The Architecture of SARS-CoV-2 Transcriptome

Cell 181, 914-921.e10 DOI: 10.1016/j.cell.2020.04.011

Citation Report

#	Article	IF	CITATIONS
1	Intra-genome variability in the dinucleotide composition of SARS-CoV-2. Virus Evolution, 2020, 6, veaa057.	2.2	33
2	The COVID-19 pandemic: a global health crisis. Physiological Genomics, 2020, 52, 549-557.	1.0	281
3	Severe Acute Respiratory Syndrome Coronavirus 2, COVID-19, and the Renin-Angiotensin System. Hypertension, 2020, 76, 1350-1367.	1.3	46
4	Drug Weaponry to Fight Against SARS-CoV-2. Frontiers in Molecular Biosciences, 2020, 7, 204.	1.6	2
5	Differential Expression of Viral Transcripts From Single-Cell RNA Sequencing of Moderate and Severe COVID-19 Patients and Its Implications for Case Severity. Frontiers in Microbiology, 2020, 11, 603509.	1.5	34
6	Structural analysis of SARS-CoV-2 genome and predictions of the human interactome. Nucleic Acids Research, 2020, 48, 11270-11283.	6.5	73
7	Analytical Sensitivity and Specificity of Two RT-qPCR Protocols for SARS-CoV-2 Detection Performed in an Automated Workflow. Genes, 2020, 11, 1183.	1.0	38
8	Identification of novel mutations in the methyltransferase complex (Nsp10-Nsp16) of SARS-CoV-2. Biochemistry and Biophysics Reports, 2020, 24, 100833.	0.7	13
9	iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Research, 2020, 288, 198129.	1.1	226
10	Contamination-free visual detection of SARS-CoV-2 with CRISPR/Cas12a: A promising method in the point-of-care detection. Biosensors and Bioelectronics, 2020, 169, 112642.	5.3	136
11	High-resolution structures of the SARS-CoV-2 2′- <i>O</i> -methyltransferase reveal strategies for structure-based inhibitor design. Science Signaling, 2020, 13, .	1.6	143
12	Toward Understanding Molecular Bases for Biological Diversification of Human Coronaviruses: Present Status and Future Perspectives. Frontiers in Microbiology, 2020, 11, 2016.	1.5	11
13	Three-Dimensional Human Alveolar Stem Cell Culture Models Reveal Infection Response to SARS-CoV-2. Cell Stem Cell, 2020, 27, 905-919.e10.	5.2	195
14	SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses. Cell, 2020, 183, 1325-1339.e21.	13.5	442
15	Convalescent plasma therapy: a promising coronavirus disease 2019 treatment strategy. Open Biology, 2020, 10, 200174.	1.5	15
16	Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, 2020, 587, 657-662.	13.7	818
17	Proteomics Insights Into the Molecular Basis of SARS-CoV-2 Infection: What We Can Learn From the Human Olfactory Axis. Frontiers in Microbiology, 2020, 11, 2101.	1.5	13
18	Subcutaneous tocilizumab in adults with severe and critical COVID-19: A prospective open-label uncontrolled multicenter trial. International Immunopharmacology, 2020, 89, 107102.	1.7	27

#	Article	IF	CITATIONS
19	A compromised specific humoral immune response against the SARS-CoV-2 receptor-binding domain is related to viral persistence and periodic shedding in the gastrointestinal tract. Cellular and Molecular Immunology, 2020, 17, 1119-1125.	4.8	67
20	Host-pathogen interaction in COVID-19: Pathogenesis, potential therapeutics and vaccination strategies. Immunobiology, 2020, 225, 152008.	0.8	65
21	Coronaviruses: Innate Immunity, Inflammasome Activation, Inflammatory Cell Death, and Cytokines. Trends in Immunology, 2020, 41, 1083-1099.	2.9	154
22	Structural insight into the recognition of S-adenosyl-L-homocysteine and sinefungin in SARS-CoV-2 Nsp16/Nsp10 RNA cap 2′-O-Methyltransferase. Computational and Structural Biotechnology Journal, 2020, 18, 2757-2765.	1.9	25
23	Emerging strategies on in silico drug development against COVID-19: challenges and opportunities. European Journal of Pharmaceutical Sciences, 2020, 155, 105522.	1.9	25
24	Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut, 2021, 70, gutjnl-2020-322294.	6.1	314
25	Remdesivir-bound and ligand-free simulations reveal the probable mechanism of inhibiting the RNA dependent RNA polymerase of severe acute respiratory syndrome coronavirus 2. RSC Advances, 2020, 10, 26792-26803.	1.7	44
26	The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. Journal of NeuroImmune Pharmacology, 2020, 15, 359-386.	2.1	391
27	Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of Covid-19. Cellular Signalling, 2020, 74, 109721.	1.7	105
28	The molecular virology of coronaviruses. Journal of Biological Chemistry, 2020, 295, 12910-12934.	1.6	365
29	Minireview of progress in the structural study of SARS-CoV-2 proteins. Current Research in Microbial Sciences, 2020, 1, 53-61.	1.4	43
30	SARS-CoV-2/COVID-19: aÂprimer for cardiologists. Netherlands Heart Journal, 2020, 28, 366-383.	0.3	17
31	Therapeutic dilemma in the repression of severe acute respiratory syndrome coronavirusâ€⊋ proteome. Drug Development Research, 2020, 81, 942-949.	1.4	4
33	Phosphoregulation of Phase Separation by the SARS-CoV-2ÂN Protein Suggests a Biophysical Basis for its Dual Functions. Molecular Cell, 2020, 80, 1092-1103.e4.	4.5	253
34	Design of a multi-epitope-based vaccine targeting M-protein of SARS-CoV2: an immunoinformatics approach. Journal of Biomolecular Structure and Dynamics, 2022, 40, 2963-2977.	2.0	52
35	Translational control of coronaviruses. Nucleic Acids Research, 2020, 48, 12502-12522.	6.5	43
36	Pervasive generation of non-canonical subgenomic RNAs by SARS-CoV-2. Genome Medicine, 2020, 12, 108.	3.6	54
37	Role of Oxidative Stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) Infection: A Review. Protein Journal, 2020, 39, 644-656.	0.7	213

#	Article	IF	CITATIONS
38	ACE2 partially dictates the host range and tropism of SARS-CoV-2. Computational and Structural Biotechnology Journal, 2020, 18, 4040-4047.	1.9	31
39	A drug screening toolkit based on the –1 ribosomal frameshifting of SARS-CoV-2. Heliyon, 2020, 6, e04793.	1.4	27
40	miR-1207-5p Can Contribute to Dysregulation of Inflammatory Response in COVID-19 via Targeting SARS-CoV-2 RNA. Frontiers in Cellular and Infection Microbiology, 2020, 10, 586592.	1.8	32
41	Coronavirus diseases 2019: Current biological situation and potential therapeutic perspective. European Journal of Pharmacology, 2020, 886, 173447.	1.7	24
42	<p>Molecular Basis for Pathogenicity of Human Coronaviruses</p> . Infection and Drug Resistance, 2020, Volume 13, 2385-2405.	1.1	8
43	Coronavirus in cat flea: findings and questions regarding COVID-19. Parasites and Vectors, 2020, 13, 409.	1.0	14
44	Geographic and Genomic Distribution of SARS-CoV-2 Mutations. Frontiers in Microbiology, 2020, 11, 1800.	1.5	499
45	Detection of COVID-19: A review of the current literature and future perspectives. Biosensors and Bioelectronics, 2020, 166, 112455.	5.3	302
46	Viral subversion of nonsense-mediated mRNA decay. Rna, 2020, 26, 1509-1518.	1.6	24
47	Critical Roles of N6-Methyladenosine (m6A) in Cancer and Virus Infection. Biomolecules, 2020, 10, 1071.	1.8	16
48	Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome Medicine, 2020, 12, 68.	3.6	386
49	The four horsemen of a viral Apocalypse: The pathogenesis of SARS-CoV-2 infection (COVID-19). EBioMedicine, 2020, 58, 102887.	2.7	114
50	Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Molecular Cell, 2020, 79, 710-727.	4.5	326
51	Host Transcriptional Response to Persistent Infection with a Live-Attenuated Porcine Reproductive and Respiratory Syndrome Virus Strain. Viruses, 2020, 12, 817.	1.5	6
52	Plants Metabolites: Possibility of Natural Therapeutics Against the COVID-19 Pandemic. Frontiers in Medicine, 2020, 7, 444.	1.2	119
53	SARS-CoV-2-specific ELISA development. Journal of Immunological Methods, 2020, 484-485, 112832.	0.6	77
54	Molecular diagnostic technologies for COVID-19: Limitations and challenges. Journal of Advanced Research, 2020, 26, 149-159.	4.4	254
55	A fully automated centrifugal microfluidic system for sample-to-answer viral nucleic acid testing. Science China Chemistry, 2020, 63, 1498-1506.	4.2	63

#	Article	IF	CITATIONS
56	Sequence-based prediction of SARS-CoV-2 vaccine targets using a mass spectrometry-based bioinformatics predictor identifies immunogenic T cell epitopes. Genome Medicine, 2020, 12, 70.	3.6	71
57	SARS-CoV-2 renal tropism associates with acute kidney injury. Lancet, The, 2020, 396, 597-598.	6.3	253
58	Transcriptomic analysis reveals novel mechanisms of SARSâ€CoVâ€2 infection in human lung cells. Immunity, Inflammation and Disease, 2020, 8, 753-762.	1.3	13
59	Designing of cytotoxic and helper T cell epitope map provides insights into the highly contagious nature of the pandemic novel coronavirus SARS-CoV-2. Royal Society Open Science, 2020, 7, 201141.	1.1	18
60	A Testimony of the Surgent SARS-CoV-2 in the Immunological Panorama of the Human Host. Frontiers in Cellular and Infection Microbiology, 2020, 10, 575404.	1.8	4
61	SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28344-28354.	3.3	421
62	SARS-CoV-2 Is Restricted by Zinc Finger Antiviral Protein despite Preadaptation to the Low-CpG Environment in Humans. MBio, 2020, 11, .	1.8	106
63	Electrochemical SARS-CoV-2 Sensing at Point-of-Care and Artificial Intelligence for Intelligent COVID-19 Management. ACS Applied Bio Materials, 2020, 3, 7306-7325.	2.3	171
64	End-to-End Protocol for the Detection of SARS-CoV-2 from Built Environments. MSystems, 2020, 5, .	1.7	21
65	Nonstructural Protein 1 of SARS-CoV-2 Is a Potent Pathogenicity Factor Redirecting Host Protein Synthesis Machinery toward Viral RNA. Molecular Cell, 2020, 80, 1055-1066.e6.	4.5	152
66	Roadmap to the Bioanalytical Testing of COVID-19: From Sample Collection to Disease Surveillance. ACS Sensors, 2020, 5, 3328-3345.	4.0	37
67	COMPLEXITY AND INFORMATION-BASED ANALYSIS OF THE VARIATIONS OF THE SARS-COV-2 GENOME IN THE UNITED STATES OF AMERICA (USA). Fractals, 2020, 28, 2150023.	1.8	18
68	Direct or Collateral Liver Damage in SARS-CoV-2–Infected Patients. Seminars in Liver Disease, 2020, 40, 321-330.	1.8	29
69	Artificial Intelligence-Assisted Loop Mediated Isothermal Amplification (AI-LAMP) for Rapid Detection of SARS-CoV-2. Viruses, 2020, 12, 972.	1.5	40
70	Coronaviruses and stress: from cellular to global. Cell Stress and Chaperones, 2020, 25, 701-705.	1.2	9
71	Molecular Architecture of the SARS-CoV-2 Virus. Cell, 2020, 183, 730-738.e13.	13.5	793
72	RNAâ€dependent RNA polymerase, RdRP, a promising therapeutic target for cancer and potentially COVIDâ€19. Cancer Science, 2020, 111, 3976-3984.	1.7	44
73	A Comprehensive, Flexible Collection of SARS-CoV-2 Coding Regions. G3: Genes, Genomes, Genetics, 2020, 10, 3399-3402.	0.8	48

#	Article	IF	Citations
74	Epigenetic susceptibility to severe respiratory viral infections and its therapeutic implications: a narrative review. British Journal of Anaesthesia, 2020, 125, 1002-1017.	1.5	36
75	Antivirals Against Coronaviruses: Candidate Drugs for SARS-CoV-2 Treatment?. Frontiers in Microbiology, 2020, 11, 1818.	1.5	81
76	Characterization of accessory genes in coronavirus genomes. Virology Journal, 2020, 17, 131.	1.4	137
77	It's the Little Things (in Viral RNA). MBio, 2020, 11, .	1.8	11
78	<scp>SARSâ€CoV</scp> â€2 multifaceted interaction with human host. Part I: What we have learnt and done so far, and the still unknown realities. IUBMB Life, 2020, 72, 2313-2330.	1.5	10
79	A Concise Review of Baseline Facts of SARSâ€CoVâ€2 for Interdisciplinary Research. ChemistrySelect, 2020, 5, 10897-10923.	0.7	4
80	SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nature Structural and Molecular Biology, 2020, 27, 959-966.	3.6	432
81	Repurposing of FDA-Approved Toremifene to Treat COVID-19 by Blocking the Spike Glycoprotein and NSP14 of SARS-CoV-2. Journal of Proteome Research, 2020, 19, 4670-4677.	1.8	55
82	Exploring the coronavirus pandemic with the WashU Virus Genome Browser. Nature Genetics, 2020, 52, 986-991.	9.4	13
83	The UCSC SARS-CoV-2 Genome Browser. Nature Genetics, 2020, 52, 991-998.	9.4	79
84	A Predicting Nomogram for Mortality in Patients With COVID-19. Frontiers in Public Health, 2020, 8, 461.	1.3	19
85	Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development. Frontiers in Artificial Intelligence, 2020, 3, 65.	2.0	137
86	Conserved Genomic Terminals of SARS-CoV-2 as Coevolving Functional Elements and Potential Therapeutic Targets. MSphere, 2020, 5, .	1.3	41
87	Antagonism of Type I Interferon by Severe Acute Respiratory Syndrome Coronavirus 2. Journal of Interferon and Cytokine Research, 2020, 40, 543-548.	0.5	31
88	SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication. Nature Communications, 2020, 11, 6059.	5.8	254
89	Analysis of Mortality and Morbidity in COVID-19 Patients with Obesity Using Clinical Epidemiological Data from the Korean Center for Disease Control & Prevention. International Journal of Environmental Research and Public Health, 2020, 17, 9336.	1.2	16
90	The Future of Livestock Management: A Review of Real-Time Portable Sequencing Applied to Livestock. Genes, 2020, 11, 1478.	1.0	9
91	Whole Genome Identification of Potential G-Quadruplexes and Analysis of the G-Quadruplex Binding Domain for SARS-CoV-2. Frontiers in Genetics, 2020, 11, 587829.	1.1	35

#	Article	IF	CITATIONS
92	SARS-Cov-2 Interactome with Human Ghost Proteome: A Neglected World Encompassing a Wealth of Biological Data. Microorganisms, 2020, 8, 2036.	1.6	2
93	Efficient SARS-CoV-2 detection in unextracted oro-nasopharyngeal specimens by rRT-PCR with the Seegene Allplexâ"¢ 2019-nCoV assay. Virology Journal, 2020, 17, 196.	1.4	24
94	Structural and functional comparison of SARS-CoV-2-spike receptor binding domain produced in Pichia pastoris and mammalian cells. Scientific Reports, 2020, 10, 21779.	1.6	89
95	Coronavirus disease 2019 (COVID-19), human erythrocytes and the PKC-alpha/-beta inhibitor chelerythrine –possible therapeutic implication. Cell Cycle, 2020, 19, 3399-3405.	1.3	14
96	Genomic RNA Elements Drive Phase Separation of the SARS-CoV-2 Nucleocapsid. Molecular Cell, 2020, 80, 1078-1091.e6.	4.5	255
97	Pathophysiology of SARS-CoV-2 in Lung of Diabetic Patients. Frontiers in Physiology, 2020, 11, 587013.	1.3	12
98	Comprehensive Structural and Molecular Comparison of Spike Proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and Their Interactions with ACE2. Cells, 2020, 9, 2638.	1.8	138
99	Role of SARS-CoV-2 in Altering the RNA-Binding Protein and miRNA-Directed Post-Transcriptional Regulatory Networks in Humans. International Journal of Molecular Sciences, 2020, 21, 7090.	1.8	28
100	Threading the Pieces Together: Integrative Perspective on SARS-CoV-2. Pathogens, 2020, 9, 912.	1.2	6
101	Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer. Cell, 2020, 183, 1901-1912.e9.	13.5	618
102	Advanced "lab-on-a-chip―to detect viruses – Current challenges and future perspectives. Biosensors and Bioelectronics, 2020, 163, 112291.	5.3	99
103	Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm, 2020, 17, 1463-1471.	0.3	567
104	SARS-CoV-2/COVID-19: Viral Genomics, Epidemiology, Vaccines, and Therapeutic Interventions. Viruses, 2020, 12, 526.	1.5	197
105	RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses: a first look. Rna, 2020, 26, 937-959.	1.6	211
106	Biochemical indicators of coronavirus disease 2019 exacerbation and the clinical implications. Pharmacological Research, 2020, 159, 104946.	3.1	26
107	Physicochemical properties of SARSâ $\in \mathbb{C}$ oVâ $\in 2$ for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control. Electrophoresis, 2020, 41, 1137-1151.	1.3	99
108	A multiscale model of virus pandemic: Heterogeneous interactive entities in a globally connected world. Mathematical Models and Methods in Applied Sciences, 2020, 30, 1591-1651.	1.7	105
1			

#	Article	IF	CITATIONS
110	RNA-GPS Predicts SARS-CoV-2 RNA Residency to Host Mitochondria and Nucleolus. Cell Systems, 2020, 11, 102-108.e3.	2.9	119
111	The potential of JAK/STAT pathway inhibition by ruxolitinib in the treatment of COVID-19. Cytokine and Growth Factor Reviews, 2020, 54, 51-61.	3.2	84
112	Mass Spectrometric Identification of SARS-CoV-2 Proteins from Gargle Solution Samples of COVID-19 Patients. Journal of Proteome Research, 2020, 19, 4389-4392.	1.8	159
113	Nanotechnology for COVID-19: Therapeutics and Vaccine Research. ACS Nano, 2020, 14, 7760-7782.	7.3	289
114	Molecular Diagnosis of COVID-19: Challenges and Research Needs. Analytical Chemistry, 2020, 92, 10196-10209.	3.2	294
115	Nanopore Targeted Sequencing for the Accurate and Comprehensive Detection of SARSâ€CoVâ€2 and Other Respiratory Viruses. Small, 2020, 16, e2002169.	5.2	169
116	Identification of nsp1 gene as the target of SARSâ€CoVâ€2 realâ€ŧime RTâ€PCR using nanopore wholeâ€genome sequencing. Journal of Medical Virology, 2020, 92, 2725-2734.	2.5	36
117	Resilient and agile engineering solutions to address societal challenges such as coronavirus pandemic. Materials Today Chemistry, 2020, 17, 100300.	1.7	58
118	Optimization of primer sets and detection protocols for SARS-CoV-2 of coronavirus disease 2019 (COVID-19) using PCR and real-time PCR. Experimental and Molecular Medicine, 2020, 52, 963-977.	3.2	125
119	Culture-Based Virus Isolation To Evaluate Potential Infectivity of Clinical Specimens Tested for COVID-19. Journal of Clinical Microbiology, 2020, 58, .	1.8	139
120	Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. American Journal of Physiology - Cell Physiology, 2020, 319, C258-C267.	2.1	258
121	Severe Acute Respiratory Syndrome Coronavirus 2: From Gene Structure to Pathogenic Mechanisms and Potential Therapy. Frontiers in Microbiology, 2020, 11, 1576.	1.5	32
122	Optimized qRT-PCR Approach for the Detection of Intra- and Extra-Cellular SARS-CoV-2 RNAs. International Journal of Molecular Sciences, 2020, 21, 4396.	1.8	68
123	Betacoronavirus Genomes: How Genomic Information has been Used to Deal with Past Outbreaks and the COVID-19 Pandemic. International Journal of Molecular Sciences, 2020, 21, 4546.	1.8	34
124	Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission. Infection, Genetics and Evolution, 2020, 85, 104445.	1.0	180
125	Double-quencher probes improve detection sensitivity toward Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in a reverse-transcription polymerase chain reaction (RT-PCR) assay. Journal of Virological Methods, 2020, 284, 113926.	1.0	59
126	Complete Genome Sequence of a 2019 Novel Coronavirus (SARS-CoV-2) Strain Causing a COVID-19 Case in Morocco. Microbiology Resource Announcements, 2020, 9, .	0.3	3
127	In-Depth Bioinformatic Analyses of Nidovirales Including Human SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-canonical Nucleic Acid Structures in Their Lifecycles. Frontiers in Microbiology, 2020, 11, 1583.	1.5	57

#	Article	IF	CITATIONS
128	Trackâ€Etched Nanopore/Membrane: From Fundamental to Applications. Small Methods, 2020, 4, 2000366.	4.6	123
129	The Improbability of the Rapid Development of a Vaccine for SARS-CoV-2. Molecular Therapy, 2020, 28, 1548-1549.	3.7	15
130	Implications of SARS-CoV-2 Mutations for Genomic RNA Structure and Host microRNA Targeting. International Journal of Molecular Sciences, 2020, 21, 4807.	1.8	65
131	Revisiting potential druggable targets against <scp>SARSâ€CoV</scp> â€2 and repurposing therapeutics under preclinical study and clinical trials: A comprehensive review. Drug Development Research, 2020, 81, 919-941.	1.4	35
132	Characterizing Transcriptional Regulatory Sequences in Coronaviruses and Their Role in Recombination. Molecular Biology and Evolution, 2021, 38, 1241-1248.	3.5	46
133	The coding capacity of SARS-CoV-2. Nature, 2021, 589, 125-130.	13.7	464
134	Saporin, a Polynucleotide–Adenosine Nucleosidase, May Be an Efficacious Therapeutic Agent for SARS-CoV-2 Infection. SLAS Discovery, 2021, 26, 330-335.	1.4	7
135	Virus-Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS-CoV-2 Pathogenesis. Med, 2021, 2, 99-112.e7.	2.2	252
136	Molecular Insights into Smallâ€Molecule Drug Discovery for SARS oVâ€2. Angewandte Chemie - International Edition, 2021, 60, 9789-9802.	7.2	50
137	Molecular Insights into Smallâ€Molecule Drug Discovery for SARS oVâ€2. Angewandte Chemie, 2021, 133, 9873-9886.	1.6	9
138	The rationale for a multi-step therapeutic approach based on antivirals, drugs and nutrients with immunomodulatory activity in patients with coronavirus-SARS2-induced disease of different severities. British Journal of Nutrition, 2021, 125, 275-293.	1.2	12
139	Epigenetic mechanisms regulating COVID-19 infection. Epigenetics, 2021, 16, 263-270.	1.3	103
140	Evidence for Strong Mutation Bias toward, and Selection against, U Content in SARS-CoV-2: Implications for Vaccine Design. Molecular Biology and Evolution, 2021, 38, 67-83.	3.5	68
141	SARS-CoV-2 pandemic: a review of molecular diagnostic tools including sample collection and commercial response with associated advantages and limitations. Analytical and Bioanalytical Chemistry, 2021, 413, 49-71.	1.9	110
142	Exploring the magic bullets to identify Achilles' heel in SARS-CoV-2: Delving deeper into the sea of possible therapeutic options in Covid-19 disease: An update. Food and Chemical Toxicology, 2021, 147, 111887.	1.8	11
143	Proteomics in the COVIDâ€19 Battlefield: First Semester Checkâ€Up. Proteomics, 2021, 21, 2000198.	1.3	18
144	Development, performance evaluation, and clinical application of a Rapid SARSâ€CoVâ€2 IgM and IgG Test Kit based on automated fluorescence immunoassay. Journal of Medical Virology, 2021, 93, 2838-2847.	2.5	13
145	Host-directed editing of the SARS-CoV-2 genome. Biochemical and Biophysical Research Communications, 2021, 538, 35-39.	1.0	80

#	Article	IF	CITATIONS
146	Inference of Active Viral Replication in Cases with Sustained Positive Reverse Transcription-PCR Results for SARS-CoV-2. Journal of Clinical Microbiology, 2021, 59, .	1.8	27
147	The D614G mutations in the SARS-CoV-2 spike protein: Implications for viral infectivity, disease severity and vaccine design. Biochemical and Biophysical Research Communications, 2021, 538, 104-107.	1.0	85
148	Wastewater surveillance for SARS-CoV-2: Lessons learnt from recent studies to define future applications. Science of the Total Environment, 2021, 759, 143493.	3.9	84
149	Histamine receptors and COVID-19. Inflammation Research, 2021, 70, 67-75.	1.6	34
150	Simultaneous Dualâ€Gene Diagnosis of SARSâ€CoVâ€2 Based on CRISPR/Cas9â€Mediated Lateral Flow Assay. Angewandte Chemie - International Edition, 2021, 60, 5307-5315.	7.2	215
151	Recent Insights into Emerging Coronavirus: SARS-CoV-2. ACS Infectious Diseases, 2021, 7, 1369-1388.	1.8	27
152	Next generation sequencing of SARS-CoV-2 genomes: challenges, applications and opportunities. Briefings in Bioinformatics, 2021, 22, 616-630.	3.2	143
153	The biogenesis of SARS-CoV-2 spike glycoprotein: multiple targets for host-directed antiviral therapy. Biochemical and Biophysical Research Communications, 2021, 538, 80-87.	1.0	21
154	Ravaging SARS-CoV-2: rudimentary diagnosis and puzzling immunological responses. Current Medical Research and Opinion, 2021, 37, 207-217.	0.9	5
155	Therapeutic and Vaccine Options for COVID-19: Status after Six Months of the Disease Outbreak. SLAS Discovery, 2021, 26, 311-329.	1.4	4
156	A Fast and Accessible Method for the Isolation of RNA, DNA, and Protein To Facilitate the Detection of SARS-CoV-2. Journal of Clinical Microbiology, 2021, 59, .	1.8	17
157	The SARS-CoV-2 RNA–protein interactome in infected human cells. Nature Microbiology, 2021, 6, 339-353.	5.9	245
158	C-Quadruplexes in RNA Biology: Recent Advances and Future Directions. Trends in Biochemical Sciences, 2021, 46, 270-283.	3.7	95
159	The Global and Local Distribution of RNA Structure throughout the SARS-CoV-2 Genome. Journal of Virology, 2021, 95, .	1.5	67
160	A nidovirus perspective on SARS-CoV-2. Biochemical and Biophysical Research Communications, 2021, 538, 24-34.	1.0	37
161	Diamond Light Source: contributions to SARS-CoV-2 biology and therapeutics. Biochemical and Biophysical Research Communications, 2021, 538, 40-46.	1.0	6
162	Remdesivir: From Ebola to COVID-19. Biochemical and Biophysical Research Communications, 2021, 538, 145-150.	1.0	39
163	Identification and characterization of circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Briefings in Bioinformatics, 2021, 22, 1297-1308.	3.2	37

