVID-19 Using Molecular Docking Studies. Majallah-i DÄnishgÄh-i 'UlÅ«m-i PizishkÄ«-i ĪlÄm, 2022, 30, 66-85.	0.0	0
867	Dual Inhibitors of Main Protease (M ^{Pro}) and Cathepsin L as Potent Antivirals against SARS-CoV2. Journal of the American Chemical Society, 2022, 144, 21035-21045.	13.7	20
869	Covalent Warheads Targeting Cysteine Residue: The Promising Approach in Drug Development. Molecules, 2022, 27, 7728.	3.8	18
870	Proteolysis and Deficiency of α1-Proteinase Inhibitor in SARS-CoV-2 Infection. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2022, 16, 271-291.	0.4	1
871	Novel CYP11A1-Derived Vitamin D and Lumisterol Biometabolites for the Management of COVID-19. Nutrients, 2022, 14, 4779.	4.1	14
872	The BBIBP-CorV inactivated COVID-19 vaccine induces robust and persistent humoral responses to SARS-CoV-2 nucleocapsid, besides spike protein in healthy adults. Frontiers in Microbiology, 0, 13, .	3.5	2

#	Article	IF	Citations
873	The exploration of phytocompounds theoretically combats SARS-CoV-2 pandemic against virus entry, viral replication and immune evasion. Journal of Infection and Public Health, 2023, 16, 42-54.	4.1	4
874	<i>In silico</i> molecular docking, dynamics simulation and repurposing of some VEGFR-2 inhibitors based on the SARS-CoV-2-main-protease inhibitor N3. Journal of Biomolecular Structure and Dynamics, 2023, 41, 9267-9281.	3.5	4
875	Green and Regioselective Approach for the Synthesis of 3-Substituted Indole Based 1,2-Dihydropyridine and Azaxanthone Derivatives as a Potential Lead for SARS-CoV-2 and Delta Plus Mutant Virus: DFT and Docking Studies. ACS Omega, 0, , .	3.5	3
876	Computational investigation of natural compounds as potential main protease (Mpro) inhibitors for SARS-CoV-2 virus. Computers in Biology and Medicine, 2022, 151, 106318.	7.0	12
877	Optimization of potential non-covalent inhibitors for the SARS-CoV-2 main protease inspected by a descriptor of the subpocket occupancy. Physical Chemistry Chemical Physics, 2022, 24, 29940-29951.	2.8	3
878	TEMPO: A transformer-based mutation prediction framework for SARS-CoV-2 evolution. Computers in Biology and Medicine, 2023, 152, 106264.	7.0	4
879	Electronic structures of zwitterionic and protonated forms of glycine betaine in water: Insights into solvent effects from ab initio simulations. Journal of Molecular Liquids, 2023, 369, 120871.	4.9	5
880	Structure-based lead optimization of peptide-based vinyl methyl ketones as SARS-CoV-2 main protease inhibitors. European Journal of Medicinal Chemistry, 2023, 247, 115021.	5.5	11
881	Discovery and structural optimization of 3-O-Î ² -Chacotriosyl betulonic acid saponins as potent fusion inhibitors of Omicron virus infections. Bioorganic Chemistry, 2023, 131, 106316.	4.1	4
882	Analysis and Identification of Bioactive Compounds of Cannabinoids in Silico for Inhibition of SARS-CoV-2 and SARS-CoV. Biomolecules, 2022, 12, 1729.	4.0	2
883	Extended Applications of Small-Molecule Covalent Inhibitors toward Novel Therapeutic Targets. Pharmaceuticals, 2022, 15, 1478.	3.8	1
884	Understanding Cysteine Chemistry Using Conventional and Serial X-ray Protein Crystallography. Crystals, 2022, 12, 1671.	2.2	1
885	QSAR of SARS-CoV-2 Main Protease Inhibitors Utilizing Theoretical Molecular Descriptors. Letters in Drug Design and Discovery, 2022, 20, .	0.7	2
886	Small molecules in the treatment of COVID-19. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	42
887	Pharmacophore-Based Virtual Screening of Potential SARS-CoV-2 Main Protease Inhibitors from Library of Natural Products. Natural Product Communications, 2022, 17, 1934578X2211436.	0.5	3
888	Characterization and protein engineering of glycosyltransferases for the biosynthesis of diverse hepatoprotective cycloartaneâ€type saponins in <i>Astragalus membranaceus</i> . Plant Biotechnology Journal, 2023, 21, 698-710.	8.3	5
889	Discovery and Crystallographic Studies of Nonpeptidic Piperazine Derivatives as Covalent SARS-CoV-2 Main Protease Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 16902-16917.	6.4	15
891	Ubiquitin variants potently inhibit SARS-CoV-2 PLpro and viral replication via a novel site distal to the protease active site. PLoS Pathogens, 2022, 18, e1011065.	4.7	10

