Shallow Landslide Susceptibility Mapping: A Compariso Logistic Regression, Naà ve Bayes Tree, Artificial Neur Machine Algorithms

International Journal of Environmental Research and Public He 17, 2749

DOI: 10.3390/ijerph17082749

Citation Report

#	Article	IF	CITATIONS
1	Seismic Vulnerability Assessment and Mapping of Gyeongju, South Korea Using Frequency Ratio, Decision Tree, and Random Forest. Sustainability, 2020, 12, 7787.	1.6	18
2	Risk prediction of household mite infestation based on machine learning. Building and Environment, 2020, 183, 107154.	3.0	5
3	Susceptibility Mapping on Urban Landslides Using Deep Learning Approaches in Mt. Umyeon. Applied Sciences (Switzerland), 2020, 10, 8189.	1.3	25
4	Landslide Detection and Susceptibility Modeling on Cameron Highlands (Malaysia): A Comparison between Random Forest, Logistic Regression and Logistic Model Tree Algorithms. Forests, 2020, 11, 830.	0.9	57
5	Towards an Ensemble Machine Learning Model of Random Subspace Based Functional Tree Classifier for Snow Avalanche Susceptibility Mapping. IEEE Access, 2020, 8, 145968-145983.	2.6	50
6	Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment. International Journal of Environmental Research and Public Health, 2020, 17, 4933.	1.2	84
7	Susceptibility Mapping of Soil Water Erosion Using Machine Learning Models. Water (Switzerland), 2020, 12, 1995.	1.2	92
8	Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping. Catena, 2020, 195, 104805.	2.2	90
9	Application of Advanced Machine Learning Algorithms to Assess Groundwater Potential Using Remote Sensing-Derived Data. Remote Sensing, 2020, 12, 2742.	1.8	46
10	Comparison of Support Vector Machine, Bayesian Logistic Regression, and Alternating Decision Tree Algorithms for Shallow Landslide Susceptibility Mapping along a Mountainous Road in the West of Iran. Applied Sciences (Switzerland), 2020, 10, 5047.	1.3	50
11	GIS-Based Machine Learning Algorithms for Gully Erosion Susceptibility Mapping in a Semi-Arid Region of Iran. Remote Sensing, 2020, 12, 2478.	1.8	92
12	Surface Motion Prediction and Mapping for Road Infrastructures Management by PS-InSAR Measurements and Machine Learning Algorithms. Remote Sensing, 2020, 12, 3976.	1.8	25
13	Performance Evaluation and Comparison of Bivariate Statistical-Based Artificial Intelligence Algorithms for Spatial Prediction of Landslides. ISPRS International Journal of Geo-Information, 2020, 9, 696.	1.4	14
14	Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Science Reviews, 2020, 207, 103225.	4.0	470
15	GIS-based ensemble soft computing models for landslide susceptibility mapping. Advances in Space Research, 2020, 66, 1303-1320.	1.2	30
16	Ensemble machine learning models based on Reduced Error Pruning Tree for prediction of rainfall-induced landslides. International Journal of Digital Earth, 2021, 14, 575-596.	1.6	28
17	Deep learning neural networks for spatially explicit prediction of flash flood probability. Geoscience Frontiers, 2021, 12, 101076.	4.3	60
18	Exploring novel hybrid soft computing models for landslide susceptibility mapping in Son La hydropower reservoir basin. Geomatics, Natural Hazards and Risk, 2021, 12, 1688-1714.	2.0	8

