Photocatalytic CO₂ Reduction to C2+ Prod

ACS Catalysis 10, 5734-5749 DOI: 10.1021/acscatal.0c00478

Citation Report

#	Article	IF	CITATIONS
1	Semiconductor based photocatalytic degradation of pesticides: An overview. Environmental Technology and Innovation, 2020, 20, 101128.	3.0	105
2	A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation. CheM, 2020, 6, 3409-3427.	5.8	41
3	Photocatalytic CO ₂ Reduction: A Review of Ab Initio Mechanism, Kinetics, and Multiscale Modeling Simulations. ACS Catalysis, 2020, 10, 14984-15007.	5.5	199
4	Grand Challenges for Catalytic Remediation in Environmental and Energy Applications Toward a Cleaner and Sustainable Future. Frontiers in Environmental Chemistry, 2020, 1, .	0.7	34
5	Multifaceted aspects of charge transfer. Physical Chemistry Chemical Physics, 2020, 22, 21583-21629.	1.3	26
6	State-of-the-art advancements in photo-assisted CO ₂ hydrogenation: recent progress in catalyst development and reaction mechanisms. Journal of Materials Chemistry A, 2020, 8, 24868-24894.	5.2	40
7	Identification of Halogen-Associated Active Sites on Bismuth-Based Perovskite Quantum Dots for Efficient and Selective CO ₂ -to-CO Photoreduction. ACS Nano, 2020, 14, 13103-13114.	7.3	282
8	2D layered all-inorganic halide perovskites: recent trends in their structure, synthesis and properties. Nanoscale, 2020, 12, 21094-21117.	2.8	45
9	Continuously Selective Photocatalytic CO ₂ Fixation via Controllable S/Se Ratio in a TiO ₂ –MoS _{<i>x</i>} Se _{<i>y</i>} Dual-Excitation Heterostructured Nanotree. ACS Photonics, 2020, 7, 3394-3400.	3.2	10
10	Advances in Metal Phthalocyanine based Carbon Composites for Electrocatalytic CO ₂ Reduction. ChemCatChem, 2020, 12, 6103-6130.	1.8	38
11	Catalytic conversion of CO ₂ to chemicals and fuels: the collective thermocatalytic/photocatalytic/electrocatalytic approach with graphitic carbon nitride. Materials Advances, 2020, 1, 1506-1545.	2.6	96
12	Towards artificial photosynthesis: Sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. Chemical Engineering Journal, 2020, 402, 126184.	6.6	123
13	CO2 Electrolysis in Integrated Artificial Photosynthesis Systems. Chemistry Letters, 2021, 50, 166-179.	0.7	17
14	CeO2/3D g-C3N4 heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO2 reduction. Applied Surface Science, 2021, 537, 147891.	3.1	147
15	Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chemical Engineering Journal, 2021, 405, 127011.	6.6	104
16	In-situ growth of ultrafine ZnO on g-C3N4 layer for highly active and selective CO2 photoreduction to CH4 under visible light. Materials Research Bulletin, 2021, 137, 111177.	2.7	25
17	Synergistic carbon and hydrogen reactions in the electrochemical reduction of CO ₂ to liquid fuels. Journal of Materials Chemistry A, 2021, 9, 10546-10561.	5.2	18
18	Strategies and Challenges on Selectivity of Photocatalytic Oxidation of Organic Substances. Advanced Energy Materials, 2021, 11, 2003216.	10.2	216

#	Article	IF	CITATIONS
19	Well-defined Cu ₂ O photocatalysts for solar fuels and chemicals. Journal of Materials Chemistry A, 2021, 9, 5915-5951.	5.2	101
20	Halide perovskite composites for photocatalysis: A mini review. EcoMat, 2021, 3, e12079.	6.8	60
21	Defective TiO ₂ for photocatalytic CO ₂ conversion to fuels and chemicals. Chemical Science, 2021, 12, 4267-4299.	3.7	77
22	Metal–support interactions in Fe–Cu–K admixed with SAPO-34 catalysts for highly selective transformation of CO ₂ and H ₂ into lower olefins. Journal of Materials Chemistry A, 2021, 9, 21877-21887.	5.2	11
23	Construction of a Z-scheme heterojunction for high-efficiency visible-light-driven photocatalytic CO ₂ reduction. Nanoscale, 2021, 13, 4359-4389.	2.8	107
24	Fe clusters embedded on N-doped graphene as a photothermal catalyst for selective CO2 hydrogenation. Chemical Communications, 2021, 57, 10075-10078.	2.2	4
25	Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivity of CO ₂ Photoreduction toward C ₂₊ Products. ACS Applied Materials & Interfaces, 2021, 13, 7248-7258.	4.0	40
26	Photocatalytic C–C Coupling from Carbon Dioxide Reduction on Copper Oxide with Mixed-Valence Copper(I)/Copper(II). Journal of the American Chemical Society, 2021, 143, 2984-2993.	6.6	206
27	Carbon-Based Materials for Electrochemical Reduction of CO ₂ to C ₂₊ Oxygenates: Recent Progress and Remaining Challenges. ACS Catalysis, 2021, 11, 2076-2097.	5.5	116
28	Vacancy Engineering of Ultrathin 2D Materials for Photocatalytic CO ₂ Reduction. ChemNanoMat, 2021, 7, 368-379.	1.5	35
29	Engineering approach toward catalyst design for solar photocatalytic <scp> CO ₂ </scp> reduction: A critical review. International Journal of Energy Research, 2021, 45, 9895-9913.	2.2	23
30	Single-Atom Fe Triggers Superb CO ₂ Photoreduction on a Bismuth-Rich Catalyst. , 2021, 3, 364-371.		54
31	Biomass-Assisted Synthesis of CeO ₂ Nanorods for CO ₂ Photoreduction under Visible Light. ACS Applied Nano Materials, 2021, 4, 4226-4237.	2.4	15
32	Hybrid Photocathodes for Carbon Dioxide Reduction: Interfaces for Charge Separation and Selective Catalysis. ChemPhotoChem, 2021, 5, 595-610.	1.5	6
33	Efficient Combination of G ₃ N ₄ and CDs for Enhanced Photocatalytic Performance: A Review of Synthesis, Strategies, and Applications. Small, 2021, 17, e2007523.	5.2	93
34	Fine-Tuning the Metal Oxo Cluster Composition and Phase Structure of Ni/Ti Bimetallic MOFs for Efficient CO ₂ Reduction. Journal of Physical Chemistry C, 2021, 125, 9200-9209.	1.5	23
35	Turning Carbon Dioxide and Ethane into Ethanol by Solar-Driven Heterogeneous Photocatalysis over RuO2- and NiO-co-Doped SrTiO3. Catalysts, 2021, 11, 461.	1.6	18
36	The roles of polyoxometalates in photocatalytic reduction of carbon dioxide. Materials Today Energy, 2021, 21, 100760.	2.5	28

