RTâ€LAMP for rapid diagnosis of coronavirus SARS

Microbial Biotechnology 13, 950-961 DOI: 10.1111/1751-7915.13586

Citation Report

#	Article	IF	CITATIONS
1	COVID â€19 transmission: economyâ€boosting investment should target innovation in pandemic containment strategies to minimize restrictions of civil liberties. Environmental Microbiology, 2020, 22, 4527-4531.	1.8	3
2	Diagnosis of COVID-19: facts and challenges. New Microbes and New Infections, 2020, 38, 100761.	0.8	13
3	Mini review: Recent progress in RT-LAMP enabled COVID-19 detection. Sensors and Actuators Reports, 2020, 2, 100017.	2.3	130
4	Rapid Differential Diagnosis of Seven Human Respiratory Coronaviruses Based on Centrifugal Microfluidic Nucleic Acid Assay. Analytical Chemistry, 2020, 92, 14297-14302.	3.2	34
5	Diagnosing the novel SARS-CoV-2 by quantitative RT-PCR: variations and opportunities. Journal of Molecular Medicine, 2020, 98, 1727-1736.	1.7	35
6	Silico analysis of interaction between full-length SARS-CoV2 S protein with human Ace2 receptor: Modelling, docking, MD simulation. Biophysical Chemistry, 2020, 267, 106472.	1.5	12
7	Rapid point-of-care detection of SARS-CoV-2 using reverse transcription loop-mediated isothermal amplification (RT-LAMP). Virology Journal, 2020, 17, 160.	1.4	101
8	Optimization and clinical validation of dual-target RT-LAMP for SARS-CoV-2. Journal of Virological Methods, 2020, 286, 113972.	1.0	36
9	Point-of-Care Biosensor-Based Diagnosis of COVID-19 Holds Promise to Combat Current and Future Pandemics. ACS Applied Bio Materials, 2020, 3, 7326-7343.	2.3	123
10	Diagnostic technologies for COVID-19: a review. RSC Advances, 2020, 10, 35257-35264.	1.7	28
11	Coronaviruses in wastewater processes: Source, fate and potential risks. Environment International, 2020, 143, 105962.	4.8	108
12	Diagnostic techniques for COVID-19 and new developments. Talanta, 2020, 220, 121392.	2.9	116
13	Variplexâ,,¢ test system fails to reliably detect SARS-CoV-2 directly from respiratory samples without RNA extraction. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 2373-2377.	1.3	16
14	Isothermal Amplification and Ambient Visualization in a Single Tube for the Detection of SARS-CoV-2 Using Loop-Mediated Amplification and CRISPR Technology. Analytical Chemistry, 2020, 92, 16204-16212.	3.2	172
15	A Rapid Colorimetric Assay for On-Site Authentication of Cephalopod Species. Biosensors, 2020, 10, 190.	2.3	7
16	Trends in MERS-CoV, SARS-CoV, and SARS-CoV-2 (COVID-19) Diagnosis Strategies: A Patent Review. Frontiers in Public Health, 2020, 8, 563095.	1.3	8
17	Development of Diagnostic Tests for Detection of SARS-CoV-2. Diagnostics, 2020, 10, 905.	1.3	32
18	Comparison of the analytical sensitivity of seven commonly used commercial SARS-CoV-2 automated molecular assays. Journal of Clinical Virology, 2020, 130, 104578.	1.6	70