#	Article	IF	CITATIONS
164	Simultaneous Dualâ€Gene Diagnosis of SARSâ€CoVâ€2 Based on CRISPR/Cas9â€Mediated Lateral Flow Assay. Angewandte Chemie, 2021, 133, 5367-5375.	1.6	29
165	Identification of Required Host Factors for SARS-CoV-2 Infection in Human Cells. Cell, 2021, 184, 92-105.e16.	13.5	480
166	Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology, 2021, 19, 155-170.	13.6	2,062
167	What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infectious Diseases, The, 2021, 21, e26-e35.	4.6	500
168	Coronavirus 2 (SARS-CoV-2) in water environments: Current status, challenges and research opportunities. Journal of Water Process Engineering, 2021, 39, 101735.	2.6	19
169	<i>In silico</i> allicin induced <i>S</i> -thioallylation of SARS-CoV-2 main protease. Journal of Sulfur Chemistry, 2021, 42, 109-120.	1.0	19
170	An epigenetic â€~extreme makeover': the methylation of flaviviral RNA (and beyond). RNA Biology, 2021, 18, 696-708.	1.5	7
172	Blood biochemical parameters for assessment of COVID-19 in diabetic and non-diabetic subjects: a cross-sectional study. International Journal of Environmental Health Research, 2021, , 1-14.	1.3	2
173	SARS-CoV-2—host cell interactions and pathways: understanding its physiology, pathology, and targeted drug therapy. , 2021, , 185-210.		0
174	Search, Identification, and Design of Effective Antiviral Drugs Against Pandemic Human Coronaviruses. Advances in Experimental Medicine and Biology, 2021, 1322, 219-260.	0.8	5
175	An integrated approach to determine the abundance, mutation rate and phylogeny of the SARS-CoV-2 genome. Briefings in Bioinformatics, 2021, 22, 1065-1075.	3.2	18
176	Nanopore sequencing and its application to the study of microbial communities. Computational and Structural Biotechnology Journal, 2021, 19, 1497-1511.	1.9	106
177	COVID-19: Recent Developments in Therapeutic Approaches. , 2021, , 249-274.		4
178	CRISPR Systems for COVID-19 Diagnosis. ACS Sensors, 2021, 6, 1430-1445.	4.0	100
179	SARS oVâ€2, the pandemic coronavirus: Molecular and structural insights. Journal of Basic Microbiology, 2021, 61, 180-202.	1.8	119
180	Genomic surveillance of Nevada patients revealed prevalence of unique SARS-CoV-2 variants bearing mutations in the RdRp gene. Journal of Genetics and Genomics, 2021, 48, 40-51.	1.7	19
181	Inter-proteomic posttranslational modifications of the SARS-CoV-2 and the host proteins ‒ A new frontier. Experimental Biology and Medicine, 2021, 246, 749-757.	1.1	10
182	COVID-19 Vaccine: Critical Questions with Complicated Answers. Biomolecules and Therapeutics, 2021, 29, 1-10.	1.1	40

#	Article	IF	CITATIONS
183	Resources and computational strategies to advance small molecule SARS-CoV-2 discovery: Lessons from the pandemic and preparing for future health crises. Computational and Structural Biotechnology Journal, 2021, 19, 2537-2548.	1.9	18
184	COVID-19: Characteristics and Therapeutics. Cells, 2021, 10, 206.	1.8	177
185	Adaptation of Human Ribosomal RNA for Nanopore Sequencing of Canonical and Modified Nucleotides. Methods in Molecular Biology, 2021, 2298, 53-74.	0.4	6
186	Evolution, correlation, structural impact and dynamics of emerging SARS-CoV-2 variants. Computational and Structural Biotechnology Journal, 2021, 19, 3799-3809.	1.9	24
187	The coronavirus proofreading exoribonuclease mediates extensive viral recombination. PLoS Pathogens, 2021, 17, e1009226.	2.1	189
188	Developing effective siRNAs to reduce the expression of key viral genes of COVID-19. International Journal of Biological Sciences, 2021, 17, 1521-1529.	2.6	17
189	Computational Modeling of ACE2-Mediated Cell Entry Inhibitors for the Development of Drugs Against Coronaviruses. Methods in Pharmacology and Toxicology, 2021, , 495.	0.1	1
192	Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic Strategies. Frontiers in Physiology, 2021, 12, 593223.	1.3	113
193	Bioinformatics resources for SARS-CoV-2 discovery and surveillance. Briefings in Bioinformatics, 2021, 22, 631-641.	3.2	38
194	Hydroxychloroquine/Chloroquine as Therapeutics for COVID-19: Truth under the Mystery. International Journal of Biological Sciences, 2021, 17, 1538-1546.	2.6	24
195	The cardiovascular disorders and prognostic cardiac biomarkers in COVID-19. Molecular Biology Reports, 2021, 48, 1763-1771.	1.0	6
196	ANTIVIRAL EFFECTS OF BACTERIOCIN AGAINST ANIMAL-TO-HUMAN TRANSMITTABLE MUTATED SARS-COV-2: A SYSTEMATIC REVIEW. Frontiers of Agricultural Science and Engineering, 2021, 8, 603.	0.9	14
197	The Power of Using Novel Nanopore Sequencing Technology for Diagnosis, Genomic and Pathological Studies of Covid-19. E3S Web of Conferences, 2021, 271, 04024.	0.2	0
198	Similarities and Dissimilarities of COVID-19 and Other Coronavirus Diseases. Annual Review of Microbiology, 2021, 75, 19-47.	2.9	52
199	Bioinformatic Approaches for Identification of Potential Repurposable Drugs in COVID-19. Journal of Drug Delivery and Therapeutics, 2021, 11, 13-22.	0.2	1
200	Structure of SARS CoV2. SpringerBriefs in Applied Sciences and Technology, 2021, , 11-24.	0.2	1
201	Coronaviruses: What Should We Know About the Characteristics of Viruses?. Advances in Experimental Medicine and Biology, 2021, 1318, 23-39.	0.8	1
202	Environmentally-induced <i>mdig</i> contributes to the severity of COVID-19 through fostering expression of SARS-CoV-2 receptor NRPs and glycan metabolism. Theranostics, 2021, 11, 7970-7983.	4.6	8

ARTICLE IF CITATIONS # Genetics of coronaviruses., 2021,, 257-272. 203 0 The m6A methylome of SARS-CoV-2 in host cells. Cell Research, 2021, 31, 404-414. 204 5.7 205 Artificial Intelligence-Mediated Medical Diagnosis of COVID-19. Medical Virology, 2021, , 37-54. 2.1 0 Effective virus-neutralizing activities in antisera from the first wave of severe COVID-19 survivors. JCI 206 Insight, 2021, 6, . Tropism of SARS CoV2. SpringerBriefs in Applied Sciences and Technology, 2021, , 25-30. 207 0.2 0 208 Updated insight into COVID-19 disease and health management to combat the pandemic., 2021, , 3-39. Multi-omic profiling of plasma reveals molecular alterations in children with COVID-19. Theranostics, 209 4.6 27 2021, 11, 8008-8026. Transcriptomic Approaches in Understanding SARS-CoV-2 Infection., 2021, , 221-239. 210 Triazole, imidazole, and thiazole-based compounds as potential agents against coronavirus. Results in 211 0.9 24 Chemistry, 2021, 3, 100132. Computational Determination of Potential Multiprotein Targeting Natural Compounds for Rational 1.7 Drug Design Against SARS-COV-2. Molecules, 2021, 26, 674 mRNA vaccines for COVID-19: what, why and how. International Journal of Biological Sciences, 2021, 17, 213 2.6 185 1446-1460. A novel approach to minimize the false negative COVID-19 diagnosis by inclusion of specific cell markers and multiple sample collection. MethodsX, 2021, 8, 101270. Mapping and role of T cell response in SARS-CoV-2â€"infected mice. Journal of Experimental Medicine, 215 4.2 132 2021, 218, . Proteomics-Based Insights Into the SARS-CoV-2–Mediated COVID-19 Pandemic: A Review of the First Year 2.5 of Research. Molecular and Cellular Proteomics, 2021, 20, 100103. Retrieval and Investigation of Data on SARS-CoV-2 and COVID-19 Using Bioinformatics Approach. 217 0.8 23 Advances in Experimental Medicine and Biology, 2021, 1318, 839-857. Novel signaling pathways regulate SARS-CoV and SARS-CoV-2 infectious disease. Medicine (United) Tj ETQq1 1 0.784314 rgBT/Over Current understanding of the surface contamination and contact transmission of SARS-CoV-2 in 219 8.3 32 healthcare settings. Environmental Chemistry Letters, 2021, 19, 1935-1944. COVID-19 Researches: Where India Stands So Far?., 0, , .

#	Article	IF	CITATIONS
226	Instrumental analysis of RNA modifications. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 178-204.	2.3	26
227	Data science in unveiling COVID-19 pathogenesis and diagnosis: evolutionary origin to drug repurposing. Briefings in Bioinformatics, 2021, 22, 855-872.	3.2	38
228	Comprehensive inÂvivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Molecular Cell, 2021, 81, 584-598.e5.	4.5	198
229	Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. Nano Today, 2021, 36, 101051.	6.2	61
230	COVID-19 and Dentistry in 72 Questions: An Overview of the Literature. Journal of Clinical Medicine, 2021, 10, 779.	1.0	21
231	Ultimate COVID-19 Detection Protocol Based on Saliva Sampling and qRT-PCR with Risk Probability Assessment. Experimental Neurobiology, 2021, 30, 13-31.	0.7	0
233	A main event and multiple introductions of SARSâ€CoVâ€2 initiated the COVIDâ€19 epidemic in Greece. Journal of Medical Virology, 2021, 93, 2899-2907.	2.5	13
234	Host Diversity and Potential Transmission Pathways of SARS-CoV-2 at the Human-Animal Interface. Pathogens, 2021, 10, 180.	1.2	33
235	COVID-19 Antibody Tests and Their Limitations. ACS Sensors, 2021, 6, 593-612.	4.0	150
237	Identifying potential drug targets and candidate drugs for COVID-19: biological networks and structural modeling approaches. F1000Research, 2021, 10, 127.	0.8	5
239	De novo design and bioactivity prediction of SARS-CoV-2 main protease inhibitors using recurrent neural network-based transfer learning. BMC Chemistry, 2021, 15, 8.	1.6	49
241	A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research. PLoS Biology, 2021, 19, e3001091.	2.6	163
243	Critical evaluation of the methodology used by Wilson-Davies etÂal., (2020) entitled "Concerning the Optigene Direct LAMP assay, and it`s use in at-risk groups and hospital staff― Journal of Infection, 2021, 82, 282-327.	1.7	5
244	Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2. Communications Biology, 2021, 4, 193.	2.0	85
245	Implications of SARS oVâ€2 infection for neurogastroenterology. Neurogastroenterology and Motility, 2021, 33, e14104.	1.6	45
246	MicroRNA Mimics or Inhibitors as Antiviral Therapeutic Approaches Against COVID-19. Drugs, 2021, 81, 517-531.	4.9	59
248	An in silico analysis of effective siRNAs against COVIDâ€19 by targeting the leader sequence of SARSâ€CoVâ€2. Advances in Cell and Gene Therapy, 2021, 4, e107.	0.6	13
249	A Biochemical Perspective of the Nonstructural Proteins (NSPs) and the Spike Protein of SARS CoV-2. Protein Journal, 2021, 40, 260-295.	0.7	24

#	Article	IF	CITATIONS
250	SARS-CoV-2 Infection and Disease Modelling Using Stem Cell Technology and Organoids. International Journal of Molecular Sciences, 2021, 22, 2356.	1.8	13
251	Development of a Broadly Applicable Cas12a-Linked Beam Unlocking Reaction for Sensitive and Specific Detection of Respiratory Pathogens Including SARS-CoV-2. ACS Chemical Biology, 2021, 16, 491-500.	1.6	12
252	Characterizing genomic variants and mutations in SARS-CoV-2 proteins from Indian isolates. Gene Reports, 2021, 25, 101044.	0.4	22
254	Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nature Communications, 2021, 12, 743.	5.8	297
255	INSICHT: A population-scale COVID-19 testing strategy combining point-of-care diagnosis with centralized high-throughput sequencing. Science Advances, 2021, 7, .	4.7	54
256	Overview of antiviral drug candidates targeting coronaviral 3Câ€like main proteases. FEBS Journal, 2021, 288, 5089-5121.	2.2	28
261	Nonstructural protein 7 and 8 complexes of SARS oVâ€2. Protein Science, 2021, 30, 873-881.	3.1	15
262	Neurobiology of COVID-19: how can the virus affect the brain?. Revista Brasileira De Psiquiatria, 2021, 43, 650-664.	0.9	31
263	SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature, 2021, 591, 451-457.	13.7	320
264	Analysis of RNA Modifications by Second- and Third-Generation Deep Sequencing: 2020 Update. Genes, 2021, 12, 278.	1.0	38
265	A Negative Feedback Model to Explain Regulation of SARS-CoV-2 Replication and Transcription. Frontiers in Genetics, 2021, 12, 641445.	1.1	9
268	Proteo-Genomic Analysis of SARS-CoV-2: A Clinical Landscape of Single-Nucleotide Polymorphisms, COVID-19 Proteome, and Host Responses. Journal of Proteome Research, 2021, 20, 1591-1601.	1.8	10
271	SARS-CoV-2 Subgenomic N (sgN) Transcripts in Oro-Nasopharyngeal Swabs Correlate with the Highest Viral Load, as Evaluated by Five Different Molecular Methods. Diagnostics, 2021, 11, 288.	1.3	25
272	A Timely Call to Arms: COVID-19, the Circadian Clock, and Critical Care. Journal of Biological Rhythms, 2021, 36, 55-70.	1.4	22
273	SARS-CoV-2 RNA Detection with Duplex-Specific Nuclease Signal Amplification. Micromachines, 2021, 12, 197.	1.4	7
275	An overview of Covid-19 pandemic: immunology and pharmacology. Journal of Immunoassay and Immunochemistry, 2021, 42, 493-512.	0.5	1
276	In-Silico Pangenomics of SARS-CoV-2 Isolates Reveal Evidence for Subtle Adaptive Expression Strategies, Continued Clonal Evolution, and Sub-Clonal Emergences, Despite Genome Stability. Microbiology Research, 2021, 12, 204-233.	0.8	4
277	Insights into biological therapeutic strategies for COVID-19. Fundamental Research, 2021, 1, 166-178.	1.6	2

#	Article	IF	CITATIONS
278	Comparison of Digital PCR and Quantitative PCR with Various SARS-CoV-2 Primer-Probe Sets. Journal of Microbiology and Biotechnology, 2021, 31, 358-367.	0.9	41
279	A novel cell culture system modeling the SARS-CoV-2 life cycle. PLoS Pathogens, 2021, 17, e1009439.	2.1	102
281	The Missing Expression Level–Evolutionary Rate Anticorrelation in Viruses Does Not Support Protein Function as a Main Constraint on Sequence Evolution. Genome Biology and Evolution, 2021, 13, .	1.1	8
282	Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes. PLoS Biology, 2021, 19, e3001143.	2.6	180
284	Comparison of Seven Commercial Severe Acute Respiratory Syndrome Coronavirus 2 Nucleic Acid Detection Reagents with Pseudovirus as Quality Control Material. Journal of Molecular Diagnostics, 2021, 23, 300-309.	1.2	9
285	Epigenetic Lens to Visualize the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Infection in COVID-19 Pandemic. Frontiers in Genetics, 2021, 12, 581726.	1.1	28
287	SARS-CoV-2 and Human Immunodeficiency Virus: Pathogen Pincer Attack. HIV/AIDS - Research and Palliative Care, 2021, Volume 13, 361-375.	0.4	5
288	Mesenchimal stem cells in treatment of cancer patients with COVID-19 pneumonia. Voprosy Onkologii, 2021, 67, 7-12.	0.1	0
289	An engineered CRISPR-Cas12a variant and DNA-RNA hybrid guides enable robust and rapid COVID-19 testing. Nature Communications, 2021, 12, 1739.	5.8	124
293	A CRISPR/Cas9 eraser strategy for contaminationâ€free PCR endâ€point detection. Biotechnology and Bioengineering, 2021, 118, 2053-2066.	1.7	22
294	Overcoming the Challenge of Communicating the Concept and Science of SARS-CoV-2 and COVID-19 to Non-Experts. Challenge, 2021, 64, 117-131.	0.4	6
295	A novel highly quantitative and reproducible assay for the detection of anti-SARS-CoV-2 IgG and IgM antibodies. Scientific Reports, 2021, 11, 5198.	1.6	55
297	Clinical performance of Roche cobas 6800, Luminex ARIES, MiRXES Fortitude Kit 2.1, Altona RealStar, and Applied Biosystems TaqPath for SARSâ€CoVâ€2 detection in nasopharyngeal swabs. Journal of Medical Virology, 2021, 93, 4603-4607.	2.5	13
300	Comparison of Subgenomic and Total RNA in SARS-CoV-2-Challenged Rhesus Macaques. Journal of Virology, 2021, 95, .	1.5	87
301	The expanding world of tRNA modifications and their disease relevance. Nature Reviews Molecular Cell Biology, 2021, 22, 375-392.	16.1	282
302	Clinical Evaluation of an Immunochromatographic-Based IgM/IgG Antibody Assay (GenBodyâ,,¢ COVI040) for Detection of Antibody Seroconversion in Patients with SARS-CoV-2 Infection. Diagnostics, 2021, 11, 537.	1.3	5
303	Wuhan to World: The COVID-19 Pandemic. Frontiers in Cellular and Infection Microbiology, 2021, 11, 596201.	1.8	115
304	Detection of SARS-CoV-2 by CRISPR/Cas12a-Enhanced Colorimetry. ACS Sensors, 2021, 6, 1086-1093.	4.0	108

#	Article	IF	CITATIONS
306	A comprehensive profile of genomic variations in the SARS-CoV-2 isolates from the state of Telangana, India. Journal of General Virology, 2021, 102, .	1.3	14
308	Indels in SARS-CoV-2 occur at template-switching hotspots. BioData Mining, 2021, 14, 20.	2.2	26
313	SERS Based Lateral Flow Immunoassay for Point-of-Care Detection of SARS-CoV-2 in Clinical Samples. ACS Applied Bio Materials, 2021, 4, 2974-2995.	2.3	119
314	Comparative analysis of 7 short-read sequencing platforms using the Korean Reference Genome: MGI and Illumina sequencing benchmark for whole-genome sequencing. GigaScience, 2021, 10, .	3.3	22
315	Autoimmune and Rheumatic Manifestations Associated With COVID-19 in Adults: An Updated Systematic Review. Frontiers in Immunology, 2021, 12, 645013.	2.2	75
316	COVIDâ€19: Risk Factors Associated with Infectivity and Severity. Scandinavian Journal of Immunology, 2021, 93, e13039.	1.3	24
317	Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. IScience, 2021, 24, 102151.	1.9	202
319	Generation of SARS-CoV-2 reporter replicon for high-throughput antiviral screening and testing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	64
322	Acute and chronic inflammatory neuropathies and <scp>COVID</scp> â€19 vaccines: Practical recommendations from the task force of the Italian Peripheral Nervous System Association (<scp>ASNP</scp>). Journal of the Peripheral Nervous System, 2021, 26, 148-154.	1.4	15
323	Saliva TwoStep for rapid detection of asymptomatic SARS-CoV-2 carriers. ELife, 2021, 10, .	2.8	37
326	Subgenomic RNA identification in SARS-CoV-2 genomic sequencing data. Genome Research, 2021, 31, 645-658.	2.4	48
327	ORF10–Cullin-2–ZYG11B complex is not required for SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
329	SARS-CoV-2 and Coronavirus Ancestors under a Molecular Scope. , 0, , .		0
330	Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. Nature, 2021, 594, 253-258.	13.7	253
331	Inflammation, immunity and potential target therapy of SARS-COV-2: A total scale analysis review. Food and Chemical Toxicology, 2021, 150, 112087.	1.8	17
333	Nanopore Sequencing Is a Credible Alternative to Recover Complete Genomes of Geminiviruses. Microorganisms, 2021, 9, 903.	1.6	18
334	Characterization of the <scp>SARSâ€CoV</scp> â€⊋ E Protein: Sequence, Structure, Viroporin, and Inhibitors. Protein Science, 2021, 30, 1114-1130.	3.1	68
336	InÂvivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs. Cell, 2021, 184, 1865-1883.e20.	13.5	153

#	Article	IF	Citations
339	The SARS-CoV-2 RNA interactome. Molecular Cell, 2021, 81, 2838-2850.e6.	4.5	109
341	An Updated Review of SARS-CoV-2 Vaccines and the Importance of Effective Vaccination Programs in Pandemic Times. Vaccines, 2021, 9, 433.	2.1	85
342	Potential therapeutic approaches of microRNAs for COVID-19: Challenges and opportunities. Journal of Oral Biology and Craniofacial Research, 2021, 11, 132-137.	0.8	12
343	SARS-CoV-2 Infects Human EngineeredÂHeart Tissues and Models COVID-19 Myocarditis. JACC Basic To Translational Science, 2021, 6, 331-345.	1.9	121
344	Computational Simulations Identified Marine-Derived Natural Bioactive Compounds as Replication Inhibitors of SARS-CoV-2. Frontiers in Microbiology, 2021, 12, 647295.	1.5	24
346	On the origin and evolution of SARS-CoV-2. Experimental and Molecular Medicine, 2021, 53, 537-547.	3.2	177
348	Rapid Acquisition of High-Quality SARS-CoV-2 Genome via Amplicon-Oxford Nanopore Sequencing. Virologica Sinica, 2021, 36, 901-912.	1.2	18
349	A multi-targeting drug design strategy for identifying potent anti-SARS-CoV-2 inhibitors. Acta Pharmacologica Sinica, 2022, 43, 483-493.	2.8	43
350	The Role of the SARS-CoV-2 S-Protein Glycosylation in the Interaction of SARS-CoV-2/ACE2 and Immunological Responses. Viral Immunology, 2021, 34, 165-173.	0.6	36
351	Identification of a novel inhibitor of SARS-CoV-2 3CL-PRO through virtual screening and molecular dynamics simulation. PeerJ, 2021, 9, e11261.	0.9	24
352	Evaluation of a fully closed real time PCR platform for the detection of SARS-CoV-2 in nasopharyngeal swabs: a pilot study. Journal of Clinical Pathology, 2022, 75, 551-554.	1.0	6
355	Combined RT-qPCR and pyrosequencing of a Spike glycoprotein polybasic cleavage motif can uncover pediatric SARS-CoV-2 infections associated with heterogeneous presentation. Molecular and Cellular Pediatrics, 2021, 8, 4.	1.0	2
356	Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity. Scientific Reports, 2021, 11, 7429.	1.6	30
357	CRISPR-based detection of SARS-CoV-2: A review from sample to result. Biosensors and Bioelectronics, 2021, 178, 113012.	5.3	94
358	COVID-19 Diagnostic Strategies. Part I: Nucleic Acid-Based Technologies. Bioengineering, 2021, 8, 49.	1.6	22
359	Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions. Cell, 2021, 184, 2394-2411.e16.	13.5	141
360	COVID-19 and the human innate immune system. Cell, 2021, 184, 1671-1692.	13.5	524
363	â€~BhAVI-23'-A spice-herb based dietary infusion possessing in-vitro anti-viral potential. Journal of Ayurveda and Integrative Medicine, 2021, 12, 312-319.	0.9	3