#	Article	IF	CITATIONS
892	Identification of Darunavir Derivatives for Inhibition of SARS-CoV-2 3CLpro. International Journal of Molecular Sciences, 2022, 23, 16011.	4.1	2
893	Potential inhibitory properties of structurally modified quercetin/isohamnetin glucosides against SARS-CoV-2 Mpro; molecular docking and dynamics simulation strategies. Informatics in Medicine Unlocked, 2023, 37, 101167.	3.4	1
894	Flavonoids from the roots and rhizomes of Sophora tonkinensis and their in vitro anti-SARS-CoV-2 activity. Chinese Journal of Natural Medicines, 2023, 21, 65-80.	1.3	1
895	Azapeptide activity-based probes for the SARS-CoV-2 main protease enable visualization of inhibition in infected cells. Chemical Science, 2023, 14, 1666-1672.	7.4	1
896	Structural Analysis and Epitope Prediction of S2 Domain of SARS-CoV-2, Conservation Analysis Among Major Variants. Viral Immunology, 0, , .	1.3	0
897	Drug repurposing screening validated by experimental assays identifies two clinical drugs targeting SARS-CoV-2 main protease. Frontiers in Drug Discovery, 0, 2, .	2.8	1
898	A knowledge-based protein-protein interaction inhibition (KPI) pipeline: an insight from drug repositioning for COVID-19 inhibition. Journal of Biomolecular Structure and Dynamics, 0, , 1-14.	3.5	0
899	Multi-ligand molecular docking, simulation, free energy calculations and wavelet analysis of the synergistic effects between natural compounds baicalein and cubebin for the inhibition of the main protease of SARS-CoV-2. Journal of Molecular Liquids, 2023, 374, 121253.	4.9	7
900	A Novel Y-Shaped, S–O–N–O–S-Bridged Cross-Link between Three Residues C22, C44, and K61 Is Frequently Observed in the SARS-CoV-2 Main Protease. ACS Chemical Biology, 2023, 18, 449-455.	3.4	5
901	Nirmatrelvir and COVID-19: development, pharmacokinetics, clinical efficacy, resistance, relapse, and pharmacoeconomics. International Journal of Antimicrobial Agents, 2023, 61, 106708.	2.5	13
902	â€~Poly phenolic phytoceutical loaded nano-bilosomes for enhanced caco-2 cell permeability and SARS-CoV 2 antiviral activity': in-vitro and insilico studies. Drug Delivery, 2023, 30, .	5.7	9
903	Fluorogenic reporter enables identification of compounds that inhibit SARS-CoV-2. Nature Microbiology, 2023, 8, 121-134.	13.3	6
904	Interactions of SARS-CoV-2 and MERS-CoV fusion peptides measured using single-molecule force methods. Biophysical Journal, 2023, 122, 646-660.	0.5	1
905	SARS-CoV-2 Mpro Inhibitors: Achieved Diversity, Developing Resistance and Future Strategies. Future Pharmacology, 2023, 3, 80-107.	1.8	9
906	Computational Repurposing of Potential Dimerization Inhibitors against SARS-CoV-2 Main Protease. Letters in Drug Design and Discovery, 2024, 21, 799-808.	0.7	0
907	A comprehensive perspective of traditional Arabic or Islamic medicinal plants as an adjuvant therapy against COVID-19. Saudi Journal of Biological Sciences, 2023, 30, 103561.	3.8	1
908	In silico Screening of Potential SARS-CoV-2 Main Protease Inhibitors from Thymus schimperi. Advances and Applications in Bioinformatics and Chemistry, 0, Volume 16, 1-13.	2.6	0
909	Discovery of inhibitors against SARS-CoV-2 main protease using fragment-based drug design. Chemico-Biological Interactions, 2023, 371, 110352.	4.0	3

#	Article	IF	CITATIONS
910	Broad-Spectrum Cyclopropane-Based Inhibitors of Coronavirus 3C-like Proteases: Biochemical, Structural, and Virological Studies. ACS Pharmacology and Translational Science, 2023, 6, 181-194.	4.9	6
911	Development of Highly Potent Noncovalent Inhibitors of SARS-CoV-2 3CLpro. ACS Central Science, 2023, 9, 217-227.	11.3	23
912	Recent updates on the biological efficacy of approved drugs and potent synthetic compounds against SARS-CoV-2. RSC Advances, 2023, 13, 3677-3687.	3.6	4
913	Potential of plant extracts in targeting SARS-CoV-2 main protease: an <i>inÂvitro</i> and <i>in silico</i> study. Journal of Biomolecular Structure and Dynamics, 0, , 1-10.	3.5	3
914	Oxazolidinones Antibiotics, Chemistry, Applications and Role in COVID-19 Treatment. Pharmacology & Pharmacy, 2023, 14, 19-32.	0.7	1
915	Functional nucleic acids as potent therapeutics against SARS-CoV-2 infection. Cell Reports Physical Science, 2023, , 101249.	5.6	1
916	Synthesis and enzymatic inhibition effects of thiazolidinedione 3C-like protease inhibitors. Journal of Chemical Research, 2023, 47, 174751982311525.	1.3	0
917	Oriented Immobilization of G Protein-Coupled Receptors. Springer Briefs in Molecular Science, 2023, , 41-63.	0.1	0
918	Thermal Titration Molecular Dynamics (TTMD): Not Your Usual Post-Docking Refinement. International Journal of Molecular Sciences, 2023, 24, 3596.	4.1	8
919	In silico screening of phenylethanoid glycosides, a class of pharmacologically active compounds as natural inhibitors of SARS-CoV-2 proteases. Computational and Structural Biotechnology Journal, 2023, 21, 1461-1472.	4.1	3
920	Quantitative analysis of highâ€ŧhroughput biological data. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	14.6	2
921	Artificial intelligence based virtual screening study for competitive and allosteric inhibitors of the SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics, 2023, 41, 15286-15304.	3.5	3
922	Evolutionary aspects of mutation in functional motif and post-translational modifications in SARS-CoV-2 3CLpro (Mpro): an in-silico study. Journal of Proteins and Proteomics, 2023, 14, 99-109.	1.5	3
924	Structural basis of main proteases of HCoV-229E bound to inhibitor PF-07304814 and PF-07321332. Biochemical and Biophysical Research Communications, 2023, 657, 16-23.	2.1	0
925	Octyl gallate targeting the 3C-like protease exhibits highly efficient antiviral activity against swine enteric coronavirus PEDV. Veterinary Microbiology, 2023, 281, 109743.	1.9	3
926	Molecular insights into the inhibition mechanism of harringtonine against essential proteins associated with SARS-CoV-2 entry. International Journal of Biological Macromolecules, 2023, 240, 124352.	7.5	3
927	COVID-19 therapeutics: Small-molecule drug development targeting SARS-CoV-2 main protease. Drug Discovery Today, 2023, 28, 103579.	6.4	22
928	Synthesis, molecular docking, and binding Gibbs free energy calculation of β-nitrostyrene derivatives: Potential inhibitors of SARS-CoV-2 3CL protease. Journal of Molecular Structure, 2023, 1284, 135409.	3.6	4

