CITATION REPORT List of articles citing

DOI: 10.1080/00102202.2020.1748018 Combustion Science and Technology, 2020, , 1-20.

Source: https://exaly.com/paper-pdf/77638640/citation-report.pdf

Version: 2024-04-23

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
40	Rich-Quench-Lean model comparison for the clean use of humidified ammonia/hydrogen combustion systems. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 4472-4484	6.7	17
39	Kinetics modeling of NOx emissions characteristics of a NH3/H2 fueled gas turbine combustor. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 4526-4537	6.7	11
38	Mitigating NO emissions from an ammonia-fueled micro-power system with a perforated plate implemented. <i>Journal of Hazardous Materials</i> , 2021 , 401, 123848	12.8	38
37	Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio. <i>Energy & Energy </i>	4.1	14
36	Ultraviolet Absorption Cross-Sections of Ammonia at Elevated Temperatures for Nonintrusive Quantitative Detection in Combustion Environments. <i>Applied Spectroscopy</i> , 2021 , 75, 1168-1177	3.1	1
35	Experimental and Kinetic Investigation of Stoichiometric to Rich NH3/H2/Air Flames in a Swirl and Bluff-Body Stabilized Burner. <i>Energy & Description</i> 2021, 35, 7201-7216	4.1	5
34	Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines. <i>Journal of Cleaner Production</i> , 2021 , 296, 126562	10.3	36
33	Numerical simulation of ammonia/methane/air combustion using reduced chemical kinetics models. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 23548-23563	6.7	13
32	Planar laser-induced photofragmentation fluorescence for quantitative ammonia imaging in combustion environments. <i>Combustion and Flame</i> , 2021 , 235, 111687	5.3	
31	Advancements of combustion technologies in the ammonia-fuelled engines. <i>Energy Conversion and Management</i> , 2021 , 244, 114460	10.6	26
30	Liquid ammonia spray combustion in two-stage micro gas turbine combustors at 0.25 MPa; Relevance of combustion enhancement to flame stability and NOx control. <i>Applications in Energy and Combustion Science</i> , 2021 , 7, 100038	0.8	3
29	A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 147, 111254	16.2	61
28	Enhanced life cycle modelling of a micro gas turbine fuelled with various fuels for sustainable electricity production. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 149, 111323	16.2	8
27	On the Influence of Kinetic Uncertainties on the Accuracy of Numerical Modeling of an Industrial Flameless Furnace Fired With NH3/H2 Blends: A Numerical and Experimental Study. <i>Frontiers in Energy Research</i> , 2020 , 8,	3.8	5
26	A Review on Combustion Characteristics of Ammonia as a Carbon-Free Fuel. <i>Frontiers in Energy Research</i> , 2021 , 9,	3.8	4
25	Analysing the Performance of Ammonia Powertrains in the Marine Environment. <i>Energies</i> , 2021 , 14, 74	 4 <u>7</u> .1	3
24	Investigation on combustion characteristics and thermal performance of a three rearward-step structure micro combustor fueled by premixed hydrogen/air. <i>Renewable Energy</i> , 2022 ,	8.1	5

(2023-2022)

23	Ammonia-hydrogen-air gas turbine cycle and control analyses. <i>International Journal of Hydrogen Energy</i> , 2022 , 47, 8603-8620	6.7	1
22	NOx emission reduction in ammonia-powered micro-combustors by partially inserting porous medium under fuel-rich condition. <i>Chemical Engineering Journal</i> , 2022 , 434, 134680	14.7	3
21	Review on the recent advances on ammonia combustion from the fundamentals to the applications. <i>Fuel Communications</i> , 2022 , 10, 100053	1	5
20	Comparative Analysis of Ammonia Combustion for Domestic Applications. SSRN Electronic Journal,	1	1
19	Structure and scalar correlation of ammonia/air turbulent premixed flames in the distributed reaction zone regime. <i>Combustion and Flame</i> , 2022 , 241, 112090	5.3	0
18	Fundamental Study on Ammonia Low-NOx Combustion Using Two-Stage Combustion by Parallel Air Jets. <i>Processes</i> , 2022 , 10, 23	2.9	O
17	On the effects of NH3 addition to a reacting mixture of H2/CH4 under MILD combustion regime: Numerical modeling with a modified EDC combustion model. <i>Fuel</i> , 2022 , 326, 125096	7.1	0
16	Spatially and temporally resolved laser/optical diagnostics of combustion processes: From fundamentals to practical applications. 2022 ,		O
15	Ammonia as Green Fuel in Internal Combustion Engines: State-of-the-Art and Future Perspectives. 8,		2
14	The EBcts of Turbulence on the Bme Structure and No Formation of Ammonia Turbulent Premixed Combustion at Various Equivalence Ratios.		О
13	A review on ammonia blends combustion for industrial applications. 2023 , 332, 126150		0
12	Visible chemiluminescence of ammonia premixed flames and its application for flame diagnostics. 2022 ,		О
11	Comparative analysis of ammonia combustion for domestic applications. 2022,		О
10	Turbulent flame speed measurement of NH3/H2/air and CH4/air flames and a numerical case study of NO emission in a constant volume combustion chamber (C.V.C.C.). 2023 , 332, 126152		О
9	The effects of turbulence on the flame structure and NO formation of ammonia turbulent premixed combustion at various equivalence ratios. 2023 , 332, 126127		0
8	Turbulent flame speed of NH3/CH4/H2/H2O/air-mixtures: Effects of elevated pressure and Lewis number. 2023 , 247, 112488		O
7	Analysis of low emission characteristics of NH3/H2/air mixtures under low temperature combustion conditions. 2022 , 126879		0
6	Overview of fundamental kinetic mechanisms and emission mitigation in ammonia combustion. 2023 , 458, 141391		O

5	Combustion characteristics of steam-diluted decomposed ammonia in multiple-nozzle direct injection burner. 2023 ,	О
4	Removal and mechanism analysis of NO emissions in carbon-free ammonia combustion systems with a secondary fuel injection. 2023 , 344, 128088	O
3	Exploring the Effect of Different Reactivity Promoters on the Oxidation of Ammonia in a Jet-Stirred Reactor. 2023 , 127, 1923-1940	О
2	Reduced Mechanism for Combustion of Ammonia and Natural Gas Mixtures. 2023 , 5, 484-496	O
1	On the effects of adding syngas to an ammonia-MILD combustion regime computational study of the reaction zone structure. 2023 ,	O