#	Article	IF	CITATIONS
37	Ag quantum dots modified hierarchically porous and defective TiO2 nanoparticles for improved photocatalytic CO2 reduction. Chemical Engineering Journal, 2021, 410, 128397.	6.6	84
38	Cu media constructed Z-scheme heterojunction of UiO-66-NH2/Cu2O/Cu for enhanced photocatalytic induction of CO2. Applied Surface Science, 2021, 545, 148967.	3.1	40
39	Recent progress in 2D metal-organic framework photocatalysts: synthesis, photocatalytic mechanism and applications. JPhys Energy, 2021, 3, 032010.	2.3	51
40	Promises and Challenges in Photocatalysis. Frontiers in Catalysis, 2021, 1, .	1.8	30
41	Review—CO ₂ Attenuation: Electrochemical Methods and Perspectives. Journal of the Electrochemical Society, 2021, 168, 056515.	1.3	3
42	Ultrathin NiAl-Layered Double Hydroxides Grown on 2D Ti ₃ C ₂ T _{<i>x</i>} MXene to Construct Core–Shell Heterostructures for Enhanced Photocatalytic CO ₂ Reduction. Journal of Physical Chemistry C. 2021, 125, 10207-10218.	1.5	42
43	Light-driven reduction of carbon dioxide: Altering the reaction pathways and designing photocatalysts toward value-added and renewable fuels. Chemical Engineering Science, 2021, 237, 116547.	1.9	26
44	CeO ₂ /CuO/TiO ₂ heterojunction photocatalysts for conversion of CO ₂ to ethanol. Nanotechnology, 2021, 32, 375707.	1.3	17
45	The Role of Computational Chemistry in Discovering and Understanding Organic Photocatalysts for Renewable Fuel Synthesis. Advanced Energy Materials, 2021, 11, 2100709.	10.2	12
46	A review on electrochemical synthesized copper-based catalysts for electrochemical reduction of CO2 to C2+ products. Chemical Engineering Journal, 2021, 414, 128825.	6.6	114
47	Carbon neutral manufacturing via on-site CO2 recycling. IScience, 2021, 24, 102514.	1.9	29
48	Morphology Regulation and Photocatalytic CO ₂ Reduction of Lead-Free Perovskite Cs ₃ Sb ₂ I ₉ Microcrystals. ACS Applied Energy Materials, 2021, 4, 5913-5917.	2.5	31
49	Boosting light-driven CO2 reduction into solar fuels: Mainstream avenues for engineering ZnO-based photocatalysts. Environmental Research, 2021, 197, 111134.	3.7	61
50	Recent advances in CO2 hydrogenation to value-added products — Current challenges and future directions. Progress in Energy and Combustion Science, 2021, 85, 100905.	15.8	134
51	Enhanced photocatalytic CO2 hydrogenation with wide-spectrum utilization over black TiO2 supported catalyst. Chinese Chemical Letters, 2022, 33, 812-816.	4.8	18
52	Construction of adjustable dominant {314} facet of Bi5O7I and facet-oxygen vacancy coupling dependent adsorption and photocatalytic activity. Applied Catalysis B: Environmental, 2021, 289, 120041.	10.8	23
53	A Critical Review on Black Phosphorusâ€Based Photocatalytic CO ₂ Reduction Application. Small, 2021, 17, e2102155.	5.2	60
54	Synthesis and CO ₂ Photoreduction of Lead-Free Cesium Bismuth Halide Perovskite Nanocrystals. Journal of Physical Chemistry C, 2021, 125, 18328-18333.	1.5	29

#	Article	IF	CITATIONS
55	Earth-Abundant Photocatalytic CO ₂ Reduction by Multielectron Chargeable Cobalt Porphyrin Catalysts: High CO/H ₂ Selectivity in Water Based on Phase Mismatch in Frontier MO Association. ACS Catalysis, 2021, 11, 10436-10449.	5.5	56
56	MOFs-derived C-In2O3/g-C3N4 heterojunction for enhanced photoreduction CO2. Journal of Environmental Chemical Engineering, 2021, 9, 106469.	3.3	27
57	Photoreduction of Carbon Dioxide to Formic Acid with Fe-Based MOFs: The Promotional Effects of Heteroatom Doping and Alloy Nanoparticle Confinement. ACS Applied Energy Materials, 2021, 4, 11634-11642.	2.5	13
58	Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO2 reduction. Chinese Journal of Catalysis, 2021, 42, 1608-1616.	6.9	67
59	Improved photocatalytic activity and stability of InGaN quantum dots/C3N4 heterojunction photoelectrode for CO2 reduction and hydrogen production. Nanotechnology, 2021, 32, 505705.	1.3	1
60	Study of Re(I) Carbene Complexes for Photocatalytic Reduction of Carbon Dioxide. Energy & Fuels, 2021, 35, 19170-19177.	2.5	6
61	A roadmap towards the development of superior photocatalysts for solar- driven CO2-to-fuels production. Renewable and Sustainable Energy Reviews, 2021, 148, 111298.	8.2	31
62	Unravelling the C C coupling in CO2 photocatalytic reduction with H2O on Au/TiO2-x: Combination of plasmonic excitation and oxygen vacancy. Applied Catalysis B: Environmental, 2021, 292, 120147.	10.8	66
63	Metal-Free Catalysis: A Redox-Active Donor–Acceptor Conjugated Microporous Polymer for Selective Visible-Light-Driven CO ₂ Reduction to CH ₄ . Journal of the American Chemical Society, 2021, 143, 16284-16292.	6.6	155
64	In Situ Constructed P–N Junction on Cu ₂ O Nanocubes through Reticular Chemistry for Simultaneously Boosting CO ₂ Reduction Depth and Ameliorating Photocorrosion. Advanced Energy and Sustainability Research, 2022, 3, 2100134.	2.8	9
65	Recent Advances in Quantum Dots for Photocatalytic CO2 Reduction: A Mini-Review. Frontiers in Chemistry, 2021, 9, 734108.	1.8	20
66	Homojunction type of carbon nitride as a robust photo-catalyst for reduction conversion of CO2 in water vapor under visible light. Chemical Engineering Journal, 2022, 430, 132668.	6.6	11
67	Controllable Synthesis of COFsâ€Based Multicomponent Nanocomposites from Coreâ€5hell to Yolkâ€5hell and Hollowâ€5phere Structure for Artificial Photosynthesis. Advanced Materials, 2021, 33, e2105002.	11.1	60
68	Oxygen migration triggering molybdenum exposure in oxygen vacancy-rich ultra-thin Bi2MoO6 nanoflakes: Dual binding sites governing selective CO2 reduction into liquid hydrocarbons. Journal of Energy Chemistry, 2021, 61, 281-289.	7.1	40
69	Tandem devices for simultaneous CO2 reduction at the cathode and added-value products formation at the anode. Journal of CO2 Utilization, 2021, 52, 101697.	3.3	12
70	display="inline" id="d1e2116" altimg="si20.svg">< mml:mrow>< mml:msub>< mml:mrow /> < mml:mrow>< mml:mn>3< mml:msub>< mml:mrow>< mml:mi mathvariant="normal">N< mml:mrow>< mml:mn>4mediated all-solid-state (ASS) Z-scheme photocatalysts towards sustainable energy and environmental	>∛ 0 ml:m	row>
71	applications. Environmental Technology and Innovation, 2021, 24, 101972. Constructing oxide/sulfide in-plane heterojunctions with enlarged internal electric field for efficient CO2 photoreduction. Applied Catalysis B: Environmental, 2021, 297, 120394.	10.8	41
72	The emerging covalent organic frameworks (COFs) for solar-driven fuels production. Coordination Chemistry Reviews, 2021, 446, 214117.	9.5	79