#	Article	IF	CITATIONS
929	Paxlovid (Nirmatrelvir/Ritonavir): A new approach to Covid-19 therapy?. Biomedicine and Pharmacotherapy, 2023, 162, 114367.	5.6	33
930	Recent Advances in N-Heterocycles for COVID-19 Treatment - A Mini Review. Medicinal Chemistry, 2023, 19, 717-729.	1.5	0
931	A new generation Mpro inhibitor with potent activity against SARS-CoV-2 Omicron variants. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	20
932	Structure-guided design of direct-acting antivirals that exploit the gem-dimethyl effect and potently inhibit 3CL proteases of severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) and middle east respiratory syndrome coronavirus (MERS-CoV). European Journal of Medicinal Chemistry, 2023, 254, 115376.	5.5	7
933	Discovery, synthesis and mechanism study of 2,3,5-substituted [1,2,4]-thiadiazoles as covalent inhibitors targeting 3C-Like protease of SARS-CoV-2. European Journal of Medicinal Chemistry, 2023, 249, 115129.	5.5	6
934	Comparative Analysis of Library Preparation Approaches for SARS-CoV-2 Genome Sequencing on the Illumina MiSeq Platform. International Journal of Molecular Sciences, 2023, 24, 2374.	4.1	0
935	Discovery of Polyphenolic Natural Products as SARS-CoV-2 Mpro Inhibitors for COVID-19. Pharmaceuticals, 2023, 16, 190.	3.8	10
936	Targeting viral proteins for restraining SARS-CoV-2: focusing lens on viral proteins beyond spike for discovering new drug targets. Expert Opinion on Drug Discovery, 2023, 18, 247-268.	5.0	1
937	Identification of Pyrazole Derivatives of Usnic Acid as Novel Inhibitor of SARS-CoV-2 Main Protease Through Virtual Screening Approaches. Molecular Biotechnology, 0, , .	2.4	6
938	Nirmatrelvir exerts distinct antiviral potency against different human coronaviruses. Antiviral Research, 2023, 211, 105555.	4.1	11
939	The impact of SARS-CoV-2 3CL protease mutations on nirmatrelvir inhibitory efficiency. Computational insights into potential resistance mechanisms. Chemical Science, 2023, 14, 2686-2697.	7.4	6
940	Virtual screening of bioactive anti-SARS-CoV natural products and identification of 3β,12-diacetoxyabieta-6,8,11,13-tetraene as a potential inhibitor of SARS-CoV-2 virus and its infection related pathways by MD simulation and network pharmacology. Journal of Biomolecular Structure and Dynamics, 2023, 41, 13923-13936.	3.5	1
941	Al-Accelerated Design of Targeted Covalent Inhibitors for SARS-CoV-2. Journal of Chemical Information and Modeling, 2023, 63, 1438-1453.	5.4	4
942	Machine learning combines atomistic simulations to predict SARS-CoV-2 Mpro inhibitors from natural compounds. Molecular Diversity, 0, , .	3.9	1
943	Sulforaphane is a reversible covalent inhibitor of 3â€chymotrypsinâ€like protease of SARSâ€CoVâ€2. Journal of Medical Virology, 2023, 95, .	5.0	4
944	Antiâ€Coronaviral Nanocluster Restrain Infections of SARSâ€CoVâ€2 and Associated Mutants through Virucidal Inhibition and 3CL Protease Inactivation. Advanced Science, 2023, 10, .	11.2	4
946	Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery–Genetics Alliance Perspective. Journal of Medicinal Chemistry, 2023, 66, 3664-3702.	6.4	12
947	COVID-19 and Cancer Diseases—The Potential of Coriolus versicolor Mushroom to Combat Global Health Challenges. International Journal of Molecular Sciences, 2023, 24, 4864.	4.1	4

#	Article	IF	CITATIONS
949	Designing Potential Inhibitors of SARS-CoV-2 Mpro Using Deep Learning and Steered Molecular Dynamic Simulations. Journal of Computational Biophysics and Chemistry, 2023, 22, 525-540.	1.7	0
950	Biophysical Interpretation of Evolutionary Consequences on the SARS-CoV2 Main Protease through Molecular Dynamics Simulations and Network Topology Analysis. Journal of Physical Chemistry B, 2023, 127, 2331-2343.	2.6	1
952	Development of the Safe and Broad‣pectrum Aldehyde and Ketoamide Mpro inhibitors Derived from the Constrained α, γâ€AA Peptide Scaffold. Chemistry - A European Journal, 2023, 29, .	3.3	3
953	Discovery of 3-phenyl-1,2,4-oxadiazole derivatives as a new class of SARS-CoV-2 main protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 2023, 86, 129238.	2.2	3
955	In silico and in vitro evaluation of antiviral activity of wogonin against main protease of porcine epidemic diarrhea virus. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	0
956	Insights into targeting SARS-CoV-2: design, synthesis, <i>in silico</i> studies and antiviral evaluation of new dimethylxanthine derivatives. RSC Medicinal Chemistry, 2023, 14, 899-920.	3.9	1
957	Exploiting the co-crystal ligands shape, features and structure-based approaches for identification of SARS-CoV-2 Mpro inhibitors. Journal of Biomolecular Structure and Dynamics, 0, , 1-14.	3.5	2
958	Multidimensional virtual screening approaches combined with drug repurposing to identify potential covalent inhibitors of SARS-CoV-2 3CL protease. Journal of Biomolecular Structure and Dynamics, 2023, 41, 15262-15285.	3.5	1
959	How SARS-CoV-2 Alters the Regulation of Gene Expression in Infected Cells. Journal of Physical Chemistry Letters, 2023, 14, 3199-3207.	4.6	2
960	Discovery of Potential Inhibitors of SARS-CoV-2 Main Protease by a Transfer Learning Method. Viruses, 2023, 15, 891.	3.3	3
961	Virtual and In Vitro Screening of Natural Products Identifies Indole and Benzene Derivatives as Inhibitors of SARS-CoV-2 Main Protease (Mpro). Biology, 2023, 12, 519.	2.8	4
962	SARS-CoV-2 polyprotein substrate regulates the stepwise Mpro cleavage reaction. Journal of Biological Chemistry, 2023, 299, 104697.	3.4	2
963	Binding kinetics study of SARS-CoV-2 main protease and potential inhibitors <i>via</i> molecular dynamics simulations. Physical Chemistry Chemical Physics, 0, , .	2.8	1
964	Exploring potential SARS-CoV-2 Mpro non-covalent inhibitors through docking, pharmacophore profile matching, molecular dynamic simulation, and MM-CBSA. Journal of Molecular Modeling, 2023, 29, .	1.8	0
966	Antiviral and Possible Prophylactic Significance of Myricetin for COVID-19. Natural Product Communications, 2023, 18, 1934578X2311662.	0.5	2
967	Investigating structural features of dimeric SARS-CoV-2 Mpro catalytic site with bound covalent ligands at physiological temperature. Journal of Physics: Conference Series, 2023, 2485, 012006.	0.4	0
968	Structural insights into SARS oVâ€2 main protease conformational plasticity. Journal of Cellular Biochemistry, 2023, 124, 861-876.	2.6	3
969	Oridonin inhibits SARS-CoV-2 replication by targeting viral proteinase and polymerase. Virologica Sinica, 2023, 38, 470-479.	3.0	1