#	Article	IF	CITATIONS
364	GCG inhibits SARS-CoV-2 replication by disrupting the liquid phase condensation of its nucleocapsid protein. Nature Communications, 2021, 12, 2114.	5.8	70
365	Computational screening of FDA approved drugs of fungal origin that may interfere with SARS-CoV-2 spike protein activation, viral RNA replication, and postâ€translational modification: a multiple target approach. In Silico Pharmacology, 2021, 9, 27.	1.8	8
366	A map of the SARS-CoV-2 RNA structurome. NAR Genomics and Bioinformatics, 2021, 3, lqab043.	1.5	49
367	Novel RT-ddPCR assays for measuring the levels of subgenomic and genomic SARS-CoV-2 transcripts. Methods, 2022, 201, 15-25.	1.9	26
368	Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity, 2021, 54, 797-814.e6.	6.6	272
370	COVID-19 infection and nanomedicine applications for development of vaccines and therapeutics: An overview and future perspectives based on polymersomes. European Journal of Pharmacology, 2021, 896, 173930.	1.7	23
371	Identifying potential drug targets and candidate drugs for COVID-19: biological networks and structural modeling approaches. F1000Research, 0, 10, 127.	0.8	10
372	First Report on the Latvian SARS-CoV-2 Isolate Genetic Diversity. Frontiers in Medicine, 2021, 8, 626000.	1.2	10
373	Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction. Cell Reports, 2021, 35, 109014.	2.9	102
374	Virus Caused Imbalance of Type I IFN Responses and Inflammation in COVID-19. Frontiers in Immunology, 2021, 12, 633769.	2.2	20
375	Severe Acute Respiratory Syndrome Coronavirus 2 Total and Subgenomic RNA Viral Load in Hospitalized Patients. Journal of Infectious Diseases, 2021, 224, 1287-1293.	1.9	38
376	Microarray patches enable the development of skin-targeted vaccines against COVID-19. Advanced Drug Delivery Reviews, 2021, 171, 164-186.	6.6	45
377	The potential of gold nanoparticles for coronavirus diagnosis and prophylaxis. , 2021, , .		3
379	SARS oVâ€2 RNA screening in routine pathology specimens. Microbial Biotechnology, 2021, 14, 1627-1641.	2.0	9
380	Rational design of potent anti-COVID-19 main protease drugs: An extensive multi-spectrum in silico approach. Journal of Molecular Liquids, 2021, 330, 115636.	2.3	10
381	The Molecular Basis of COVID-19 Pathogenesis, Conventional and Nanomedicine Therapy. International Journal of Molecular Sciences, 2021, 22, 5438.	1.8	22
382	Global and local mutations in Bangladeshi SARS-CoV-2 genomes. Virus Research, 2021, 297, 198390.	1.1	16
383	Deletion of the SARS-CoV-2 Spike Cytoplasmic Tail Increases Infectivity in Pseudovirus Neutralization Assays. Journal of Virology, 2021, 95, .	1.5	80

#	Article	IF	CITATIONS
384	Therapeutic approaches for SARS-CoV-2 infection. Methods, 2021, 195, 29-43.	1.9	14
385	Limited crossâ€species transmission and absence of mutations associated with SARSâ€CoVâ€2 adaptation in cats: A case study of infection in a small household setting. Transboundary and Emerging Diseases, 2022, 69, 1606-1616.	1.3	19
387	Pharmacological activation of STING blocks SARS-CoV-2 infection. Science Immunology, 2021, 6, .	5.6	123
388	A Mini Review on Discovery and Synthesis of Remdesivir as an Effective and Promising Drug against COVID-19. Russian Journal of Bioorganic Chemistry, 2021, 47, 609-621.	0.3	8
389	Attacking COVID-19 Progression Using Multi-Drug Therapy for Synergetic Target Engagement. Biomolecules, 2021, 11, 787.	1.8	14
392	Rapid endotheliitis and vascular damage characterize SARS oVâ€2 infection in a human lungâ€onâ€chip model. EMBO Reports, 2021, 22, e52744.	2.0	81
393	Reverse-transcribed SARS-CoV-2 RNA can integrate into the genome of cultured human cells and can be expressed in patient-derived tissues. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	175
394	SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus genomes. Nature Communications, 2021, 12, 2642.	5.8	136
395	Post-Transcriptional Regulation of Viral RNA through Epitranscriptional Modification. Cells, 2021, 10, 1129.	1.8	22
397	Identifying potential drug targets and candidate drugs for COVID-19: biological networks and structural modeling approaches. F1000Research, 2021, 10, 127.	0.8	12
398	Conformational Ensembles of Noncoding Elements in the SARS-CoV-2 Genome from Molecular Dynamics Simulations. Journal of the American Chemical Society, 2021, 143, 8333-8343.	6.6	17
399	Promising Immunotherapies against COVIDâ€19. Advanced Therapeutics, 2021, 4, 2100044.	1.6	4
400	Cancer Biomarkers Discovery of Methylation Modification With Direct High-Throughput Nanopore Sequencing. Frontiers in Genetics, 2021, 12, 672804.	1.1	9
401	Interfering with Host Proteases in SARS-CoV-2 Entry as a Promising Therapeutic Strategy. Current Medicinal Chemistry, 2022, 29, 635-665.	1.2	11
402	Epigallocatechin Gallate Inhibits the Uridylate-Specific Endoribonuclease Nsp15 and Efficiently Neutralizes the SARS-CoV-2 Strain. Journal of Agricultural and Food Chemistry, 2021, 69, 5948-5954.	2.4	54
403	SARSâ€CoVâ€2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIGâ€I/MDAâ€5–MAVS, TLR3–TRIF, and cGAS–STING signaling pathways. Journal of Medical Virology, 2021, 5376-5389.	9.3,	153
405	Glimpses into evolutionary trajectories of SARS-CoV-2: emerging variants and potential immune evasion routes. Future Microbiology, 2021, 16, 455-459.	1.0	3
407	The SARS-CoV-2 subgenome landscape and its novel regulatory features. Molecular Cell, 2021, 81, 2135-2147.e5.	4.5	72

#	Article	IF	CITATIONS
408	The SARS-CoV-2 Transcriptome and the Dynamics of the S Gene Furin Cleavage Site in Primary Human Airway Epithelia. MBio, 2021, 12, .	1.8	21
409	Genome-wide bioinformatic analyses predict key host and viral factors in SARS-CoV-2 pathogenesis. Communications Biology, 2021, 4, 590.	2.0	38
410	Combined recombinase polymerase amplification/rkDNA–graphene oxide probing system for detection of SARS-CoV-2. Analytica Chimica Acta, 2021, 1158, 338390.	2.6	22
411	A multi-modal data harmonisation approach for discovery of COVID-19 drug targets. Briefings in Bioinformatics, 2021, 22, .	3.2	13
414	Global analysis of protein-RNA interactions in SARS-CoV-2-infected cells reveals key regulators of infection. Molecular Cell, 2021, 81, 2851-2867.e7.	4.5	108
415	Test on stool samples improves the diagnosis of hospitalized patients: Detection of SARS-CoV-2 genomic and subgenomic RNA. Journal of Infection, 2021, 82, 186-230.	1.7	16
416	The Chronicle of COVID-19 and Possible Strategies to Curb the Pandemic. Current Medicinal Chemistry, 2021, 28, 2852-2886.	1.2	20
417	Tapping the immunological imprints to design chimeric SARS-CoV-2 vaccine for elderly population. International Reviews of Immunology, 2021, , 1-16.	1.5	6
418	Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: a review of current evidence. Expert Review of Clinical Pharmacology, 2021, 14, 601-621.	1.3	144
420	Mechanism involved in the pathogenesis and immune response against SARS-CoV-2 infection. VirusDisease, 2021, 32, 211-219.	1.0	6
422	Multi-Omics Approach in the Identification of Potential Therapeutic Biomolecule for COVID-19. Frontiers in Pharmacology, 2021, 12, 652335.	1.6	17
423	Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nature Biotechnology, 2021, 39, 1278-1291.	9.4	144
424	Transcriptional and epi-transcriptional dynamics of SARS-CoV-2 during cellular infection. Cell Reports, 2021, 35, 109108.	2.9	25
425	Overview of COVID-19 Disease: Virology, Epidemiology, Prevention Diagnosis, Treatment, and Vaccines. Biologics, 2021, 1, 2-40.	2.3	16
426	Crystal structure of SARS-CoV-2 Orf9b in complex with human TOM70 suggests unusual virus-host interactions. Nature Communications, 2021, 12, 2843.	5.8	71
427	SARS-CoV-2 uses a multipronged strategy to impede host protein synthesis. Nature, 2021, 594, 240-245.	13.7	182
428	Crystal structure of SARS-CoV-2 nsp10 bound to nsp14-ExoN domain reveals an exoribonuclease with both structural and functional integrity. Nucleic Acids Research, 2021, 49, 5382-5392.	6.5	94
429	Unconventional viral gene expression mechanisms as therapeutic targets. Nature, 2021, 593, 362-371.	13.7	29

#	Article	IF	CITATIONS
430	The role of A-to-I RNA editing in infections by RNA viruses: Possible implications for SARS-CoV-2 infection. Clinical Immunology, 2021, 226, 108699.	1.4	20
431	Natural plant products as potential inhibitors of RNA dependent RNA polymerase of Severe Acute Respiratory Syndrome Coronavirus-2. PLoS ONE, 2021, 16, e0251801.	1.1	25
432	Surge of severe acute respiratory syndrome coronavirus 2 infections linked to single introduction of a virus strain in Myanmar, 2020. Scientific Reports, 2021, 11, 10203.	1.6	2
434	Use of glucocorticoids and azithromycin in the therapy of COVID-19. Pharmacological Reports, 2021, 73, 1513-1519.	1.5	1
435	Landscape and selection of vaccine epitopes in SARS-CoV-2. Genome Medicine, 2021, 13, 101.	3.6	30
437	Characterization of SARS-CoV-2 nucleocapsid protein reveals multiple functional consequences of the C-terminal domain. IScience, 2021, 24, 102681.	1.9	57
438	Genes with 5′ terminal oligopyrimidine tracts preferentially escape global suppression of translation by the SARS-CoV-2 Nsp1 protein. Rna, 2021, 27, 1025-1045.	1.6	38
439	From A to m6A: The Emerging Viral Epitranscriptome. Viruses, 2021, 13, 1049.	1.5	34
440	A unique view of SARS-CoV-2 through the lens of ORF8 protein. Computers in Biology and Medicine, 2021, 133, 104380.	3.9	48
441	Antimicrobial Peptides and Physical Activity: A Great Hope against COVID 19. Microorganisms, 2021, 9, 1415.	1.6	16
442	Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection. Antiviral Research, 2021, 190, 105064.	1.9	37
446	Computational search of hybrid human/SARS-CoV-2 dsRNA reveals unique viral sequences that diverge from those of other coronavirus strains. Heliyon, 2021, 7, e07284.	1.4	10
447	The role of 5-lipoxygenase in the pathophysiology of COVID-19 and its therapeutic implications. Inflammation Research, 2021, 70, 877-889.	1.6	12
448	Role of SARS-CoV-2 and ACE2 variations in COVID-19. Biomedical Journal, 2021, 44, 235-244.	1.4	20
449	SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms, 2021, 9, 1389.	1.6	4
450	Tools and Techniques for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)/COVID-19 Detection. Clinical Microbiology Reviews, 2021, 34, .	5.7	205
452	An overview of basic molecular biology of SARS-CoV-2 and current COVID-19 prevention strategies. Gene Reports, 2021, 23, 101122.	0.4	23
454	Exploring SARS-COV-2 structural proteins to design a multi-epitope vaccine using immunoinformatics approach: An in silico study. Computers in Biology and Medicine, 2021, 133, 104390.	3.9	15

#	Article	IF	CITATIONS
455	Surface Proteins of SARS-CoV-2 Drive Airway Epithelial Cells to Induce IFN-Dependent Inflammation. Journal of Immunology, 2021, 206, 3000-3009.	0.4	8
456	Potential of Malawi's medicinal plants in Covid-19 disease management: A review. Malawi Medical Journal, 2021, 33, 85-107.	0.2	12
457	Immune Evasion of SARS-CoV-2 Emerging Variants: What Have We Learnt So Far?. Viruses, 2021, 13, 1192.	1.5	150
458	A systematic review of photodynamic therapy as an antiviral treatment: Potential guidance for dealing with SARS-CoV-2. Photodiagnosis and Photodynamic Therapy, 2021, 34, 102221.	1.3	31
459	Meta-Analysis and Structural Dynamics of the Emergence of Genetic Variants of SARS-CoV-2. Frontiers in Microbiology, 2021, 12, 676314.	1.5	17
460	Potent SARS-CoV-2 mRNA Cap Methyltransferase Inhibitors by Bioisosteric Replacement of Methionine in SAM Cosubstrate. ACS Medicinal Chemistry Letters, 2021, 12, 1102-1107.	1.3	36
461	SARS-CoV-2 Subgenomic RNA Kinetics in Longitudinal Clinical Samples. Open Forum Infectious Diseases, 2021, 8, ofab310.	0.4	24
462	Notable sequence homology of the ORF10 protein introspects the architecture of SARS-CoV-2. International Journal of Biological Macromolecules, 2021, 181, 801-809.	3.6	36
463	Molecular Perspectives of SARS-CoV-2: Pathology, Immune Evasion, and Therapeutic Interventions. Molecules and Cells, 2021, 44, 408-421.	1.0	18
466	Mn ²⁺ coordinates Cap-0-RNA to align substrates for efficient 2′- <i>O</i> -methyl transfer by SARS-CoV-2 nsp16. Science Signaling, 2021, 14, .	1.6	17
467	Comparison of three serological chemiluminescence immunoassays for SARS-CoV-2, and clinical significance of antibody index with disease severity. PLoS ONE, 2021, 16, e0253889.	1.1	6
468	Targeting the m ⁶ A RNA modification pathway blocks SARS-CoV-2 and HCoV-OC43 replication. Genes and Development, 2021, 35, 1005-1019.	2.7	70
469	Novel RT-ddPCR assays for simultaneous quantification of multiple noncoding and coding regions of SARS-CoV-2 RNA. Journal of Virological Methods, 2021, 292, 114115.	1.0	19
470	A Multiplex and Colorimetric Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Sensitive and Rapid Detection of Novel SARS-CoV-2. Frontiers in Cellular and Infection Microbiology, 2021, 11, 653616.	1.8	20
471	Experimental Models for SARS-CoV-2 Infection. Molecules and Cells, 2021, 44, 377-383.	1.0	6
472	Interplay between nuclear factor erythroid 2-related factor 2 and inflammatory mediators in COVID-19-related liver injury. World Journal of Gastroenterology, 2021, 27, 2944-2962.	1.4	15
474	Comparative analysis of mutational hotspots in the spike protein of SARS-CoV-2 isolates from different geographic origins. Gene Reports, 2021, 23, 101100.	0.4	3
476	Conflicting and ambiguous names of overlapping ORFs in the SARS-CoV-2 genome: A homology-based resolution. Virology, 2021, 558, 145-151.	1.1	40

#	Article	IF	CITATIONS
477	Targeting the Conserved Stem Loop 2 Motif in the SARS-CoV-2 Genome. Journal of Virology, 2021, 95, e0066321.	1.5	42
478	Evaluation of Two Rapid Antigenic Tests for the Detection of SARS-CoV-2 in Nasopharyngeal Swabs. Journal of Clinical Medicine, 2021, 10, 2774.	1.0	14
479	SARS-CoV-2 genomic surveillance identifies naturally occurring truncation of ORF7a that limits immune suppression. Cell Reports, 2021, 35, 109197.	2.9	65
480	Understanding the Molecular Biology of SARS-CoV-2 and the COVID-19 Pandemic: A Review. Infection and Drug Resistance, 2021, Volume 14, 2259-2268.	1.1	22
481	Bispecific repurposed medicines targeting the viral and immunological arms of COVID-19. Scientific Reports, 2021, 11, 13208.	1.6	24
482	The architecture of the SARS-CoV-2 RNA genome inside virion. Nature Communications, 2021, 12, 3917.	5.8	122
483	Restriction of SARS-CoV-2 replication by targeting programmed â^'1 ribosomal frameshifting. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	75
484	The Role of Indoor Plants in air Purification and Human Health in the Context of COVID-19 Pandemic: A Proposal for a Novel Line of Inquiry. Frontiers in Molecular Biosciences, 2021, 8, 709395.	1.6	8
485	Single-nucleotide conservation state annotation of the SARS-CoV-2 genome. Communications Biology, 2021, 4, 698.	2.0	2
486	Understanding the SARS-CoV-2 virus to mitigate current and future pandemic(s). VirusDisease, 2021, 32, 390-399.	1.0	2
487	Evaluation of Oxford Nanopore MinION RNA-Seq Performance for Human Primary Cells. International Journal of Molecular Sciences, 2021, 22, 6317.	1.8	8
488	COVID-19 and Preparing for Future Ecological Crises: Hopes from Metagenomics in Facing Current and Future Viral Pandemic Challenges. OMICS A Journal of Integrative Biology, 2021, 25, 336-341.	1.0	2
490	Molecular benchmarks of a SARS-CoV-2 epidemic. Nature Communications, 2021, 12, 3633.	5.8	3
492	SARS-CoV-2 envelope protein causes acute respiratory distress syndrome (ARDS)-like pathological damages and constitutes an antiviral target. Cell Research, 2021, 31, 847-860.	5.7	102
493	Sex-Related Overactivation of NLRP3 Inflammasome Increases Lethality of the Male COVID-19 Patients. Frontiers in Molecular Biosciences, 2021, 8, 671363.	1.6	15
494	Sodium Toxicity in the Nutritional Epidemiology and Nutritional Immunology of COVID-19. Medicina (Lithuania), 2021, 57, 739.	0.8	7
495	Generation of a Sleeping Beauty Transposon-Based Cellular System for Rapid and Sensitive Screening for Compounds and Cellular Factors Limiting SARS-CoV-2 Replication. Frontiers in Microbiology, 2021, 12, 701198.	1.5	27
496	Nanotechnology-based Approaches and Investigational Therapeutics against COVID-19. Current Pharmaceutical Design, 2022, 28, 948-968.	0.9	10

		REPORT	
#	Article	IF	CITATIONS
497	Genomic Surveillance and Phylodynamic Analyses Reveal the Emergence of Novel Mutations and Co-mutation Patterns Within SARS-CoV-2 Variants Prevalent in India. Frontiers in Microbiology, 2021, 12, 703933.	1.5	5
500	Next-Generation Sequencing (NGS) in COVID-19: A Tool for SARS-CoV-2 Diagnosis, Monitoring New Strains and Phylodynamic Modeling in Molecular Epidemiology. Current Issues in Molecular Biology, 2021, 43, 845-867.	1.0	57
501	Pulling-Force Spinning Top for Serum Separation Combined with Paper-Based Microfluidic Devices in COVID-19 ELISA Diagnosis. ACS Sensors, 2021, 6, 2709-2719.	4.0	44
502	Analytical and Clinical Performance of Droplet Digital PCR in the Detection and Quantification of SARS-CoV-2. Molecular Diagnosis and Therapy, 2021, 25, 617-628.	1.6	12
503	A SARS-CoV-2 targeted siRNA-nanoparticle therapy for COVID-19. Molecular Therapy, 2021, 29, 2219-2226.	3.7	105
505	Profiling SARS-CoV-2 HLA-I peptidome reveals TÂcell epitopes from out-of-frame ORFs. Cell, 2021, 184, 3962-3980.e17.	13.5	98
507	Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Acta Pharmaceutica Sinica B, 2022, 12, 1591-1623.	5.7	57
508	Comparison and Sensitivity Evaluation of Three Different Commercial Real-Time Quantitative PCR Kits for SARS-CoV-2 Detection. Viruses, 2021, 13, 1321.	1.5	31
509	ddPCR increases detection of SARS-CoV-2 RNA in patients with low viral loads. Archives of Virology, 2021, 166, 2529-2540.	0.9	10
510	Carbon Nanotube Mask Filters and Their Hydrophobic Barrier and Hyperthermic Antiviral Effects on SARS-CoV-2. ACS Applied Nano Materials, 2021, 4, 8135-8144.	2.4	25
511	Long-chain polyphosphates impair SARS-CoV-2 infection and replication. Science Signaling, 2021, 14, .	1.6	27
513	Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nature Biotechnology, 2021, 39, 1394-1402.	9.4	131
514	SARS-CoV-2 Mutations and their Viral Variants. Cytokine and Growth Factor Reviews, 2022, 63, 10-22.	3.2	113
515	Host-Virus Chimeric Events in SARS-CoV-2-Infected Cells Are Infrequent and Artifactual. Journal of Virology, 2021, 95, e0029421.	1.5	28
516	Functionalized Masks: Powerful Materials against COVIDâ€19 and Future Pandemics. Small, 2021, 17, e2102453.	5.2	82
517	Detailed Dissection and Critical Evaluation of the Pfizer/BioNTech and Moderna mRNA Vaccines. Vaccines, 2021, 9, 734.	2.1	89
518	Perioperative challenges in a morbidly obese former COVID-19 patient undergoing elective spine surgery. BMJ Case Reports, 2021, 14, e243950.	0.2	1
519	Coronavirus, the King Who Wanted More Than a Crown: From Common to the Highly Pathogenic SARS-CoV-2, Is the Key in the Accessory Genes?. Frontiers in Microbiology, 2021, 12, 682603.	1.5	10

		CITATION RE	PORT	
#	Article		IF	CITATIONS
520	Absolute quantification of SARS-CoV-2 with Clarity Plusâ,,¢ digital PCR. Methods, 2022	., 201, 26-33.	1.9	9
521	Production of Proteins of the SARS-CoV-2 Proteome for Drug Discovery. ACS Omega, 2 19983-19994.	.021, 6,	1.6	6
522	Detection of SARS-CoV-2 in Wastewater: Community Variability, Temporal Dynamics, a Diversity. ACS ES&T Water, 2021, 1, 1816-1825.	nd Genotype	2.3	7
523	Discovery of SARS-CoV-2-E channel inhibitors as antiviral candidates. Acta Pharmacolog 2021, , .	gica Sinica,	2.8	18
524	A synthetic defective interfering SARS-CoV-2. PeerJ, 2021, 9, e11686.		0.9	17
527	Rapid and accurate nucleobase detection using FnCas9 and its application in COVID-19 Biosensors and Bioelectronics, 2021, 183, 113207.	diagnosis.	5.3	93
528	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors helicase. Biochemical Journal, 2021, 478, 2405-2423.	of nsp13	1.7	46
529	Machine learning enabled identification of potential SARS-CoV-2 3CLpro inhibitors base molecular fingerprints and Graph-CNN neural representations. Journal of Biomedical Inf 2021, 119, 103821.		2.5	15
531	Identifying SARS-CoV-2 antiviral compounds by screening for small molecule inhibitors endoribonuclease. Biochemical Journal, 2021, 478, 2465-2479.	of nsp15	1.7	43
532	Epitope mapping of severe acute respiratory syndrome-related coronavirus nucleocaps a rabbit monoclonal antibody. Virus Research, 2021, 300, 198445.	id protein with	1.1	9
533	Wastewater-Based Epidemiology for Community Monitoring of SARS-CoV-2: Progress ACS Environmental Au, 2021, 1, 18-31.	and Challenges.	3.3	33
534	Host factors facilitating SARSâ€CoVâ€2 virus infection and replication in the lungs. Ce Molecular Life Sciences, 2021, 78, 5953-5976.	llular and	2.4	19
536	SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cel Bioscience, 2021, 11, 136.	land	2.1	140
537	FLEP-seq: simultaneous detection of RNA polymerase II position, splicing status, polyac and poly(A) tail length at genome-wide scale by single-molecule nascent RNA sequenci Protocols, 2021, 16, 4355-4381.		5.5	24
538	Arginine methylation of SARS-Cov-2 nucleocapsid protein regulates RNA binding, its ab stress granule formation, and viral replication. Journal of Biological Chemistry, 2021, 29		1.6	46
539	Monocytes and Macrophages in COVID-19. Frontiers in Immunology, 2021, 12, 72010	9.	2.2	168
540	Clinical and epidemiologic characteristics of inconclusive results in SARS-CoV-2 RT-PCR Infectious Diseases, 2021, 21, 851.	assays. BMC	1.3	9
541	The structure of a dimeric form of SARS-CoV-2 polymerase. Communications Biology, 2	2021, 4, 999.	2.0	9

ARTICLE IF CITATIONS # Prolonged detection of complete viral genomes demonstrated by SARS-CoV-2 sequencing of serial 543 1.1 2 respiratory specimens. PLoS ONE, 2021, 16, e0255691. Comparing antiviral strategies against COVID-19 via multiscale within-host modelling. Royal Society 544 1.1 Open Science, 2021, 8, 210082 SARS-CoV-2 RdRp Inhibitors Selected from a Cell-Based SARS-CoV-2 RdRp Activity Assay System. 546 1.4 23 Biomedicines, 2021, 9, 996. The potential use of Drosophila as an in vivo model organism for COVID-19-related research: a review. 548 Turkish Journal of Biology, 2021, 45, 559-569. Optimizing testing regimes for the detection of COVID-19 in children and older adults. Expert Review 549 1.5 14 of Molecular Diagnostics, 2021, 21, 999-1016. Multilevel systems biology analysis of lung transcriptomics data identifies key miRNAs and potential miRNA target genes for SARS-CoV-2 infection. Computers in Biology and Medicine, 2021, 135, 104570. 551 How RNA modifications regulate the antiviral response. Immunological Reviews, 2021, 304, 169-180. 2.8 17 Nervous System-Systemic Crosstalk in SARS-CoV-2/COVID-19: A Unique Dyshomeostasis Syndrome. 1.4 Chemically modified guide RNAs enhance CRISPR-Cas13 knockdown in human cells. Cell Chemical 553 2.5 25 Biology, 2022, 29, 321-327.e4. Liquid–liquid phase separation in human health and diseases. Signal Transduction and Targeted 554 7.1 231 Therapy, 2021, 6, 290. A high-resolution temporal atlas of the SARS-CoV-2 translatome and transcriptome. Nature 555 5.857 Communications, 2021, 12, 5120. Transient and stabilized complexes of Nsp7, Nsp8, and Nsp12 in SARS-CoV-2 replication. Biophysical 39 Journal, 2021, 120, 3152-3165. Viral and Host Transcriptomes in SARS-CoV-2-Infected Human Lung Cells. Journal of Virology, 2021, 95, 558 1.5 9 e0060021. Dual-target one-step nested PCR for sensitive detection of SARS-CoV-2 nucleic acids. Preparative 1.0 Biochemistry and Biotechnology, 2021, , 1-7. Nature-derived hit, lead, and drug-like small molecules: Current status and future aspects against key 560 1.1 2 target proteins of Coronaviruses. Mini-Reviews in Medicinal Chemistry, 2021, 21, . Comprehensive mapping of SARS-CoV-2 interactions in vivo reveals functional virus-host interactions. 5.8 53 Nature Communications, 2021, 12, 5113. Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated 562 5.9101 with poor clinical outcome. Nature Microbiology, 2021, 6, 1245-1258. Oligonucleotide capture sequencing of the SARS-CoV-2 genome and subgenomic fragments from 1.1 COVID-19 individuals. PLoS ONE, 2021, 16, e0244468.