#	Article	IF	CITATIONS
73	Insight into the significantly enhanced photocatalytic CO2 reduction performance of Pt/MnO dual cocatalysts on sea-urchin-like anatase TiO2 microspheres. Chemical Engineering Journal, 2021, 425, 131627.	6.6	22
74	Preparation and application of 0D-2D nanomaterial hybrid heterostructures for energy applications. Materials Today Advances, 2021, 12, 100169.	2.5	20
75	Optional construction of Cu2O@Fe2O3@CC architecture as a robust multifunctional photoelectronic catalyst for overall water splitting and CO2 reduction. Chemical Engineering Journal, 2021, 426, 131192.	6.6	21
76	Plasmonic metal/semiconductor hybrid nanomaterials for solar to chemical energy conversion. Journal of Energy Chemistry, 2021, 63, 40-53.	7.1	13
77	Activity, selectivity, and stability of earth-abundant CuO/Cu2O/Cu0-based photocatalysts toward CO2 reduction. Chemical Engineering Journal, 2022, 429, 131579.	6.6	67
78	Catalytic Technologies for the Conversion and Reuse of CO2. , 2021, , 1-50.		0
79	Photoinduced defect engineering: enhanced photocatalytic performance of 3D BiOCl nanoclusters with abundant oxygen vacancies. CrystEngComm, 2021, 23, 1305-1311.	1.3	20
80	A mini-review on ZnIn2S4-Based photocatalysts for energy and environmental application. Green Energy and Environment, 2022, 7, 176-204.	4.7	86
81	A retrospective on MXene-based composites for solar fuel production. Pure and Applied Chemistry, 2020, 92, 1953-1969.	0.9	14
82	Adsorption and Photocatalytic Reduction of Carbon Dioxide on TiO2. Catalysts, 2021, 11, 47.	1.6	11
83	Photocatalytic reduction of CO ₂ by halide perovskites: recent advances and future perspectives. Materials Advances, 2021, 2, 7187-7209.	2.6	27
84	Current density in solar fuel technologies. Energy and Environmental Science, 2021, 14, 5760-5787.	15.6	32
85	Ultrathin p–n type Cu ₂ O/CuCoCr-layered double hydroxide heterojunction nanosheets for photo-assisted aqueous Zn–CO ₂ batteries. Journal of Materials Chemistry A, 2021, 9, 26061-26068.	5.2	21
86	Atomic-level insights into surface engineering of semiconductors for photocatalytic CO2 reduction. Journal of Energy Chemistry, 2022, 67, 309-341.	7.1	67
87	Energy Band Alignment and Redoxâ€Active Sites in Metalloporphyrinâ€Spaced Metalâ€Catechol Frameworks for Enhanced CO ₂ Photoreduction. Angewandte Chemie, 2022, 134, .	1.6	3
88	Biosynthetic CdS-Thiobacillus thioparus hybrid for solar-driven carbon dioxide fixation. Nano Research, 2023, 16, 4531-4538.	5.8	10
89	Bioinspiration toward efficient photosynthetic systems: From biohybrids to biomimetics. Chem Catalysis, 2021, 1, 1367-1377.	2.9	14
90	Energy Band Alignment and Redoxâ€Active Sites in Metalloporphyrinâ€Spaced Metalâ€Catechol Frameworks for Enhanced CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23

#	Article	IF	CITATIONS
91	Carbon dioxide: No longer a global menace: A future source for chemicals. Materials Today: Proceedings, 2022, 58, 812-822.	0.9	2
92	Enhancing Nb2O5 activity for CO2 photoreduction through Cu nanoparticles cocatalyst deposited by DC-magnetron sputtering. Journal of CO2 Utilization, 2021, 53, 101739.	3.3	12
93	Effect of graphite exfoliation routes on the properties of exfoliated graphene and its photocatalytic applications. Journal of Environmental Chemical Engineering, 2021, 9, 106506.	3.3	23
94	Technologies and perspectives for achieving carbon neutrality. Innovation(China), 2021, 2, 100180.	5.2	306
95	Janus silver/ternary silver halide nanostructures as plasmonic photocatalysts boost the conversion of CO ₂ to acetaldehyde. Nanoscale, 2021, 13, 20289-20298.	2.8	5
96	Cu+–Ti3+ interface interaction mediated CO2 coordination model for controlling the selectivity of photocatalytic reduction CO2. Applied Catalysis B: Environmental, 2022, 301, 120803.	10.8	29
97	Full solar spectrum driven plasmonic-assisted efficient photocatalytic CO2 reduction to ethanol. Chemical Engineering Journal, 2022, 430, 132940.	6.6	28
98	Artificial leaf for light-driven CO2 reduction: Basic concepts, advanced structures and selective solar-to-chemical products. Chemical Engineering Journal, 2022, 430, 133031.	6.6	48
99	Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO ₂ Valorization. Advanced Energy Materials, 2021, 11, 2102767.	10.2	35
100	Oxygen vacancy configuration in confined BiVO4-Bi2S3 heterostructures promotes photocatalytic oxidation of NO. Journal of Environmental Chemical Engineering, 2021, 9, 106586.	3.3	10
101	Regulating the *OCCHO intermediate pathway towards highly selective photocatalytic CO ₂ reduction to CH ₃ CHO over locally crystallized carbon nitride. Energy and Environmental Science, 2022, 15, 225-233.	15.6	63
102	Photocatalytic and Photoelectrochemical Carbon Dioxide Reductions toward Value-Added Multicarbon Products. ACS ES&T Engineering, 2022, 2, 975-988.	3.7	22
103	Cocatalyst Modification of AgTaO ₃ Photocatalyst for Conversion of Carbon Dioxide with Water. Journal of Physical Chemistry C, 2021, 125, 26389-26397.	1.5	7
104	Bismuth Vacancy-Induced Efficient CO ₂ Photoreduction in BiOCl Directly from Natural Air: A Progressive Step toward Photosynthesis in Nature. Nano Letters, 2021, 21, 10260-10266.	4.5	74
105	Basicity as a Thermodynamic Descriptor of Carbanions Reactivity with Carbon Dioxide: Application to the Carboxylation of $\hat{I}\pm,\hat{I}^2$ -Unsaturated Ketones. Frontiers in Chemistry, 2021, 9, 783993.	1.8	2
106	Plasmon-Mediated CO ₂ Photoreduction via Indirect Charge Transfer on Small Silver Nanoclusters. Journal of Physical Chemistry C, 2021, 125, 26348-26353.	1.5	10
107	Advances in photoelectroreduction of CO2 to hydrocarbons fuels: Contributions of functional materials. Journal of CO2 Utilization, 2022, 55, 101810.	3.3	15
108	Pt-GdCrO ₃ -Bi ₂ MoO ₆ Ternary Heterojunction with High Photocatalytic Activities for CO ₂ Reduction and Water Purification. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
109	Solar fuels: research and development strategies to accelerate photocatalytic CO ₂ conversion into hydrocarbon fuels. Energy and Environmental Science, 2022, 15, 880-937.	15.6	304
110	Bioinspired spike-like double yolk–shell structured TiO ₂ @ZnIn ₂ S ₄ for efficient photocatalytic CO ₂ reduction. Catalysis Science and Technology, 2022, 12, 1092-1099.	2.1	9
111	Definition of photocatalysis: Current understanding and perspectives. Current Opinion in Green and Sustainable Chemistry, 2022, 33, 100580.	3.2	12
112	Three-dimensional porous Cu2O with dendrite for efficient photocatalytic reduction of CO2 under visible light. Applied Surface Science, 2022, 581, 152343.	3.1	18
113	Toward solar-driven carbon recycling. Joule, 2022, 6, 294-314.	11.7	143
114	Theoretical insights into CO ₂ reduction reaction on a CuPc/graphene single-atomic catalyst. New Journal of Chemistry, 2022, 46, 1353-1361.	1.4	3
115	Dissection of Lightâ€Induced Charge Accumulation at a Highly Active Iron Porphyrin: Insights in the Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
116	Role of Cu0-TiO2 interaction in catalyst stability in CO2 photoreduction process. Journal of Environmental Chemical Engineering, 2022, 10, 107291.	3.3	7
117	Dissection of Lightâ€Induced Charge Accumulation at a Highly Active Iron Porphyrin: Insights in the Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2022, 134, .	1.6	9
118	Spatially separated oxygen vacancies and nickel sites for ensemble promotion of selective CO2 photoreduction to CO. Cell Reports Physical Science, 2022, 3, 100724.	2.8	12
120	Plasmonic catalysis with designer nanoparticles. Chemical Communications, 2022, 58, 2055-2074.	2.2	34
121	An integration system derived from LDHs for CO2 direct capture and photocatalytic coupling reaction. Chem Catalysis, 2022, 2, 531-549.	2.9	18
122	Atom manufacturing of photocatalyst towards solar CO ₂ reduction. Reports on Progress in Physics, 2022, 85, 026501.	8.1	8
123	Carbon dioxide storage and separation using all-boron B38 fullerene: DFT calculations. Chemical Physics Letters, 2022, 790, 139361.	1.2	5
124	Construction of 2D-coal-based graphene/2D-bismuth vanadate compound for effective photocatalytic CO2 reduction to CH3OH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128321.	2.3	13
125	Opportunities for Ultrathin 2D Catalysts in Promoting CO2 Photoreduction. Inorganic Materials Series, 2022, , 65-149.	0.5	1
126	Engineering Catalytic Interfaces in Cu ^{δ+} /CeO ₂ -TiO ₂ Photocatalysts for Synergistically Boosting CO ₂ Reduction to Ethylene. ACS Nano, 2022, 16, 2306-2318.	7.3	107
127	Visibleâ€Lightâ€Driven Photocatalytic CO ₂ Reduction to CO/CH ₄ Using a Metal–Organic "Soft―Coordination Polymer Gel. Angewandte Chemie, 2022, 134, .	1.6	13