#	Article	IF	CITATIONS
970	Design and statistical optimisation of emulsomal nanoparticles for improved anti-SARS-CoV-2 activity of <i>N</i> -(5-nitrothiazol-2-yl)-carboxamido candidates: <i>inÂvitro</i> and <i>in silico</i> studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38, .	5.2	4
971	An update on the discovery and development of reversible covalent inhibitors. Medicinal Chemistry Research, 2023, 32, 1039-1062.	2.4	11
972	A Computational Study on Selected Alkaloids as SARS-CoV-2 Inhibitors: PASS Prediction, Molecular Docking, ADMET Analysis, DFT, and Molecular Dynamics Simulations. Biochemistry Research International, 2023, 2023, 1-13.	3.3	2
973	Design, synthesis and biological evaluation of covalent peptidomimetic 3CL protease inhibitors containing nitrile moiety. Bioorganic and Medicinal Chemistry, 2023, 87, 117316.	3.0	2
974	Docking-Based Evidence for the Potential of ImmunoDefender: A Novel Formulated Essential Oil Blend Incorporating Synergistic Antiviral Bioactive Compounds as Promising Mpro Inhibitors against SARS-CoV-2. Molecules, 2023, 28, 4296.	3.8	0
975	Key allosteric and active site residues of SARS-CoV-2 3CLpro are promising drug targets. Biochemical Journal, 2023, 480, 791-813.	3.7	1
976	Inhibitory effects of 190 compounds against SARS oVâ€2 M ^{pr} ^o protein: Molecular docking interactions. Archiv Der Pharmazie, 2023, 356, .	4.1	1
977	Multi-omics for COVID-19: driving development of therapeutics and vaccines. National Science Review, 2023, 10, .	9.5	2
978	Protein–ligand interactions from a quantum fragmentation perspective: The case of the SARS-CoV-2 main protease interacting with <i>α</i> -ketoamide inhibitors. Journal of Chemical Physics, 2023, 158, .	3.0	2
979	Comprehensive Understanding of the Kinetic Behaviors of Main Protease from SARS-CoV-2 and SARS-CoV: New Data and Comparison to Published Parameters. Molecules, 2023, 28, 4605.	3.8	1
980	Multiscale Simulations of the Covalent Inhibition of the SARS-CoV-2 Main Protease: Four Compounds and Three Reaction Mechanisms. Journal of the American Chemical Society, 2023, 145, 13204-13214.	13.7	3
981	<i>In silico</i> identification of natural compounds against SARS-CoV-2 main protease from Chinese herbal medicines. Future Science OA, 0, , .	1.9	1
982	Targeting SARS-CoV-2 Main Protease (MPro) with Kinase Inhibitors: A Promising Approach for Discovering Antiviral and Anti-inflammatory Molecules against SARS-CoV-2. Journal of Chemical Information and Modeling, 2023, 63, 4138-4146.	5.4	1
983	Evolution of the newest diagnostic methods for COVID-19: a Chinese perspective. Journal of Zhejiang University: Science B, 2023, 24, 463-484.	2.8	0
984	P ₁ Glutamine isosteres in the design of inhibitors of 3C/3CL protease of human viruses of the <i>Pisoniviricetes</i> class. RSC Chemical Biology, 2023, 4, 533-547.	4.1	2
985	SARS-CoV-2: analysis of the effects of mutations in non-structural proteins. Archives of Virology, 2023, 168, .	2.1	1
986	Structural biology of SARS-CoV-1/SARS-CoV-2 main protease. Crystallography Reviews, 2023, 29, 76-101.	1.5	0
987	Large library docking for novel <scp>SARSâ€CoV</scp> â€2 main protease nonâ€covalent and covalent inhibitors. Protein Science, 2023, 32, .	7.6	2

#	Article	IF	CITATIONS
988	Transformer-Based Molecular Generative Model for Antiviral Drug Design. Journal of Chemical Information and Modeling, 0, , .	5.4	4
989	In-silico guided design, screening, and molecular dynamic simulation studies for the identification of potential SARS-CoV-2 main protease inhibitors for the targeted treatment of COVID-19. Journal of Biomolecular Structure and Dynamics, 2024, 42, 1733-1750.	3.5	1
990	A Review of Extracellular Vesicles in COVIDâ€19 Diagnosis, Treatment, and Prevention. Advanced Science, 2023, 10, .	11.2	5
991	Nature-inspired catalytic asymmetric rearrangement of cyclopropylcarbinyl cation. Science Advances, 2023, 9, .	10.3	3
992	Bench-to-bedside: Innovation of small molecule anti-SARS-CoV-2 drugs in China. European Journal of Medicinal Chemistry, 2023, 257, 115503.	5.5	37
993	Discovery of novel non-peptidic and non-covalent small-molecule 3CLpro inhibitors as potential candidate for COVID-19 treatment. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	3
994	Elucidating Atomistic Insight into the Dynamical Responses of the SARS-CoV-2 Main Protease for the Binding of Remdesivir Analogues: Leveraging Molecular Mechanics To Decode the Inhibition Mechanism. Journal of Chemical Information and Modeling, 2023, 63, 3404-3422.	5.4	0
995	In vitro selection of macrocyclic peptide inhibitors containing cyclic Î ³ 2,4-amino acids targeting the SARS-CoV-2 main protease. Nature Chemistry, 2023, 15, 998-1005.	13.6	12
996	The research progress of SARS-CoV-2 main protease inhibitors from 2020 to 2022. European Journal of Medicinal Chemistry, 2023, 257, 115491.	5.5	21
997	Design, synthesis and biological evaluation of peptidomimetic benzothiazolyl ketones as 3CLpro inhibitors against SARS-CoV-2. European Journal of Medicinal Chemistry, 2023, 257, 115512.	5.5	2
998	Elucidation of novel compounds and epitope-based peptide vaccine design against C30 endopeptidase regions of SARS-CoV-2 using immunoinformatics approaches. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	3
999	Discovery of quinazolin-4-one-based non-covalent inhibitors targeting the severe acute respiratory syndrome coronavirus 2 main protease (SARS-CoV-2 Mpro). European Journal of Medicinal Chemistry, 2023, 257, 115487.	5.5	2
1000	Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro. Frontiers in Pharmacology, 0, 14, .	3.5	1
1002	M ^{pro} -targeted anti-SARS-CoV-2 inhibitor-based drugs. Journal of Chemical Research, 2023, 47, .	1.3	3
1003	Characterization of SARS-COV-2 main protease inhibitory peptides from Ulva prolifera proteins. Journal of Oceanology and Limnology, 0, , .	1.3	0
1005	Structural basis for the inhibition of coronaviral main proteases by ensitrelvir. Structure, 2023, 31, 1016-1024.e3.	3.3	3
1006	<i>In silico</i> identification of D449-0032 compound as a putative SARS-CoV-2 M ^{pro} inhibitor. Journal of Biomolecular Structure and Dynamics, 0, , 1-8.	3.5	1
1007	In Silico Discovery of Small-Molecule Inhibitors Targeting SARS-CoV-2 Main Protease. Molecules, 2023, 28, 5320.	3.8	3