#	Article	IF	CITATIONS
19	<p>Current Status of Laboratory Diagnosis for COVID-19: A Narrative Review</p> . Infection and Drug Resistance, 2020, Volume 13, 2657-2665.	1.1	70
20	Detection of COVID-19: A review of the current literature and future perspectives. Biosensors and Bioelectronics, 2020, 166, 112455.	5.3	302
21	Clinical and Laboratory Diagnosis of SARS-CoV-2, the Virus Causing COVID-19. ACS Infectious Diseases, 2020, 6, 2319-2336.	1.8	57
22	SARS-CoV-2 on the ocular surface: is it truly a novel transmission route?. British Journal of Ophthalmology, 2020, 105, bjophthalmol-2020-316263.	2.1	32
23	Development and Clinical Application of a Rapid and Sensitive Loop-Mediated Isothermal Amplification Test for SARS-CoV-2 Infection. MSphere, 2020, 5, .	1.3	54
24	Strategies to minimize preventable morbidity and mortality resulting from pandemics like COVID â€19. Environmental Microbiology, 2020, 22, 4085-4092.	1.8	2
25	Mass Screening of Asymptomatic Persons for Severe Acute Respiratory Syndrome Coronavirus 2 Using Saliva. Clinical Infectious Diseases, 2021, 73, e559-e565.	2.9	139
26	Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. The Cochrane Library, 2020, 8, CD013705.	1.5	770
27	Molecular and Immunological Diagnostic Techniques of Medical Viruses. International Journal of Microbiology, 2020, 2020, 1-19.	0.9	39
28	COVID-19 Pandemic: from Molecular Biology, Pathogenesis, Detection, and Treatment to Global Societal Impact. Current Pharmacology Reports, 2020, 6, 212-227.	1.5	31
29	LAMP Assay: Could it be a Boon for the Molecular Diagnosis of COVID-19?. Indian Journal of Clinical Biochemistry, 2020, 35, 506-507.	0.9	1
30	The diagnostic accuracy of isothermal nucleic acid point-of-care tests for human coronaviruses: A systematic review and meta-analysis. Scientific Reports, 2020, 10, 22349.	1.6	68
31	Next-Generation Molecular Diagnostics Development by CRISPR/Cas Tool: Rapid Detection and Surveillance of Viral Disease Outbreaks. Frontiers in Molecular Biosciences, 2020, 7, 582499.	1.6	25
32	Intensive diagnostic management of coronavirus disease 2019 (COVID-19) in academic settings in Japan: challenge and future. Inflammation and Regeneration, 2020, 40, 38.	1.5	3
33	Recent progress on the diagnosis of 2019 Novel Coronavirus. Transboundary and Emerging Diseases, 2020, 67, 1485-1491.	1.3	58
34	Development of a rapid test kit for SARS-CoV-2: an example of product design. Bio-Design and Manufacturing, 2020, 3, 83-86.	3.9	21
35	Diagnosing COVIDâ€19 in the Emergency Department: A Scoping Review of Clinical Examinations, Laboratory Tests, Imaging Accuracy, and Biases. Academic Emergency Medicine, 2020, 27, 653-670.	0.8	67
36	Sampling and detection of corona viruses in air: A mini review. Science of the Total Environment, 2020, 740, 140207.	3.9	83