#	Article	IF	CITATIONS
20	Ensemble-Based Logistic Model Trees for Website Phishing Detection. Communications in Computer and Information Science, 2021, , 627-641.	0.4	11
21	A comparative study of the bivariate, multivariate and machine-learning-based statistical models for landslide susceptibility mapping in a seismic-prone region in China. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	13
22	Strategic Management of Sales Assisted by Machine Learning: A Case Study in a Large Food Business. , 0, , .		0
23	A Real-Time Artificial Intelligence-Assisted System to Predict Weaning from Ventilator Immediately after Lung Resection Surgery. International Journal of Environmental Research and Public Health, 2021, 18, 2713.	1.2	20
24	Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover/Use Classification Using a Comparison between Machine Learning Algorithms. Remote Sensing, 2021, 13, 1349.	1.8	61
25	Spatial prediction of landslides along National Highway-6, Hoa Binh province, Vietnam using novel hybrid models. Geocarto International, 2022, 37, 5201-5226.	1.7	12
26	Performance Evaluation of GIS-Based Novel Ensemble Approaches for Land Subsidence Susceptibility Mapping. Frontiers in Earth Science, 2021, 9, .	0.8	14
27	Landslide susceptibility mapping using state-of-the-art machine learning ensembles. Geocarto International, 2022, 37, 5175-5200.	1.7	20
29	Comparison of statistical and machine learning approaches in land subsidence modelling. Geocarto International, 2022, 37, 6165-6185.	1.7	5
30	On the rainfall induced deep-seated and shallow landslide hazard in Taiwan. Engineering Geology, 2021, 288, 106156.	2.9	16
31	A New Approach for Regional Groundwater Level Simulation: Clustering, Simulation, and Optimization. Natural Resources Research, 2021, 30, 4165-4185.	2.2	17
32	Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models. Sensors, 2021, 21, 4620.	2.1	20
33	Analyzing sensitivity of flood susceptible model in a flood plain river basin. Geocarto International, 2022, 37, 7186-7219.	1.7	15
34	Landslide Susceptibility Modeling: An Integrated Novel Method Based on Machine Learning Feature Transformation. Remote Sensing, 2021, 13, 3281.	1.8	29
35	GIS-based comparative study of Bayes network, Hoeffding tree and logistic model tree for landslide susceptibility modeling. Catena, 2021, 203, 105344.	2.2	47
36	GIS-Based Data Integration Approach for Rainfall-Induced Slope Failure Susceptibility Mapping in Clayey Soils. Natural Hazards Review, 2021, 22, .	0.8	10
37	GIS-Based Soft Computing Models for Landslide Susceptibility Mapping: A Case Study of Pithoragarh District, Uttarakhand State, India. Mathematical Problems in Engineering, 2021, 2021, 1-19.	0.6	17
38	Landslide prediction based on improved principal component analysis and mixed kernel function least squares support vector regression model. Journal of Mountain Science, 2021, 18, 2130-2142.	0.8	12

#	Article	IF	CITATIONS
39	Multiclassification Method of Landslide Risk Assessment in Consideration of Disaster Levels: A Case Study of Xianyang City, Shaanxi Province. ISPRS International Journal of Geo-Information, 2021, 10, 646.	1.4	12
40	Impact of Climate Change on Future Flood Susceptibility: an Evaluation Based on Deep Learning Algorithms and GCM Model. Water Resources Management, 2021, 35, 4251-4274.	1.9	22
41	Linking hydrological security and landscape insecurity in the moribund deltaic wetland of India using tree-based hybrid ensemble method in python. Ecological Informatics, 2021, 65, 101422.	2.3	10
42	Application of artificial intelligence in the dental field: A literature review. Journal of Prosthodontic Research, 2022, 66, 19-28.	1.1	9
43	Landslide susceptibility mapping using Forest by Penalizing Attributes (FPA) algorithm based machine learning approach. Vietnam Journal of Earth Sciences, 2020, 42, .	1.0	7
44	COVID-19: A master stroke of Nature. AIMS Public Health, 2020, 7, 393-402.	1.1	7
45	Landslide Susceptibility Assessment Using an AutoML Framework. International Journal of Environmental Research and Public Health, 2021, 18, 10971.	1.2	16
46	Landslide susceptibility zonation of the Western Ghats region in Thiruvananthapuram district (Kerala) using geospatial tools: A comparison of theÂAHP and Fuzzy-AHP methods. Safety in Extreme Environments, 2021, 3, 181-202.	1.8	9
47	Modeling riparian flood plain wetland water richness in pursuance of damming and linking it with a methane emission rate. Geocarto International, 2022, 37, 7954-7982.	1.7	9
49	Dust source susceptibility mapping in Tigris and Euphrates basin using remotely sensed imagery. Catena, 2022, 209, 105795.	2.2	26
50	Sentiment Analysis in Hindi—A Survey on the State-of-the-art Techniques. ACM Transactions on Asian and Low-Resource Language Information Processing, 2022, 21, 1-46.	1.3	8
51	Changes of surface recovery at coseismic landslides and their driving factors in the Wenchuan earthquake-affected area. Catena, 2022, 210, 105871.	2.2	9
52	Investigating causal factors of shallow landslides in grassland regions of Switzerland. Natural Hazards and Earth System Sciences, 2021, 21, 3421-3437.	1.5	4
53	Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine. Journal of Environmental Planning and Management, 2023, 66, 665-697.	2.4	55
54	Application of Frequency Ratio Method for Landslide Susceptibility Mapping in the Surkhob Valley, Tajikistan. Journal of Geoscience and Environment Protection, 2021, 09, 168-189.	0.2	3
55	Landslide Susceptibility Prediction Based on Positive Unlabeled Learning Coupled With Adaptive Sampling. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 11581-11592.	2.3	12
57	An app to classify a 5-year survival in patients with breast cancer using the convolutional neural networks (CNN) in Microsoft Excel. Medicine (United States), 2022, 101, e28697.	0.4	6
58	Impact of Rainfall-Induced Landslide Susceptibility Risk on Mountain Roadside in Northern Thailand. Infrastructures, 2022, 7, 17.	1.4	3