#	Article	IF	CITATIONS
1008	Structure-based discovery of thiosemicarbazones as SARS-CoV-2 main protease inhibitors. Future Medicinal Chemistry, 2023, 15, 959-985.	2.3	1
1010	Exploring epigenetic drugs as potential inhibitors of SARS-CoV-2 main protease: a docking and MD simulation study. Journal of Biomolecular Structure and Dynamics, 0, , 1-12.	3.5	0
1011	Deuteration for Metabolic Stabilization of SARS-CoV-2 Inhibitors GC373 and Nirmatrelvir. Organic Letters, 2023, 25, 5885-5889.	4.6	1
1012	Conventional Understanding of SARSâ€CoVâ€⊋ M ^{pro} and Common Strategies for Developing Its Inhibitors. ChemBioChem, 2023, 24, .	2.6	0
1013	Identification of Promising Sulfonamide Chalcones as Inhibitors of SARS-CoV-2 3CL ^{pro} through Structure-Based Virtual Screening and Experimental Approaches. Journal of Chemical Information and Modeling, 2023, 63, 5244-5258.	5.4	1
1014	An Overview on Anti-COVID-19 Drug Achievements and Challenges Ahead. ACS Pharmacology and Translational Science, 2023, 6, 1248-1265.	4.9	3
1015	Advancement of Computational Design Drug Delivery System in COVID-19: Current Updates and Future Crosstalk- A Critical update. Infectious Disorders - Drug Targets, 2023, 23, .	0.8	0
1016	Discovery of highly potent covalent SARS-CoV-2 3CLpro inhibitors bearing 2-sulfoxyl-1,3,4-oxadiazole scaffold for combating COVID-19. European Journal of Medicinal Chemistry, 2023, 260, 115721.	5.5	2
1017	Discovery of antiviral SARS-CoV-2 main protease inhibitors by structure-guided hit-to-lead optimization of carmofur. European Journal of Medicinal Chemistry, 2023, 260, 115720.	5.5	1
1018	Discovery and Mechanism Study of SARS-CoV-2 3C-like Protease Inhibitors with a New Reactive Group. Journal of Medicinal Chemistry, 2023, 66, 12266-12283.	6.4	5
1019	Rapid resistance profiling of SARS-CoV-2 protease inhibitors. , 2023, 1, .		6
1020	The S1′–S3′ Pocket of the SARS oVâ€₂ Main Protease Is Critical for Substrate Selectivity and Can Be Targeted with Covalent Inhibitors. Angewandte Chemie, 2023, 135, .	2.0	0
1021	Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. European Journal of Medicinal Chemistry, 2023, 260, 115772.	5.5	24
1022	Organo-Se BTSAs-enabled performance: From racemic and asymmetric synthesis to click chemistry application. CheM, 2023, 9, 3335-3346.	11.7	9
1023	Engineering Materials and Devices for the Prevention, Diagnosis, and Treatment of COVID-19 and Infectious Diseases. Nanomaterials, 2023, 13, 2455.	4.1	0
1024	A yeast-based system to study SARS-CoV-2 Mpro structure and to identify nirmatrelvir resistant mutations. PLoS Pathogens, 2023, 19, e1011592.	4.7	5
1025	Theoretical insights into the binding interaction of Nirmatrelvir with SARS-CoV-2 Mpro mutants (C145A and C145S): MD simulations and binding free-energy calculation to understand drug resistance. Journal of Biomolecular Structure and Dynamics, 0, , 1-20.	3.5	0
1026	The molecular mechanism of non-covalent inhibitor WU-04 targeting SARS-CoV-2 3CLpro and computational evaluation of its effectiveness against mainstream coronaviruses. Physical Chemistry Chemical Physics, 2023, 25, 23555-23567.	2.8	1

#	Article	IF	CITATIONS
1027	Computational study on the mechanisms of inhibition of SARS-CoV-2 M ^{pro} by aldehyde warheads based on DFT. Physical Chemistry Chemical Physics, 2023, 25, 26308-26315.	2.8	1
1028	Discovery and structure-activity relationship studies of novel α-ketoamide derivatives targeting the SARS-CoV-2 main protease. European Journal of Medicinal Chemistry, 2023, 259, 115657.	5.5	2
1029	A Systematic Survey of Reversibly Covalent Dipeptidyl Inhibitors of the SARS-CoV-2 Main Protease. Journal of Medicinal Chemistry, 2023, 66, 11040-11055.	6.4	4
1030	Design, synthesis, and structure-activity relationships of a novel class of quinazoline derivatives as coronavirus inhibitors. European Journal of Medicinal Chemistry, 2023, 261, 115831.	5.5	0
1031	Binding kinetics of ten small-molecule drug candidates on SARS-CoV-2 3CLpro revealed by biomolecular simulations. Medicine in Novel Technology and Devices, 2023, 20, 100257.	1.6	0
1032	Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives. Biomolecules, 2023, 13, 1339.	4.0	7
1033	An integrative computational approach for the identification of dual inhibitorsÂof isocitrate dehydrogenase 1 and 2 from phytocompounds of <i>Phyllantus amarus</i> . Journal of Biomolecular Structure and Dynamics, 0, , 1-17.	3.5	1
1034	Multicomponent Synthesis of the SARS-CoV-2 Main Protease Inhibitor Nirmatrelvir. Journal of Organic Chemistry, 2023, 88, 12565-12571.	3.2	3
1035	Synthesis and Biological Evaluation of Benzothiazolyl-pyridine Hybrids as New Antiviral Agents against H5N1 Bird Flu and SARS-COV-2 Viruses. ACS Omega, 2023, 8, 36636-36654.	3.5	0
1036	Design, synthesis, and biological evaluation of indole-2-carboxamides as SARS CoV-2 main protease inhibitors. Tetrahedron, 2023, 146, 133628.	1.9	0
1037	Spying on SARS-CoV-2 with Fluorescent Tags and Protease Reporters. Viruses, 2023, 15, 2005.	3.3	1
1038	Phytoconstituents as potential therapeutic agents against COVID-19: a computational study on inhibition of SARS-CoV-2 main protease. Journal of Biomolecular Structure and Dynamics, 0, , 1-12.	3.5	0
1039	Structure-based development and preclinical evaluation of the SARS-CoV-2 3C-like protease inhibitor simnotrelvir. Nature Communications, 2023, 14, .	12.8	10
1040	Antcin-B, a phytosterol-like compound from Taiwanofungus camphoratus inhibits SARS-CoV-2 3-chymotrypsin-like protease (3CLPro) activity in silico and in vitro. Scientific Reports, 2023, 13, .	3.3	0
1041	PyProtif: a PyMol plugin to retrieve and visualize protein motifs for structural studies. Amino Acids, 0, , .	2.7	1
1042	Tau protein aggregation associated with SARS-CoV-2 main protease. PLoS ONE, 2023, 18, e0288138.	2.5	1
1043	Pyrazolidinone-based peptidomimetic SARS-CoV-2 Mpro inhibitors. Bioorganic and Medicinal Chemistry Letters, 2023, 96, 129530.	2.2	0
1045	Crystal Structure of the ORP8 Lipid Transport ORD Domain: Model of Lipid Transport. Cells, 2023, 12, 1974.	4.1	1

