Microstructured optical fiber based Fabry–Pérot in utilizing chitosan polymeric matrix for breath monitori

Scientific Reports 10, 6002

DOI: 10.1038/s41598-020-62887-y

Citation Report

#	Article	IF	CITATIONS
1	Ultra-Compact Optical Thermo-Hygrometer Based on Bilayer Micro-Cap on Fiber Facet. IEEE Photonics Technology Letters, 2020, 32, 1089-1092.	1.3	3
2	Breathing process monitoring with a biaxially oriented polypropylene film based fiber Fabry–Perot sensor. Optics Communications, 2020, 475, 126292.	1.0	11
3	Optical fiber temperature sensor with insensitive refractive index and strain based on phase demodulation. Microwave and Optical Technology Letters, 2020, 62, 3733-3738.	0.9	7
4	Milimetre Altı Ölçümler İçin Fiber Optik Yer Değiştirme Sensörü. European Journal of Science and Technology, 0, , .	0.5	O
5	High-sensitivity relative humidity fiber-optic sensor based on an internal–external Fabry–Perot cavity Vernier effect. Optics Express, 2021, 29, 11854.	1.7	46
6	Fiber Optic Sensor Design and Prototyping for Humidity Detection in Biogas Reactors. Journal of Polytechnic, 0, , .	0.4	1
7	Humidity Sensing by Chitosan-Coated Fibre Bragg Gratings (FBG). Sensors, 2021, 21, 3348.	2.1	16
8	In-Fiber Interferometric-Based Sensors: Overview and Recent Advances. Photonics, 2021, 8, 265.	0.9	51
9	Versatile Interferometric Sensor Based on Sandwiched Grapefruit Photonic Crystal Fiber. IEEE Sensors Journal, 2021, 21, 17875-17881.	2.4	3
10	Binding Analysis of Functionalized Multimode Optical-Fiber Sandwich-like Structure with Organic Polymer and Its Sensing Application for Humidity and Breath Monitoring. Biosensors, 2021, 11, 324.	2.3	7
11	Humidity Sensor Based on PEO/PEDOT:PSS Blends for Breath Monitoring. Macromolecular Materials and Engineering, 2021, 306, 2100489.	1.7	10
12	Research Progress of Graphene-Based Flexible Humidity Sensor. Sensors, 2020, 20, 5601.	2.1	42
13	Optical fiber sensors based on sol–gel materials: design, fabrication and application in concrete structures. Materials Advances, 2021, 2, 7237-7276.	2.6	14
14	Sol-Gel Coating Membranes for Optical Fiber Sensors for Concrete Structures Monitoring. Coatings, 2021, 11, 1245.	1.2	5
15	Spider dragline silk-based FP humidity sensor with ultra-high sensitivity. Sensors and Actuators B: Chemical, 2022, 350, 130895.	4.0	9
16	Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. Biosensors, 2021, 11, 472.	2.3	45
17	Review of Optical Humidity Sensors. Sensors, 2021, 21, 8049.	2.1	31
18	High-Sensitivity Humidity Sensor Based on Microknot Resonator Assisted Agarose-Coated Mach-Zehnder Interferometer. Journal of Lightwave Technology, 2022, 40, 2191-2196.	2.7	5

#	Article	IF	Citations
19	Simultaneous Measurement of Temperature and Relative Humidity Using Cascaded C-shaped Fabry-Perot interferometers. Journal of Lightwave Technology, 2022, 40, 1209-1215.	2.7	24
20	Environment-Robust Polarization-Based Phase-Shift Dynamic Demodulation Method for Optical Fiber Acoustic Sensor. IEEE Photonics Journal, 2022, 14, 1-8.	1.0	1
21	High sensitivity relative humidity sensor based on two parallel-connected Fabry–Perot interferometers and Vernier effect. Optical Fiber Technology, 2022, 68, 102767.	1.4	6
22	Dual-purpose optical fiber sensor: relative humidity and ammonia detection., 2022, 1, 335.		3
23	PCF based modal interferometer for lead ion detection. Optics Express, 2022, 30, 4895.	1.7	9
24	Relative humidity sensor based on cascaded Fabry-Perot interferometers and Vernier effect. Optik, 2022, 254, 168605.	1.4	7
25	Flexible Ni/NiOx-Based Sensor for Human Breath Detection. Materials, 2022, 15, 47.	1.3	8
26	Recent Advances in Fiber Optic Sensors for Respiratory Monitoring. SSRN Electronic Journal, 0, , .	0.4	0
27	High Sensitivity Surface Plasmon Resonance Sensor Based on a Ge-Doped Defect and D-Shaped Microstructured Optical Fiber. Sensors, 2022, 22, 3220.	2.1	5
28	Spider dragline silk-based humidity alarm sensor with ultra-high sensitivity. Optics Communications, 2022, 519, 128415.	1.0	2
29	Sensors for simultaneous measurement of temperature and humidity based on all-dielectric metamaterials. Optics Express, 2022, 30, 18821.	1.7	1
30	Towards the "sustainable―operation at -30°C without the expense of energy for heating on-face electronics: Intelligent heat conservation and waste heat utilization. Energy Reports, 2022, 8, 6753-6763.	2.5	1
31	Ultra-High-Sensitivity Humidity Fiber Sensor Based on Harmonic Vernier Effect in Cascaded FPI. Sensors, 2022, 22, 4816.	2.1	10
32	Wearable Optical Sensing in the Medical Internet of Things (MIoT) for Pervasive Medicine: Opportunities and Challenges. ACS Photonics, 2022, 9, 2579-2599.	3.2	16
33	Microbubble-based optical fiber Fabry-Perot sensor for simultaneous high-pressure and high-temperature sensing. Optics Express, 2022, 30, 33639.	1.7	9
34	Recent advances in fiber optic sensors for respiratory monitoring. Optical Fiber Technology, 2022, 72, 103000.	1.4	10
35	Compact fiber Fabryâ€"Perot sensors filled with PNIPAM hydrogel for highly sensitive relative humidity measurement. Measurement: Journal of the International Measurement Confederation, 2022, 201, 111781.	2.5	6
36	Highly sensitive and fully printable humidity sensor on a flexible substrate based on a zinc oxide and polyethylenimine composite. Flexible and Printed Electronics, 2022, 7, 034003.	1.5	0

CITATION REPORT

#	Article	IF	CITATION
37	High-sensitive and millisecond-response all-nanofiber-optic humidity sensor using evanescent coupling. Sensors and Actuators B: Chemical, 2023, 379, 133211.	4.0	2
38	A review of microstructured optical fibers for sensing applications. Optical Fiber Technology, 2023, 77, 103277.	1.4	3
39	Preparation of highly stable and ultrasmooth chemically grafted thin films of chitosan. Soft Matter, 2023, 19, 1606-1616.	1.2	2
40	Development of fabrication technique and sensing performance of optical fiber humidity sensors in the most recent decade. Measurement: Journal of the International Measurement Confederation, 2023, 215, 112888.	2.5	7
42	Hydrogel-integrated optical fiber sensors and their applications: a comprehensive review. Journal of Materials Chemistry C, 2023, 11, 9383-9424.	2.7	5