#	Article	IF	CITATIONS
59	Comparing machine learning algorithms for predicting COVID-19 mortality. BMC Medical Informatics and Decision Making, 2022, 22, 2.	1.5	58
60	Evaluation of the landslide susceptibility and its spatial difference in the whole Qinghai-Tibetan Plateau region by five learning algorithms. Geoscience Letters, 2022, 9, .	1.3	16
61	A comparative analysis of weight-based machine learning methods for landslide susceptibility mapping in Ha Giang area. Big Earth Data, 2023, 7, 1005-1034.	2.0	15
62	Web-Based Skin Cancer Assessment and Classification Using Machine Learning and Mobile Computerized Adaptive Testing in a Rasch Model: Development Study. JMIR Medical Informatics, 2022, 10, e33006.	1.3	6
63	Permafrost degradation induced thaw settlement susceptibility research and potential risk analysis in the Qinghai-Tibet Plateau. Catena, 2022, 214, 106239.	2.2	16
65	Landslide susceptibility mapping using GIS-based machine learning algorithms for the Northeast Chongqing Area, China. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	6
66	Landslide susceptibility modeling based on GIS and ensemble techniques. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	4
67	Application of novel deep boosting framework-based earthquake induced landslide hazards prediction approach in Sikkim Himalaya. Geocarto International, 2022, 37, 12509-12535.	1.7	11
68	Development of a Semi-quantitative Framework to Assess Rockburst Risk Using Risk Matrix and Logistic Model Tree. Geotechnical and Geological Engineering, 2022, 40, 3669-3685.	0.8	8
69	Insight into structural composition of dissolved organic matter in saline-alkali soil by fluorescence spectroscopy coupled with self-organizing map and structural equation modeling. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 279, 121311.	2.0	6
70	A Statistical Prediction Model for Healthcare and Landslide Sensitivity Evaluation in Coal Mining Subsidence Area. Computational Intelligence and Neuroscience, 2022, 2022, 1-11.	1.1	4
71	HRM Risk Early Warning Based on a Hybrid Solution of Decision Tree and Support Vector Machine. Wireless Communications and Mobile Computing, 2022, 2022, 1-7.	0.8	2
72	Comparing Convolutional Neural Network and Machine Learning Models in Landslide Susceptibility Mapping: A Case Study in Wenchuan County. Frontiers in Environmental Science, 2022, 10, .	1.5	9
73	Landslide Susceptibility Mapping Using Machine Learning: A Danish Case Study. ISPRS International Journal of Geo-Information, 2022, 11, 324.	1.4	7
74	Impact of river flow modification on wetland hydrological and morphological characters. Environmental Science and Pollution Research, 2022, 29, 75769-75789.	2.7	12
75	Cotton Leaf Disease Classification by Combining Color and Texture Feature-based Approach. , 2022, , .		2
76	Landslide Susceptibility Mapping Using Machine Learning: A Literature Survey. Remote Sensing, 2022, 14, 3029.	1.8	46
77	Landslide Susceptibility Research Combining Qualitative Analysis and Quantitative Evaluation: A Case Study of Yunyang County in Chongqing, China. Forests, 2022, 13, 1055.	0.9	15

