Supramolecular Assemblies of Heterogeneous Mesopor Co-deliver Antimicrobial Peptides and Antibiotics for S Pathogenic Biofilms

ACS Nano 14, 5926-5937 DOI: 10.1021/acsnano.0c01336

Citation Report

#	Article	IF	CITATIONS
1	Nanocomposites for the delivery of bioactive molecules in tissue repair: vital structural features, application mechanisms, updated progress and future perspectives. Journal of Materials Chemistry B, 2020, 8, 10271-10289.	2.9	9
2	Targeted Stimuli-Responsive Mesoporous Silica Nanoparticles for Bacterial Infection Treatment. International Journal of Molecular Sciences, 2020, 21, 8605.	1.8	58
3	Emerging antibacterial nanomedicine for enhanced antibiotic therapy. Biomaterials Science, 2020, 8, 6825-6839.	2.6	68
4	Drug Delivery Applications of Three-Dimensional Printed (3DP) Mesoporous Scaffolds. Pharmaceutics, 2020, 12, 851.	2.0	27
5	Mesoporous Silica Nanoparticles as Carriers for Therapeutic Biomolecules. Pharmaceutics, 2020, 12, 432.	2.0	68
6	Antibacterial Mechanism of Curcumin: A Review. Chemistry and Biodiversity, 2020, 17, e2000171.	1.0	222
7	Phospholipid/protein co-mediated assembly of Cu2O nanoparticles for specific inhibition of growth and biofilm formation of pathogenic fungi. Science China Materials, 2021, 64, 759-768.	3.5	5
8	Recent development of nanomedicine for the treatment of bacterial biofilm infections. View, 2021, 2, 20200065.	2.7	73
9	Mitochondrion targeting peptide-modified magnetic graphene oxide delivering mitoxantrone for impairment of tumor mitochondrial functions. Chinese Chemical Letters, 2021, 32, 1220-1223.	4.8	34
10	Nanopharmaceutical-based regenerative medicine: a promising therapeutic strategy for spinal cord injury. Journal of Materials Chemistry B, 2021, 9, 2367-2383.	2.9	7
11	Chapter 14. Smart Porous Silica–Polymer Nanomaterials for Theranostics. RSC Soft Matter, 2021, , 363-391.	0.2	0
12	Supramolecular self-associating amphiphiles (SSAs) as enhancers of antimicrobial agents towards Escherichia coli (E. coli). RSC Advances, 2021, 11, 9550-9556.	1.7	10
13	Antimicrobial activity of hybrid organic–inorganic core–shell magnetic nanocomposites. , 2021, , 501-527.		1
14	Multifunctional nanoplatforms co-delivering combinatorial dual-drug for eliminating cancer multidrug resistance. Theranostics, 2021, 11, 6334-6354.	4.6	25
15	Antibiofilm Peptides: Relevant Preclinical Animal Infection Models and Translational Potential. ACS Pharmacology and Translational Science, 2021, 4, 55-73.	2.5	23
16	Antimicrobial nanoparticles and biodegradable polymer composites for active food packaging applications. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2428-2454.	5.9	140
17	Therapeutic strategies against bacterial biofilms. Fundamental Research, 2021, 1, 193-212.	1.6	84
18	Intervention of Polydopamine Assembly and Adhesion on Nanoscale Interfaces: Stateâ€ofâ€theâ€Art Designs and Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2002138.	3.9	43