#	Article	IF	CITATIONS
1046	Structural biology of SARS-CoV-2 Mpro and drug discovery. Current Opinion in Structural Biology, 2023, 82, 102667.	5.7	6
1047	"国之所需ã€å¾å¿—所å"——ç≌念åၳ>æ−°è⁼物å¼≀	€ æ ‹\$者è	e'∢ ů Žè‰⁻é⁻
1048	The S1′–S3′ Pocket of the SARSâ€CoVâ€2 Main Protease Is Critical for Substrate Selectivity and Can Be Targeted with Covalent Inhibitors. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
1049	Traditional Herbal Medicines and Their Active Constituents in Combating SARS-CoV-2 Infection. , 2023, , 137-188.		0
1050	Chlorogenic acid as an indispensible partner of caffeic acid in coffee via selective regulation of prooxidative actions of caffeic acid. Food Research International, 2023, 173, 113482.	6.2	1
1051	A cysteine protease inhibitor GC376 displays potent antiviral activity against coxsackievirus infection. Current Research in Microbial Sciences, 2023, 5, 100203.	2.3	1
1052	A theoretical investigation on hirshfeld surface, IR., UV–Vis, 1H and 13C NMR spectra, nonlinear optical properties, and in silico molecular docking of an organometallic compound: Dibromobis(l-proline)zinc(II). Computational and Theoretical Chemistry, 2023, 1229, 114345.	2.5	0
1054	Broad antagonism of coronaviruses nsp5 to evade the host antiviral responses by cleaving POLDIP3. PLoS Pathogens, 2023, 19, e1011702.	4.7	1
1055	Comparative docking and molecular dynamics studies of molnupiravir (EIDD-2801): implications for novel mechanisms of action on influenza and SARS-CoV-2 protein targets. Journal of Biomolecular Structure and Dynamics, 0, , 1-13.	3.5	0
1056	Usnic acid based thiazole-hydrazones as multi-targeting inhibitors of a wide spectrum of SARS-CoV-2 viruses. New Journal of Chemistry, 2023, 47, 19865-19879.	2.8	1
1057	On the origins of SARS-CoV-2 main protease inhibitors. RSC Medicinal Chemistry, 0, , .	3.9	1
1058	Differential specificity of <scp>SARSâ€CoV</scp> â€2 main protease variants on peptide versus proteinâ€based substrates. FEBS Journal, 2024, 291, 61-69.	4.7	0
1059	Synthesis, evaluation, and mechanism of 1-(4-(arylethylenylcarbonyl)phenyl)-4-carboxy-2-pyrrolidinones as potent reversible SARS-CoV-2 entry inhibitors. Antiviral Research, 2023, 219, 105735.	4.1	0
1060	Data Driven Computational Design and Experimental Validation of Drugs for Accelerated Mitigation of Pandemic-like Scenarios. Journal of Physical Chemistry Letters, 0, , 9490-9499.	4.6	0
1061	Graphene oxide immobilized 2-morpholinoethanamine as a versatile acid–base catalyst for synthesis of some heterocyclic compounds and molecular docking study. Scientific Reports, 2023, 13, .	3.3	0
1062	A combination of structure-based virtual screening and experimental strategies to identify the potency of caffeic acid ester derivatives as SARS-CoV-2 3CLpro inhibitor from an in-house database. Biophysical Chemistry, 2023, , 107125.	2.8	0
1063	Oral Molnupiravir and Nirmatrelvir/Ritonavir for the Treatment of COVID-19: A Literature Review with a Focus on Real-World Evidence. Infectious Disease Reports, 2023, 15, 662-678.	3.1	1
1065	Crystal Structure of Inhibitor-Bound GII.4 Sydney 2012 Norovirus 3C-Like Protease. Viruses, 2023, 15, 2202.	3.3	0