#	Article	IF	CITATIONS
78	Modeling landslide susceptibility using data mining techniques of kernel logistic regression, fuzzy unordered rule induction algorithm, SysFor and random forest. Natural Hazards, 2022, 114, 3327-3358.	1.6	6
79	Spatial mapping of landslide susceptibility in Jerash governorate of Jordan using genetic algorithm-based wrapper feature selection and bagging-based ensemble model. Geomatics, Natural Hazards and Risk, 2022, 13, 2252-2282.	2.0	8
80	Threats of soil erosion under CMIP6 SSPs scenarios: an integrated data mining techniques and geospatial approaches. Geocarto International, 2024, 37, 17307-17339.	1.7	5
82	Spatial Prediction of the Groundwater Potential Using Remote Sensing Data and Bivariate Statistical-Based Artificial Intelligence Models. Water Resources Management, 0, , .	1.9	0
83	Landslide hazard and susceptibility maps derived from satellite and remote sensing data using limit equilibrium analysis and machine learning model. Natural Hazards, 2023, 116, 235-265.	1.6	2
84	Uncertainty guided pruning of classification model tree. Knowledge-Based Systems, 2023, 259, 110067.	4.0	4
85	Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture. International Journal of Environmental Research and Public Health, 2022, 19, 14248.	1.2	11
86	An efficient smart data mining framework based cloud internet of things for developing artificial intelligence of marketing information analysis. Information Processing and Management, 2023, 60, 103121.	5.4	10
87	Risk evaluation of thaw settlement using machine learning models for the Wudaoliang-Tuotuohe region, Qinghai-Tibet Plateau. Catena, 2023, 220, 106700.	2.2	5
88	Stacking ensemble approach in data mining methods for landslide prediction. Journal of Supercomputing, 2023, 79, 8583-8610.	2.4	1
89	Landslide susceptibility assessment using the certainty factor and deep neural network. Frontiers in Earth Science, 0, 10, .	0.8	5
90	Using the integrated application of computational intelligence for landslide susceptibility modeling in East Azerbaijan Province, Iran. Applied Geomatics, 2023, 15, 109-125.	1.2	1
91	A comprehensive review of machine learningâ€based methods in landslide susceptibility mapping. Geological Journal, 2023, 58, 2283-2301.	0.6	44
92	Machine learning based landslide susceptibility mapping models and GB-SAR based landslide deformation monitoring systems: Growth and evolution. Remote Sensing Applications: Society and Environment, 2023, 29, 100905.	0.8	5
93	Modeling of Landslide Susceptibility Mapping Using State-Of-Art Machine Learning Models. , 2022, , .		1
94	Comparisons of Convolutional Neural Network and Other Machine Learning Methods in Landslide Susceptibility Assessment: A Case Study in Pingwu. Remote Sensing, 2023, 15, 798.	1.8	13
95	Climate-Induced and Geophysical Disasters and Risk Reduction Management in Mountains Regions. , 2023, , 361-405.		2
96	Lightweight deep learning model for automatic landslide prediction and localization. Multimedia Tools and Applications, 2023, 82, 33245-33266.	2.6	1

CITAT	ION.	DEDODT
CHAI	IUN	REPORT

#	Article	IF	CITATIONS
97	A Framework for Determining the Big Five Personality Traits Using Machine Learning Classification through Graphology. Journal of Electrical and Computer Engineering, 2023, 2023, 1-15.	0.6	2
98	A Comparative Analysis of Machine Learning Models: A Case Study in Predicting Chronic Kidney Disease. Sustainability, 2023, 15, 2754.	1.6	13
99	Rangeland species potential mapping using machine learning algorithms. Ecological Engineering, 2023, 189, 106900.	1.6	4
100	Regional mapping and monitoring land use/land cover changes: a modified approach using an ensemble machine learning and multitemporal Landsat data. Geocarto International, 2023, 38, .	1.7	2
101	Landslide Susceptibility Mapping Using DIvisive ANAlysis (DIANA) and RObust Clustering Using linKs (ROCK) Algorithms, and Comparison of Their Performance. Sustainability, 2023, 15, 4218.	1.6	3
102	Insights into spatial differential characteristics of landslide susceptibility from sub-region to whole-region cased by northeast Chongqing, China. Geomatics, Natural Hazards and Risk, 2023, 14, .	2.0	5
103	Logistic regression prediction models and key influencing factors analysis of diabetes based on algorithm design. Neural Computing and Applications, 0, , .	3.2	0
104	Detecting dengue fever in children using online Rasch analysis to develop algorithms for parents: An APP development and usability study. Medicine (United States), 2023, 102, e33296.	0.4	1
105	Evaluation of predicted loss of different land use and land cover (LULC) due to coastal erosion in Bangladesh. Frontiers in Environmental Science, 0, 11, .	1.5	3
106	3DCNN landslide susceptibility considering spatial-factor features. Frontiers in Environmental Science, 0, 11, .	1.5	0
116	Application of Transfer Learning to Improve Landslide Susceptibility Modeling Performance. , 2023, , 79-97.		0
117	Landslide Susceptibility Research Combining Qualitative Analysis and Quantitative Evaluation: A Case Study of Yunyang County in Chongqing, China. , 2023, , 61-77.		0
136	Secure Sustainable Computing and Congestion Aware: Energy Efficient Wireless Sensor Network Based Smart Parking Management System. , 2023, , .		0
138	Finding the Best Techniques for Predicting Term Deposit Subscriptions (Case Study UCI Machine) Tj ETQq1 1 0.7	84314 rgE	3T /Overlock
139	A Comparison ofÂOne-Class Versus Two-Class Machine Learning Models forÂWildfire Prediction inÂCalifornia. Communications in Computer and Information Science, 2024, , 239-253.	0.4	0
150	A survey of different Whale Optimization Algorithm applications in water engineering and management. , 2024, , 613-624.		0