#	Article	IF	CITATIONS
19	Nanomedicine-based antimicrobial peptide delivery for bacterial infections: recent advances and future prospects. Journal of Pharmaceutical Investigation, 2021, 51, 377-398.	2.7	28
20	Magnetism, Ultrasound, and Light-Stimulated Mesoporous Silica Nanocarriers for Theranostics and Beyond. Journal of the American Chemical Society, 2021, 143, 6025-6036.	6.6	52
21	Insights into Peptide Mediated Antibiofilm Treatment in Chronic Wound: A Bench to Bedside Approach. Current Protein and Peptide Science, 2021, 22, 50-59.	0.7	1
22	Combating antibiotic resistance: current strategies for the discovery of novel antibacterial materials based on macrocycle supramolecular chemistry. Giant, 2021, , 100066.	2.5	58
23	Mesoporous Silica Nanoparticles and Mesoporous Bioactive Glasses for Wound Management: From Skin Regeneration to Cancer Therapy. Materials, 2021, 14, 3337.	1.3	25
24	Recent Advances Toward the Use of Mesoporous Silica Nanoparticles for the Treatment of Bacterial Infections. International Journal of Nanomedicine, 2021, Volume 16, 4409-4430.	3.3	27
25	Functionalized Silver Nanocapsules with Improved Antibacterial Activity Using Silica Shells Modified with Quaternary Ammonium Polyethyleneimine as a Bacterial Cell-Targeting Agent. Journal of Agricultural and Food Chemistry, 2021, 69, 6485-6494.	2.4	19
26	Recent Advances on Stimuli-Responsive Combination Therapy against Multidrug-Resistant Bacteria and Biofilm. ACS Applied Bio Materials, 2021, 4, 4667-4683.	2.3	29
27	Biocatalytic Nanomaterials: A New Pathway for Bacterial Disinfection. Advanced Materials, 2021, 33, e2100637.	11.1	107
28	ADAM9-Responsive Mesoporous Silica Nanoparticles for Targeted Drug Delivery in Pancreatic Cancer. Cancers, 2021, 13, 3321.	1.7	11
29	Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Advanced Drug Delivery Reviews, 2021, 174, 504-534.	6.6	163
30	Function-adaptive clustered nanoparticles reverse Streptococcus mutans dental biofilm and maintain microbiota balance. Communications Biology, 2021, 4, 846.	2.0	13
31	Antimicrobial peptides towards clinical application: Delivery and formulation. Advanced Drug Delivery Reviews, 2021, 175, 113818.	6.6	90
32	Stimuli-responsive nanocarriers for bacterial biofilm treatment. Rare Metals, 2022, 41, 482-498.	3.6	40
33	Smart nanocarriers as therapeutic platforms for bladder cancer. Nano Research, 2022, 15, 2157-2176.	5.8	7
34	Dealing with MDR bacteria and biofilm in the post-antibiotic era: Application of antimicrobial peptides-based nano-formulation. Materials Science and Engineering C, 2021, 128, 112318.	3.8	24
35	Self-Contained Nanocapsules Carrying Anticancer Peptides for Magnetically Activated and Enzyme-Cleaved Drug Delivery. ACS Applied Nano Materials, 0, , .	2.4	7
36	Pathogen Infection-Responsive Nanoplatform Targeting Macrophage Endoplasmic Reticulum for Alleviating Sepsis. SSRN Electronic Journal, 0, , .	0.4	0

CITATION REPORT

#	Article	IF	CITATIONS
37	Antimicrobial Peptides-Loaded Hydroxyapatite Microsphere With Different Hierarchical Structures for Enhanced Drug Loading, Sustained Release and Antibacterial Activity. Frontiers in Chemistry, 2021, 9, 747665.	1.8	4
38	Oleic acid magnetic iron oxide nanoparticles improve iron uptake by the modification of NADH-HCF (III) oxidoreductase without affecting cellular viability. Gene Reports, 2020, 21, 100837.	0.4	1
39	Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Advanced Drug Delivery Reviews, 2022, 180, 114037.	6.6	19
40	Green Regenerative Hydrogel Wound Dressing Functionalized by Natural Drugâ€Food Homologous Small Molecule Selfâ€Assembled Nanospheres. Advanced Functional Materials, 2022, 32, 2106572.	7.8	58
41	An electromagnetically actuated magneto-nanozyme mediated synergistic therapy for destruction and eradication of biofilm. Chemical Engineering Journal, 2022, 431, 133971.	6.6	14
42	Antimicrobial Bioceramics for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 2022, , 159-193.	0.7	1
43	A carboxylatopillar[5]arene-based pH-triggering supramolecular photosensitizer for enhanced photodynamic antibacterial efficacy. Chemical Communications, 2022, , .	2.2	5
44	Drug molecules bridge with small gatekeeper to co-block mesoporous silica nanoparticles for drug delivery. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112350.	2.5	8
45	Superparamagnetic Iron Oxide Nanoparticles Decorated Mesoporous Silica Nanosystem for Combined Antibiofilm Therapy. Pharmaceutics, 2022, 14, 163.	2.0	19
46	<scp>pH</scp> â€sensitive polyion nanocomplexes for antimicrobial peptide delivery. Journal of Polymer Science, 2022, 60, 2289-2297.	2.0	3
47	A Perfect Pair: Stabilized Black Phosphorous Nanosheets Engineering with Antimicrobial Peptides for Robust Multidrug Resistant Bacteria Eradication. Advanced Healthcare Materials, 2022, 11, e2101846.	3.9	10
48	Antimicrobial peptide-based materials: opportunities and challenges. Journal of Materials Chemistry B, 2022, 10, 2384-2429.	2.9	47
49	Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. Journal of Materials Chemistry B, 2022, 10, 2077-2096.	2.9	33
50	Photocontrolled reversible modulation of lanthanide luminescence in mesoporous silica nanospheres by photochromic diarylethenes. Journal of Materials Chemistry C, 2022, 10, 6036-6042.	2.7	9
51	Targeting Multidrug Resistance With Antimicrobial Peptide-Decorated Nanoparticles and Polymers. Frontiers in Microbiology, 2022, 13, 831655.	1.5	6
52	Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. Journal of Nanobiotechnology, 2022, 20, 126.	4.2	51
53	Pathogen infection-responsive nanoplatform targeting macrophage endoplasmic reticulum for treating life-threatening systemic infection. Nano Research, 2022, 15, 6243-6255.	5.8	8
54	Selfâ€Assembled Nanovehicle for Intracellular Enzymeâ€īriggered Antitumor Drug Release. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	7