#	Article	IF	CITATIONS
1066	Exploring the Potential of Vortioxetine Derivatives as Inhibitors of SARSâ€CoVâ€2 Main Protease: A Computational Study. ChemistrySelect, 2023, 8, .	1.5	1
1067	Unsupervised deep learning for molecular dynamics simulations: a novel analysis of protein–ligand interactions in SARS-CoV-2 M ^{pro} . RSC Advances, 2023, 13, 34249-34261.	3.6	0
1068	Luminescent reporter cells enable the identification of broadâ€spectrum antivirals against emerging viruses. Journal of Medical Virology, 2023, 95, .	5.0	0
1069	Molecular Mechanism of Labelling Functional Cysteines by Heterocyclic Thiones. ChemPhysChem, 2024, 25, .	2.1	0
1070	Exploring the Binding Effects of Natural Products and Antihypertensive Drugs on SARS-CoV-2: An In Silico Investigation of Main Protease and Spike Protein. International Journal of Molecular Sciences, 2023, 24, 15894.	4.1	2
1071	Generation of focused drug molecule library using recurrent neural network. Journal of Molecular Modeling, 2023, 29, .	1.8	0
1072	Discovery of Nirmatrelvir Resistance Mutations in SARS-CoV-2 3CLpro: A Computational-Experimental Approach. Journal of Chemical Information and Modeling, 2023, 63, 7180-7188.	5.4	2
1073	Attention Mechanism-Based Graph Neural Network Model for Effective Activity Prediction of SARS-CoV-2 Main Protease Inhibitors: Application to Drug Repurposing as Potential COVID-19 Therapy. Journal of Chemical Information and Modeling, 2023, 63, 7011-7031.	5.4	0
1074	Development of de-novo coronavirus 3-chymotrypsin-like protease (3CLpro) inhibitors since COVID-19 outbreak: A strategy to tackle challenges of persistent virus infection. European Journal of Medicinal Chemistry, 2024, 264, 115979.	5.5	0
1075	Nirmatrelvir combined with ritonavir for preventing and treating COVID-19. The Cochrane Library, 2023, 2023, .	2.8	0
1076	Discovery of SARSâ€CoVâ€2 Inhibitors Featuring Novel Histidine <i>α</i> â€Nitrile Motif. Chemistry and Biodiversity, 2023, 20, .	2.1	0
1077	In silico investigation of Komaroviquinone as a potential inhibitor of SARS-CoV-2 main protease (Mpro): Molecular docking, molecular dynamics, and QM/MM approaches. Journal of Molecular Graphics and Modelling, 2024, 126, 108662.	2.4	0
1078	Discovery of 3-oxo-1,2,3,4-tetrahydropyrido[1,2-a]pyrazin derivatives as SARS-CoV-2 main protease inhibitors through virtual screening and biological evaluation. Bioorganic and Medicinal Chemistry Letters, 2024, 97, 129547.	2.2	0
1079	Identification of Ebselen derivatives as novel SARS-CoV-2 main protease inhibitors: Design, synthesis, biological evaluation, and structure-activity relationships exploration. Bioorganic and Medicinal Chemistry, 2023, 96, 117531.	3.0	0
1081	Chrysin 7-O-β-D-glucuronide, a dual inhibitor of SARS-CoV-2 3CLpro and PLpro, for the prevention and treatment of COVID-19. International Journal of Antimicrobial Agents, 2024, 63, 107039.	2.5	1
1082	Design, Synthesis, and Biological Evaluation of Trisubstituted Piperazine Derivatives as Noncovalent Severe Acute Respiratory Syndrome Coronavirus 2 Main Protease Inhibitors with Improved Antiviral Activity and Favorable Druggability. Journal of Medicinal Chemistry, 2023, 66, 16426-16440.	6.4	1
1083	Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-CoV-2. RSC Advances, 2023, 13, 35500-35524.	3.6	0
1084	Discovery of α-Ketoamide inhibitors of SARS-CoV-2 main protease derived from quaternized P1 groups. Bioorganic Chemistry, 2024, 143, 107001.	4.1	0

CIT	- A T I	ON	DEE	ODT
C.I.I	AL	ON	KFP	ORT
· · · ·		U		0.01

#	Article	IF	CITATIONS
1085	Danshensu inhibits SARS-CoV-2 by targeting its main protease as a specific covalent inhibitor and discovery of bifunctional compounds eliciting antiviral and anti-inflammatory activity. International Journal of Biological Macromolecules, 2024, 257, 128623.	7.5	0
1086	A Chemical Strategy for the Degradation of the Main Protease of SARS-CoV-2 in Cells. Journal of the American Chemical Society, 2023, 145, 27248-27253.	13.7	1
1087	Unraveling antiviral efficacy of multifunctional immunomodulatory triterpenoids against <scp>SARSâ€COV</scp> â€2 targeting main protease and papainâ€like protease. IUBMB Life, 0, , .	3.4	0
1088	BL02U1: the relocated macromolecular crystallography beamline at the Shanghai Synchrotron Radiation Facility. Nuclear Science and Techniques/Hewuli, 2023, 34, .	3.4	1
1089	Quantum Chemistry in Drug Design: Density Function Theory (DFT) and Other Quantum Mechanics (QM)-related Approaches. , 2023, , 258-309.		0
1090	Progress of SARSâ€CoVâ€2 Main protease peptideâ€like inhibitors. Chemical Biology and Drug Design, 2024, 103, .	3.2	0
1091	SARS-CoV-2 Spike Protein: A Review of Structure, Function, Care, Vaccines, and Possible Inhibitors Designed by Molecular Modeling. Engineering Materials, 2024, , 271-289.	0.6	0
1092	Exploring the antiviral activity of α-ketoamides compounds through electronic structure calculations: a structure-activity relationship study. Journal of Biomolecular Structure and Dynamics, 0, , 1-16.	3.5	0
1094	Synthesis of New 1,4-Dihydropyridine Scaffold Thiadiazole and Triazole Moiety and in silico Molecular Interaction Study of SARS-CoV-2 Mpro and ACE2 Protease. International Journal of Pharmacology, 2023, 19, 810-824.	0.3	0
1095	Practice and principle of traditional Chinese medicine for the prevention and treatment of COVID-19. Frontiers of Medicine, 2023, 17, 1014-1029.	3.4	0
1096	ã,³ãfãf¬ãf³ãf^ãf‰ãf©ãffã,°ã®ãŸã,ã®ç″èfžå†åå;œåŒ–å¦. Yuki Gosei Kagaku Kyokaishi/Journal of Synthet	ic Qı ganic	Chemistry, 2
1097	Identification and evaluation of antiviral activity of novel compounds targeting SARS-CoV-2 virus by enzymatic and antiviral assays, and computational analysis. Journal of Enzyme Inhibition and Medicinal Chemistry, 2024, 39, .	5.2	0
1098	Structural and thermodynamic properties of conserved water molecules in Mpro native: A combined approach by <scp>MD</scp> simulation and Grid Inhomogeneous Solvation Theory. Proteins: Structure, Function and Bioinformatics, 2024, 92, 735-749.	2.6	0
1099	Classification, replication, and transcription of Nidovirales. Frontiers in Microbiology, 0, 14, .	3.5	0
1100	In silico studies of anti-oxidative and hot temperament-based phytochemicals as natural inhibitors of SARS-CoV-2 Mpro. PLoS ONE, 2023, 18, e0295014.	2.5	0
1101	Structural Basis for the Inhibition of SARS-CoV-2 Mpro D48N Mutant by Shikonin and PF-07321332. Viruses, 2024, 16, 65.	3.3	0
1102	Structure-Based Screening of Potential Drugs against SARS-CoV-2 Variants. , 0, , .		0

	Exploiting high-energy hydration sites for the discovery of potent peptide aldehyde inhibitors of the		
1103	SARS-CoV-2 main protease with cellular antiviral activity. Bioorganic and Medicinal Chemistry, 2024,	3.0	0
	103, 117577.		