#	Article	IF	CITATIONS
564	Major Insights in Dynamics of Host Response to SARS-CoV-2: Impacts and Challenges. Frontiers in Microbiology, 2021, 12, 637554.	1.5	8
565	The strand-biased transcription of SARS-CoV-2 and unbalanced inhibition by remdesivir. IScience, 2021, 24, 102857.	1.9	11
566	SARS-CoV-2 RNA Quantification Using Droplet Digital RT-PCR. Journal of Molecular Diagnostics, 2021, 23, 907-919.	1.2	17
569	Ugonin J Acts as a SARS-CoV-2 3C-like Protease Inhibitor and Exhibits Anti-inflammatory Properties. Frontiers in Pharmacology, 2021, 12, 720018.	1.6	11
570	Causes and Consequences of Purifying Selection on SARS-CoV-2. Genome Biology and Evolution, 2021, 13, .	1.1	37
571	Methyltransferase-like 3 Modulates Severe Acute Respiratory Syndrome Coronavirus-2 RNA N6-Methyladenosine Modification and Replication. MBio, 2021, 12, e0106721.	1.8	53
573	SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses, 2021, 13, 1687.	1.5	57
574	Molecular docking and dynamics study to explore phytochemical ligand molecules against the main protease of SARS-CoV-2 from extensive phytochemical datasets. Expert Review of Clinical Pharmacology, 2021, 14, 1305-1315.	1.3	34
576	Substrate Specificity of SARS-CoV-2 Nsp10-Nsp16 Methyltransferase. Viruses, 2021, 13, 1722.	1.5	22
577	A molecular test based on RT-LAMP for rapid, sensitive and inexpensive colorimetric detection of SARS-CoV-2 in clinical samples. Scientific Reports, 2021, 11, 16430.	1.6	92
578	The Need for a Human Pangenome Reference Sequence. Annual Review of Genomics and Human Genetics, 2021, 22, 81-102.	2.5	71
579	Exploring the Druggability of Conserved RNA Regulatory Elements in the SARS oVâ€⊋ Genome. Angewandte Chemie, 2021, 133, 19340-19349.	1.6	5
580	Recombinant SARS-CoV-2 envelope protein traffics to the trans-Golgi network following amphipol-mediated delivery into human cells. Journal of Biological Chemistry, 2021, 297, 100940.	1.6	4
581	Meta-analysis and comprehensive study of coronavirus outbreaks: SARS, MERS and COVID-19. Journal of Infection and Public Health, 2021, 14, 1051-1064.	1.9	13
583	Exploring the Druggability of Conserved RNA Regulatory Elements in the SARS oVâ€⊋ Genome. Angewandte Chemie - International Edition, 2021, 60, 19191-19200.	7.2	55
584	Molecular Dynamics Studies on the Structural Characteristics for the Stability Prediction of SARS-CoV-2. International Journal of Molecular Sciences, 2021, 22, 8714.	1.8	8
585	Inactivation of SARS-CoV-2 by deep ultraviolet light emitting diode: A review. Japanese Journal of Applied Physics, 2021, 60, 090501.	0.8	8
586	Intracellular Life Cycle Kinetics of SARS-CoV-2 Predicted Using Mathematical Modelling. Viruses, 2021, 13, 1735.	1.5	15

#	Article		CITATIONS
587	On-chip Paper Electrophoresis for Ultrafast Screening of Infectious Diseases. Biochip Journal, 2021, 15, 305-311.	2.5	12
588	RNA Modifications in Genomic RNA of Influenza A Virus and the Relationship between RNA Modifications and Viral Infection. International Journal of Molecular Sciences, 2021, 22, 9127.	1.8	18
589	Structure-guided design of a perampanel-derived pharmacophore targeting the SARS-CoV-2 main protease. Structure, 2021, 29, 823-833.e5.	1.6	43
590	Protective humoral and cellular immune responses to SARS-CoV-2 persist up to 1 year after recovery. Nature Communications, 2021, 12, 4984.	5.8	100
591	Global variation in SARS-CoV-2 proteome and its implication in pre-lockdown emergence and dissemination of 5 dominant SARS-CoV-2 clades. Infection, Genetics and Evolution, 2021, 93, 104973.	1.0	12
592	SARS-CoV-2 S glycoprotein binding to multiple host receptors enables cell entry and infection. Glycoconjugate Journal, 2021, 38, 611-623.	1.4	17
594	Biosocial medicine: Biology, biography, and the tailored care of the patient. SSM - Population Health, 2021, 15, 100863.	1.3	6
595	S19W, T27W, and N330Y mutations in ACE2 enhance SARS-CoV-2 S-RBD binding toward both wild-type and antibody-resistant viruses and its molecular basis. Signal Transduction and Targeted Therapy, 2021, 6, 343.	7.1	24
597	Evolution of the <scp>SARS oV</scp> â€2 proteome in three dimensions (3D) during the first 6 months of the <scp>COVID</scp> â€19 pandemic. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1054-1080.	1.5	31
598	Performance Evaluation of the BD SARS-CoV-2 Reagents for the BD MAX System. Journal of Clinical Microbiology, 2021, 59, e0101921.	1.8	4
599	RT-LAMP CRISPR-Cas12/13-Based SARS-CoV-2 Detection Methods. Diagnostics, 2021, 11, 1646.	1.3	23
600	Nanopore Dwell Time Analysis Permits Sequencing and Conformational Assignment of Pseudouridine in SARS-CoV-2. ACS Central Science, 2021, 7, 1707-1717.	5.3	46
601	Reduced subgenomic RNA expression is a molecular indicator of asymptomatic SARS-CoV-2 infection. Communications Medicine, 2021, 1, .	1.9	13
602	Safety and Immunogenicity of an Inactivated Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine in a Subgroup of Healthy Adults in Chile. Clinical Infectious Diseases, 2022, 75, e792-e804.	2.9	73
603	Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. Cell, 2021, 184, 4713-4733.e22.	13.5	206
604	Cellular host factors for SARS-CoV-2 infection. Nature Microbiology, 2021, 6, 1219-1232.	5.9	127
606	Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic. Cell, 2021, 184, 5179-5188.e8.	13.5	182
609	Simultaneous quantification of spike and nucleocapsid protein in inactivated COVID-19 vaccine bulk by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1181, 122884.	1.2	3

#	Article	IF	CITATIONS
610	Distribution of cycle threshold values in RT-qPCR tests during the autumn 2020 peak of the COVID-19 pandemic in the Czech Republic. Access Microbiology, 2021, 3, 000263.	0.2	0
611	EVOLUTIONARY RELATIONSHIP AND REPURPOSING OF SARS INHIBITORS AGAINST SURFACE GLYCOPROTEIN OF SARS-COV-2. International Journal of Applied Pharmaceutics, 0, , 272-279.	0.3	0
612	Immune correlates of protection by mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. Science, 2021, 373, eabj0299.	6.0	244
613	Epigenetic Mechanisms Underlying COVID-19 Pathogenesis. Biomedicines, 2021, 9, 1142.	1.4	10
614	Repurposing proteases: An in-silico analysis of the binding potential of extracellular fungal proteases with selected viral proteins. Bioresource Technology Reports, 2021, 15, 100756.	1.5	2
615	In vivo structure and dynamics of the SARS-CoV-2 RNA genome. Nature Communications, 2021, 12, 5695.	5.8	27
617	Broadly directed SARS-CoV-2-specific CD4+ T cell response includes frequently detected peptide specificities within the membrane and nucleoprotein in patients with acute and resolved COVID-19. PLoS Pathogens, 2021, 17, e1009842.	2.1	40
618	Probe design for simultaneous, targeted capture of diverse metagenomic targets. Cell Reports Methods, 2021, 1, 100069.	1.4	3
619	SARS-CoV-2 Subgenomic RNAs: Characterization, Utility, and Perspectives. Viruses, 2021, 13, 1923.	1.5	38
620	Tiled-ClickSeq for targeted sequencing of complete coronavirus genomes with simultaneous capture of RNA recombination and minority variants. ELife, 2021, 10, .	2.8	22
621	Duplex formation between the template and the nascent strand in the transcription-regulating sequences is associated with the site of template switching in SARS – CoV-2. RNA Biology, 2021, 18, 148-156.	1.5	5
622	Design of advanced siRNA therapeutics for the treatment of COVID-19. Meta Gene, 2021, 29, 100910.	0.3	17
623	Resilient SARS-CoV-2 diagnostics workflows including viral heat inactivation. PLoS ONE, 2021, 16, e0256813.	1.1	23
624	"Bucket brigade―using lysine residues in RNA-dependent RNA polymerase of SARS-CoV-2. Biophysical Journal, 2021, 120, 3615-3627.	0.2	7
625	A Global Overview of SARS-CoV-2 in Wastewater: Detection, Treatment, and Prevention. ACS ES&T Water, 2021, 1, 2174-2185.	2.3	8
626	The pathogenesis of COVID-19-induced IgA nephropathy and IgA vasculitis: A systematic review. Journal of Taibah University Medical Sciences, 2022, 17, 1-13.	0.5	22
627	Characterisation of SARS-CoV-2 clades based on signature SNPs unveils continuous evolution. Methods, 2022, 203, 282-296.	1.9	5
628	SARS-CoV-2 viral RNA levels are not 'viral load'. Trends in Microbiology, 2021, 29, 970-972.	3.5	26

#	Article	IF	CITATIONS
629	Multiomics: unraveling the panoramic landscapes of SARS-CoV-2 infection. Cellular and Molecular Immunology, 2021, 18, 2313-2324.	4.8	31
630	Variability in Codon Usage in Coronaviruses Is Mainly Driven by Mutational Bias and Selective Constraints on CpG Dinucleotide. Viruses, 2021, 13, 1800.	1.5	6
631	Computational prediction of the effect of amino acid changes on the binding affinity between SARS-CoV-2 spike RBD and human ACE2. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	61
632	Outbreaks of SARS-CoV-2 in naturally infected mink farms: Impact, transmission dynamics, genetic patterns, and environmental contamination. PLoS Pathogens, 2021, 17, e1009883.	2.1	26
633	Coronavirus Nsp1: Immune Response Suppression and Protein Expression Inhibition. Frontiers in Microbiology, 2021, 12, 752214.	1.5	43
634	ORF3a Protein of Severe Acute Respiratory Syndrome Coronavirus 2 Inhibits Interferon-Activated Janus Kinase/Signal Transducer and Activator of Transcription Signaling via Elevating Suppressor of Cytokine Signaling 1. Frontiers in Microbiology, 2021, 12, 752597.	1.5	27
635	Classification of SARS-CoV-2 and non-SARS-CoV-2 using machine learning algorithms. Computers in Biology and Medicine, 2021, 136, 104650.	3.9	18
638	A one-step real-time RT-PCR assay for simultaneous typing of SARS-CoV-2 mutations associated with the E484K and N501Y spike protein amino-acid substitutions. Journal of Virological Methods, 2021, 296, 114242.	1.0	10
639	Direct RT-qPCR assay for SARS-CoV-2 variants of concern (Alpha, B.1.1.7 and Beta, B.1.351) detection and quantification in wastewater. Environmental Research, 2021, 201, 111653.	3.7	65
640	Understanding the immunological aspects of SARS-CoV-2 causing COVID-19 pandemic: A therapeutic approach. Clinical Immunology, 2021, 231, 108804.	1.4	5
641	In silico study of some selective phytochemicals against a hypothetical SARS-CoV-2 spike RBD using molecular docking tools. Computers in Biology and Medicine, 2021, 137, 104818.	3.9	23
642	The proximal proteome of 17 SARS-CoV-2 proteins links to disrupted antiviral signaling and host translation. PLoS Pathogens, 2021, 17, e1009412.	2.1	27
643	Nano-engineered tools in the diagnosis, therapeutics, prevention, and mitigation of SARS-CoV-2. Journal of Controlled Release, 2021, 338, 813-836.	4.8	30
644	Know your enemy and know yourself – the case of SARS-CoV-2 host factors. Current Opinion in Virology, 2021, 50, 159-170.	2.6	9
645	SARS-CoV-2 detection in wastewater using multiplex quantitative PCR. Science of the Total Environment, 2021, 797, 148890.	3.9	19
646	Host-specific asymmetric accumulation of mutation types reveals that the origin of SARS-CoV-2 is consistent with a natural process. Innovation(China), 2021, 2, 100159.	5.2	15
647	COVID-19: In silico identification of potent α-ketoamide inhibitors targeting the main protease of the SARS-CoV-2. Journal of Molecular Structure, 2021, 1244, 130897.	1.8	14
648	One-pot pre-coated interface proximity extension assay for ultrasensitive co-detection of anti-SARS-CoV-2 antibodies and viral RNA. Biosensors and Bioelectronics, 2021, 193, 113535.	5.3	13

#	ARTICLE	IF	CITATIONS
649	Droplet digital RT-PCR to detect SARS-CoV-2 signature mutations of variants of concern in wastewater. Science of the Total Environment, 2021, 799, 149456.	3.9	92
650	Inverted repeats in coronavirus SARS-CoV-2 genome manifest the evolution events. Journal of Theoretical Biology, 2021, 530, 110885.	0.8	2
651	Validation of the analytical performance of nine commercial RT-qPCR kits for SARS-CoV-2 detection using certified reference material. Journal of Virological Methods, 2021, 298, 114285.	1.0	7
652	Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Science of the Total Environment, 2022, 805, 149877.	3.9	153
655	Recombinant chimpanzee adenovirus AdC7 expressing dimeric tandem-repeat spike protein RBD protects mice against COVID-19. Emerging Microbes and Infections, 2021, 10, 1574-1588.	3.0	18
656	Point-of-care testing detection methods for COVID-19. Lab on A Chip, 2021, 21, 1634-1660.	3.1	150
657	Atypical Divergence of SARS-CoV-2 Orf8 from Orf7a within the Coronavirus Lineage Suggests Potential Stealthy Viral Strategies in Immune Evasion. MBio, 2021, 12, .	1.8	28
658	Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	145
659	Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Research, 2021, 31, 272-290.	5.7	229
660	Analysis of Emerging Variants in Structured Regions of the SARS-CoV-2 Genome. Evolutionary Bioinformatics, 2021, 17, 117693432110141.	0.6	19
661	RNA m6A Modification: The Mediator Between Cellular Stresses and Biological Effects. RNA Technologies, 2021, , 353-390.	0.2	1
662	Structural Insight Into the SARS-CoV-2 Nucleocapsid Protein C-Terminal Domain Reveals a Novel Recognition Mechanism for Viral Transcriptional Regulatory Sequences. Frontiers in Chemistry, 2020, 8, 624765.	1.8	56
665	N6-methyladenosine regulates RNA abundance of SARS-CoV-2. Cell Discovery, 2021, 7, 7.	3.1	7
666	Discovery and Functional Interrogation of the Virus and Host RNA Interactome of SARS-Cov-2 Proteins. SSRN Electronic Journal, 0, , .	0.4	2
667	SARS-CoV-2 nucleocapsid protein undergoes liquid–liquid phase separation into stress granules through its N-terminal intrinsically disordered region. Cell Discovery, 2021, 7, 5.	3.1	66
668	Development and application of therapeutic antibodies against COVID-19. International Journal of Biological Sciences, 2021, 17, 1486-1496.	2.6	47
669	Bioinformatics resources facilitate understanding and harnessing clinical research of SARS-CoV-2. Briefings in Bioinformatics, 2021, 22, 714-725.	3.2	17
671	Potential Antiviral Immune Response Against COVID-19: Lessons Learned from SARS-CoV. Advances in Experimental Medicine and Biology, 2021, 1318, 149-167.	0.8	4

#	Article	IF	CITATIONS
672	Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerging Microbes and Infections, 2021, 10, 507-535.	3.0	202
673	Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature, 2021, 590, 635-641.	13.7	524
674	Single-cell RNA sequencing reveals SARS-CoV-2 infection dynamics in lungs of African green monkeys. Science Translational Medicine, 2021, 13, .	5.8	146
675	Antibody response and therapy in COVID-19 patients: what can be learned for vaccine development?. Science China Life Sciences, 2020, 63, 1833-1849.	2.3	29
676	The Global Landscape of SARS-CoV-2 Genomes, Variants, and Haplotypes in 2019nCoVR. Genomics, Proteomics and Bioinformatics, 2020, 18, 749-759.	3.0	88
677	Current approaches used in treating COVID-19 from a molecular mechanisms and immune response perspective. Saudi Pharmaceutical Journal, 2020, 28, 1333-1352.	1.2	21
678	Evolutionary dynamics of the SARS-CoV-2 ORF8 accessory gene. Infection, Genetics and Evolution, 2020, 85, 104525.	1.0	102
679	Spiking Pandemic Potential: Structural and Immunological Aspects of SARS-CoV-2. Trends in Microbiology, 2020, 28, 605-618.	3.5	28
680	Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal Transduction and Targeted Therapy, 2020, 5, 299.	7.1	232
681	Structure and regulation of coronavirus genomes: state-of-the-art and novel insights from SARS-CoV-2 studies. Biochemical Society Transactions, 2021, 49, 341-352.	1.6	32
682	ACE2: from protection of liver disease to propagation of COVID-19. Clinical Science, 2020, 134, 3137-3158.	1.8	35
683	Dual inhibition of SARS-CoV-2 spike and main protease through a repurposed drug, rutin. Journal of Biomolecular Structure and Dynamics, 2020, , 1-13.	2.0	20
684	MicroRNAs and SARS-CoV-2 life cycle, pathogenesis, and mutations: biomarkers or therapeutic agents?. Cell Cycle, 2021, 20, 143-153.	1.3	33
685	How do we share data in COVID-19 research? A systematic review of COVID-19 datasets in PubMed Central Articles. Briefings in Bioinformatics, 2021, 22, 800-811.	3.2	22
686	SARS-CoV-2 hot-spot mutations are significantly enriched within inverted repeats and CpG island loci. Briefings in Bioinformatics, 2021, 22, 1338-1345.	3.2	20
687	CorGAT: a tool for the functional annotation of SARS-CoV-2 genomes. Bioinformatics, 2021, 36, 5522-5523.	1.8	12
779	Potentially adaptive SARS-CoV-2 mutations discovered with novel spatiotemporal and explainable AI models. Genome Biology, 2020, 21, 304.	3.8	55
780	The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. Rna, 2021, 27, 253-264.	1.6	112

#	Article	IF	Citations
781	Current and emerging diagnostic tests available for the novel COVID-19 global pandemic. AAS Open Research, 2020, 3, 8.	1.5	11
782	A sensitive and affordable multiplex RT-qPCR assay for SARS-CoV-2 detection. PLoS Biology, 2020, 18, e3001030.	2.6	32
783	Coronavirus genomes carry the signatures of their habitats. PLoS ONE, 2020, 15, e0244025.	1.1	25
784	The SARS-CoV-2 ORF10 is not essential in vitro or in vivo in humans. PLoS Pathogens, 2020, 16, e1008959.	2.1	71
785	Molecular, serological, and biochemical diagnosis and monitoring of COVID-19: IFCC taskforce evaluation of the latest evidence. Clinical Chemistry and Laboratory Medicine, 2020, 58, 1037-1052.	1.4	147
786	COVID-19 therapy and prevention. Discoveries, 2020, 8, e113.	1.5	4
787	So close, no matter how far: multiple paths connecting transcription to mRNA translation in eukaryotes. EMBO Reports, 2020, 21, e50799.	2.0	24
788	COVID-19: molecular targets, drug repurposing and new avenues for drug discovery. Memorias Do Instituto Oswaldo Cruz, 2020, 115, e200254.	0.8	26
789	Does the Clinical Spectrum of Coronavirus Disease 2019 (COVID-19) Show Regional Differences?. Clinical and Experimental Otorhinolaryngology, 2020, 13, 83-84.	1.1	22
792	The Recombination Potential between SARS-CoV-2 and MERS-CoV from Cross-Species Spill-over Infections. Journal of Epidemiology and Global Health, 2021, 11, 155.	1.1	7
793	Analysis of Indian SARS-CoV-2 Genomes Reveals Prevalence of D614G Mutation in Spike Protein Predicting an Increase in Interaction With TMPRSS2 and Virus Infectivity. Frontiers in Microbiology, 2020, 11, 594928.	1.5	47
794	Proteasome Inhibitors as a Possible Therapy for SARS-CoV-2. International Journal of Molecular Sciences, 2020, 21, 3622.	1.8	45
795	Unpacking Pandora from Its Box: Deciphering the Molecular Basis of the SARS-CoV-2 Coronavirus. International Journal of Molecular Sciences, 2021, 22, 386.	1.8	9
796	The RNA Architecture of the SARS-CoV-2 3′-Untranslated Region. Viruses, 2020, 12, 1473.	1.5	37
797	Computational Analysis of SARS-CoV-2 and SARS-Like Coronavirus Diversity in Human, Bat and Pangolin Populations. Viruses, 2021, 13, 49.	1.5	19
798	Pathogen Genomics and Host Cellular Susceptibility Factors of COVID-19. Global Clinical and Translational Research, 2020, , 107-126.	0.4	4
799	Transcriptome & viral growth analysis of SARS-CoV-2-infected Vero CCL-81 cells. Indian Journal of Medical Research, 2020, 152, 70.	0.4	9
800	The Progression of SARS Coronavirus 2 (SARS-CoV2): Mutation in the Receptor Binding Domain of Spike Gene. Immune Network, 2020, 20, e41.	1.6	26

	CITATION I	KEPORT	
#	Article	IF	CITATIONS
801	COVID-19 Compared to Other Pandemic Diseases. Rambam Maimonides Medical Journal, 2020, 11, e0027.	0.4	60
802	Positive selection within the genomes of SARS-CoV-2 and other Coronaviruses independent of impact on protein function. PeerJ, 2020, 8, e10234.	0.9	49
803	Excessive G–U transversions in novel allele variants in SARS-CoV-2 genomes. PeerJ, 2020, 8, e9648.	0.9	17
804	A Comprehensive Review of Severe Acute Respiratory Syndrome Coronavirus 2. Cureus, 2020, 12, e7943.	0.2	12
805	Microbial Genetics in Mycology. , 2021, , .		0
806	Impact of computational approaches in the fight against COVID-19: an AI guided review of 17 000 studies. Briefings in Bioinformatics, 2022, 23, .	3.2	20
807	CoV-er all the bases: Structural perspectives of SARS-CoV-2 RNA synthesis. The Enzymes, 2021, 49, 1-37.	0.7	6
808	SARS-CoV-2: Pathogenic Mechanisms and Host Immune Response. Advances in Experimental Medicine and Biology, 2021, 1313, 99-134.	0.8	6
809	National Academy of Medicine of Korea (NAMOK) Key Statements on COVID-19. Journal of Korean Medical Science, 2021, 36, e287.	1.1	7
810	Targeting a conserved structural element from the SARS-CoV-2 genome using <scp>l</scp> -DNA aptamers. RSC Chemical Biology, 2022, 3, 79-84.	2.0	9
811	A longitudinal sampling study of transcriptomic and epigenetic profiles in patients with thrombocytopenia syndrome. Nature Communications, 2021, 12, 5629.	5.8	9
812	ADAR Editing in Viruses: An Evolutionary Force to Reckon with. Genome Biology and Evolution, 2021, 13, .	1.1	23
813	Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform. Nano Research, 2022, 15, 2196-2225.	5.8	8
814	Unlocking SARS-CoV-2 detection in low- and middle-income countries. Cell Reports Methods, 2021, 1, 100093.	1.4	15
816	Inhibition of SARS-CoV-2 Replication by a Small Interfering RNA Targeting the Leader Sequence. Viruses, 2021, 13, 2030.	1.5	23
817	Cellular senescence as a source of SARSâ€CoVâ€⊋ quasispecies. FEBS Journal, 2023, 290, 1384-1392.	2.2	12
818	Multisystem Inflammatory Syndrome in Children (MIS-C) Following SARS-CoV-2 Infection: Role of Oxidative Stress. Frontiers in Immunology, 2021, 12, 723654.	2.2	21
819	Haste makes waste: A critical review of dockingâ€based virtual screening in drug repurposing for SARS oVâ€2 main protease (Mâ€pro) inhibition. Medicinal Research Reviews, 2022, 42, 744-769.	5.0	46

		CITATION REPORT		
#	Article		lF	Citations
820	Expression and characterization of SARS-CoV-2 spike proteins. Nature Protocols, 2021	, 16, 5339-5356.	5.5	31
821	Tracking the Transcription Kinetic of SARS-CoV-2 in Human Cells by Reverse Transcript Digital PCR. Pathogens, 2021, 10, 1274.	ion-Droplet	1.2	3
822	Highly Efficient SARS-CoV-2 Infection of Human Cardiomyocytes: Spike Protein-Mediat and Its Inhibition. Journal of Virology, 2021, 95, e0136821.	ed Cell Fusion	1.5	29
824	Enteric Coronavirus Infection and Treatment Modeled With an Immunocompetent Hur Intestine-On-A-Chip. Frontiers in Pharmacology, 2021, 12, 718484.	man	1.6	52
825	Nanoemulsions: Formulation, characterization, biological fate, and potential role again and other viral outbreaks. Colloids and Interface Science Communications, 2021, 45, 1	st COVID-19 00533.	2.0	24
826	Direct RNA Sequencing Reveals SARS-CoV-2 m6A Sites and Possible Differential DRACH Methylation among Variants. Viruses, 2021, 13, 2108.	H Motif	1.5	24
827	Comprehensive Survey of IoT, Machine Learning, and Blockchain for Health Care Applic Topical Assessment for Pandemic Preparedness, Challenges, and Solutions. Electronics 2021, 10, 2501.	cations: A (Switzerland),	1.8	31
828	Mechanistic insights into COVID-19 by global analysis of the SARS-CoV-2 3CLpro subst Cell Reports, 2021, 37, 109892.	trate degradome.	2.9	60
829	Emerging SARS-CoV-2 Variants: A Review of Its Mutations, Its Implications and Vaccine Vaccines, 2021, 9, 1195.	e Efficacy.	2.1	90
830	Bioinformatics Analysis Identifies a Small ORF in the Genome of Fish Nidoviruses of Ge Oncotshavirus Predicted to Encode a Novel Integral Protein. Microbiology Research, 20		0.8	1
832	Strategy and Performance Evaluation of Low-Frequency Variant Calling for SARS-CoV-2 Targeted Deep Illumina Sequencing. Frontiers in Microbiology, 2021, 12, 747458.	! Using	1.5	15
833	Isolation and Characterization of Mouse Monoclonal Antibodies That Neutralize SARS- Variants of Concern Alpha, Beta, Gamma and Delta by Binding Conformational Epitope RBD With High Potency. Frontiers in Immunology, 2021, 12, 750386.		2.2	6
834	Deciphering the link between Diabetes mellitus and SARS-CoV-2 infection through diffection through diffection of microRNAs in the human pancreas. Journal of Endocrinological Investigation 537-550.	erential on, 2022, 45,	1.8	12
835	SCovid: single-cell atlases for exposing molecular characteristics of COVID-19 across 1 tissues. Nucleic Acids Research, 2022, 50, D867-D874.	0 human	6.5	28
836	Effect of SARS-CoV-2 proteins on vascular permeability. ELife, 2021, 10, .		2.8	53
838	COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strateg vaccination tasks. International Journal of Biological Macromolecules, 2021, , .	ies and current	3.6	14
839	Beyond sequencing: machine learning algorithms extract biology hidden in Nanopore s Trends in Genetics, 2022, 38, 246-257.	ignal data.	2.9	42
840	Accurate detection and quantification of SARS-CoV-2 genomic and subgenomic mRNA meta-transcriptomics analysis. Communications Biology, 2021, 4, 1215.	s by ddPCR and	2.0	10