#	Article	IF	CITATIONS
128	Visibleâ€Lightâ€Driven Photocatalytic CO ₂ Reduction to CO/CH ₄ Using a Metal–Organic "Soft―Coordination Polymer Gel. Angewandte Chemie - International Edition, 2022, 61,	7.2	48
129	A Bismuth Species-Decorated ZnO/p-Si Photocathode for High Selectivity of Formate in CO ₂ Photoelectrochemical Reduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 2380-2387.	3.2	10
130	Photocatalytic CO2 reduction for C2-C3 oxy-compounds on ZIF-67 derived carbon with TiO2. Journal of CO2 Utilization, 2022, 58, 101920.	3.3	8
131	Bi4TaO8Cl/Bi heterojunction enables high-selectivity photothermal catalytic conversion of CO2-H2O flow to liquid alcohol. Chemical Engineering Journal, 2022, 435, 135133.	6.6	27
132	Heterogenizing homogeneous cocatalysts by well-designed hollow MOF-based nanoreactors for efficient and size-selective CO2 fixation. Applied Catalysis B: Environmental, 2022, 307, 121163.	10.8	28
133	Bi4tao8cl/Bi Heterojunction Enables High-Selectivity Photothermal Catalytic Conversion of Co2-H2o Flow to Liquid Alcohol. SSRN Electronic Journal, 0, , .	0.4	0
134	Photocatalysis and perovskite oxide-based materials: a remedy for a clean and sustainable future. RSC Advances, 2022, 12, 7009-7039.	1.7	63
135	Enhancing mechanism of electron-deficient p states on photocatalytic activity of g-C ₃ N ₄ for CO ₂ reduction. Journal of Materials Chemistry A, 2022, 10, 9565-9574.	5.2	13
136	Greener Oneâ€step Synthesis of Novel In Situ Seleniumâ€doped Framework Photocatalyst by Melem and Perylene Dianhydride for Enhanced Solar Fuel Production from CO ₂ . Photochemistry and Photobiology, 2022, 98, 998-1007.	1.3	2
137	Ultra-thin Two-Dimensional Trimetallic Metal–Organic Framework for Photocatalytic Reduction of CO ₂ . ACS Catalysis, 2022, 12, 3238-3248.	5.5	40
138	Recent Progress and Challenges in Plasmonâ€Mediated Reduction of CO ₂ to Chemicals and Fuels. Advanced Materials Interfaces, 2022, 9, .	1.9	26
139	Dimensional heterojunction design: The rising star of 2D bismuth-based nanostructured photocatalysts for solar-to-chemical conversion. Nano Research, 2023, 16, 4310-4364.	5.8	34
140	Crystallographic Effects of GaN Nanostructures in Photoelectrochemical Reaction. Nano Letters, 2022, 22, 2236-2243.	4.5	12
141	H ₂ S Involved Photocatalytic System: A Novel Syngas Production Strategy by Boosting the Photoreduction of CO ₂ While Recovering Hydrogen from the Environmental Toxicant. Advanced Functional Materials, 2022, 32, .	7.8	12
142	Layered Double Hydroxide Engineering for the Photocatalytic Conversion of Inactive Carbon and Nitrogen Molecules. ACS ES&T Engineering, 2022, 2, 1088-1102.	3.7	12
143	Emerging Strategies for CO ₂ Photoreduction to CH ₄ : From Experimental to Dataâ€Driven Design. Advanced Energy Materials, 2022, 12, .	10.2	68
144	Remarkable Activity of 002 Facet of Ruthenium Nanoparticles Grown on Graphene Films on the Photocatalytic CO ₂ Methanation. Advanced Sustainable Systems, 2022, 6, .	2.7	7
145	Ultrahigh Photocatalytic CO ₂ Reduction Efficiency and Selectivity Manipulation by Singleâ€Tungstenâ€Atom Oxide at the Atomic Step of TiO ₂ . Advanced Materials, 2022, 34, e2109074.	11.1	107

#	Article	IF	CITATIONS
146	Zn ₂ Sn _{<i>x</i>} Ti _{1–<i>x</i>} O ₄ Continuous Solid-Solution Photocatalyst for Efficient Photocatalytic CO ₂ Conversion into Solar Fuels. ACS Applied Energy Materials, 2022, 5, 3748-3756.	2.5	4
147	Design and Preparation of Electrocatalysts by Electrodeposition for CO ₂ Reduction. Chemistry - A European Journal, 2022, 28, .	1.7	12
148	In situ synthesized α-Fe2O3/BCN heterojunction for promoting photocatalytic CO2 reduction performance. Journal of Colloid and Interface Science, 2022, 621, 311-320.	5.0	15
149	Reconstructing Cu Nanoparticle Supported on Vertical Graphene Surfaces via Electrochemical Treatment to Tune the Selectivity of CO ₂ Reduction toward Valuable Products. ACS Catalysis, 2022, 12, 4792-4805.	5.5	24
150	Pt-GdCrO3-Bi2MoO6 ternary heterojunction with high photocatalytic activities for CO2 reduction and water purification. Chemical Engineering Journal, 2022, 437, 135300.	6.6	21
151	Recent advances in photocatalytic reduction of CO2 by TiO2– and MOF–based nanocomposites impregnated with metal nanoparticles. Materials Today Chemistry, 2022, 24, 100870.	1.7	16
152	N-doped monodisperse carbon nanospheres with high surface area for highly efficient CO2 capture. Separation and Purification Technology, 2022, 290, 120822.	3.9	18
153	Self-reconstruction of paddle-wheel copper-node to facilitate the photocatalytic CO2 reduction to ethane. Applied Catalysis B: Environmental, 2022, 310, 121320.	10.8	56
154	Surface defects introduced by metal doping into layered double hydroxide for CO2 photoreduction: The effect of metal species in light absorption, charge transfer and CO2 reduction. Chemical Engineering Journal, 2022, 442, 136148.	6.6	26
155	CO ₂ Cleavage Reaction Driven by Alkylidyne Complexes of Group 6 Metals and Uranium: A Density Functional Theory Study on Energetics, Reaction Mechanism, and Structural/Bonding Properties. Inorganic Chemistry, 2021, 60, 18859-18869.	1.9	0
156	On-Demand Transformation of Carbon Dioxide into Polymers Enabled by a Comb-Shaped Metallic Oligomer Catalyst. ACS Catalysis, 2022, 12, 481-490.	5.5	20
157	Charge-transfer regulated visible light driven photocatalytic H2 production and CO2 reduction in tetrathiafulvalene based coordination polymer gel. Nature Communications, 2021, 12, 7313.	5.8	71
158	Enhanced visible-NIR absorption and oxygen vacancy generation of Pt/H _{<i>x</i>} MoWO _{<i>y</i>} by H-spillover to facilitate photothermal catalytic CO ₂ hydrogenation. Journal of Materials Chemistry A, 2022, 10, 10854-10864.	5.2	16
159	High C2-C4 selectivity in CO2 hydrogenation by particle size control of Co-Fe alloy nanoparticles wrapped on N-doped graphitic carbon. IScience, 2022, 25, 104252.	1.9	6
160	Quantum Dot-Embedded Hybrid Photocatalytic Nanoreactors for Visible Light Photocatalysis and Dye Degradation. ACS Applied Nano Materials, 2022, 5, 7427-7439.	2.4	11
161	Photo―and Electrocatalytic CO ₂ Reduction Based on Stable Leadâ€Free Perovskite Cs ₂ PdBr ₆ . Energy and Environmental Materials, 2023, 6, .	7.3	4
162	Strategies and reaction systems for solar-driven CO2 reduction by water. , 2022, 1, 1.		10
163	A critical review on emerging photocatalysts for syngas generation <i>via</i> CO ₂ reduction under aqueous media: a sustainable paradigm. Materials Advances, 2022, 3–5274-5298	2.6	9