#	Article	IF	CITATIONS
1104	Multiple redox switches of the SARS-CoV-2 main protease in vitro provide opportunities for drug design. Nature Communications, 2024, 15, .	12.8	0
1105	Peptidomimetics as potent dual SARS-CoV-2 cathepsin-L and main protease inhibitors: In silico design, synthesis and pharmacological characterization. European Journal of Medicinal Chemistry, 2024, 266, 116128.	5.5	0
1107	Peptidyl nitroalkene inhibitors of main protease rationalized by computational and crystallographic investigations as antivirals against SARS-CoV-2. Communications Chemistry, 2024, 7, .	4.5	0
1108	Cathepsin-Targeting SARS-CoV-2 Inhibitors: Design, Synthesis, and Biological Activity. ACS Pharmacology and Translational Science, 2024, 7, 493-514.	4.9	0
1109	Computer Aided Structure-Based Drug Design of Novel SARS-CoV-2 Main Protease Inhibitors: Molecular Docking and Molecular Dynamics Study. Computation, 2024, 12, 18.	2.0	0
1110	Identification of antiviral phytochemicals from cranberry as potential inhibitors of SARS-CoV-2 main protease (Mpro). International Journal of Biological Macromolecules, 2024, 261, 129655.	7.5	0
1111	Proposing of fungal endophyte secondary metabolites as a potential inhibitors of 2019-novel coronavirus main protease using docking and molecular dynamics. Journal of Biomolecular Structure and Dynamics, 0, , 1-13.	3.5	0
1113	Fragment-based screening targeting an open form of the SARS-CoV-2 main protease binding pocket. Acta Crystallographica Section D: Structural Biology, 2024, 80, 123-136.	2.3	0
1114	Al-driven covalent drug design strategies targeting main protease (m ^{pro}) against SARS-CoV-2: structural insights and molecular mechanisms. Journal of Biomolecular Structure and Dynamics, 0, , 1-29.	3.5	0
1115	Virtual Screening of Peptide Libraries: The Search for Peptide-Based Therapeutics Using Computational Tools. International Journal of Molecular Sciences, 2024, 25, 1798.	4.1	0
1116	Genetic Algorithm-Based Receptor Ligand: A Genetic Algorithm-Guided Generative Model to Boost the Novelty and Drug-Likeness of Molecules in a Sampling Chemical Space. Journal of Chemical Information and Modeling, 2024, 64, 1213-1228.	5.4	0
1117	Identification of potential therapeutic targets for COVID-19 through a structural-based similarity approach between SARS-CoV-2 and its human host proteins. Frontiers in Genetics, 0, 15, .	2.3	0
1118	Structural Basis for Coronaviral Main Proteases Inhibition by the 3CLpro Inhibitor GC376. Journal of Molecular Biology, 2024, 436, 168474.	4.2	0
1119	BRD4354 Is a Potent Covalent Inhibitor against the SARS-CoV-2 Main Protease. Biochemistry, 0, , .	2.5	0
1120	Use of hybrid molecular simulation techniques for systematic analysis of polyphenols as promising therapeutic agent against SARS-CoV-2. Journal of Molecular Structure, 2024, 1305, 137744.	3.6	0
1121	Discovery of CMX990: A Potent SARS-CoV-2 3CL Protease Inhibitor Bearing a Novel Warhead. Journal of Medicinal Chemistry, 2024, 67, 2369-2378.	6.4	0
1122	Personalized Drug Therapy: Innovative Concept Guided With Proteoformics. Molecular and Cellular Proteomics, 2024, 23, 100737.	3.8	0
1123	Conformational analysis of milk derived tripeptides, IPP, VPP and LPP, and investigation of their anti-COVID-19 potentials by molecular docking and molecular dynamics studies. Molecular Crystals and Liquid Crystals, 2024, 768, 116-131.	0.9	0

#	Article	IF	Citations
1124	Recent Advances on Targeting Proteases for Antiviral Development. Viruses, 2024, 16, 366.	3.3	0
1125	Artificial urinary biomarker probes for diagnosis. , 0, , .		0
1126	Estudio computacional de las interacciones moleculares entre el timol y los residuos HIS41 y CYS145 presentes en el sitio activo de la proteasa 3CLpro. Revista Colombiana De Quimica, 0, , 42-48.	0.4	0
1127	Screening for Active Compounds of Acorus calamus against SARS-CoV-2 Viral Protease and Mechanism Prediction. Pharmaceuticals, 2024, 17, 325.	3.8	0
1128	Prediction of Binding Pose and Affinity of Nelfinavir, a SARS-CoV-2 Main Protease Repositioned Drug, by Combining Docking, Molecular Dynamics, and Fragment Molecular Orbital Calculations. Journal of Physical Chemistry B, 2024, 128, 2249-2265.	2.6	0
1129	Investigation of phytochemicals isolated from selected Saudi medicinal plants as natural inhibitors of SARS CoV-2 main protease: In vitro, molecular docking and simulation analysis. Saudi Pharmaceutical Journal, 2024, 32, 102023.	2.7	0
1130	Quantitative Assessment of Energetic Contributions of Residues in a SARS-CoV-2 Viral Enzyme/Nanobody Interface. Journal of Chemical Information and Modeling, 2024, 64, 2068-2076.	5.4	0
1131	An orally bioavailable SARS-CoV-2 main protease inhibitor exhibits improved affinity and reduced sensitivity to mutations. Science Translational Medicine, 2024, 16, .	12.4	0
1132	Recent advances in application of computer-aided drug design in anti-COVID-19 Virials Drug Discovery. Biomedicine and Pharmacotherapy, 2024, 173, 116423.	5.6	0
1133	Structure-based design of pan-coronavirus inhibitors targeting host cathepsin L and calpain-1. Signal Transduction and Targeted Therapy, 2024, 9, .	17.1	0
1134	Design and synthesis of APN and 3CLpro dualâ€ŧarget inhibitors based on STSBPT with anticoronavirus activity. Journal of Medical Virology, 2024, 96, .	5.0	0
1135	Effect of polyphenols against complications of COVID-19: current evidence and potential efficacy. Pharmacological Reports, 2024, 76, 307-327.	3.3	0