#	Article	IF	CITATIONS
841	An antibody-based proximity labeling map reveals mechanisms of SARS-CoV-2 inhibition of antiviral immunity. Cell Chemical Biology, 2022, 29, 5-18.e6.	2.5	26
842	Potential SARS-CoV-2 Nonstructural Protein 15 Inhibitors: Repurposing FDA-Approved Drugs. Journal of Exploratory Research in Pharmacology, 2021, 000, 000-000.	0.2	0
844	Mutational profile confers increased stability of SARS-CoV-2 spike protein in Brazilian isolates. Journal of Biomolecular Structure and Dynamics, 2022, 40, 13184-13189.	2.0	3
845	Identification and characterization of SARS-CoV-2 clusters in the EU/EEA in the first pandemic wave: additional elements to trace the route of the virus. Infection, Genetics and Evolution, 2021, 96, 105108.	1.0	3
846	SARS-COV-2 AND BETACORONAVIRUS: WHAT HAVE WE LEARNED IN 8 MONTHS?. Postepy Mikrobiologii, 2020, 59, 197-206.	0.1	0
856	Strength and Weakness of Molecular Identification Strategies Against Causative Viral Agent from Emerging COVID-19. Journal of Bacteriology and Virology, 2020, 50, 65-75.	0.0	0
863	A Review of Recent Trend of COVID-19 Infection and Correlation with Pulmonary Function. Biomedical Science Letters, 2020, 26, 127-135.	0.0	1
864	Advances and insights in the diagnosis of viral infections. Journal of Nanobiotechnology, 2021, 19, 348.	4.2	52
865	Nanopore sequencing of SARS-CoV-2: Comparison of short and long PCR-tiling amplicon protocols. PLoS ONE, 2021, 16, e0259277.	1.1	16
866	RT-qPCR assays for SARS-CoV-2 variants of concern in wastewater reveals compromised vaccination-induced immunity. Water Research, 2021, 207, 117808.	5.3	39
867	A Multiallelic Molecular Beacon-Based Real-Time RT-PCR Assay for the Detection of SARS-CoV-2. Life, 2021, 11, 1146.	1.1	5
868	Epigenetic interaction of microbes with their mammalian hosts. Journal of Biosciences, 2021, 46, 1.	0.5	5
869	Assessment of potential SARS-CoV-2 virus integration into human genome reveals no significant impact on RT-qPCR COVID-19 testing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
870	The severity of SARS-CoV-2 infection is dictated by host factors? Epigenetic perspectives. Current Research in Microbial Sciences, 2021, 2, 100079.	1.4	2
874	Coding Structure for the ORF1ab, S, M and N Coronavirus Genes. Mathematical Biology and Bioinformatics, 2020, 15, 441-454.	0.1	2
877	Coronavirus disease 2019 (COVID-19): diagnosis and prognosis. Asia-Pacific Journal of Blood Types and Genes, 2020, 4, 96-107.	0.1	4
878	Clinical Characteristics, Risk Factor and Transmission of the COVID-19 Discharged Cases with Positive Retest in Guangzhou, China: A Retrospective Cohort Study. SSRN Electronic Journal, 0, , .	0.4	0
879	SARS-CoV-2 Infection Dynamics in Lungs of African Green Monkeys. SSRN Electronic Journal, 0, , .	0.4	3

#	Article	IF	CITATIONS
880	Inhibition of SARS-CoV-2 coronavirus proliferation by designer antisense-circRNAs. Nucleic Acids Research, 2021, 49, 12502-12516.	6.5	27
881	The Evolutionary Landscape of SARS-CoV-2 Variant B.1.1.519 and Its Clinical Impact in Mexico City. Viruses, 2021, 13, 2182.	1.5	31
883	Bioinformatics analyses reveal cell-barrier junction modulations in lung epithelial cells on SARS-CoV-2 infection. Tissue Barriers, 2022, 10, 2000300.	1.6	5
884	First whole genome analysis of the novel coronavirus (SARS-CoV-2) obtained from COVID-19 patients from five districts in Western Serbia. Epidemiology and Infection, 0, , 1-31.	1.0	5
885	Single-Cell RNA Sequencing of Urinary Cells Reveals Distinct Cellular Diversity in COVID-19–Associated AKI. Kidney360, 2022, 3, 28-36.	0.9	12
886	Insights on the SARS-CoV-2 genome variability: the lesson learned in Brazil and its impacts on the future of pandemics. Microbial Genomics, 2021, 7, .	1.0	1
887	Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell, 2021, 184, 5932-5949.e15.	13.5	245
888	Nucleic Acid-Based Treatments Against COVID-19: Potential Efficacy of Aptamers and siRNAs. Frontiers in Microbiology, 2021, 12, 758948.	1.5	11
889	Development and characterization of SARS-CoV-2 variant-neutralizing monoclonal antibodies. Antiviral Research, 2021, 196, 105206.	1.9	1
890	Nanopore sequencing technology, bioinformatics and applications. Nature Biotechnology, 2021, 39, 1348-1365.	9.4	521
904	Generation of a Novel SARS-CoV-2 Sub-genomic RNA Due to the R203K/G204R Variant in Nucleocapsid: Homologous Recombination has Potential to Change SARS-CoV-2 at Both Protein and RNA Level. Pathogens and Immunity, 2021, 6, 27-49.	1.4	10
905	Longitudinal analysis of SARS-CoV-2 spike and RNA-dependent RNA polymerase protein sequences reveals the emergence and geographic distribution of diverse mutations. Infection, Genetics and Evolution, 2022, 97, 105153.	1.0	16
906	Overview of the immune response against SARS-CoV-2. , 2022, , 95-113.		0
907	Basic virological aspects of SARS-CoV-2. , 2022, , 1-30.		0
908	Coronavirus infection outbreak. , 2022, , 47-57.		2
909	Insights into the evolutionary and prophylactic analysis of SARS-CoV-2: A review. Journal of Virological Methods, 2022, 300, 114375.	1.0	2
910	Generation of a Novel SARS-CoV-2 Sub-genomic RNA Due to the R203K/G204R Variant in Nucleocapsid: Homologous Recombination has Potential to Change SARS-CoV-2 at Both Protein and RNA Level. Pathogens and Immunity, 2021, 6, 27-49.	1.4	46
912	Persistent Parosmia Caused By COVID-19 Infection: An Emerging Symptom. Cureus, 2021, 13, e19921.	0.2	2

#	Article	IF	CITATIONS
913	Suppression and Activation of Intracellular Immune Response in Initial Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Frontiers in Microbiology, 2021, 12, 768740.	1.5	1
916	Identification of a therapeutic interfering particle—A single-dose SARS-CoV-2 antiviral intervention with a high barrier to resistance. Cell, 2021, 184, 6022-6036.e18.	13.5	36
917	Insights into the Role of Graphene/Grapheneâ€hybrid Nanocomposites in Antiviral Therapy. ChemBioEng Reviews, 2021, 8, 549.	2.6	1
918	Roles of host mitochondria in the development of COVID-19 pathology: Could mitochondria be a potential therapeutic target?. Molecular Biomedicine, 2021, 2, 38.	1.7	19
919	Jumper enables discontinuous transcript assembly in coronaviruses. Nature Communications, 2021, 12, 6728.	5.8	4
920	Multiplex Gene Tagging with CRISPR-Cas9 for Live-Cell Microscopy and Application to Study the Role of SARS-CoV-2 Proteins in Autophagy, Mitochondrial Dynamics, and Cell Growth. CRISPR Journal, 2021,	1.4	7
921	The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme. Nucleic Acids Research, 2021, 49, 13019-13030.	6.5	29
922	Beneficial Properties of Bromelain. Nutrients, 2021, 13, 4313.	1.7	33
923	Antisense oligonucleotide: A promising therapeutic option to beat COVID â€19. Wiley Interdisciplinary Reviews RNA, 2021, , e1703.	3.2	8
924	The glycosylation in SARS-CoV-2 and its receptor ACE2. Signal Transduction and Targeted Therapy, 2021, 6, 396.	7.1	111
925	A Systematic Review on COVID-19 Vaccine Strategies, Their Effectiveness, and Issues. Vaccines, 2021, 9, 1387.	2.1	51
926	Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design. Nature Reviews Molecular Cell Biology, 2022, 23, 21-39.	16.1	221
927	Genome-wide identification and prediction of SARS-CoV-2 mutations show an abundance of variants: Integrated study of bioinformatics and deep neural learning. Informatics in Medicine Unlocked, 2021, 27, 100798.	1.9	5
928	Nsp1 of SARS-CoV-2 stimulates host translation termination. RNA Biology, 2021, 18, 804-817.	1.5	8
929	Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations. Journal of Molecular Structure, 2022, 1250, 131879.	1.8	16
930	Antisense Oligonucleotide-Based Therapy of Viral Infections. Pharmaceutics, 2021, 13, 2015.	2.0	26
931	SARS-CoV-2, Cardiovascular Diseases, and Noncoding RNAs: A Connected Triad. International Journal of Molecular Sciences, 2021, 22, 12243.	1.8	8
932	Integrative Multi-omics Landscape of Non-structural Protein 3 of Severe Acute Respiratory Syndrome Coronaviruses. Genomics, Proteomics and Bioinformatics, 2021, 19, 707-726.	3.0	8

#	Article	IF	CITATIONS
934	Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cellular and Molecular Life Sciences, 2021, 78, 8049-8071.	2.4	23
938	Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2. Cell Host and Microbe, 2021, 29, 1788-1801.e6.	5.1	145
939	Template switching and duplications in SARS-CoV-2 genomes give rise to insertion variants that merit monitoring. Communications Biology, 2021, 4, 1343.	2.0	27
940	Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities. Nature Communications, 2021, 12, 6761.	5.8	47
943	COVID-19 Pandemic Between Severity Facts and Prophylaxis. Natural Product Communications, 2021, 16, 1934578X2110412.	0.2	1
945	SNP and Phylogenetic Characterization of Low Viral Load SARS-CoV-2 Specimens by Target Enrichment. Frontiers in Virology, 2021, 1, .	0.7	6
946	Data science approaches to confronting the COVID-19 pandemic: a narrative review. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210127.	1.6	28
947	Toward a next-generation diagnostic tool: A review on emerging isothermal nucleic acid amplification techniques for the detection of SARS-CoV-2 and other infectious viruses. Analytica Chimica Acta, 2022, 1209, 339338.	2.6	24
949	Genetic epidemiology using whole genome sequencing and haplotype networks revealed the linkage of SARS-CoV-2 infection in nosocomial outbreak. Infection Prevention in Practice, 2021, 3, 100190.	0.6	2
950	SARS-CoV-2 Nsp5 Protein Causes Acute Lung Inflammation, A Dynamical Mathematical Model. Frontiers in Systems Biology, 2021, 1, .	0.5	6
951	COVID-19 variants that escape vaccine immunity: Global and Indian context—are more vaccines needed?. Journal of Biosciences, 2021, 46, 1.	0.5	2
952	COVID-19 Patient Detection Based on Fusion of Transfer Learning and Fuzzy Ensemble Models Using CXR Images. Applied Sciences (Switzerland), 2021, 11, 11423.	1.3	22
953	COVID-19 Diagnostic Methods and Detection Techniques. , 2023, , 17-32.		18
954	Vaccines and Antiviral Developments for SARS-CoV-2 in the Emergence of the COVID-19 Pandemic. RSC Drug Discovery Series, 2021, , 45-60.	0.2	0
955	SARS-CoV-2: Genetic variability, mutations and variants of concern for the global world. Medicinski Podmladak, 2021, 72, 1-7.	0.2	0
956	No evidence of SARS-CoV-2 infection in Rousettus aegyptiacus bat in Egypt. International Journal of Veterinary Science and Medicine, 2021, 9, 59-61.	0.8	4
957	COVID-19 subclinical infection and immunity: A review. Nigerian Journal of Medicine: Journal of the National Association of Resident Doctors of Nigeria, 2021, 30, 631.	0.0	0
958	Chemical methods and advanced sequencing technologies for deciphering mRNA modifications. Chemical Society Reviews, 2021, 50, 13481-13497.	18.7	15

#	Article	IF	CITATIONS
959	<i>In silico</i> analysis of SARS-CoV-2 papain-like protease potential inhibitors. RSC Advances, 2021, 11, 38616-38631.	1.7	8
961	SARS-CoV-2 Causes Mitochondrial Dysfunction and Mitophagy Impairment. Frontiers in Microbiology, 2021, 12, 780768.	1.5	58
962	Performance of Rapid Antigen Tests for COVID-19 Diagnosis: A Systematic Review and Meta-Analysis. Diagnostics, 2022, 12, 110.	1.3	64
963	A one-step platform for screening high-efficient and minimal off-target CRISPR/Cas13 crRNAs to eradicate SARS-CoV-2 virus for treatment of COVID-19 patients. Medical Hypotheses, 2022, 159, 110754.	0.8	5
964	SARS-CoV-2 wastewater surveillance in Germany: Long-term RT-digital droplet PCR monitoring, suitability of primer/probe combinations and biomarker stability. Water Research, 2022, 210, 117977.	5.3	40
965	A fractal scaling analysis of the SARS-CoV-2 genome sequence. Biomedical Signal Processing and Control, 2022, 73, 103433.	3.5	4
967	La acelerada búsqueda de candidatos terapéuticos contra SARS-CoV-2, métodos in silico: Revisión. Ciencia, TecnologÃa Y Salud, 2020, 7, 347-362.	0.0	0
968	Open-source real-time quantitative RT-PCR-based on a RNA standard for the assessment of SARS-CoV-2 viral load. Memorias Do Instituto Oswaldo Cruz, 2022, 116, e210237.	0.8	3
969	DOCKING MOLEKULER SENYAWA AKTIF BUAH DAN DAUN JAMBU BIJI (Psidium guajava L.) TERHADAP PROTEIN SARS-CoV-2. Forte Journal, 2021, 1, 77-84.	0.1	0
970	Absolute quantitation of individual SARS-CoV-2 RNA molecules provides a new paradigm for infection dynamics and variant differences. ELife, 2022, 11, .	2.8	33
971	ExTaxsl: an exploration tool of biodiversity molecular data. GigaScience, 2022, 11, .	3.3	2
972	The potential role of COVID-19 in the induction of DNA damage. Mutation Research - Reviews in Mutation Research, 2022, 789, 108411.	2.4	18
973	Virus interactions with the actin cytoskeleton—what we know and do not know about SARS-CoV-2. Archives of Virology, 2022, 167, 737-749.	0.9	17
974	Fast nanopore sequencing data analysis with SLOW5. Nature Biotechnology, 2022, 40, 1026-1029.	9.4	40
975	Characterization of two SARS-CoV-2 subgenomic RNA dynamics in severe COVID-19 patients. Virologica Sinica, 2022, , .	1.2	2
976	Dominant mutations in the severe acute respiratory syndrome coronavirusâ€2 genome challenge polymerase chain reaction detection. Clinical and Translational Discovery, 2022, 2, e23.	0.2	0
977	Effectiveness and Efficacy of Vaccine on Mutated SARS-CoV-2 Virus and Post Vaccination Surveillance: A Narrative Review. Vaccines, 2022, 10, 82.	2.1	16
979	Postbiotics as potential promising tools for SARS-CoV-2 disease adjuvant therapy. Journal of Applied Microbiology, 2022, 132, 4097-4111.	1.4	9

#	Article	IF	CITATIONS
980	Safety, immunogenicity, and protection provided by unadjuvanted and adjuvanted formulations of a recombinant plant-derived virus-like particle vaccine candidate for COVID-19 in nonhuman primates. Cellular and Molecular Immunology, 2022, 19, 222-233.	4.8	37
981	Detection methods targeting the positive―and negativeâ€sense RNA transcripts from plusâ€stranded RNA viruses. Apmis, 2022, 130, 284-292.	0.9	6
982	Omicron SARS-CoV-2 variant: Unique features and their impact on pre-existing antibodies. Journal of Autoimmunity, 2022, 126, 102779.	3.0	169
983	Sensitive visualization of SARS-CoV-2 RNA with CoronaFISH. Life Science Alliance, 2022, 5, e202101124.	1.3	19
984	Small Drugs, Huge Impact: The Extraordinary Impact of Antisense Oligonucleotides in Research and Drug Development. Molecules, 2022, 27, 536.	1.7	39
985	Extended ensemble simulations of a SARS-CoV-2 nsp1–5'-UTR complex. PLoS Computational Biology, 2022, 18, e1009804.	1.5	5
986	SARS-COV-2 Variants: Differences and Potential of Immune Evasion. Frontiers in Cellular and Infection Microbiology, 2021, 11, 781429.	1.8	154
988	Identification of broad anti-coronavirus chemical agents for repurposing against SARS-CoV-2 and variants of concern. Current Research in Virological Science, 2022, 3, 100019.	1.8	20
989	Rapid and Specific Detection of Active SARS-CoV-2 With CRISPR/Cas12a. Frontiers in Microbiology, 2021, 12, 820698.	1.5	6
990	Epidemiology and Genetic Analysis of SARS-CoV-2 in Myanmar during the Community Outbreaks in 2020. Viruses, 2022, 14, 259.	1.5	2
991	COVID-19 Impact on Public Health, Environment, Human Psychology, Global Socioeconomy, and Education. Scientific World Journal, The, 2022, 2022, 1-8.	0.8	60
992	Developing Multifunctional/Smart Civil Engineering Materials to Fight Viruses. ACS Sustainable Chemistry and Engineering, 2022, 10, 678-690.	3.2	2
993	Binding mechanism of inhibitors to SARS-CoV-2 main protease deciphered by multiple replica molecular dynamics simulations. Physical Chemistry Chemical Physics, 2022, 24, 1743-1759.	1.3	25
994	A novel phosphorylation site in SARS-CoV-2 nucleocapsid regulates its RNA-binding capacity and phase separation in host cells. Journal of Molecular Cell Biology, 2022, 14, .	1.5	5
995	The antigenicity of SARS-CoV-2 Delta variants aggregated 10 high-frequency mutations in RBD has not changed sufficiently to replace the current vaccine strain. Signal Transduction and Targeted Therapy, 2022, 7, 18.	7.1	9
996	The Tissue Distribution of SARS-CoV-2 in Transgenic Mice With Inducible Ubiquitous Expression of hACE2. Frontiers in Molecular Biosciences, 2021, 8, 821506.	1.6	7
997	Stable Cell Clones Harboring Self-Replicating SARS-CoV-2 RNAs for Drug Screen. Journal of Virology, 2022, 96, jvi0221621.	1.5	14
998	System-wide transcriptome damage and tissue identity loss in COVID-19 patients. Cell Reports Medicine, 2022, 3, 100522.	3.3	24

#	Article	IF	CITATIONS
999	Profiling Selective Packaging of Host RNA and Viral RNA Modification in SARS-CoV-2 Viral Preparations. Frontiers in Cell and Developmental Biology, 2022, 10, 768356.	1.8	2
1000	Targeting SARS-CoV-2 Proteases for COVID-19 Antiviral Development. Frontiers in Chemistry, 2021, 9, 819165.	1.8	51
1001	A systematic review and meta-analysis of the sensitivity of antibody tests for the laboratory confirmation of COVID-19. Future Virology, 2022, 17, 119-139.	0.9	18
1002	Multi-color super-resolution imaging to study human coronavirus RNA during cellular infection. Cell Reports Methods, 2022, 2, 100170.	1.4	13
1003	The nsp15 Nuclease as a Good Target to Combat SARS-CoV-2: Mechanism of Action and Its Inactivation with FDA-Approved Drugs. Microorganisms, 2022, 10, 342.	1.6	10
1004	Molecular accuracy vs antigenic speed: SARS-CoV-2 testing strategies. Current Opinion in Pharmacology, 2022, 62, 152-158.	1.7	3
1005	Innate immunity: the first line of defense against SARS-CoV-2. Nature Immunology, 2022, 23, 165-176.	7.0	303
1006	The importance of accessory protein variants in the pathogenicity of SARS-CoV-2. Archives of Biochemistry and Biophysics, 2022, 717, 109124.	1.4	20
1007	Insights into the specificity for the interaction of the promiscuous SARS-CoV-2 nucleocapsid protein N-terminal domain with deoxyribonucleic acids. International Journal of Biological Macromolecules, 2022, 203, 466-480.	3.6	16
1008	Rapid and sensitive detection of SARS-CoV-2 variants in nasopharyngeal swabs and wastewaters. Diagnostic Microbiology and Infectious Disease, 2022, 102, 115632.	0.8	6
1009	Mixed-Weight Neural Bagging for Detecting \$m^6A\$ Modifications in SARS-CoV-2 RNA Sequencing. IEEE Transactions on Biomedical Engineering, 2022, 69, 2557-2568.	2.5	4
1010	Transcription of the Envelope Protein by 1-L Protein–RNA Recognition Code Leads to Genes/Proteins That Are Relevant to the SARS-CoV-2 Life Cycle and Pathogenesis. Current Issues in Molecular Biology, 2022, 44, 791-816.	1.0	3
1011	A siRNA targets and inhibits a broad range of SARS oVâ€2 infections including Delta variant. EMBO Molecular Medicine, 2022, 14, e15298.	3.3	23
1012	Anticoronaviral Activity of the Natural Phloroglucinols, Dryocrassin ABBA and Filixic Acid ABA from the Rhizome of Dryopteris crassirhizoma by Targeting the Main Protease of SARS-CoV-2. Pharmaceutics, 2022, 14, 376.	2.0	4
1013	Full Genome Nobecovirus Sequences From Malagasy Fruit Bats Define a Unique Evolutionary History for This Coronavirus Clade. Frontiers in Public Health, 2022, 10, 786060.	1.3	13
1014	SARS-CoV-2 RNA elements share human sequence identity and upregulate hyaluronan via NamiRNA-enhancer network. EBioMedicine, 2022, 76, 103861.	2.7	24
1015	Secondary Structure of Subgenomic RNA M of SARS-CoV-2. Viruses, 2022, 14, 322.	1.5	3
1016	Plasma miRNA profile at COVID-19 onset predicts severity status and mortality. Emerging Microbes and Infections, 2022, 11, 676-688.	3.0	44

#	Article	IF	CITATIONS
1018	Phase separation by the SARS-CoV-2 nucleocapsid protein: Consensus and open questions. Journal of Biological Chemistry, 2022, 298, 101677.	1.6	44
1019	Genome sequence analysis of SARS-COV-2 isolated from a COVID-19 patient in Erbil, Iraq. Applied Nanoscience (Switzerland), 2022, , 1-7.	1.6	2
1021	Targeting stem-loop 1 of the SARS-CoV-2 5â€ ² UTR to suppress viral translation and Nsp1 evasion. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	56
1022	Loss of Detection of sgN Precedes Viral Abridged Replication in COVID-19-Affected Patients—A Target for SARS-CoV-2 Propagation. International Journal of Molecular Sciences, 2022, 23, 1941.	1.8	4
1023	Subcellular Detection of SARS-CoV-2 RNA in Human Tissue Reveals Distinct Localization in Alveolar Type 2 Pneumocytes and Alveolar Macrophages. MBio, 2022, 13, e0375121.	1.8	18
1024	Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: a global perspective. Nature Reviews Cardiology, 2022, 19, 314-331.	6.1	46
1025	Evidence for a mouse origin of the SARS-CoV-2 Omicron variant. Journal of Genetics and Genomics, 2021, 48, 1111-1121.	1.7	206
1026	Evaluation of reverse transcription-loop-mediated isothermal amplification for rapid detection of SARS-CoV-2. Scientific Reports, 2021, 11, 24234.	1.6	7
1029	The interactions of ZDHHC5/GOLGA7 with SARS-CoV-2 spike (S) protein and their effects on S protein's subcellular localization, palmitoylation and pseudovirus entry. Virology Journal, 2021, 18, 257.	1.4	19
1030	Cholesterol-Rich Lipid Rafts as Platforms for SARS-CoV-2 Entry. Frontiers in Immunology, 2021, 12, 796855.	2.2	63
1031	Epigenetic interaction of microbes with their mammalian hosts. Journal of Biosciences, 2021, 46, .	0.5	0
1032	COVID-19 variants that escape vaccine immunity: Global and Indian context-are more vaccines needed?. Journal of Biosciences, 2021, 46, .	0.5	0
1033	Establishment of an infectivity assay for SARS-CoV-2 to manage risks derived from wastewater during COVID-19 pandemic. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2021, 77, III_191-III_197.	0.1	0
1034	Drummondin E and Flinderole B are potential inhibitors of RNA-dependent RNA polymerase of SARS-CoV-2: an in silico study. Biotechnologia, 2022, 103, 53-70.	0.3	1
1035	Recent developments of molecular/biosensor diagnostics for SARS-CoV-2 detection. , 2022, , 167-187.		0
1036	Molecular Study for Mutation of N-gene and S-gene COVID-19 Virus. International Journal for Research in Applied Sciences and Biotechnology, 2022, 9, 34-44.	0.2	1
1037	Intrinsically Disordered Proteins: Perspective on COVID-19 Infection and Drug Discovery. ACS Infectious Diseases, 2022, 8, 422-432.	1.8	13
1038	Prevention, treatment and potential mechanism of herbal medicine for Corona viruses: A review. Bioengineered, 2022, 13, 5480-5508.	1.4	11