#	Article	IF	CITATIONS
164	Temperature-dependent CO ₂ sorption and thermal-reduction without reactant gases on BaTiO ₃ nanocatalysts at low temperatures in the range of 300–1000 K. Nanoscale, 2022, 14, 8318-8325.	2.8	3
165	Current dilemma in photocatalytic CO2 reduction: real solar fuel production or false positive outcomings?. , 2022, 1, 1.		12
166	Site‣ensitive Selective CO ₂ Photoreduction to CO over Gold Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, e202204563.	7.2	33
167	Photocatalytic materials applications for sustainable agriculture. Progress in Materials Science, 2022, 130, 100965.	16.0	10
168	What Role Does the Incident Light Intensity Play in Photocatalytic Conversion of CO ₂ : Attenuation or Intensification?. ChemPhysChem, 2022, 23, e202100851.	1.0	4
169	Roughness Effect of Cu on Electrocatalytic CO ₂ Reduction towards C ₂ H ₄ . Chemistry - an Asian Journal, 2022, 17, .	1.7	10
170	Site‣ensitive Selective CO ₂ Photoreduction to CO over Gold Nanoparticles. Angewandte Chemie, 2022, 134, .	1.6	5
171	Ordered mesoporous carbon spheres assisted Ru nanoclusters/RuO2 with redistribution of charge density for efficient CO2 methanation in a novel H2/CO2 fuel cell. Journal of Energy Chemistry, 2022, 72, 116-124.	7.1	11
172	Defectâ€Assisted Electron Tunneling for Photoelectrochemical CO ₂ Reduction to Ethanol at Low Overpotentials. Advanced Energy Materials, 2022, 12, .	10.2	27
173	Toward solar-driven photocatalytic CO2 methanation under continuous flow operation using benchmark MIL-125(Ti)–NH2 supported ruthenium nanoparticles. Chemical Engineering Journal, 2022, 445, 136426.	6.6	16
174	Fabrication of 2H/3C-SiC heterophase junction nanocages for enhancing photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2022, 622, 31-39.	5.0	14
176	<i>En route</i> to artificial photosynthesis: the role of polyoxometalate based photocatalysts. Journal of Materials Chemistry A, 2022, 10, 13152-13169.	5.2	12
177	Recent advances in solarâ€driven CO ₂ reduction over g ₃ N ₄ â€based photocatalysts. , 2023, 5, .		38
178	A novel cobalt-anchored covalent organic framework for photocatalytic conversion of CO ₂ into widely adjustable syngas. Journal of Materials Chemistry A, 2022, 10, 13418-13427.	5.2	13
179	Catalytic Technologies for the Conversion and Reuse of CO2. , 2022, , 1803-1852.		1
180	CeO2 as a photocatalytic material for CO2 conversion: A review. Solar Energy, 2022, 240, 443-466.	2.9	43
181	Recent Progress of Metal Sulfide Photocatalysts for Solar Energy Conversion. Advanced Materials, 2022, 34, .	11.1	122
182	Insight on Reaction Pathways of Photocatalytic CO ₂ Conversion. ACS Catalysis, 2022, 12, 7300-7316.	5.5	134

#	Article	IF	CITATIONS
183	Solution-Processable Naphthalene Diimide-Based Conjugated Polymers as Organocatalysts for Photocatalytic CO ₂ Reaction with Extremely Stable Catalytic Activity for Over 330 Hours. Chemistry of Materials, 2022, 34, 4955-4963.	3.2	8
184	Self-assembled perylene diimide modified NH2-UiO-66 (Zr) construct n-n heterojunction catalysts for enhanced Cr (VI) photocatalytic reduction. Separation and Purification Technology, 2022, 296, 121423.	3.9	11
185	Singleâ€Atom Catalysts (SACs) for Photocatalytic CO ₂ Reduction with H ₂ O: Activity, Product Selectivity, Stability, and Surface Chemistry. Small, 2022, 18, .	5.2	54
186	Ti ³⁺ Defective TiO ₂ /CdS Z-Scheme Photocatalyst for Enhancing Photocatalytic CO ₂ Reduction to C1–C3 Products. Industrial & Engineering Chemistry Research, 2022, 61, 8724-8737.	1.8	16
187	Z-Scheme Heterojunction of SnS2/Bi2WO6 for Photoreduction of CO2 to 100% Alcohol Products by Promoting the Separation of Photogenerated Charges. Nanomaterials, 2022, 12, 2030.	1.9	7
188	Crafting an active center with a local charge density gradient to facilitate photocatalytic ethylene production from CO2. Current Opinion in Green and Sustainable Chemistry, 2022, 36, 100646.	3.2	3
189	Lead-free perovskite Cs2XCl6 (XÂ= Hf, Zr, Te) microcrystals for photocatalytic CO2 reduction. Materials Today Energy, 2022, 28, 101067.	2.5	14
190	Investigation of Pure and CuO- and ZnO-Loaded TiO2 Nanocomposites Prepared by Modified Hydrothermal Cum Green Synthesis (Hybanthus enneaspermus Extract) Method for Photocatalytic and Antioxidant Applications. Brazilian Journal of Physics, 2022, 52, .	0.7	0
191	Photocatalytic CO2 reduction to methanol over bismuth promoted BaTiO3 perovskite nanoparticle catalysts. Renewable Energy, 2022, 195, 885-895.	4.3	18
192	Narrow band-gapped perovskite oxysulfide for CO2 photoreduction towards ethane. Applied Catalysis B: Environmental, 2022, 316, 121615.	10.8	15
193	All-carbon microporous graphitic photocatalyst-promoted reduction of CO ₂ to CO in the absence of metals or dopant elements. Nanoscale, 2022, 14, 11575-11582.	2.8	4
194	Photocatalytic CO ₂ conversion: from C1 products to multi-carbon oxygenates. Nanoscale, 2022, 14, 10268-10285.	2.8	11
195	Monolayer Molecular Functionalization Enabled by Acid–Base Interaction for High-Performance Photochemical CO ₂ Reduction. ACS Energy Letters, 2022, 7, 2265-2272.	8.8	15
196	Anchoring and reactivation of single-site Co–porphyrin over TiO2 for the efficient photocatalytic CO2 reduction. Journal of Catalysis, 2022, 413, 588-602.	3.1	8
197	Porous fixed-bed photoreactor for boosting C–C coupling in photocatalytic CO2 reduction. EScience, 2022, 2, 428-437.	25.0	70
198	Photocatalytic Reduction of Carbon Dioxide to Methane at the Pd-Supported TiO ₂ Interface: Mechanistic Insights from Theoretical Studies. ACS Catalysis, 2022, 12, 8558-8571.	5.5	23
199	Cu-Loaded NaNbO ₃ Three-Dimensional Networks for CO ₂ Photoreduction to C ₂ Species. Energy & amp; Fuels, 2022, 36, 11654-11659.	2.5	2
200	Plasmon Induced Nearâ€Infrared Active Photocatalysts: A Review. Advanced Materials Interfaces, 2022, 9,	1.9	11

