Deep learning for mass detection in Full Field Digital Ma

Computers in Biology and Medicine 121, 103774

DOI: 10.1016/j.compbiomed.2020.103774

Citation Report

#	Article	IF	Citations
1	Faster R-CNN approach for detection and quantification of DNA damage in comet assay images. Computers in Biology and Medicine, 2020, 123, 103912.	7.0	29
2	A State-of-the-Art Survey on Deep Learning Methods for Detection of Architectural Distortion From Digital Mammography. IEEE Access, 2020, 8, 148644-148676.	4.2	31
3	Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms. Computer Methods and Programs in Biomedicine, 2020, 196, 105584.	4.7	155
4	YOLO Based Breast Masses Detection and Classification in Full-Field Digital Mammograms. Computer Methods and Programs in Biomedicine, 2021, 200, 105823.	4.7	87
5	Automated Breast Cancer Detection and Classification in Full Field Digital Mammograms Using Two Full and Cropped Detection Paths Approach. IEEE Access, 2021, 9, 116898-116913.	4.2	20
6	OPTIMAM Mammography Image Database: A Large-Scale Resource of Mammography Images and Clinical Data. Radiology: Artificial Intelligence, 2021, 3, e200103.	5.8	65
7	Breast Cancer Mass Detection in Mammograms Using Gray Difference Weight and MSER Detector. SN Computer Science, $2021, 2, 1$.	3.6	11
8	Artificial intelligence in the medical physics community: An international survey. Physica Medica, 2021, 81, 141-146.	0.7	21
9	Convolutional neural networks for breast cancer detection in mammography: A survey. Computers in Biology and Medicine, 2021, 131, 104248.	7.0	69
10	A framework for breast cancer classification using Multi-DCNNs. Computers in Biology and Medicine, 2021, 131, 104245.	7.0	96
11	DCE-MRI interpolation using learned transformations for breast lesions classification. Multimedia Tools and Applications, 2021, 80, 26237.	3.9	1
13	A systematic survey of deep learning in breast cancer. International Journal of Intelligent Systems, 2022, 37, 152-216.	5.7	29
14	Mass Detection in Digital Mammogram Image using Convolutional Neural Network (CNN)., 2021,,.		1
15	A Bottom-Up Review of Image Analysis Methods for Suspicious Region Detection in Mammograms. Journal of Imaging, 2021, 7, 190.	3.0	30
16	WDO optimized detection for mammographic masses and its diagnosis: A unified CAD system. Applied Soft Computing Journal, 2021, 110, 107620.	7.2	10
17	Looking for Abnormalities in Mammograms With Self- and Weakly Supervised Reconstruction. IEEE Transactions on Medical Imaging, 2021, 40, 2711-2722.	8.9	16
18	A preliminary analysis of AI based smartphone application for diagnosis of COVID-19 using chest X-ray images. Expert Systems With Applications, 2021, 183, 115401.	7.6	40
19	Deep MammoNet: Early Diagnosis ofÂBreast Cancer Using Multi-layer Hierarchical Features of Deep Transfer Learned Convolutional Neural Network. Intelligent Systems Reference Library, 2021, , 317-339.	1.2	1