#	Article	IF	CITATIONS
1039	THE ROLE OF IMMUNITY IN SCRUTINIZING OMICRON VARIANT. , 2022, , 1-4.		0
1041	The battle between host and SARS-CoV-2: Innate immunity and viral evasion strategies. Molecular Therapy, 2022, 30, 1869-1884.	3.7	36
1042	ISG20: an enigmatic antiviral RNase targeting multiple viruses. FEBS Open Bio, 2022, 12, 1096-1111.	1.0	22
1044	Inactivation of SARS-CoV-2 and COVID-19 Patient Samples for Contemporary Immunology and Metabolomics Studies. ImmunoHorizons, 2022, 6, 144-155.	0.8	5
1046	Evolutionary dynamics of the severe acute respiratory syndrome coronavirus 2 genomes. Medical Review, 2022, 2, 3-22.	0.3	7
1047	Detection of the ORF1 Gene Is an Indicator of the Possible Isolation of Severe Acute Respiratory Syndrome Coronavirus 2. Pathogens, 2022, 11, 302.	1.2	8
1048	Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. ELife, 2022, 11, .	2.8	14
1049	SARS-CoV-2 Nsp14 mediates the effects of viral infection on the host cell transcriptome. ELife, 2022, 11, .	2.8	22
1050	RNA editing increases the nucleotide diversity of SARS-CoV-2 in human host cells. PLoS Genetics, 2022, 18, e1010130.	1.5	8
1051	SARS-CoV-2 vaccines: Clinical endpoints and psychological perspectives: A literature review. Journal of Infection and Public Health, 2022, 15, 515-525.	1.9	7
1052	Correlated sequence signatures are present within the genomic 5′UTR RNA and NSP1 protein in coronaviruses. Rna, 2022, 28, 729-741.	1.6	15
1053	InfectionCMA: A Cell MicroArray Approach for Efficient Biomarker Screening in In Vitro Infection Assays. Pathogens, 2022, 11, 313.	1.2	4
1054	Comment on Kopańska et al. Disorders of the Cholinergic System in COVID-19 Era—A Review of the Latest Research. Int. J. Mol. Sci. 2022, 23, 672. International Journal of Molecular Sciences, 2022, 23, 2818.	1.8	2
1055	Translational Control of COVID-19 and Its Therapeutic Implication. Frontiers in Immunology, 2022, 13, 857490.	2.2	9
1056	Exploring the Potentials of Phytochemicals for Targeting Coronavirus. Natural Products Journal, 2022, 12, .	0.1	0
1057	A tandem-repeat dimeric RBD protein-based covid-19 vaccine zf2001 protects mice and nonhuman primates. Emerging Microbes and Infections, 2022, 11, 1058-1071.	3.0	63
1058	Uncovering Novel Viral Innate Immune Evasion Strategies: What Has SARS-CoV-2 Taught Us?. Frontiers in Microbiology, 2022, 13, 844447.	1.5	4
1059	Unusual SMG suspects recruit degradation enzymes in nonsenseâ€mediated mRNA decay. BioEssays, 2022, , 2100296.	1.2	0

_	_	
CITATION	u Dru	
CHAHOP		UKI

#	Article	IF	CITATIONS
1061	A Sanger sequencing-based method for a rapid and economic generation of SARS-CoV-2 epidemiological data: A proof of concept study to assess the prevalence of the A23403G SNP (D614G) mutation in Quito, Ecuador F1000Research, 0, 11, 383.	0.8	0
1062	Limited extent and consequences of pancreatic SARS-CoV-2 infection. Cell Reports, 2022, 38, 110508.	2.9	36
1063	Digital PCR: Methods and applications in infectious diseases. Methods, 2022, 201, 1-4.	1.9	4
1064	RNA G-quadruplex in TMPRSS2 reduces SARS-CoV-2 infection. Nature Communications, 2022, 13, 1444.	5.8	37
1065	SARS-CoV-2 Diagnostics Based on Nucleic Acids Amplification: From Fundamental Concepts to Applications and Beyond. Frontiers in Cellular and Infection Microbiology, 2022, 12, 799678.	1.8	13
1066	SARS-CoV-2 variants, immune escape, and countermeasures. Frontiers of Medicine, 2022, 16, 196-207.	1.5	39
1067	mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron. Cell, 2022, 185, 1556-1571.e18.	13.5	179
1070	Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nature Communications, 2022, 13, 1536.	5.8	93
1071	Landscape of Molecular Crosstalk Perturbation between Lung Cancer and COVID-19. International Journal of Environmental Research and Public Health, 2022, 19, 3454.	1.2	2
1072	Exploring Zebrafish Larvae as a COVID-19 Model: Probable Abortive SARS-CoV-2 Replication in the Swim Bladder. Frontiers in Cellular and Infection Microbiology, 2022, 12, 790851.	1.8	13
1073	An Overview of SARS-CoV-2 Molecular Diagnostics in Europe. Clinics in Laboratory Medicine, 2022, 42, 161-191.	0.7	6
1074	RNA–protein interactomes as invaluable resources to study RNA viruses: Insights from SARS CoVâ€2 studies. Wiley Interdisciplinary Reviews RNA, 2022, , e1727.	3.2	3
1075	Comparison of reverse-transcription qPCR and droplet digital PCR for the detection of SARS-CoV-2 in clinical specimens of hospitalized patients. Diagnostic Microbiology and Infectious Disease, 2022, 103, 115677.	0.8	11
1076	Nanopore ReCappable sequencing maps SARS-CoV-2 5′ capping sites and provides new insights into the structure of sgRNAs. Nucleic Acids Research, 2022, 50, 3475-3489.	6.5	12
1077	Profiling of SARS-CoV-2 Subgenomic RNAs in Clinical Specimens. Microbiology Spectrum, 2022, 10, e0018222.	1.2	13
1078	Histones released by NETosis enhance the infectivity of SARS-CoV-2 by bridging the spike protein subunit 2 and sialic acid on host cells. , 2022, 19, 577-587.		22
1080	Computational Study on the Inhibitory Effect of Natural Compounds against the SARS-CoV-2 Proteins. Bioinorganic Chemistry and Applications, 2022, 2022, 1-19.	1.8	6
1081	Targeting Specific Checkpoints in the Management of SARS-CoV-2 Induced Cytokine Storm. Life, 2022, 12, 478.	1.1	5

#	Article	IF	CITATIONS
1082	Detection of SARS-CoV-2 Proteins in Wastewater Samples by Mass Spectrometry. Environmental Science & Technology, 2022, 56, 5062-5070.	4.6	12
1083	Molecular Virology of SARS-CoV-2 and Related Coronaviruses. Microbiology and Molecular Biology Reviews, 2022, 86, e0002621.	2.9	22
1085	COVID-19 Enfeksiyonlarında Dizi Analizi Yöntemlerine Genel Bakış. Kocaeli Üniversitesi Sağlık Bilimleri Dergisi, 0, , 6-17.	0.3	0
1086	SARSâ€CoVâ€2, SARSâ€CoV, and MERSâ€CoV encode circular RNAs of spliceosomeâ€independent origin. Journal Medical Virology, 2022, 94, 3203-3222.	of 2.5	17
1087	Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell, 2022, 185, 1728-1744.e16.	13.5	211
1088	A Rapid, Highly Sensitive and Open-Access SARS-CoV-2 Detection Assay for Laboratory and Home Testing. Frontiers in Molecular Biosciences, 2022, 9, 801309.	1.6	29
1089	Long-read sequencing reveals complex patterns of wraparound transcription in polyomaviruses. PLoS Pathogens, 2022, 18, e1010401.	2.1	8
1090	In Silico Drug Repositioning to Target the SARS-CoV-2 Main Protease as Covalent Inhibitors Employing a Combined Structure-Based Virtual Screening Strategy of Pharmacophore Models and Covalent Docking. International Journal of Molecular Sciences, 2022, 23, 3987.	1.8	6
1091	Targeting natural products against SARS-CoV-2. Environmental Science and Pollution Research, 2022, 29, 42404-42432.	2.7	9
1092	Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Bioorganic and Medicinal Chemistry Letters, 2022, 62, 128629.	1.0	131
1093	Swine Enteric Coronavirus: Diverse Pathogen–Host Interactions. International Journal of Molecular Sciences, 2022, 23, 3953.	1.8	21
1094	The Role of Subgenomic RNA in Discordant Results From Reverse Transcription-Polymerase Chain Reaction Tests for COVID-19. Archives of Pathology and Laboratory Medicine, 2022, 146, 805-813.	1.2	3
1095	Evaluation of the SMARTCHEK Genesystem RT-qPCR assay for the detection of SARS-CoV-2 in clinical samples. BMC Infectious Diseases, 2022, 22, 329.	1.3	1
1096	Multifaceted role of plant derived small molecule inhibitors on replication cycle of sars-cov-2. Microbial Pathogenesis, 2022, , 105512.	1.3	6
1098	Impairment of SARS-CoV-2 spike glycoprotein maturation and fusion activity by nitazoxanide: an effect independent of spike variants emergence. Cellular and Molecular Life Sciences, 2022, 79, 227.	2.4	20
1099	Biological nanopores for single-molecule sensing. IScience, 2022, 25, 104145.	1.9	25
1100	Epitranscriptomics of SARS-CoV-2 Infection. Frontiers in Cell and Developmental Biology, 2022, 10, 849298.	1.8	11
1101	SARS-CoV-2 Pandemic Tracing in Italy Highlights Lineages with Mutational Burden in Growing Subsets. International Journal of Molecular Sciences, 2022, 23, 4155.	1.8	3

		CITATION REPORT		
#	Article		IF	CITATIONS
1102	Fcl ³ R-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature, 202	2, 606, 576-584.	13.7	314
1103	Design and various in silico studies of the novel curcumin derivatives as potential candid COVID-19 -associated main enzymes. Computational Biology and Chemistry, 2022, 98, 3	ates against 107657.	1.1	9
1104	Detection of A-to-I RNA Editing in SARS-COV-2. Genes, 2022, 13, 41.		1.0	24
1105	<scp>RNA</scp> nucleotide methylation: 2021 update. Wiley Interdisciplinary Reviews I e1691.	RNA, 2022, 13,	3.2	39
1106	MicroRNA-Mediated Regulation of the Virus Cycle and Pathogenesis in the SARS-CoV-2 [International Journal of Molecular Sciences, 2021, 22, 13192.	Disease.	1.8	10
1108	Drug repurposing and other strategies for rapid coronavirus antiviral development: lesso early stage of the COVID-19 pandemic. , 2021, , 39-68.	ns from the		0
1110	On the application of BERT models for nanopore methylation detection. , 2021, , .			7
1111	Functionalized Terpolymer-Brush-Based Biointerface with Improved Antifouling Propertie Ultra-Sensitive Direct Detection of Virus in Crude Clinical Samples. ACS Applied Material Interfaces, 2021, 13, 60612-60624.	es for s &	4.0	19
1112	Computational Study of SARS-CoV-2 RNA Dependent RNA Polymerase Allosteric Site Inh Molecules, 2022, 27, 223.	ibition.	1.7	17
1114	New onset of generalized myasthenia gravis developed after a new coronavirus infectior Jurnal Infektologii, 2021, 13, 127-132.	ו (COVID-19).	0.1	4
1115	sgDI-tector: defective interfering viral genome bioinformatics for detection of coronaviru subgenomic RNAs. Rna, 2022, 28, 277-289.	IS	1.6	4
1117	Could Small Neurotoxins-Peptides be Expressed during SARS-CoV-2 Infection?. Current C 22, 557-563.	Genomics, 2021,	0.7	4
1118	Elevated temperature inhibits SARS-CoV-2 replication in respiratory epithelium independ IFN-mediated innate immune defenses. PLoS Biology, 2021, 19, e3001065.	ently of	2.6	26
1119	The Development of SARS-CoV-2 Variants: The Gene Makes the Disease. Journal of Devel Biology, 2021, 9, 58.	opmental	0.9	27
1120	The relationship between COVIDâ ${\in}19$ viral load and disease severity: A systematic review Inflammation and Disease, 2022, 10, .	v. Immunity,	1.3	86
1122	Inhibition of SARS-CoV-2 by Targeting Conserved Viral RNA Structures and Sequences. F Chemistry, 2021, 9, 802766.	rontiers in	1.8	20
1123	Targeting genomic SARS-CoV-2 RNA with siRNAs allows efficient inhibition of viral replica spread. Nucleic Acids Research, 2022, 50, 333-349.	ation and	6.5	34
1124	Nanopore-Based Direct RNA-Sequencing Reveals a High-Resolution Transcriptional Lands Porcine Reproductive and Respiratory Syndrome Virus. Viruses, 2021, 13, 2531.	scape of	1.5	3

#	Article	IF	CITATIONS
1125	The Inhibition of SARS-CoV-2 3CL M ^{pro} by Graphene and Its Derivatives from Molecular Dynamics Simulations. ACS Applied Materials & Interfaces, 2022, 14, 191-200.	4.0	8
1128	The Human Pangenome Project: a global resource to map genomic diversity. Nature, 2022, 604, 437-446.	13.7	192
1129	Development and validation of cost-effective one-step multiplex RT-PCR assay for detecting the SARS-CoV-2 infection using SYBR Green melting curve analysis. Scientific Reports, 2022, 12, 6501.	1.6	5
1130	Statistical Analysis and Machine Learning Prediction of Disease Outcomes for COVID-19 and Pneumonia Patients. Frontiers in Cellular and Infection Microbiology, 2022, 12, 838749.	1.8	9
1131	4'-fluorouridine and its derivatives as potential COVID-19 oral drugs: a review. F1000Research, 0, 11, 410.	0.8	3
1133	Development of antibody resistance in emerging mutant strains of SARS CoVâ€2: Impediment for COVIDâ€19 vaccines. Reviews in Medical Virology, 2022, 32, e2346.	3.9	16
1134	mRNA Vaccines: Why Is the Biology of Retroposition Ignored?. Genes, 2022, 13, 719.	1.0	16
1135	Graph Convolutional Network-Based Screening Strategy for Rapid Identification of SARS-CoV-2 Cell-Entry Inhibitors. Journal of Chemical Information and Modeling, 2022, 62, 1988-1997.	2.5	1
1136	A Nanopore Based Molnupiravir Sensor. ACS Sensors, 2022, 7, 1564-1571.	4.0	7
1137	The Potential of Eukaryotic Cell-Free Systems as a Rapid Response to Novel Zoonotic Pathogens: Analysis of SARS-CoV-2 Viral Proteins. Frontiers in Bioengineering and Biotechnology, 2022, 10, 896751.	2.0	1
1138	Stem Cellâ€based therapies for COVIDâ€19â€related acute respiratory distress syndrome. Journal of Cellular and Molecular Medicine, 2022, , .	1.6	1
1139	Nucleic Acids as Biotools at the Interface between Chemistry and Nanomedicine in the COVID-19 Era. International Journal of Molecular Sciences, 2022, 23, 4359.	1.8	6
1140	Replication of the coronavirus genome: A paradox among positive-strand RNA viruses. Journal of Biological Chemistry, 2022, 298, 101923.	1.6	26
1141	Viral and cellular translation during SARSâ€CoVâ€⊋ infection. FEBS Open Bio, 2022, 12, 1584-1601.	1.0	10
1142	SARS-CoV-2 and neurodegenerative diseases: what we know and what we don't. Journal of Neural Transmission, 2022, 129, 1155-1167.	1.4	19
1164	Reporting dinaciclib and theodrenaline as a multitargeted inhibitor against SARS-CoV-2: an <i>in-silico</i> study. Journal of Biomolecular Structure and Dynamics, 2023, 41, 4013-4023.	2.0	16
1165	Viruses Broaden the Definition of Life by Genomic Incorporation of Artificial Intelligence and Machine Learning Processes. Current Neuropharmacology, 2022, 20, 1888-1893.	1.4	5
1166	Subgenomic RNA profiling suggests novel mechanism in coronavirus gene regulation and host adaption. Life Science Alliance, 2022, 5, e202101347.	1.3	3

#	Article	IF	CITATIONS
1168	Detection and Quantification of SARS-CoV-2 by Real-Time RT-PCR Assay. Methods in Molecular Biology, 2022, 2452, 75-98.	0.4	2
1169	Pseudovirus-Based Assays for the Measurement of Antibody-Mediated Neutralization of SARS-CoV-2. Methods in Molecular Biology, 2022, 2452, 361-378.	0.4	1
1170	Inhibitors of SARS-CoV-2 PLpro. Frontiers in Chemistry, 2022, 10, 876212.	1.8	38
1171	Applying polypharmacology approach for drug repurposing for SARS-CoV2. Journal of Chemical Sciences, 2022, 134, 57.	0.7	10
1172	Neutralization heterogeneity of circulating SARS-CoV-2 variants to sera elicited by a vaccinee or convalescent. Future Virology, 2022, 17, 403-413.	0.9	6
1173	Characterization and functional interrogation of the SARS-CoV-2 RNA interactome. Cell Reports, 2022, 39, 110744.	2.9	30
1174	Possible Mechanism of SARS-CoV-2 Nsp1-Mediated Control of Viral Gene Expression. Frontiers in Cellular and Infection Microbiology, 2022, 12, 881749.	1.8	0
1176	The Role of N6-Methyladenosine in the Promotion of Hepatoblastoma: A Critical Review. Cells, 2022, 11, 1516.	1.8	9
1179	The structure-based design of peptidomimetic inhibitors against SARS-CoV-2 3C like protease as Potent anti-viral drug candidate. European Journal of Medicinal Chemistry, 2022, 238, 114458.	2.6	14
1180	A Unique Robust Dual-Promoter-Driven and Dual-Reporter-Expressing SARS-CoV-2 Replicon: Construction and Characterization. Viruses, 2022, 14, 974.	1.5	1
1181	A fast extraction-free isothermal LAMP assay for detection of SARS-CoV-2 with potential use in resource-limited settings. Virology Journal, 2022, 19, 77.	1.4	7
1182	The Emergence of SARS-CoV-2 Variants With a Lower Antibody Response: A Genomic and Clinical Perspective. Frontiers in Medicine, 2022, 9, .	1.2	4
1183	Genomic characteristics of SARS-CoV-2 in Beijing, China, 2021. Biosafety and Health, 2022, 4, 253-257.	1.2	3
1184	Physicochemical effect of the N501Y, E484K/Q, K417N/T, L452R and T478K mutations on the SARS-CoV-2 spike protein RBD and its influence on agent fitness and on attributes developed by emerging variants of concern. Virology, 2022, 572, 44-54.	1.1	21
1185	Human genetic factors associated with pneumonia risk, a cue for COVID-19 susceptibility. Infection, Genetics and Evolution, 2022, 102, 105299.	1.0	3
1186	BCG-Based Vaccines Elicit Antigen-Specific Adaptive and Trained Immunity against SARS-CoV-2 and Andes orthohantavirus. Vaccines, 2022, 10, 721.	2.1	12
1187	Enrichment analysis on regulatory subspaces: A novel direction for the superior description of cellular responses to SARS-CoV-2. Computers in Biology and Medicine, 2022, 146, 105443.	3.9	0
1188	Managing an evolving pandemic: Cryptic circulation of the Delta variant during the Omicron rise. Science of the Total Environment, 2022, 836, 155599.	3.9	24

		CITATION R	EPORT	
#	Article		IF	Citations
1189	Evolution and Epidemiology of SARS-CoV-2 Virus. Methods in Molecular Biology, 2022,	2452, 3-18.	0.4	0
1190	Rational Primer and Probe Construction in PCR-Based Assays for the Efficient Diagnosis Variants of SARS-CoV-2. Advances in Virology, 2022, 2022, 1-14.	of Drifting	0.5	0
1191	The adenosine analog prodrug ATV006 is orally bioavailable and has preclinical efficacy parental SARS-CoV-2 and variants. Science Translational Medicine, 2022, 14, eabm762	against 1.	5.8	22
1192	NGS data vectorization, clustering, and finding key codons in SARS-CoV-2 variations. B Bioinformatics, 2022, 23, 187.	МС	1.2	2
1193	Duplex One-Step RT-qPCR Assays for Simultaneous Detection of Genomic and Subgend SARS-CoV-2 Variants. Viruses, 2022, 14, 1066.	omic RNAs of	1.5	1
1194	Therapy Targets SARS-CoV-2 Infection-Induced Cell Death. Frontiers in Immunology, 20	22, 13, .	2.2	7
1195	Nanopore-Based Detection of Viral RNA Modifications. MBio, 2022, 13, e0370221.		1.8	12
1196	Studying bona fide SARS-CoV-2 biology in a BSL-2 biosafety environment using a split-v system. Science China Life Sciences, 2022, 65, 1894-1897.	'irus-genome	2.3	2
1197	SARS-CoV-2 ORF6 disrupts nucleocytoplasmic trafficking to advance viral replication. Communications Biology, 2022, 5, 483.		2.0	35
1198	Putative Host-Derived Insertions in the Genomes of Circulating SARS-CoV-2 Variants. N e0017922.	lSystems, 2022, ,	1.7	1
1199	Human Identical Sequences, hyaluronan, and hymecromone ─ the newÂmechanism a COVID-19. Molecular Biomedicine, 2022, 3, 15.	and management of	1.7	4
1200	Recent Progress on Rapid Lateral Flow Assay-Based Early Diagnosis of COVID-19. Front Bioengineering and Biotechnology, 2022, 10, 866368.	iers in	2.0	21
1201	Setomimycin as a potential molecule for COVID‑19 target: in silico approach and in v Molecular Diversity, 2023, 27, 619-633.	itro validation.	2.1	5
1202	Sustainable solutions for indoor pollution abatement during COVID phase: A critical stuce current technologies & amp; challenges. Journal of Hazardous Materials Advances, 2022	udy on 2, 7, 100097.	1.2	6
1203	Measuring the tail: Methods for poly(A) tail profiling. Wiley Interdisciplinary Reviews RN	VA, 2023, 14, .	3.2	16
1204	The Translational Landscape of SARS-CoV-2-infected Cells Reveals Suppression of Innat MBio, 2022, 13, .	e Immune Genes.	1.8	21
1205	DVGfinder: A Metasearch Tool for Identifying Defective Viral Genomes in RNA-Seq Data 14, 1114.	. Viruses, 2022,	1.5	8
1206	Identification of novel regulatory pathways across normal human bronchial epithelial co (NHBEs) and peripheral blood mononuclear cell lines (PBMCs) in COVID-19 patients us transcriptome analysis. Informatics in Medicine Unlocked, 2022, 31, 100979.	ell lines ing	1.9	4

#	Article	IF	CITATIONS
1207	Analysis of SARS-CoV-2 known and novel subgenomic mRNAs in cell culture, animal model, and clinical samples using LeTRS, a bioinformatic tool to identify unique sequence identifiers. GigaScience, 2022, 11, .	3.3	8
1208	SARS-CoV-2 Within-Host and in vitro Genomic Variability and Sub-Genomic RNA Levels Indicate Differences in Viral Expression Between Clinical Cohorts and in vitro Culture. Frontiers in Microbiology, 2022, 13, .	1.5	4
1209	Detectable Duration of Viable SARS-CoV-2, Total and Subgenomic SARS-CoV-2 RNA in Noncritically III COVID-19 Patients: a Prospective Cohort Study. Microbiology Spectrum, 2022, 10, .	1.2	8
1210	Parsing the role of NSP1 in SARS-CoV-2 infection. Cell Reports, 2022, 39, 110954.	2.9	37
1212	Cardiovascular Tropism and Sequelae of SARS-CoV-2 Infection. Viruses, 2022, 14, 1137.	1.5	6
1214	How the Replication and Transcription Complex Functions in Jumping Transcription of SARS-CoV-2. Frontiers in Genetics, 0, 13, .	1.1	4
1215	Folic acid: a potential inhibitor against SARS-CoV-2 nucleocapsid protein. Pharmaceutical Biology, 2022, 60, 862-878.	1.3	22
1216	Adaptation of new variants: A game changer in the evolution of SARS-CoV-2. , 0, .		0
1219	Effect of the Graphene Nanosheet on Bio-Functions of the Spike Protein at Open and Closed States: The Comparison Between SARS-CoV-2 WT and Omicron Variant. SSRN Electronic Journal, 0, , .	0.4	0
1221	Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chemical Reviews, 2022, 122, 11287-11368.	23.0	38
1223	Strategies That Facilitate Extraction-Free SARS-CoV-2 Nucleic Acid Amplification Tests. Viruses, 2022, 14, 1311.	1.5	9
1224	Advanced Molecular and Immunological Diagnostic Methods to Detect SARS-CoV-2 Infection. Microorganisms, 2022, 10, 1193.	1.6	40
1225	Synergistic interactions of repurposed drugs that inhibit Nsp1, a major virulence factor for COVID-19. Scientific Reports, 2022, 12, .	1.6	9
1228	Diagnostics of COVID-19 Based on CRISPR–Cas Coupled to Isothermal Amplification: A Comparative Analysis and Update. Diagnostics, 2022, 12, 1434.	1.3	8
1230	Human miRNAs to Identify Potential Regions of SARS-CoV-2. ACS Omega, 2022, 7, 21086-21101.	1.6	2
1231	The Role of Viral RNA Degrading Factors in Shutoff of Host Gene Expression. Annual Review of Virology, 2022, 9, 213-238.	3.0	11
1232	Immunological Study of Combined Administration of SARS-CoV-2 DNA Vaccine and Inactivated Vaccine. Vaccines, 2022, 10, 929.	2.1	3
1233	Integrative structural studies of the SARS-CoV-2 spike protein during the fusion process (2022). Current Research in Structural Biology, 2022, , .	1.1	0