CITATION REPORT

#	Article	IF	CITATIONS
55	Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. Journal of Controlled Release, 2022, 345, 231-274.	4.8	12
56	In-situ growth of vertical graphene on titanium by PECVD for rapid sterilization under near-infrared light. Carbon, 2022, 192, 209-218.	5.4	16
57	Microâ€∤Nanorobots in Antimicrobial Applications: Recent Progress, Challenges, and Opportunities. Advanced Healthcare Materials, 2022, 11, e2101991.	3.9	25
58	Pillar[5]areneâ€Based Acidâ€Triggered Supramolecular Porphyrin Photosensitizer for Combating Bacterial Infections and Biofilm Dispersion. Advanced Healthcare Materials, 2022, 11, e2102015.	3.9	26
59	Nanobiotechnology with Therapeutically Relevant Macromolecules from Animal Venoms: Venoms, Toxins, and Antimicrobial Peptides. Pharmaceutics, 2022, 14, 891.	2.0	5
60	Tumor Microenvironment-Responsive Yolk–Shell NaCl@Virus-Inspired Tetrasulfide-Organosilica for Ion-Interference Therapy <i>via</i> Osmolarity Surge and Oxidative Stress Amplification. ACS Nano, 2022, 16, 7380-7397.	7.3	25
61	Magnetic Microswarm and Fluoroscopyâ€Guided Platform for Biofilm Eradication in Biliary Stents. Advanced Materials, 2022, 34, e2201888.	11.1	60
62	Interfacially responsive electron transfer and matter conversion by polydopamineâ€mediated nanoplatforms for advancing disease theranostics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1805.	3.3	3
63	Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades?. Chemical Society Reviews, 2022, 51, 5365-5451.	18.7	138
64	Ni Nanocrystals Supported on Graphene Oxide: Antibacterial Agents for Synergistic Treatment of Bacterial Infections. ACS Omega, 0, , .	1.6	6
65	Stimuli-responsive nanomaterials in infectious diseases. , 2022, , 151-198.		1
66	Charge-switchable MOF nanocomplex for enhanced biofilm penetration and eradication. Journal of Hazardous Materials, 2022, 439, 129594.	6.5	23
67	Amoeba-inspired magnetic microgel assembly assisted by engineered dextran-binding protein for vaccination against life-threatening systemic infection. Nano Research, 2023, 16, 938-950.	5.8	1
68	Inhibition and eradication of bacterial biofilm using polymeric materials. Biomaterials Science, 2022, 11, 11-36.	2.6	14
69	Biological Applications of Silica-Based Nanoparticles. Magnetochemistry, 2022, 8, 131.	1.0	17
70	Recent advances in responsive antibacterial materials: design and application scenarios. Biomaterials Science, 2023, 11, 356-379.	2.6	12
71	Drug delivery approaches for enhanced antibiofilm therapy. Journal of Controlled Release, 2023, 353, 350-365.	4.8	8
72	Antimicrobial micro/nanorobotic materials design: From passive combat to active therapy. Materials Science and Engineering Reports, 2023, 152, 100712.	14.8	12