#	ARTICLE	IF	CITATIONS
20	WDCCNet: Weighted Double-Classifier Constraint Neural Network for Mammographic Image Classification. IEEE Transactions on Medical Imaging, 2022, 41, 559-570.	8.9	6
21	Unsupervised domain adaptation model for lesion detection in retinal OCT images. Physics in Medicine and Biology, 2021, 66, 215006.	3.0	4
22	Multi-Task Fusion for Improving Mammography Screening Data Classification. IEEE Transactions on Medical Imaging, 2022, 41, 937-950.	8.9	6
24	Deep convolutional neural networks for computer-aided breast cancer diagnostic: a survey. Neural Computing and Applications, 2022, 34, 1815-1836.	5.6	26
25	A bimodal BI-RADS-guided GoogLeNet-based CAD system for solid breast masses discrimination using transfer learning. Computers in Biology and Medicine, 2022, 142, 105160.	7.0	10
26	Breast Tumor Detection and Classification in Mammogram Images Using Modified YOLOv5 Network. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-16.	1.3	63
27	Deep Learning in Mammography Breast Cancer Detection. , 2022, , 1287-1300.		0
28	Mammogram breast cancer CAD systems for mass detection and classification: a review. Multimedia Tools and Applications, 2022, 81, 20043-20075.	3.9	36
29	A comparative performance study of randomâ€grid model for hyperparameters selection in detection of abnormalities in digital breast images. Concurrency Computation Practice and Experience, 2022, 34, .	2.2	6
30	Simultaneous mass estimation and class classification of scrap metals using deep learning. Resources, Conservation and Recycling, 2022, 181, 106272.	10.8	10
31	Can a Computer-Aided Mass Diagnosis Model Based on Perceptive Features Learned From Quantitative Mammography Radiology Reports Improve Junior Radiologists' Diagnosis Performance? An Observer Study. Frontiers in Oncology, 2021, 11, 773389.	2.8	3
32	A Systematic Literature Review of Breast Cancer Diagnosis Using Machine Intelligence Techniques. Archives of Computational Methods in Engineering, 2022, 29, 4401-4430.	10.2	17
35	Microcalcification Detection in Mammograms Using Deep Learning. Iranian Journal of Radiology, 2022, 19, .	0.2	0
36	Breast Cancer Semantic Segmentation for Accurate Breast Cancer Detection with an Ensemble Deep Neural Network. Neural Processing Letters, 2022, 54, 5185-5198.	3.2	5
37	YOLO-LOGO: A transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms. Computer Methods and Programs in Biomedicine, 2022, 221, 106903.	4.7	36
38	Image Augmentation Techniques for Mammogram Analysis. Journal of Imaging, 2022, 8, 141.	3.0	43
40	MVMDNet: A Weakly-Supervised Multi-View Enhancing Network for Mass Detection in Mammograms. , 0, , .		0
41	Lesion detection in digital breast tomosynthesis: method, experiences and results of participating to the DBTex challenge. , 2022, , .		0

#	ARTICLE	IF	CITATIONS
42	Multi-scale Graph Neural Networks forÂMammography Classification andÂAbnormality Detection. Lecture Notes in Computer Science, 2022, , 636-650.	1.3	1
43	Breast Lesions Screening of Mammographic Images with 2D Spatial and 1D Convolutional Neural Network-Based Classifier. Applied Sciences (Switzerland), 2022, 12, 7516.	2.5	2
44	Domain generalization in deep learning based mass detection in mammography: A large-scale multi-center study. Artificial Intelligence in Medicine, 2022, 132, 102386.	6.5	10
45	Stabilizing Adversarially Learned One-Class Novelty Detection Using Pseudo Anomalies. IEEE Transactions on Image Processing, 2022, 31, 5963-5975.	9.8	4
46	Dual-modality synthetic mammogram construction for breast lesion detection using U-DARTS. Biocybernetics and Biomedical Engineering, 2022, 42, 1041-1050.	5.9	2
47	Breast Masses Detection and Segmentation in Full-Field Digital Mammograms using Unified Convolution Neural Network. , 2022, , .		3
48	Number of Convolution Layers and Convolution Kernel Determination and Validation for Multilayer Convolutional Neural Network: Case Study in Breast Lesion Screening of Mammographic Images. Processes, 2022, 10, 1867.	2.8	1
49	Evolution of research trends in artificial intelligence for breast cancer diagnosis and prognosis over the past two decades: A bibliometric analysis. Frontiers in Oncology, 0, 12, .	2.8	0
50	Breast cancer detection and classification in mammogram using a three-stage deep learning framework based on PAA algorithm. Artificial Intelligence in Medicine, 2022, 134, 102419.	6.5	8
51	A survey on deep learning applied to medical images: from simple artificial neural networks to generative models. Neural Computing and Applications, 2023, 35, 2291-2323.	5.6	31
52	A comprehensive survey of deep learning research on medical image analysis with focus on transfer learning. Clinical Imaging, 2023, 94, 18-41.	1.5	13
53	Symmetry-based regularization in deep breast cancer screening. Medical Image Analysis, 2023, 83, 102690.	11.6	3
54	DeYOLOv3: An Optimal Mass Detector for Advanced Breast Cancer Diagnostics. Lecture Notes in Networks and Systems, 2023, , 325-335.	0.7	1
56	Automatic deep learning method for detection and classification of breast lesions in dynamic contrast-enhanced magnetic resonance imaging. Quantitative Imaging in Medicine and Surgery, 2023, .	2.0	0
57	Remote Breast Cancer Patient Monitoring System: An Extensive Review. Lecture Notes in Networks and Systems, 2023, , 117-128.	0.7	1
58	Classification of Multi-view Digital Mammogram Images Using SMO-WkNN. Computer Systems Science and Engineering, 2023, 46, 1741-1758.	2.4	0
59	Transformer-based mass detection in digital mammograms. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 2723-2737.	4.9	4
60	Convolutional Networks and Transformers for Mammography Classification: An Experimental Study. Sensors, 2023, 23, 1229.	3.8	8