#	Article	IF	CITATIONS
201	ZIF-8/covalent organic framework for enhanced CO2 photocatalytic reduction in gas-solid system. Chemical Engineering Journal, 2022, 450, 138040.	6.6	37
202	Fabrication of high-performance multifunctional Fe-doped La2ZnTiO6 double perovskite/activated carbon nanocomposite for efficient photocatalytic degradation of dyes, nitrate and carbon dioxide pollutants. Materials Today Chemistry, 2022, 26, 101034.	1.7	3
203	1D α-Fe ₂ O ₃ /ZnO Junction Arrays Modified by Bi as Photocathode: High Efficiency in Photoelectrochemical Reduction of CO ₂ to HCOOH. Journal of Physical Chemistry Letters, 2022, 13, 6867-6874.	2.1	43
204	Construction of Spatially Separated Gold Nanocrystal/Cuprous Oxide Architecture for Plasmon-Driven CO ₂ Reduction. Nano Letters, 2022, 22, 7268-7274.	4.5	26
205	Insights into the Superstable Mineralization of Chromium(III) from Wastewater by CuO. ACS Applied Materials & Interfaces, 2022, 14, 37823-37832.	4.0	8
206	3D bionic reactor optimizes photon and mass transfer by expanding reaction space to enhance photocatalytic CO2 reduction. Separation and Purification Technology, 2022, 301, 121974.	3.9	7
207	Asymmetric Coupled Dualâ€Atom Sites for Selective Photoreduction of Carbon Dioxide to Acetic Acid. Advanced Functional Materials, 2022, 32, .	7.8	46
208	P and Cu Dual Sites on Graphitic Carbon Nitride for Photocatalytic CO2 Reduction to Hydrocarbon Fuels with High C2H6 Evolution. Angewandte Chemie, 0, , .	1.6	7
209	Spin-Polarized Photocatalytic CO ₂ Reduction of Mn-Doped Perovskite Nanoplates. Journal of the American Chemical Society, 2022, 144, 15718-15726.	6.6	93
210	Photothermal conversion of CO2 to fuel with nickel-based catalysts: A review. , 2022, 1, 204-217.		6
211	P and Cu Dual Sites on Graphitic Carbon Nitride for Photocatalytic CO ₂ Reduction to Hydrocarbon Fuels with High C ₂ H ₆ Evolution. Angewandte Chemie - International Edition, 2022, 61, .	7.2	131
212	The role of material defects in the photocatalytic CO2 reduction: Interfacial properties, thermodynamics, kinetics and mechanism. Journal of CO2 Utilization, 2022, 64, 102175.	3.3	11
213	Recent advances on Z-scheme engineered BiVO4-based semiconductor photocatalysts for CO2 reduction: A review. Applied Surface Science Advances, 2022, 11, 100289.	2.9	5
214	Metal/oxide heterostructures derived from Prussian blue analogues for efficient photocatalytic CO2 hydrogenation to hydrocarbons. Journal of CO2 Utilization, 2022, 64, 102177.	3.3	2
215	Selective photothermal CO2 reduction to CO, CH4, alkanes, alkenes over bimetallic alloy catalysts derived from layered double hydroxide nanosheets. Nano Energy, 2022, 102, 107650.	8.2	24
216	Hollow porous Co–Ni spinel nanosheet arrays with rich oxygen defects on carbon cloth toward highly efficient and selective CO2 photofixation. Carbon, 2022, 200, 149-155.	5.4	12
217	Unraveling photocatalytic electron transfer mechanism in polyoxometalate-encapsulated metal-organic frameworks for high-efficient CO2 reduction reaction. Applied Catalysis B: Environmental, 2022, 318, 121812.	10.8	25
218	Advancement in electrochemical, photocatalytic, and photoelectrochemical CO2 reduction: Recent progress in the role of oxygen vacancies in catalyst design. Journal of CO2 Utilization, 2022, 65, 102211.	3.3	14

#	Article	IF	CITATIONS
219	Self-assembled spherical In2O3/BiOI heterojunctions for enhanced photocatalytic CO2 reduction activity. Journal of CO2 Utilization, 2022, 65, 102220.	3.3	25
220	Single-atom copper modified hexagonal tungsten oxide for efficient photocatalytic CO2 reduction to acetic acid. Chemical Engineering Journal, 2023, 451, 138801.	6.6	16
221	TiO2-based photocatalysts for CO2 reduction and solar fuel generation. Chinese Journal of Catalysis, 2022, 43, 2500-2529.	6.9	31
222	Facilitating space charge directional separation for enhancing photocatalytic CO ₂ reduction over tetragonal BiVO ₄ . Catalysis Science and Technology, 2022, 12, 5687-5694.	2.1	1
223	Construction of a flower-like SnS2/SnO2 junction for efficient photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2023, 629, 871-877.	5.0	11
224	Lead-Free Cs ₂ TeX ₆ (X = Cl, Br, and I) Perovskite Microcrystals with High Stability for Efficient Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2022, 61, 14447-14454.	1.9	18
225	Cu–S Bonds as an Atomic-Level Transfer Channel to Achieve Photocatalytic CO ₂ Reduction to CO on Cu-Substituted ZnIn ₂ S ₄ . ACS Sustainable Chemistry and Engineering, 2022, 10, 11902-11912.	3.2	21
226	Highly Efficient and Selective Visibleâ€Light Driven Photoreduction of CO ₂ to CO by Metal–Organic Frameworksâ€Derived Nïĭ£¿CoO Porous Microrods. Small, 2022, 18, .	5.2	24
227	A Potential Roadmap to Integrated Metal Organic Framework Artificial Photosynthetic Arrays. Journal of the American Chemical Society, 2022, 144, 17723-17736.	6.6	21
228	Photochemistry Journey to Multielectron and Multiproton Chemical Transformation. Journal of the American Chemical Society, 2022, 144, 16219-16231.	6.6	30
229	Temperature―and pHâ€Responsive Polymeric Photocatalysts for Enhanced Control and Recovery. Angewandte Chemie, 0, , .	1.6	0
230	Thermo-, Electro-, and Photocatalytic CO ₂ Conversion to Value-Added Products over Porous Metal/Covalent Organic Frameworks. Accounts of Chemical Research, 2022, 55, 2978-2997.	7.6	89
231	Light-driven lignocellulosic biomass conversion for production of energy and chemicals. IScience, 2022, 25, 105221.	1.9	10
232	Grave-to-cradle upcycling of Ni from electroplating wastewater to photothermal CO2 catalysis. Nature Communications, 2022, 13, .	5.8	31
233	Temperature―and pHâ€Responsive Polymeric Photocatalysts for Enhanced Control and Recovery. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
234	A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS Nano, 2022, 16, 13370-13429.	7.3	142
235	A Small Organic Molecular Catalyst with Efficient Electron Accumulation for Nearâ€unity CO ₂ Photoreduction. Chemistry - an Asian Journal, 2022, 17, .	1.7	5
236	Environmental remediation and sustainable energy generation via photocatalytic technology using rare earth metals modified g-C3N4: A review. Journal of Alloys and Compounds, 2023, 931, 167469.	2.8	76