#	Article	IF	CITATIONS
1234	Clinical and Genetic Characteristics of Coronaviruses with Particular Emphasis on SARS-CoV-2 Virus. Polish Journal of Microbiology, 2022, 71, 141-159.	0.6	0
1235	Characterization of SARS-CoV-2 Evasion: Interferon Pathway and Therapeutic Options. Viruses, 2022, 14, 1247.	1.5	24
1236	Accurate Identification of Transcription Regulatory Sequences and Genes in Coronaviruses. Molecular Biology and Evolution, 0, , .	3.5	2
1237	Nucleocapsid Specific Diagnostics for the Detection of Divergent SARS-CoV-2 Variants. Frontiers in Immunology, 0, 13, .	2.2	11
1238	MicroRNAs in the development of potential therapeutic targets against COVID-19: A narrative review. Journal of Infection and Public Health, 2022, 15, 788-799.	1.9	11
1239	Receptor binding domain of SARS oVâ€2 from Wuhan strain to Omicron B.1.1.529 attributes increased affinity to variable structures of human ACE2. Journal of Infection and Public Health, 2022, 15, 781-787.	1.9	0
1240	Transcriptome dataset of six human pathogen RNA viruses generated by nanopore sequencing. Data in Brief, 2022, 43, 108386.	0.5	1
1241	In-Silico targeting of SARS-CoV-2 NSP6 for drug and natural products repurposing. Virology, 2022, 573, 96-110.	1.1	7
1243	Genomic, proteomic and metabolomic profiling of severe acute respiratory syndrome-Coronavirus-2. , 2022, , 49-76.		0
1244	Interaction between Sars-CoV-2 structural proteins and host cellular receptors: From basic mechanisms to clinical perspectives. Advances in Protein Chemistry and Structural Biology, 2022, , 243-277.	1.0	4
1245	COVID-19: Clinical laboratory diagnosis and monitoring of novel coronavirus infected patients using molecular, serological and biochemical markers: A review. International Journal of Immunopathology and Pharmacology, 2022, 36, 039463202211153.	1.0	5
1246	Computational Structural and Functional Analyses of ORF10 in Novel Coronavirus SARS-CoV-2 Variants to Understand Evolutionary Dynamics. Evolutionary Bioinformatics, 2022, 18, 117693432211082.	0.6	2
1247	Ongoing Positive Selection Drives the Evolution of SARS-CoV-2 Genomes. Genomics, Proteomics and Bioinformatics, 2022, 20, 1214-1223.	3.0	9
1248	The nervous system during <scp>COVID</scp> â€19: Caught in the crossfire. Immunological Reviews, 2022, 311, 90-111.	2.8	9
1250	Mapping the intersection of nanotechnology and SARS-CoV-2/COVID-19: A bibliometric analysis. , 2022, 1, 103-112.		3
1252	Epigenetic mechanisms regulate sex-specific bias in disease manifestations. Journal of Molecular Medicine, 2022, 100, 1111-1123.	1.7	15
1253	Nanotechnology for the management of COVID-19 during the pandemic and in the post-pandemic era. National Science Review, 2022, 9, .	4.6	11
1254	RNA m5Cä¿®é¥°è°ƒæŽ§ç—æ¯'å&¶çš"ç"究进展. Chinese Science Bulletin, 2022, , .	0.4	0

#	Article	IF	CITATIONS
1255	COVID-19 disease and autoimmune disorders: A mutual pathway. World Journal of Methodology, 2022, 12, 200-223.	1.1	12
1256	The Main Protease of SARS-CoV-2 as a Target for Phytochemicals against Coronavirus. Plants, 2022, 11, 1862.	1.6	13
1257	Genomic diversity of SARS oVâ€2 in Pakistan during the fourth wave of pandemic. Journal of Medical Virology, 2022, 94, 4869-4877.	2.5	11
1258	Altered subgenomic RNA abundance provides unique insight into SARS-CoV-2 B.1.1.7/Alpha variant infections. Communications Biology, 2022, 5, .	2.0	12
1260	The role of multi-omics in the diagnosis of COVID-19 and the prediction of new therapeutic targets. Virulence, 2022, 13, 1101-1110.	1.8	7
1261	Additional Evidence for Commonalities between COVID-19 and Radiation Injury: Novel Insight into COVID-19 Candidate Drugs. Radiation Research, 2022, 198, .	0.7	4
1262	Temporal changes in the accessory protein mutations of SARSâ€CoVâ€⊋ variants and their predicted structural and functional effects. Journal of Medical Virology, 2022, 94, 5189-5200.	2.5	6
1263	SARS oVâ€2 ORF10 antagonizes STINGâ€dependent interferon activation and autophagy. Journal of Medical Virology, 2022, 94, 5174-5188.	2.5	45
1264	Lessons Learned and Yet-to-Be Learned on the Importance of RNA Structure in SARS-CoV-2 Replication. Microbiology and Molecular Biology Reviews, 0, , .	2.9	4
1265	Transcriptome-wide measurement of poly(A) tail length and composition at subnanogram total RNA sensitivity by PAlso-seq. Nature Protocols, 2022, 17, 1980-2007.	5.5	10
1266	Translation of SARS-CoV-2 gRNA Is Extremely Efficient and Competitive despite a High Degree of Secondary Structures and the Presence of an uORF. Viruses, 2022, 14, 1505.	1.5	7
1267	<i>N</i> 6 -Methyladenosine and Its Implications in Viruses. Genomics, Proteomics and Bioinformatics, 2023, 21, 695-706.	3.0	6
1268	Chalcone-amide, a privileged backbone for the design and development of selective SARS-CoV/SARS-CoV-2 papain-like protease inhibitors. European Journal of Medicinal Chemistry, 2022, 240, 114572.	2.6	10
1269	A multi-pronged evaluation of aldehyde-based tripeptidyl main protease inhibitors as SARS-CoV-2 antivirals. European Journal of Medicinal Chemistry, 2022, 240, 114570.	2.6	23
1270	Coronaviruses. , 2023, , 277-306.		0
1271	Double-stranded RNA drives SARS-CoV-2 nucleocapsid protein to undergo phase separation at specific temperatures. Nucleic Acids Research, 2022, 50, 8168-8192.	6.5	32
1272	Delineating COVID-19 immunological features using single-cell RNA sequencing. Innovation(China), 2022, 3, 100289.	5.2	9
1273	Smallâ€Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angewandte Chemie, 2022, 134, .	1.6	2

#	Article	IF	Citations
1276	SARS-CoV-2 and Emerging Foodborne Pathogens: Intriguing Commonalities and Obvious Differences. Pathogens, 2022, 11, 837.	1.2	0
1277	Nanopore sequencing technology and its application in plant virus diagnostics. Frontiers in Microbiology, 0, 13, .	1.5	13
1278	Artificial intelligence enabled non-invasive T-ray imaging technique for early detection of coronavirus infected patients. Informatics in Medicine Unlocked, 2022, 32, 101025.	1.9	1
1279	Cap-independent translation and a precisely located RNA sequence enable SARS-CoV-2 to control host translation and escape anti-viral response. Nucleic Acids Research, 2022, 50, 8080-8092.	6.5	18
1280	The Impact of Epitranscriptomics on Antiviral Innate Immunity. Viruses, 2022, 14, 1666.	1.5	3
1281	Smallâ€Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
1282	An intranasal ASO therapeutic targeting SARS-CoV-2. Nature Communications, 2022, 13, .	5.8	29
1283	COVID-19 and pregnancy: clinical outcomes; mechanisms, and vaccine efficacy. Translational Research, 2023, 251, 84-95.	2.2	14
1284	Evaluation of Methods and Processes for Robust Monitoring of SARS-CoV-2 in Wastewater. Food and Environmental Virology, 2022, 14, 384-400.	1.5	4
1285	GRP78, a Novel Host Factor for SARS-CoV-2: The Emerging Roles in COVID-19 Related to Metabolic Risk Factors. Biomedicines, 2022, 10, 1995.	1.4	8
1286	Microfluidics-Based POCT for SARS-CoV-2 Diagnostics. Micromachines, 2022, 13, 1238.	1.4	18
1287	A model system for antiviral siRNA therapeutics using exosome-based delivery. Molecular Therapy - Nucleic Acids, 2022, 29, 691-704.	2.3	5
1288	Hydrophobic Alpha-Helical Short Peptides in Overlapping Reading Frames of the Coronavirus Genome. Pathogens, 2022, 11, 877.	1.2	0
1289	Structural basis for Sarbecovirus ORF6 mediated blockage of nucleocytoplasmic transport. Nature Communications, 2022, 13, .	5.8	12
1290	Identifying inhibitors of NSP16-NSP10 of SARS-CoV-2 from large databases. Journal of Biomolecular Structure and Dynamics, 2023, 41, 7045-7054.	2.0	2
1292	Combining Deep Phenotyping of Serum Proteomics and Clinical Data via Machine Learning for COVID-19 Biomarker Discovery. International Journal of Molecular Sciences, 2022, 23, 9161.	1.8	7
1293	Unveiling the multitargeted potential of N-(4-Aminobutanoyl)-S-(4-methoxybenzyl)-L-cysteinylglycine (NSL-CG) against SARS CoV-2: a virtual screening and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 2023, 41, 6633-6642.	2.0	16
1294	Improved SARS-CoV-2 sequencing surveillance allows the identification of new variants and signatures in infected patients. Genome Medicine, 2022, 14, .	3.6	12

#	Article	IF	CITATIONS
1296	Evaluation of response to different COVIDâ€19 vaccines in vaccinated healthcare workers in a single center in Iran. Journal of Medical Virology, 2022, 94, 5669-5677.	2.5	6
1297	Proteolytic Processing of the Coronavirus Replicase Nonstructural Protein 14 Exonuclease Is Not Required for Virus Replication but Alters RNA Synthesis and Viral Fitness. Journal of Virology, 2022, 96, .	1.5	5
1298	Analyzing viral epitranscriptomes using nanopore direct RNA sequencing. Journal of Microbiology, 2022, 60, 867-876.	1.3	2
1299	Modeling the Enzymatic Mechanism of the SARS-CoV-2 RNA-Dependent RNA Polymerase by DFT/MM-MD: An Unusual Active Site Leading to High Replication Rates. Journal of Chemical Information and Modeling, 2022, 62, 4261-4269.	2.5	11
1300	The SARS-CoV-2 envelope protein disrupts barrier function in an in vitro human blood-brain barrier model. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	10
1301	Visual Detection of COVID-19 from Materials Aspect. Advanced Fiber Materials, 2022, 4, 1304-1333.	7.9	15
1303	Development of a Handheld Nano-centrifugal Device for Visual Virus Detection. Journal of Analysis and Testing, 2022, 6, 353-364.	2.5	3
1304	Host cell stress response as a predictor of COVID-19 infectivity and disease progression. Frontiers in Molecular Biosciences, 0, 9, .	1.6	4
1305	Genomic surveillance of SARS-CoV-2 by sequencing the RBD region using Sanger sequencing from North Kerala. Frontiers in Public Health, 0, 10, .	1.3	2
1306	Computational and Experimental Approaches to Study the RNA Secondary Structures of RNA Viruses. Viruses, 2022, 14, 1795.	1.5	0
1307	Computational investigation of potent inhibitors against SARS-CoV-2 2′-O-methyltransferase (nsp16): Structure-based pharmacophore modeling, molecular docking, molecular dynamics simulations and binding free energy calculations. Journal of Molecular Graphics and Modelling, 2022, 117, 108306.	1.3	7
1308	Promotion of neutralizing antibody-independent immunity to wild-type and SARS-CoV-2 variants of concern using an RBD-Nucleocapsid fusion protein. Nature Communications, 2022, 13, .	5.8	12
1309	The epitranscriptome of Vero cells infected with SARS-CoV-2 assessed by direct RNA sequencing reveals m6A pattern changes and DRACH motif biases in viral and cellular RNAs. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	3
1310	SARS oVâ€2 Papainâ€Like Protease: Structure, Function and Inhibition. ChemBioChem, 2022, 23, .	1.3	26
1311	Genomic surveillance, evolution and global transmission of SARS-CoV-2 during 2019–2022. PLoS ONE, 2022, 17, e0271074.	1.1	14
1312	Unique mutations in SARS-CoV-2 Omicron subvariants' non-spike proteins: Potential impacts on viral pathogenesis and host immune evasion. Microbial Pathogenesis, 2022, 170, 105699.	1.3	37
1313	Potential of antibody pair targeting conserved antigenic sites in diagnosis of SARS-CoV-2 variants infection. Journal of Virological Methods, 2022, 309, 114597.	1.0	1
1314	Epigenetic perspectives of COVID-19: Virus infection to disease progression and therapeutic control. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166527.	1.8	4

#	Article	IF	CITATIONS
1315	Beyond the vaccines: a glance at the small molecule and peptide-based anti-COVID19 arsenal. Journal of Biomedical Science, 2022, 29, .	2.6	16
1317	Recent advances in applying G-quadruplex for SARS-CoV-2 targeting and diagnosis: A review. International Journal of Biological Macromolecules, 2022, 221, 1476-1490.	3.6	9
1318	Development of multiplex S-gene-targeted RT-PCR for rapid identification of SARS-CoV-2 variants by extended S-gene target failure. Clinica Chimica Acta, 2022, 536, 6-11.	0.5	4
1319	Polypharmacology in Clinical Applications: Anti-infection Polypharmacology. , 2022, , 343-374.		0
1320	Emergence of COVID-19 Variants and Its Global Impact. , 2022, , 183-201.		1
1321	Analysis of SARS-CoV-2 Mutations in the Context of Epitope Affinity for HLA Class I and Class II Most Frequent in Russia Alleles. Re:GEN Open, 2022, 2, 75-84.	0.7	0
1322	Genetics and Biological Characteristics of SARS-CoV-2. , 2022, , 49-66.		0
1323	SARS-CoV-2 genome sequencing and promising druggable targets. , 2022, , 3-22.		1
1324	SARS-CoV-2 Vaccine Against Virus: Mission Accomplished!?. , 2022, , 561-574.		0
1325	A DNA-based non-infectious replicon system to study SARS-CoV-2 RNA synthesis. Computational and Structural Biotechnology Journal, 2022, 20, 5193-5202.	1.9	2
1326	Enhancing Neutralizing Antibodies Against Receptor Binding Domain of SARS-CoV-2 by a Safe Natural Adjuvant System. SSRN Electronic Journal, 0, , .	0.4	0
1327	The highly conserved RNA-binding specificity of nucleocapsid protein facilitates the identification of drugs with broad anti-coronavirus activity. Computational and Structural Biotechnology Journal, 2022, 20, 5040-5044.	1.9	1
1328	Perspective Chapter: Recent Progressions on the Colorimetric Diagnosis of SARS-CoV-2 by Loop-Mediated Isothermal Amplification (LAMP) Assay. Infectious Diseases, 0, , .	4.0	4
1329	Time Series Analysis of SARS-CoV-2 Genomes and Correlations among Highly Prevalent Mutations. Microbiology Spectrum, 2022, 10, .	1.2	8
1330	Pharmacoinformatic study of inhibitory potentials of selected flavonoids against papain-like protease and 3-chymotrypsin-like protease of SARS-CoV-2. Clinical Phytoscience, 2022, 8, .	0.8	1
1331	State-of-the-Art Molecular Dynamics Simulation Studies of RNA-Dependent RNA Polymerase of SARS-CoV-2. International Journal of Molecular Sciences, 2022, 23, 10358.	1.8	5
1332	RNA structure-altering mutations underlying positive selection on Spike protein reveal novel putative signatures to trace crossing host-species barriers in <i>Betacoronavirus</i> . RNA Biology, 2022, 19, 1019-1044.	1.5	2
1333	Challenges in the Detection of SARS-CoV-2: Evolution of the Lateral Flow Immunoassay as a Valuable Tool for Viral Diagnosis. Biosensors, 2022, 12, 728.	2.3	13

#	Article	IF	CITATIONS
1334	Potential of conserved antigenic sites in development of universal SARS-like coronavirus vaccines. Frontiers in Immunology, 0, 13, .	2.2	0
1335	Variant-Specific Analysis Reveals a Novel Long-Range RNA-RNA Interaction in SARS-CoV-2 Orf1a. International Journal of Molecular Sciences, 2022, 23, 11050.	1.8	2
1336	DFV890: a new oral NLRP3 inhibitor—tested in an early phase 2a randomised clinical trial in patients with COVID-19 pneumonia and impaired respiratory function. Infection, 2023, 51, 641-654.	2.3	19
1337	virDTL: Viral Recombination Analysis Through Phylogenetic Reconciliation and Its Application to Sarbecoviruses and SARS-CoV-2. Journal of Computational Biology, 2023, 30, 3-20.	0.8	0
1338	SARS-CoV-2 Variant Surveillance in Genomic Medicine Era. Infectious Diseases, 0, , .	4.0	0
1339	Use of LoopDeelab during the COVID-19 Pandemic: An Innovative Device for Field Diagnosis. Viruses, 2022, 14, 2062.	1.5	0
1341	Transcriptomics and RNA-Based Therapeutics as Potential Approaches to Manage SARS-CoV-2 Infection. International Journal of Molecular Sciences, 2022, 23, 11058.	1.8	2
1342	Proteomicsâ€based mass spectrometry profiling of SARS oVâ€2 infection from human nasopharyngeal samples. Mass Spectrometry Reviews, 2024, 43, 193-229.	2.8	2
1343	Translation landscape of SARS-CoV-2 noncanonical subgenomic RNAs. Virologica Sinica, 2022, 37, 813-822.	1.2	4
1344	A Putative long-range RNA-RNA interaction between ORF8Âand Spike of SARS-CoV-2. PLoS ONE, 2022, 17, e0260331.	1.1	5
1345	Hypoxia inducible factors regulate infectious SARS-CoV-2, epithelial damage and respiratory symptoms in a hamster COVID-19 model. PLoS Pathogens, 2022, 18, e1010807.	2.1	15
1346	On the Origins of Omicron's Unique Spike Gene Insertion. Vaccines, 2022, 10, 1509.	2.1	10
1347	Multiomics approach reveals the ubiquitination-specific processes hijacked by SARS-CoV-2. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	23
1348	SARS-CoV-2 variants Alpha, Beta, Delta and Omicron show a slower host cell interferon response compared to an early pandemic variant. Frontiers in Immunology, 0, 13, .	2.2	7
1349	t6A and ms2t6A Modified Nucleosides in Serum and Urine as Strong Candidate Biomarkers of COVID-19 Infection and Severity. Biomolecules, 2022, 12, 1233.	1.8	3
1350	Gut as an Alternative Entry Route for SARS-CoV-2: Current Evidence and Uncertainties of Productive Enteric Infection in COVID-19. Journal of Clinical Medicine, 2022, 11, 5691.	1.0	10
1351	Analyzing RNA posttranscriptional modifications to decipher the epitranscriptomic code. Mass Spectrometry Reviews, 2024, 43, 5-38.	2.8	4
1352	Delta variant: Partially sensitive to vaccination, but still worth global attention. Journal of Translational Internal Medicine, 2022, 10, 227-235.	1.0	2

#	Article	IF	Citations
1354	Evaluating the role of SARS-CoV-2 target genes based on two nucleic acid assay kits. Frontiers in Public Health, 0, 10, .	1.3	2
1355	In Vitro Evaluation of Leuconostoc mesenteroides Cell-Free-Supernatant GBUT-21 against SARS-CoV-2. Vaccines, 2022, 10, 1581.	2.1	4
1356	Optical reflectometric measurement of SARS-CoV-2 (COVID-19) RNA based on cationic cysteamine-capped gold nanoparticles. Optics and Laser Technology, 2023, 157, 108763.	2.2	4
1357	Adaptationâ€Proof SARS oVâ€2 Vaccine Design. Advanced Functional Materials, 2022, 32, .	7.8	7
1358	Live and let die: signaling AKTivation and UPRegulation dynamics in SARS-CoVs infection and cancer. Cell Death and Disease, 2022, 13, .	2.7	3
1359	Therapeutic potential of metal ions for COVID-19: insights from the papain-like protease of SARS-CoV-2. Biochemical Journal, 2022, 479, 2175-2193.	1.7	4
1360	Advances in nanopore direct RNA sequencing. Nature Methods, 2022, 19, 1160-1164.	9.0	44
1361	Reconstitution of the SARS-CoV-2 ribonucleosome provides insights into genomic RNA packaging and regulation by phosphorylation. Journal of Biological Chemistry, 2022, 298, 102560.	1.6	17
1362	COVID-19 and Alzheimer's Disease: Neuroinflammation, Oxidative Stress, Ferroptosis, and Mechanisms Involved. Current Medicinal Chemistry, 2023, 30, 3993-4031.	1.2	6
1363	High temporal resolution Nanopore sequencing dataset of SARS-CoV-2 and host cell RNAs. GigaScience, 2022, 11, .	3.3	3
1364	Insight into genomic organization of pathogenic coronaviruses, SARS-CoV-2: Implication for emergence of new variants, laboratory diagnosis and treatment options. Frontiers in Molecular Medicine, 0, 2, .	0.6	0
1365	Inhibition of Viral RNA-Dependent RNA Polymerases by Nucleoside Inhibitors: An Illustration of the Unity and Diversity of Mechanisms. International Journal of Molecular Sciences, 2022, 23, 12649.	1.8	4
1366	Viral and Host Small RNA Response to SARS-CoV-2 Infection. Microbiology Research, 2022, 13, 788-808.	0.8	1
1367	Cell Entry and Unusual Replication of SARS-CoV-2. Current Drug Targets, 2022, 23, 1539-1554.	1.0	1
1368	Differences in the immune response elicited by two immunization schedules with an inactivated SARS-CoV-2 vaccine in a randomized phase 3 clinical trial. ELife, 0, 11, .	2.8	3
1369	SARS-CoV-2 Vaccines: Types, Working Principle, and Its Impact on Thrombosis and Gastrointestinal Disorders. Applied Biochemistry and Biotechnology, 2023, 195, 1541-1573.	1.4	4
1370	PATHOGENESIS OF COVID-19. TavriÄeskij Mediko-biologiÄeskij Vestnik, 2022, 23, 113-132.	0.1	3
1371	Evolution of naturally arising SARS-CoV-2 defective interfering particles. Communications Biology, 2022, 5, .	2.0	13

#	Article	IF	CITATIONS
1374	An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19. Journal of Nanobiotechnology, 2022, 20, .	4.2	38
1375	Đroblems of PCR diagnostics OF COVID-19. Jurnal Infektologii, 2022, 14, 55-60.	0.1	0
1376	The transcriptional characteristics of NADC34-like PRRSV in porcine alveolar macrophages. Frontiers in Microbiology, 0, 13, .	1.5	0
1377	Design Strategies for and Stability of mRNA–Lipid Nanoparticle COVID-19 Vaccines. Polymers, 2022, 14, 4195.	2.0	13
1378	Systematic benchmarking of nanopore Q20+ kit in SARS-CoV-2 whole genome sequencing. Frontiers in Microbiology, 0, 13, .	1.5	11
1379	Nsp16 shields <scp>SARS–CoV</scp> â€2 from efficient <scp>MDA5</scp> sensing and <scp>IFIT1</scp> â€mediated restriction. EMBO Reports, 2022, 23, .	2.0	17
1380	A Review: Highlighting the Links between Epigenetics, COVID-19 Infection, and Vitamin D. International Journal of Molecular Sciences, 2022, 23, 12292.	1.8	7
1381	Emergence and spreading of the largest SARS-CoV-2 deletion in the Delta AY.20 lineage from Uruguay. Gene Reports, 2022, 29, 101703.	0.4	1
1383	Detection technologies for RNA modifications. Experimental and Molecular Medicine, 2022, 54, 1601-1616.	3.2	18
1384	The origins of COVIDâ€19 pandemic: A brief overview. Transboundary and Emerging Diseases, 2022, 69, 3181-3197.	1.3	6
1385	Diagnostic evaluation of nCoV-QS, nCoV-QM-N, and nCoV-OM detection kits based on rRT-PCR for detection of SARS-CoV-2 in Ecuador. Heliyon, 2022, 8, e11137.	1.4	3
1386	Effect of the Graphene Nanosheet on Functions of the Spike Protein in Open and Closed States: Comparison between SARS-CoV-2 Wild Type and the Omicron Variant. Langmuir, 2022, 38, 13972-13982.	1.6	3
1387	Assessment of two volumetrically different concentration approaches to improve sensitivities for SARS-CoV-2 detection during wastewater monitoring. Journal of Virological Methods, 2023, 311, 114645.	1.0	3
1388	Bioinformatic Analysis of B- and T-cell Epitopes from SARS-CoV-2 Structural Proteins and their Potential Cross-reactivity with Emerging Variants and other Human Coronaviruses. Archives of Medical Research, 2022, 53, 694-710.	1.5	5
1389	Differential gene expression of SARS-CoV-2 transcriptome provides insight into the design of more sensitive diagnostic tests. , 2022, 34, 201116.		0
1390	Mutations in SARS-CoV-2: Insights on structure, variants, vaccines, and biomedical interventions. Biomedicine and Pharmacotherapy, 2023, 157, 113977.	2.5	66
1391	Functional and molecular dissection of HCMV long non-coding RNAs. Scientific Reports, 2022, 12, .	1.6	5
1392	Subgenomic RNA abundance relative to total viral RNA among SARS-CoV-2 variants. Open Forum Infectious Diseases, 0, , .	0.4	2