#	Article	IF	Citations
61	Breast Cancer Detection in the Equivocal Mammograms by AMAN Method. Applied Sciences (Switzerland), 2023, 13, 7183.	2.5	0
62	Fully convolutional network for automated detection and diagnosis of mammographic masses. Multimedia Tools and Applications, 2023, 82, 44819-44840.	3.9	1
63	Deep Learning with Histogram of Oriented Gradients- based Computer-Aided Diagnosis for Breast Cancer Detection and Classification. , 2023, , .		0
64	Classification of Breast Cancer Using Transfer Learning and Advanced Al-Biruni Earth Radius Optimization. Biomimetics, 2023, 8, 270.	3.3	8
65	Machine Learning-Based Approaches forÂlnternal Organs Detection onÂMedical Images. Studies in Computational Intelligence, 2023, , 91-105.	0.9	0
66	Learnable DoG convolutional filters for microcalcification detection. Artificial Intelligence in Medicine, 2023, 143, 102629.	6.5	0
67	Transfer Learning inÂBreast Mass Detection onÂtheÂOMI-DB Dataset: AÂPreliminary Study. Lecture Notes in Computer Science, 2023, , 529-538.	1.3	0
68	A Yolo-Based Model for Breast Cancer Detection in Mammograms. Cognitive Computation, 2024, 16, 107-120.	5. 2	10
69	Al-Based Cancer Detection Model for Contrast-Enhanced Mammography. Bioengineering, 2023, 10, 974.	3.5	1
70	A study on the detection of breast lumps based on attentional mechanisms. , 2023, , .		0
71	Breast Cancer Localization and Classification in Mammograms Using YoloV5. Smart Innovation, Systems and Technologies, 2023, , 73-82.	0.6	1
72	Reproducibility and Explainability of Deep Learning in Mammography: A Systematic Review of Literature. Indian Journal of Radiology and Imaging, 0, , .	0.8	1
73	CAPNet: Context attention pyramid network for computer-aided detection of microcalcification clusters in digital breast tomosynthesis. Computer Methods and Programs in Biomedicine, 2023, 242, 107831.	4.7	0
74	Breast lesions segmentation and classification in a two-stage process based on Mask-RCNN and Transfer Learning. Multimedia Tools and Applications, 0, , .	3.9	0
75	Recent advancements in machine learning and deep learning-based breast cancer detection using mammograms. Physica Medica, 2023, 114, 103138.	0.7	4
76	Histopathological breast cancer classification using CNN. Materials Today: Proceedings, 2023, , .	1.8	0
77	Breast lesion classification from mammograms using deep neural network and test-time augmentation. Neural Computing and Applications, 2024, 36, 2101-2117.	5.6	1
78	Survey on deep learning in multimodal medical imaging for cancer detection. Neural Computing and Applications, 0, , .	5.6	0

#	Article	IF	CITATIONS
79	Improving Mass Detection in Mammography Images: A Study of Weakly Supervised Learning and Class Activation Map Methods. , 2023, , .		0
80	YOLO-based CAD framework with ViT transformer for breast mass detection and classification in CESM and FFDM images. Neural Computing and Applications, 2024, 36, 6467-6496.	5.6	0
81	Breast Mass Detection andÂClassification Using Transfer Learning onÂOPTIMAM Dataset Through RadImageNet Weights. Lecture Notes in Computer Science, 2024, , 71-82.	1.3	0
82	Machine learning and deep learning techniques for breast cancer detection using ultrasound imaging. , 2024, , 235-257.		0
83	Exploring synthesizing 2D mammograms from 3D digital breast tomosynthesis images. , 2023, , .		0