#	Article	IF	CITATIONS
237	Efficient dye degradation strategies using green synthesized ZnO-based nanoplatforms: A review. Applied Surface Science Advances, 2022, 11, 100314.	2.9	64
238	Alloying strategies for tuning product selectivity during electrochemical CO ₂ reduction over Cu. Nanoscale, 2022, 14, 15560-15585.	2.8	7
239	CO2 adsorption and activation on Ag(1 1 1) surfaces in the presence of surface charge density: A static gas phase DFT study. Applied Surface Science, 2023, 610, 155498.	3.1	5
240	Effect of vacancy concentration on the production selectivity of Janus In2S2X (X=Se, Te) monolayer heterojunction photocatalytic reduction of CO2. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 146, 115549.	1.3	2
241	Electrocatalytic syngas and photocatalytic long-chain hydrocarbon productions by CO2 reduction over ZnO and Zn-based electrodes. Applied Surface Science, 2023, 609, 155349.	3.1	13
242	A perspective LDHs/Ti3C2O2 design by DFT calculation for photocatalytic reduction of CO2 to C2 organics. Applied Surface Science, 2023, 609, 155445.	3.1	5
243	Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2023, 321, 122079.	10.8	80
244	A Comprehensive Review on Graphitic Carbon Nitride for Carbon Dioxide Photoreduction. Small Methods, 2022, 6, .	4.6	14
245	TiO2-based catalysts for photothermal catalysis: Mechanisms, materials and applications. Journal of Cleaner Production, 2022, 381, 135156.	4.6	14
246	Fabrication of graphdiyne and its analogues for photocatalytic application. EcoMat, 2023, 5, .	6.8	8
247	Photocatalytic conversion of CO2 to acetic acid by CuPt/WO3: Chloride enhanced C-C coupling mechanism. Applied Catalysis B: Environmental, 2023, 323, 122177.	10.8	17
248	Revealing the stochastic kinetics evolution of photocatalytic CO ₂ reduction. Nanoscale, 0, , .	2.8	1
249	Fabrication of S-scheme hollow TiO2@Bi2MoO6 composite for efficiently photocatalytic CO2 reduction. Materials Today Chemistry, 2023, 27, 101260.	1.7	4
250	A review of non-oxide semiconductors for photoelectrochemical water splitting. Journal of Materials Chemistry C, 0, , .	2.7	4
251	Selective photo-reduction of CO ₂ to methanol using Cu-doped 1D-Bi ₂ S ₃ /rGO nanocomposites under visible light irradiation. New Journal of Chemistry, 2023, 47, 1422-1434.	1.4	5
252	MXene mediated layered 2D-2D-3D g-C3N4@Ti3C2T@WO3 multijunctional heterostructure with enhanced photoelectrochemical and photocatalytic properties. Nano Structures Nano Objects, 2023, 33, 100934.	1.9	4
253	Hierarchical hollow-microsphere cadmium sulfide-carbon dots composites with enhancing charge transfer efficiency for photocatalytic CO2 reduction. Journal of Alloys and Compounds, 2023, 936, 168286.	2.8	6
254	Atomically dispersed cerium sites in carbon-doped boron nitride for photodriven CO2 reduction: Local polarization and mechanism insight. Applied Catalysis B: Environmental, 2023, 324, 122235.	10.8	9

#	Article	IF	CITATIONS
255	A Comprehensive Review on Advances in TiO2 Nanotube (TNT)-Based Photocatalytic CO2 Reduction to Value-Added Products. Energies, 2022, 15, 8751.	1.6	4
256	Atomically Dispersed Au-Assisted C–C Coupling on Red Phosphorus for CO ₂ Photoreduction to C ₂ H ₆ . Journal of the American Chemical Society, 2022, 144, 22075-22082.	6.6	49
257	Cobalt-Based Cocatalysts for Photocatalytic CO2 Reduction. Transactions of Tianjin University, 2022, 28, 506-532.	3.3	9
258	Process coupling of <scp>CO₂</scp> and glycerol comprehensive utilization based on anionic <scp>2D</scp> nanomaterial. AICHE Journal, 2023, 69, .	1.8	0
259	Wurtzite CuGaS ₂ with an In‣ituâ€Formed CuO Layer Photocatalyzes CO ₂ Conversion to Ethylene with High Selectivity. Angewandte Chemie, 2023, 135, .	1.6	3
260	ZIF-8 derived hierarchical ZnO@ZnFe2O4 hollow polyhedrons anchored with CdS for efficient photocatalytic CO2 reduction. Separation and Purification Technology, 2023, 309, 122970.	3.9	10
261	Intrinsic Charge Polarization in Bi ₁₉ S ₂₇ Cl ₃ Nanorods Promotes Selective Cï&¿C Coupling Reaction during Photoreduction of CO ₂ to Ethanol. Advanced Materials, 2023, 35, .	11.1	23
262	Wurtzite CuGaS ₂ with an In‣ituâ€Formed CuO Layer Photocatalyzes CO ₂ Conversion to Ethylene with High Selectivity. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
263	S-scheme heterojunction photocatalysts for CO2 reduction. Matter, 2022, 5, 4187-4211.	5.0	140
264	Engineering the Charge Density on an In _{2.77} S ₄ /Porous Organic Polymer Hybrid Photocatalyst for CO ₂ -to-Ethylene Conversion Reaction. Journal of the American Chemical Society, 2023, 145, 422-435.	6.6	36
265	Plasmonic Titanium Nitride/g-C ₃ N ₄ with Inherent Interface Facilitates Photocatalytic CO ₂ Reduction. ACS Applied Energy Materials, 2023, 6, 89-98.	2.5	6
266	Multi-Prismatic Hollow Cube CeVO4 with Adjustable Wall Thickness Directed towards Photocatalytic CO2 Reduction to CO. Nanomaterials, 2023, 13, 283.	1.9	1
267	Recent Advances in Electrochemical, Photochemical, and Photoelectrochemical Reduction of CO ₂ to C ₂₊ Products. Small, 2023, 19, .	5.2	30
268	Lightâ€Enhanced Conversion of CO ₂ to Light Olefins: Basis in Thermal Catalysis, Current Progress, and Future Prospects. Small Structures, 2023, 4, .	6.9	5
269	Rational design of MoS2@COF hybrid composites promoting C-C coupling for photocatalytic CO2 reduction to ethane. Applied Catalysis B: Environmental, 2023, 325, 122393.	10.8	24
270	Review of doping SrTiO3 for photocatalytic applications. Bulletin of Materials Science, 2023, 46, .	0.8	15
271	A Cu ^I Clusterâ€Based Covalent Metalâ€Organic Framework as a Photocatalyst for Efficient Visibleâ€Lightâ€Driven Reduction of CO ₂ . ChemSusChem, 2023, 16, .	3.6	4
273	Deciphering the Superior Electronic Transmission Induced by the Li–N Ligand Pairs Boosted Photocatalytic Hydrogen Evolution. Small, 0, , 2206673.	5.2	0

		CITATION REPORT		
#	Article		IF	Citations
275	Current prospects of carbon-based nanodots in photocatalytic CO2 conversion. , 2023	, , 295-340.		0
276	Single-site bipyridine cobalt complexes covalently embedded into graphitic carbon nitri excellent photocatalytic activity and selectivity towards CO ₂ reduction. N 15, 5036-5043.	de with lanoscale, 2023,	2.8	1
277	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ 1 Angewandte Chemie, 2023, 135, .	Reduction.	1.6	14
278	Dual-optimization strategy engineered Ti-based metal-organic framework with Fe active highly-selective CO2 photoreduction to formic acid. Applied Catalysis B: Environmental 122418.	e sites for I, 2023, 327,	10.8	19
279	Developing post-modified Ce-MOF as a photocatalyst: a detail mechanistic insight into reduction toward selective C2 product formation. Energy and Environmental Science, 2 2187-2198.	CO ₂ 2023, 16,	15.6	12
280	A Lead-Free 0D/2D Cs ₃ Bi ₂ Br ₉ /Bi ₂ S-Scheme Heterojunction for Efficient Photoreduction of CO ₂ . ACS Applie & Interfaces, 2023, 15, 9221-9230.	WO ₆ ed Materials	4.0	27
281	Is carrier mobility a limiting factor for charge transfer in TiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si29.svg" display="inline id="d1e669"><mml:msub><mml:mrow /><mml:mrow>2</mml:mrow></mml:mrow </mml:msub>/Si dev transient reflectance spectroscopy. Surfaces and Interfaces, 2023, 38, 102871.</mml:math 	?" /ices? A study by	1.5	0
282	Fabrication of layered In2S3/WS2 heterostructure for enhanced and efficient photocat reduction and various paraben degradation in water. Chemosphere, 2023, 322, 13823	alytic CO2 5.	4.2	6
283	Red anatase TiO2 microspheres with exposed major {0 0 1} facets and boron-stabilized hydrogen-occupied oxygen vacancies for visible-light-responsive water oxidation. Journ and Interface Science, 2023, 640, 211-219.	1 al of Colloid	5.0	2
284	Construction of Z-scheme É'-Fe2O3/graphene/Bi2O2S heterojunction for visible-light-d photocatalytic CO2 conversion. Separation and Purification Technology, 2023, 314, 12	riven 23607.	3.9	13
285	A combination of two swords thermo-bluelight-synergistic-catalytic CO2 cycloaddition exposed abundant of Zinc cation sites. Applied Catalysis B: Environmental, 2023, 331,	on ZnIn2S4 122732.	10.8	8
286	Visible Lightâ€Driven Conversion of Carbonâ€5equestrated Seawater into Stoichiomet with Nitrogenâ€Doped BiOCl Atomic Layers. Angewandte Chemie - International Editio	ric CO and HClO n, 2023, 62, .	7.2	17
287	Visible Lightâ€Driven Conversion of Carbonâ€Sequestrated Seawater into Stoichiomet with Nitrogenâ€Doped BiOCl Atomic Layers. Angewandte Chemie, 2023, 135, .	ric CO and HClO	1.6	0
288	Bone powder decorated TiO2 and ZnO nanoparticles: The first investigation of NOx de solar light and visible light-driven photocatalyst. Materials Chemistry and Physics, 2023	gradation by 8, 302, 127707.	2.0	0
289	Regulation of excitation energy transfer in Sb-alloyed Cs4MnBi2Cl12 perovskites for ef photoreduction to CO and water oxidation toward H2O2. Journal of Energy Chemistry,	ficient CO2 2023, 82, 18-24.	7.1	1
290	Cobalt single atom induced catalytic active site shift in carbon-doped BN for efficient p CO2 reduction. Applied Surface Science, 2023, 616, 156451.	hotodriven	3.1	3
291	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ 1 Angewandte Chemie - International Edition, 2023, 62, .	Reduction.	7.2	81
292	Internal electric field in carbon nitride-based heterojunctions for photocatalysis. Nano E 108, 108228.	Energy, 2023,	8.2	36