#	Article	IF	CITATIONS
1393	The mutational spectrum of SARS-CoV-2 genomic and antigenomic RNA. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	4
1395	Review of preclinical data of PF-07304814 and its active metabolite derivatives against SARS-CoV-2 infection. Frontiers in Pharmacology, 0, 13, .	1.6	5
1397	Multiple-Molecule Drug Repositioning for Disrupting Progression of SARS-CoV-2 Infection by Utilizing the Systems Biology Method through Host-Pathogen-Interactive Time Profile Data and DNN-Based DTI Model with Drug Design Specifications. Stresses, 2022, 2, 405-436.	1.8	2
1398	XNAzymes targeting the SARS-CoV-2 genome inhibit viral infection. Nature Communications, 2022, 13, .	5.8	7
1399	Subgenomic RNAs and Their Encoded Proteins Contribute to the Rapid Duplication of SARS-CoV-2 and COVID-19 Progression. Biomolecules, 2022, 12, 1680.	1.8	0
1400	Relative infectivity of the SARS-CoV-2 Omicron variant in human alveolar cells. IScience, 2022, 25, 105571.	1.9	2
1401	Merging microfluidics with luminescence immunoassays for urgent point-of-care diagnostics of COVID-19. TrAC - Trends in Analytical Chemistry, 2022, 157, 116814.	5.8	13
1402	An ultrasensitive aptasensor of SARS-CoV-2ÂN protein based on ion current rectification with nanopipettes. Sensors and Actuators B: Chemical, 2023, 377, 133075.	4.0	9
1403	Heterologous vaccination of BNT162b2 in Ad26. COV2.S-vaccinated healthcare workers elicits long-term humoral immune response. South African Medical Journal, 2022, 112, 827-838.	0.2	0
1404	SARS-CoV-2 Inhibitors Identified by Phenotypic Analysis of a Collection of Viral RNA-Binding Molecules. Pharmaceuticals, 2022, 15, 1448.	1.7	1
1405	Pre-processing SARS-CoV-2 Sequence Data for Application of Machine Learning Techniques for Visualization and Clustering of Virus Characteristics. , 2022, , .		0
1406	Molecular Function of cGAS-STING in SARS-CoV-2: A Novel Approach to COVID-19 Treatment. BioMed Research International, 2022, 2022, 1-10.	0.9	3
1407	Analysis of receptor binding domain for possible mutations in S gene region of SARS-CoV-2. International Journal of Health Sciences, 0, , 4267-4278.	0.0	0
1408	Azole derivatives inhibit the binding of the RBD domain of SARS-Cov-2 against host ACE2 in in vitro assays. Journal of Human Virology & Retrovirology, 2022, 9, 58-63.	0.1	0
1409	Prediction of Recurrent Mutations in SARS-CoV-2 Using Artificial Neural Networks. International Journal of Molecular Sciences, 2022, 23, 14683.	1.8	4
1410	Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
1411	Manipulation of innate immune signaling pathways by SARS-CoV-2 non-structural proteins. Frontiers in Microbiology, 0, 13, .	1.5	8
1412	Challenges and developments in universal vaccine design against SARS-CoV-2 variants. Npj Vaccines, 2022, 7, .	2.9	25

#	Article	IF	CITATIONS
1413	A potential role for SARS-CoV-2 small viral RNAs in targeting host microRNAs and modulating gene expression. Scientific Reports, 2022, 12, .	1.6	4
1414	Involvement of the STING signaling in COVID-19. Frontiers in Immunology, 0, 13, .	2.2	3
1415	Distribution of intraâ€host variations and mutations in the genomes of SARSâ€CoVâ€2 and their implications on detection and therapeutics. MedComm, 2022, 3, .	3.1	2
1416	SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-Î ² signaling. Nature Communications, 2022, 13, .	5.8	18
1417	The Pathogenesis of Gastrointestinal, Hepatic, and Pancreatic Injury in Acute and Long Coronavirus Disease 2019 Infection. Gastroenterology Clinics of North America, 2023, 52, 1-11.	1.0	1
1418	Robustness of FTIR-Based Ultrarapid COVID-19 Diagnosis Using PLS-DA. ACS Omega, 2022, 7, 47357-47371.	1.6	3
1419	Structural Landscape of nsp Coding Genomic Regions of SARS-CoV-2-ssRNA Genome: A Structural Genomics Approach Toward Identification of Druggable Genome, Ligand-Binding Pockets, and Structure-Based Druggability. Molecular Biotechnology, 0, , .	1.3	0
1420	SARS-CoV-2 viral protein ORF3A injures renal tubules by interacting with TRIM59 to induce STAT3 activation. Molecular Therapy, 2023, 31, 774-787.	3.7	8
1421	Nano3P-seq: transcriptome-wide analysis of gene expression and tail dynamics using end-capture nanopore cDNA sequencing. Nature Methods, 2023, 20, 75-85.	9.0	14
1422	SARSNTdb database: Factors affecting SARS-CoV-2 sequence conservation. Frontiers in Virology, 0, 2, .	0.7	0
1423	Loss of furin site enhances SARS-CoV-2 spike protein pseudovirus infection. Gene, 2023, 856, 147144.	1.0	6
1425	Autoimmunity and Immunodeficiency in Severe SARS-CoV-2 Infection and Prolonged COVID-19. Current Issues in Molecular Biology, 2023, 45, 33-50.	1.0	14
1426	SARS-CoV-2: next generation sequencing and analysis. , 2022, , .		0
1427	Focus on Marine Animal Safety and Marine Bioresources in Response to the SARS-CoV-2 Crisis. International Journal of Molecular Sciences, 2022, 23, 15136.	1.8	3
1428	Characterizing SARS-CoV-2 Transcription of Subgenomic and Genomic RNAs During Early Human Infection Using Multiplexed Droplet Digital Polymerase Chain Reaction. Journal of Infectious Diseases, 2023, 227, 981-992.	1.9	4
1429	Network analysis uncovers the communication structure of SARS-CoV-2 spike protein identifying sites for immunogen design. IScience, 2023, 26, 105855.	1.9	7
1431	Potential antiviral peptides targeting the SARS-CoV-2 spike protein. BMC Pharmacology & Toxicology, 2022, 23, .	1.0	3
1432	Nucleoside Analogs and Perylene Derivatives Modulate Phase Separation of SARS-CoV-2 N Protein and Genomic RNA In Vitro. International Journal of Molecular Sciences, 2022, 23, 15281.	1.8	4

\sim			<u> </u>	
СП	TAT	ION	REPO	RT

#	Article	IF	CITATIONS
1433	SARS oVâ€2 infection activates CREB/CBP in cellular cyclic AMPâ€dependent pathways. Journal of Medical Virology, 2023, 95, .	2.5	5
1434	Retrospective in silico mutation profiling of SARS-CoV-2 structural proteins circulating in Uganda by July 2021: Towards refinement of COVID-19 disease vaccines, diagnostics, and therapeutics. PLoS ONE, 2022, 17, e0279428.	1.1	0
1437	SARS-CoV-2 Virus-like Particles (VLPs) Specifically Detect Humoral Immune Reactions in an ELISA-Based Platform. Antibodies, 2022, 11, 76.	1.2	2
1438	Development of novel monoclonal antibodies against nsp12 of SARS-CoV-2. Virology Journal, 2022, 19, .	1.4	1
1440	Upregulation of PD‣1 by SARSâ€CoVâ€2 promotes immune evasion. Journal of Medical Virology, 2023, 95, .	2.5	3
1441	Biosensors - A Miraculous Detecting Tool in Combating the War against COVID-19. Current Pharmaceutical Biotechnology, 2023, 24, .	0.9	0
1442	Outcome of Newborns with Confirmed or Possible SARS-CoV-2 Vertical Infection—A Scoping Review. Diagnostics, 2023, 13, 245.	1.3	8
1443	Cardiovascular Complications in Coronavirus Disease 2019—Pathogenesis and Management. Seminars in Respiratory and Critical Care Medicine, 2023, 44, 021-034.	0.8	2
1444	Extracellular vesicles mediate antibody-resistant transmission of SARS-CoV-2. Cell Discovery, 2023, 9, .	3.1	21
1445	Ensitrelvir is effective against SARS-CoV-2 3CL protease mutants circulating globally. Biochemical and Biophysical Research Communications, 2023, 645, 132-136.	1.0	13
1446	CRISPR/Cas12a-Assisted Dual Visualized Detection of SARS-CoV-2 on Frozen Shrimps. Biosensors, 2023, 13, 138.	2.3	2
1447	Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	41
1448	A Novel Y-Shaped, S–O–N–O–S-Bridged Cross-Link between Three Residues C22, C44, and K61 Is Frequently Observed in the SARS-CoV-2 Main Protease. ACS Chemical Biology, 2023, 18, 449-455.	1.6	5
1449	Mechanisms and treatment of COVID-19-associated acute kidney injury. Molecular Therapy, 2023, 31, 306-307.	3.7	2
1450	CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	73
1451	The oral manifestations and related mechanisms of COVID-19 caused by SARS-CoV-2 infection. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	5
1452	Advancement in COVIDâ€19 detection using nanomaterialâ€based biosensors. Exploration, 2023, 3, .	5.4	16
1453	L-shaped distribution of the relative substitution rate $(c/\hat{l}^{1}/4)$ observed for SARS-COV-2's genome, inconsistent with the selectionist theory, the neutral theory and the nearly neutral theory but a near-neutral balanced selection theory: Implication on $\hat{a}\in$ œneutralist-selectionist $\hat{a}\in$ debate. Computers in Biology and Medicine. 2023. 153. 106522.	3.9	0

ARTICLE IF CITATIONS More or less deadly? A mathematical model that predicts SARS-CoV-2 evolutionary direction. 3.9 8 1454 Computers in Biology and Medicine, 2023, 153, 106510. SARS-CoV-2 E protein: Pathogenesis and potential therapeutic development. Biomedicine and 1455 2.5 Pharmacotherapy, 2023, 159, 114242. Biology of the SARS-CoV-2 Coronavirus. Biochemistry (Moscow), 2022, 87, 1662-1678. 2 1456 0.7 Screening and Druggability Analysis of Marine Active Metabolites against SARS-CoV-2: An Integrative 1458 0.1 Computational Approach. International Journal of Translational Medicine, 2023, 3, 27-41. Transcriptomics secondary analysis of severe human infection with SARS-CoV-2 identifies gene 1459 expression changes and predicts three transcriptional biomarkers in leukocytes. Computational and 1.9 2 Structural Biotechnology Journal, 2023, 21, 1403-1413. RNA levers and switches controlling viral gene expression. Trends in Biochemical Sciences, 2023, 48, 3.7 391-406. Targeting Viral ORF3a Protein: A New Approach to Mitigate COVID-19 Induced Immune Cell Apoptosis 1461 0.6 1 and Associated Respiratory Complications. Advanced Pharmaceutical Bulletin, 2023, 13, 678-687. Transcriptomic approaches in COVID-19: From infection to vaccines., 2023, , 125-144. 1462 Genomics, metagenomics, and pan-genomics approaches in COVID-19., 2023, 23-39. 0 1463 COVID-19: The Ethno-Geographic Perspective of Differential Immunity. Vaccines, 2023, 11, 319. 2.1 1464 Symbiont-screener: A reference-free tool to separate host sequences from symbionts for error-prone 1465 1.2 1 long reads. Frontiers in Marine Science, 0, 10, . Innate immune recognition against SARS-CoV-2. Inflammation and Regeneration, 2023, 43, . 1466 1.5 Analytical sensitivity of COVID-19 rapid antigen tests: A case for a robust reference standard. Talanta 1467 1.7 4 Open, 2023, 7, 100187. RNA Modification Detection Using Nanopore Direct RNA Sequencing and nanoDoc2. Methods in 1468 0.4 Molecular Biology, 2023, , 299-319. Development of multiscale ultra-coarse-grained models for the SARS-CoV-2 virion from cryo-electron 1469 2 1.3 microscopy data. Physical Chemistry Chemical Physics, 2023, 25, 12882-12890. Inhibition of SARS-CoV-2 nucleocapsid proteinâ€"RNA interaction by guanosine oligomeric RNA. Journal 1470 of Biochemistry, 2023, 173, 447-457. Dual action antiâ€inflammatory/antiviral isoquinoline alkaloids as potent naturally occurring 1472 <scp>antiâ€SARSâ€CoV</scp>â€2 agents: A combined pharmacological and medicinal chemistry perspective. 2.8 7 Phytotherapy Research, 2023, 37, 2168-2186. 1473 CRISPR-based biosensors for pathogenic biosafety. Biosensors and Bioelectronics, 2023, 228, 115189. 5.3

#	Article	IF	CITATIONS
1474	The multiple roles of nsp6 in the molecular pathogenesis of SARS-CoV-2. Antiviral Research, 2023, 213, 105590.	1.9	4
1475	Insight into the mechanisms of coronaviruses evading host innate immunity. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166671.	1.8	3
1476	Potential differentiation of successive SARS-CoV-2 mutations by RNA: DNA hybrid analyses. Biophysical Chemistry, 2023, 297, 107013.	1.5	0
1477	Identifying non-nucleoside inhibitors of RNA-dependent RNA-polymerase of SARS-CoV-2 through per-residue energy decomposition-based pharmacophore modeling, molecular docking, and molecular dynamics simulation. Journal of Infection and Public Health, 2023, 16, 501-519.	1.9	6
1478	Chemoenzymatic synthesis of bridged homolyxofuranosyl pyrimidine nucleosides: Bicyclic AZT analogues. Carbohydrate Research, 2023, 527, 108813.	1.1	0
1479	Platelet αIIbβ3 integrin binds to SARS-CoV-2 spike protein of alpha strain but not wild type and omicron strains. Biochemical and Biophysical Research Communications, 2023, 657, 80-85.	1.0	1
1481	Enhancing neutralizing antibodies against receptor binding domain of SARS-CoV-2 by a safe natural adjuvant system. Virus Research, 2023, 326, 199047.	1.1	0
1482	An Overview on Exploitation of Graphene-Based Membranes: From Water Treatment to Medical Industry, Including Recent Fighting against COVID-19. Microorganisms, 2023, 11, 310.	1.6	4
1483	Epigenetic Targets and Pathways Linked to SARS-CoV-2 Infection and Pathology. Microorganisms, 2023, 11, 341.	1.6	2
1484	Investigation of the effects of N-Acetylglucosamine on the stability of the spike protein in SARS-CoV-2 by molecular dynamics simulations. Computational and Theoretical Chemistry, 2023, 1222, 114049.	1.1	1
1485	Nanopore Sequencing with GraphMap for Comprehensive Pathogen Detection in Potato Field Soil. Plant Disease, 2023, 107, 2288-2295.	0.7	1
1486	How much (evil) intelligence can be encoded by 30Âkb?. Biologia Futura, 0, , .	0.6	0
1487	Effects of Epitranscriptomic RNA Modifications on the Catalytic Activity of the SARS oVâ€2 Replication Complex**. ChemBioChem, 2023, 24, .	1.3	2
1488	SARS-CoV-2 evolution among patients with immunosuppression in a nosocomial cluster of a Japanese medical center during the Delta (AY.29 sublineage) surge. Frontiers in Microbiology, 0, 14, .	1.5	2
1489	SARS oVâ€⊋ NSP7 inhibits type I and III IFN production by targeting the RIGâ€I/MDA5, TRIF, and STING signaling pathways. Journal of Medical Virology, 2023, 95, .	2.5	14
1492	Detection of Large Genomic RNA via DNAzymeâ€Mediated RNA Cleavage and Rolling Circle Amplification: SARS oVâ€⊋ as a Model. Chemistry - A European Journal, 2023, 29, .	1.7	4
1493	SARS-CoV-2 Variant-Specific mRNA Vaccine: Pros and Cons. Viral Immunology, 0, , .	0.6	0
1494	Impact of nutraceuticals on immunomodulation against viral infections—A review during COVIDâ€19 pandemic in Indian scenario. Journal of Biochemical and Molecular Toxicology, 0, , .	1.4	1

# 1495	ARTICLE A computational map of the human-SARS-CoV-2 protein–RNA interactome predicted at single-nucleotide resolution. NAR Genomics and Bioinformatics, 2023, 5, .	IF 1.5	CITATIONS 3
1496	Study of the Effects of Several SARS-CoV-2 Structural Proteins on Antiviral Immunity. Vaccines, 2023, 11, 524.	2.1	3
1497	Lessons Learnt from COVID-19: Computational Strategies for Facing Present and Future Pandemics. International Journal of Molecular Sciences, 2023, 24, 4401.	1.8	4
1498	Identification of consensus hairpin loop structure among the negative sense subgenomic RNAs of SARS-CoV-2. Bulletin of the National Research Centre, 2023, 47, .	0.7	0
1499	Progress and bioapplication of CRISPR-based one-step, quantitative and multiplexed infectious disease diagnostics. Journal of Applied Microbiology, 2023, 134, .	1.4	3
1500	Sub genomic analysis of SARS-CoV-2 using short read amplicon-based sequencing. Frontiers in Genetics, 0, 14, .	1.1	0
1501	SARS-CoV-2 ORF8 dimerization and binding mode analysis with class I MHC: computational approaches to identify COVID-19 inhibitors. Briefings in Functional Genomics, 2023, 22, 227-240.	1.3	7
1502	Application of microfluidic technologies on COVID-19 diagnosis and drug discovery. Acta Pharmaceutica Sinica B, 2023, 13, 2877-2896.	5.7	5
1503	Human coronavirus 3CL proteases cleave septins and disrupt Hedgehog signaling, causing ciliary dysfunction. Journal of Medical Virology, 2023, 95, .	2.5	2
1504	HLA-I and HLA-II Peptidomes of SARS-CoV-2: A Review. Vaccines, 2023, 11, 548.	2.1	1
1505	COVID-19 Biogenesis and Intracellular Transport. International Journal of Molecular Sciences, 2023, 24, 4523.	1.8	7
1506	LINE1-Mediated Reverse Transcription and Genomic Integration of SARS-CoV-2 mRNA Detected in Virus-Infected but Not in Viral mRNA-Transfected Cells. Viruses, 2023, 15, 629.	1.5	6
1507	A comparative study of antibody response, virus neutralization efficiency & metabolites in SARS-CoV-2-infected adults & children. Indian Journal of Medical Research, 2023, .	0.4	0
1508	Bioinformatics approaches for unveiling virus-host interactions. Computational and Structural Biotechnology Journal, 2023, 21, 1774-1784.	1.9	8
1509	Perceptions into causes and consequences of severe acute respiratory syndrome coronavirus 2 (SARSâ€CoVâ€2) variants. Rheumatology & Autoimmunity, 2023, 3, 1-8.	0.3	0
1510	Development of a screening platform to discover natural products active against SARS-CoV-2 infection using lung organoid models. Biomaterials Research, 2023, 27, .	3.2	9
1511	Vivid COVID-19 LAMP is an ultrasensitive, quadruplexed test using LNA-modified primers and a zinc ion and 5-Br-PAPS colorimetric detection system. Communications Biology, 2023, 6, .	2.0	2
1512	Total and Subgenomic RNA Viral Load in Patients Infected With SARS-CoV-2 Alpha, Delta, and Omicron Variants. Journal of Infectious Diseases, 2023, 228, 235-244.	1.9	1

#	Article	IF	CITATIONS
1513	No evidence for epitranscriptomic m ⁵ C modification of SARS-CoV-2, HIV and MLV viral RNA. Rna, 2023, 29, 756-763.	1.6	5
1515	SARS-CoV-2 infection induces DNA damage, through CHK1 degradation and impaired 53BP1 recruitment, and cellular senescence. Nature Cell Biology, 2023, 25, 550-564.	4.6	25
1516	Identification of the viral and cellular microRNA interactomes during SARS-CoV-2 infection. Cell Reports, 2023, 42, 112282.	2.9	6
1517	Global loss of cellular m ⁶ A RNA methylation following infection with different SARS-CoV-2 variants. Genome Research, 2023, 33, 299-313.	2.4	8
1518	Influence of age, gender, previous SARS-CoV-2 infection, and pre-existing diseases in antibody response after COVID-19 vaccination: A review. Molecular Immunology, 2023, 156, 148-155.	1.0	13
1520	Genetic conservation across SARS-CoV-2 non-structural proteins – Insights into possible targets for treatment of future viral outbreaks. Virology, 2023, 581, 97-115.	1.1	3
1521	SARS-CoV-2 E protein-induced THP-1 pyroptosis is reversed by Ruscogenin. Biochemistry and Cell Biology, 0, , .	0.9	1
1522	SARSâ€CoVâ€2 NSP8 suppresses type I and III IFN responses by modulating the RIGâ€I/MDA5, TRIF, and STING signaling pathways. Journal of Medical Virology, 2023, 95, .	2.5	9
1523	Surface-modified biomaterials as disinfectants to combat viral infections: a SARS-COV-2 case study. , 2023, , 147-169.		0
1524	Effect of adjuvanting RBD-dimer-based subunit COVID-19 vaccines with Sepivac SWEâ,,¢. Vaccine, 2023, 41, 2793-2803.	1.7	4
1525	Evaluation of SARS-CoV-2 ORF7a Deletions from COVID-19-Positive Individuals and Its Impact on Virus Spread in Cell Culture. Viruses, 2023, 15, 801.	1.5	3
1526	Molecular Interaction of Nonsense-Mediated mRNA Decay with Viruses. Viruses, 2023, 15, 816.	1.5	0
1527	New workflow predicts drug targets against SARS-CoV-2 via metabolic changes in infected cells. PLoS Computational Biology, 2023, 19, e1010903.	1.5	3
1528	Protection from SARS-CoV-2 Variants by MVAs expressing matched or mismatched S administered intranasally to mice. Npj Vaccines, 2023, 8, .	2.9	1
1529	Identifying diseases associated with Post-COVID syndrome through an integrated network biology approach. Journal of Biomolecular Structure and Dynamics, 2024, 42, 652-671.	2.0	2
1530	Discovery of Potential Inhibitors of SARS-CoV-2 Main Protease by a Transfer Learning Method. Viruses, 2023, 15, 891.	1.5	3
1532	High-throughput sequencing approaches applied to SARS-CoV-2. Wellcome Open Research, 0, 8, 150.	0.9	0
1534	SARS-CoV-2: Structure, Pathogenesis, and Diagnosis. , 2024, , 24-51.		0

#	Article	IF	CITATIONS
1535	High-throughput screening of spike variants uncovers the key residues that alter the affinity and antigenicity of SARS-CoV-2. Cell Discovery, 2023, 9, .	3.1	2
1536	Seroprevalence of IgG and Subclasses against the Nucleocapsid of SARS-CoV-2 in Health Workers. Viruses, 2023, 15, 955.	1.5	2
1537	sgRNAs: A SARS-CoV-2 emerging issue. , 2023, 1, 100008.		0
1538	In-Silico Approaches for the Screening and Discovery of Broad-Spectrum Marine Natural Product Antiviral Agents Against Coronaviruses. Infection and Drug Resistance, 0, Volume 16, 2321-2338.	1.1	5
1539	TUT4/7-mediated uridylation of a coronavirus subgenomic RNAs delays viral replication. Communications Biology, 2023, 6, .	2.0	2
1555	The effect of COVID-19 on cancer immunotherapy and cancer care. , 2024, , 289-310.e7.		0
1558	From Genomics to Metagenomics in the Era of Recent Sequencing Technologies. Methods in Molecular Biology, 2023, , 1-20.	0.4	0
1577	Therapeutic Interventions for COVID-19. , 0, , .		0
1594	A Molecular Biomarker-Based Triage Approach for Targeted Treatment of Post-COVID-19 Syndrome Patients with Persistent Neurological orÂNeuropsychiatric Symptoms. Advances in Experimental Medicine and Biology, 2023, , 97-115.	0.8	3
1595	COVID Diagnostics: From Molecules to Omics. Advances in Experimental Medicine and Biology, 2023, , 141-158.	0.8	0
1599	Advanced fluorescence microscopy in respiratory virus cell biology. Advances in Virus Research, 2023,	0.9	0
1601	Interactions shaping the interactome. , 2023, , 301-347.		0
1613	End-to-end RT-PCR of long RNA and highly structured RNA. Methods in Enzymology, 2023, , 3-15.	0.4	0
1635	siRNA-Based Novel Therapeutic Strategies to Improve Effectiveness of Antivirals: An Insight. AAPS PharmSciTech, 2023, 24, .	1.5	2
1642	Clinical Characteristics, Diagnosis, and Therapeutics of COVID-19: A Review. Current Medical Science, 2023, 43, 1066-1074.	0.7	4
1672	Unwinding circular RNA's role in inflammatory pulmonary diseases. Naunyn-Schmiedeberg's Archives of Pharmacology, 0, , .	1.4	7
1676	SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks― , 2024, 21, 171-183.		4
1702	Molecular biology of SARS-CoV-2 and techniques of diagnosis and surveillance. Advances in Clinical Chemistry, 2023, , .	1.8	0

#	Article	IF	CITATIONS
1705	Distance-Based Analysis of Positions in Amino Acid Sequences for Structural Proteins of SARS-CoV-2 Delta and Omicron Variants. , 2023, , .		0
1709	Gold nanoparticles: A potential tool to enhance the immune response against viral infection. , 2024, , 419-429.		0
1710	SARS-CoV-2 biology and host interactions. Nature Reviews Microbiology, 2024, 22, 206-225.	13.6	1
1712	SARS-CoV-2—Virus structure and life cycle. Progress in Molecular Biology and Translational Science, 2024, , 1-23.	0.9	0
1725	Therapeutic landscape of SARS-CoV-2. , 2024, , 83-99.		0
1730	A Data Analytics-Based Study in SARS-CoV-2 Genome Revealed a Commonality in the Infection Pattern. Lecture Notes in Electrical Engineering, 2024, , 173-184.	0.3	0
1738	Comprehensive Analysis of Deep Learning Methods for COVID-19 Detection and Classification. , 2023, , .		0
1743	Accessibility of public open space and quality of life (QoL) during pandemic COVID-19 in Medan. AIP Conference Proceedings, 2024, , .	0.3	Ο