#	Article	IF	CITATIONS
73	Advancements, challenges and future perspectives on peptide-based drugs: Focus on antimicrobial peptides. European Journal of Pharmaceutical Sciences, 2023, 181, 106363.	1.9	26
74	Regulation of Bacterial Behavior by Light and Magnetism Mediated by Mesoporous Silica-Coated MnFe ₂ O ₄ @CoFe ₂ O ₄ Nanoparticles. ACS Applied Materials & Interfaces, 2022, 14, 56007-56017.	4.0	3
75	Synthesis of rifaximin-loaded ZnO@ZIF-8 nanocomposites for Staphylococcal biofilm eradication and related infection therapy. New Journal of Chemistry, 0, , .	1.4	0
76	Dendritic Nanogels Directed Dualâ€Encapsulation Topical Delivery System of Antimicrobial Peptides Targeting Skin Infections. Macromolecular Bioscience, 2023, 23, .	2.1	1
77	A simple self-assembling system of melittin for hepatoma treatment. Cancer Nanotechnology, 2023, 14, .	1.9	3
78	Self-Assembly of Cyclodextrin-Coated Nanoparticles:Fabrication of Functional Nanostructures for Sensing and Delivery. Molecules, 2023, 28, 1076.	1.7	2
79	Virus-like Magnetic Mesoporous Silica Particles as a Universal Vaccination Platform against Pathogenic Infections. ACS Nano, 2023, 17, 6899-6911.	7.3	5
80	Understanding bacterial biofilms: From definition to treatment strategies. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	18
81	Tris(4-formyl phenyl)amine functionalized mesoporous silica for selective sensing of Al3+ and its separation. Inorganica Chimica Acta, 2023, 550, 121455.	1.2	2
82	Local Antibiotic Delivery Options in Prosthetic Joint Infection. Antibiotics, 2023, 12, 752.	1.5	10
83	Magnetic nanoparticle-assisted colonization of synthetic bacteria on plant roots for improved phytoremediation of heavy metals. Chemosphere, 2023, 329, 138631.	4.2	4
84	Nanomaterials and Coatings for Managing Antibiotic-Resistant Biofilms. Antibiotics, 2023, 12, 310.	1.5	6
85	Exploring Possible Ways to Enhance the Potential and Use of Natural Products through Nanotechnology in the Battle against Biofilms of Foodborne Bacterial Pathogens. Pathogens, 2023, 12, 270.	1.2	3
86	Emerging nanoparticle designs against bacterial infections. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	2
87	Mesoporous silica nanoparticles: Synthesis and multifaceted functionalization for controlled drug delivery. Journal of Drug Delivery Science and Technology, 2023, 81, 104305.	1.4	8
88	Multifunctional Fe3O4 Nanoparticles Filled Polydopamine Hollow Rods for Antibacterial Biofilm Treatment. Molecules, 2023, 28, 2325.	1.7	0
89	Inorganic hollow mesoporous spheres-based delivery for antimicrobial agents. Frontiers of Materials Science, 2023, 17, .	1.1	3
90	Cooperative Functionalities in Porous Nanoparticles for Seeking Extracellular DNA and Targeting Pathogenic Biofilms via Photodynamic Therapy. ACS Applied Materials & Interfaces, 0, , .	4.0	0

CITATION REPORT

		CITATION	TATION REPORT	
#	Article		IF	CITATIONS
91	Management of infectious disease and biotoxin elimination using nanomaterials. , 202	23, , 149-174.		0
92	Recent Development of Supramolecular Cancer Theranostics Based on Cyclodextrins: Molecules, 2023, 28, 3441.	A Review.	1.7	3
93	Recent advances in the sustainable approach-based fabrication of antimicrobial nanos 297-315.	ystems. , 2023, ,		0
112	Nanocarriers for Delivery of Peptide Antibiotics. AAPS Advances in the Pharmaceutical 2023, , 1-34.	Sciences Series,	0.2	0
114	Antibiofilm activity of mesoporous silica nanoparticles against the biofilm associated i Naunyn-Schmiedeberg's Archives of Pharmacology, 0, , .	nfections.	1.4	0
116	Applications of Micro/Nanorobot Swarms in Biomedicine. , 2023, , 261-306.			0