#	Article	IF	CITATIONS
293	Overcoming energy mismatch of metal oxide semiconductor catalysts for CO2 reduction with triboelectric plasma. Journal of Catalysis, 2023, 419, 1-8.	3.1	4
294	Anion vacancy correlated photocatalytic CO ₂ to CO conversion over quantum-confined CdS nanorods under visible light. Journal of Materials Chemistry A, 2023, 11, 3937-3941.	5.2	7
295	Highly Selective Ethylene Production from Solar-Driven CO ₂ Reduction on the Bi ₂ S ₃ @In ₂ S ₃ Catalyst with In–S _V –Bi Active Sites. ACS Catalysis, 2023, 13, 2302-2312.	5.5	32
296	Advances in Modulating the Activity and Selectivity of Photocatalytic CO ₂ Reduction to Multicarbon Products. Journal of Physical Chemistry C, 2023, 127, 2766-2781.	1.5	9
297	Multifunctional Au/Hydroxide Interface toward Enhanced C–C Coupling for Solar-Driven CO ₂ Reduction into C ₂ H ₆ . Inorganic Chemistry, 2023, 62, 2934-2941.	1.9	3
298	Constructing Robust Bi Active Sites In Situ on α-Bi ₂ O ₃ for Efficient and Selective Photoreduction of CO ₂ to CH ₄ via Directional Transfer of Electrons. ACS Catalysis, 2023, 13, 2513-2522.	5.5	22
299	Designing Heteroatom odoped Iron Metal–Organic Framework for Promotional Photoreduction of Carbon Dioxide to Ethylene. Angewandte Chemie, 2023, 135, .	1.6	2
300	Designing Heteroatom odoped Iron Metal–Organic Framework for Promotional Photoreduction of Carbon Dioxide to Ethylene. Angewandte Chemie - International Edition, 2023, 62, .	7.2	27
301	Selective CO ₂ Photoreduction to Acetate at Asymmetric Ternary Bridging Sites. ACS Nano, 2023, 17, 4922-4932.	7.3	16
303	Conversion of CO2 to Light Hydrocarbons by Using FeCx Catalysts Derived from Iron Nitrate Co-pyrolyzing with Melamine, Bulk g-C3N4, or Defective g-C3N4. Catalysis Surveys From Asia, 2023, 27, 260-269.	1.0	2
304	Conductive Polymersâ€Confined Metalâ€Organic Frameworks with Enhanced Activity for Highly Efficient Photocatalytic CO ₂ Reduction. ChemElectroChem, 2023, 10, .	1.7	1
305	Retrospective insights into recent MXene-based catalysts for CO ₂ electro/photoreduction: how far have we gone?. Nanoscale, 2023, 15, 6536-6562.	2.8	16
306	Functional polymers from CO2 as feedstock. , 2023, , 129-171.		0
307	Advanced hematite nanomaterials for newly emerging applications. Chemical Science, 2023, 14, 2776-2798.	3.7	12
308	Engineering Z-Scheme FeOOH/PCN with Fast Photoelectron Transfer and Surface Redox Kinetics for Efficient Solar-Driven CO ₂ Reduction. ACS Applied Materials & Interfaces, 2023, 15, 12957-12966.	4.0	6
309	Electronic effects promoted the catalytic activities of binuclear Co(<scp>ii</scp>) complexes for visible-light-driven CO ₂ reduction in a water-containing system. Dalton Transactions, 2023, 52, 4548-4553.	1.6	6
310	Construction and engineering of an interfacial structure in a Cu _{<i>x</i>} /FeMgO _{<i>y</i>} catalyst for the photoreduction of CO ₂ to ethylene. Catalysis Science and Technology, 2023, 13, 2458-2468.	2.1	1
311	Role of Co-catalysts for Photocatalytic H2O Splitting and CO2 Reduction. , 2023, , 231-274.		1

#	Article	IF	CITATIONS
312	Analysis of the Scale of Global Human Needs and Opportunities for Sustainable Catalytic Technologies. Topics in Catalysis, 2023, 66, 338-374.	1.3	6
313	Photocatalytic CO2 reduction: Photocatalysts, membrane reactors, and hybrid processes. Chem Catalysis, 2023, 3, 100550.	2.9	2
314	2D/2D Carbon Nitride/Zn-Doped Bismuth Vanadium Oxide S-Scheme Heterojunction for Enhancing Photocatalytic CO ₂ Reduction into Methanol. Industrial & Engineering Chemistry Research, 2023, 62, 5552-5562.	1.8	6
315	Tandem Photocatalysis of CO ₂ to C ₂ H ₄ via a Synergistic Rhenium-(I) Bipyridine/Copper-Porphyrinic Triazine Framework. Journal of the American Chemical Society, 2023, 145, 8261-8270.	6.6	34
316	In-situ electrochemical-ion-exchange synthesis of S-scheme 1D/2D BiPO4/BiOBr heterojunction film from Bi plate with highly efficient photocatalytic CO2 reduction activity. Catalysis Communications, 2023, 177, 106664.	1.6	6
337	Principles of photocatalysis. Interface Science and Technology, 2023, , 1-52.	1.6	0
342	Toward a Comprehensive Understanding of Photocatalysis: What Systematic Studies and Alcohol Surface Chemistry on TiO ₂ (110) Have to Offer for Future Developments. Journal of Physical Chemistry Letters, 2023, 14, 6193-6201.	2.1	1
351	A review of boron nitride-based photocatalysts for carbon dioxide reduction. Journal of Materials Chemistry A, 2023, 11, 11925-11963.	5.2	10
363	Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chemical Society Reviews, 2023, 52, 5388-5484.	18.7	9
375	Best practices for experiments and reporting in photocatalytic CO2 reduction. Nature Catalysis, 2023, 6, 657-665.	16.1	29
407	Chemical Looping for CO2 Conversion and Utilization—Recent Advances and Perspective. , 2024, , 173-190.		0
408	Piezocatalysis: a promising alternative route for CO ₂ reduction. Journal of Materials Chemistry A, 2023, 11, 24566-24590.	5.2	1
429	Progress in design and preparation of multi-atom catalysts for photocatalytic CO2 reduction. Science China Materials, 2024, 67, 397-423.	3.5	2
433	Metal halide perovskites for CO ₂ photoreduction: recent advances and future perspectives. , 2024, 2, 448-474.		0
439	Green synthesis of hypercrosslinked polymers for CO ₂ capture and conversion: recent advances, opportunities, and challenges. Green Chemistry, 2024, 26, 2476-2504.	4.6	1
451	Carbon dioxide sequestration, conversion and utilization. , 2024, , 571-589.		0