#	Article	IF	CITATIONS
37	Molecular and Serological Tests for COVID-19. A Comparative Review of SARS-CoV-2 Coronavirus Laboratory and Point-of-Care Diagnostics. Diagnostics, 2020, 10, 434.	1.3	194
38	Enhancing colorimetric loop-mediated isothermal amplification speed and sensitivity with guanidine chloride. BioTechniques, 2020, 69, 178-185.	0.8	160
39	COVIDâ€19 Clinical Diagnostics and Testing Technology. Pharmacotherapy, 2020, 40, 857-868.	1.2	104
40	COVID-19 Testing in Patients with Cancer: Does One Size Fit All?. Clinical Cancer Research, 2020, 26, 4737-4742.	3.2	23
41	Detecting the Coronavirus (COVID-19). ACS Sensors, 2020, 5, 2283-2296.	4.0	196
42	Effect of preâ€existing diseases on COVIDâ€19 infection and role of new sensors and biomaterials for its detection and treatment. Medical Devices & Sensors, 2021, 4, e10140.	2.7	5
43	Emergent Carotid Artery Stenting Following Intravenous Alteplase Infusion After Rapid Negative Diagnosis for COVID-19 by Loop-Mediated Isothermal Amplification Assay. World Neurosurgery, 2021, 145, 356-359.	0.7	0
44	SARS-CoV-2 detection by fluorescence loop-mediated isothermal amplification with and without RNA extraction. Journal of Infection and Chemotherapy, 2021, 27, 410-412.	0.8	32
45	Digital CRISPR/Casâ€Assisted Assay for Rapid and Sensitive Detection of SARSâ€CoVâ€2. Advanced Science, 2021, 8, 2003564.	5.6	116
46	Analytical methodologies for the detection of SARS-CoV-2 in wastewater: Protocols and future perspectives. TrAC - Trends in Analytical Chemistry, 2021, 134, 116125.	5.8	88
47	Suitcase Lab: new, portable, and deployable equipment for rapid detection of specific harmful algae in Chilean coastal waters. Environmental Science and Pollution Research, 2021, 28, 14144-14155.	2.7	8
48	Reverse transcriptase loop-mediated isothermal amplification (RT-LAMP)-based diagnosis: A potential alternative to quantitative real-time PCR based detection of the novel SARS-COV-2 virus. Saudi Journal of Biological Sciences, 2021, 28, 942-947.	1.8	8
49	Nanozyme chemiluminescence paper test for rapid and sensitive detection of SARS-CoV-2 antigen. Biosensors and Bioelectronics, 2021, 173, 112817.	5.3	195
50	Recent Insights into Emerging Coronavirus: SARS-CoV-2. ACS Infectious Diseases, 2021, 7, 1369-1388.	1.8	27
51	Current perspectives on the occurrence of Q fever: highlighting the need for systematic surveillance for a neglected zoonotic disease in Indian subcontinent. Environmental Microbiology Reports, 2021, 13, 138-158.	1.0	7
52	opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-cov-2 detection. Biosensors and Bioelectronics, 2021, 172, 112766.	5.3	207
53	Microfluidic Devices for Biosensing. , 2021, , .		0
55	COVID-19 Diagnostic Approaches: An Overview. IFMBE Proceedings, 2021, , 892-906.	0.2	0

#	Article	IF	CITATIONS
56	Detection technologies and recent developments in the diagnosis of COVID-19 infection. Applied Microbiology and Biotechnology, 2021, 105, 441-455.	1.7	213
57	Rapid diagnosis of SARS-CoV-2 using potential point-of-care electrochemical immunosensor: Toward the future prospects. International Reviews of Immunology, 2021, 40, 126-142.	1.5	57
58	Virus-sampling technologies in different environments. , 2021, , 41-63.		2
59	Run length encoding based wavelet features for COVID-19 detection in X-rays. BJR Open, 2021, 3, 20200028.	0.4	2
60	Ultraviolet-induced <i>in situ</i> gold nanoparticles for point-of-care testing of infectious diseases in loop-mediated isothermal amplification. Lab on A Chip, 2021, 21, 700-709.	3.1	31
61	Suitcase Lab for Rapid Detection of SARS-CoV-2 Based on Recombinase Polymerase Amplification Assay. Analytical Chemistry, 2021, 93, 2627-2634.	3.2	78
62	SARS-CoV-2 Direct Detection Without RNA Isolation With Loop-Mediated Isothermal Amplification (LAMP) and CRISPR-Cas12. Frontiers in Medicine, 2021, 8, 627679.	1.2	35
63	Laboratory diagnosis of COVID-19: current status and challenges. Iranian Journal of Microbiology, 2021, 13, 1-7.	0.8	8
64	COVID-19 Crisis Creates Opportunity towards Global Monitoring & Surveillance. Pathogens, 2021, 10, 256.	1.2	13
65	Analysis of Recent Bio-/Nanotechnologies for Coronavirus Diagnosis and Therapy. Sensors, 2021, 21, 1485.	2.1	8
66	Reverse Transcription Recombinase-Aided Amplification Assay With Lateral Flow Dipstick Assay for Rapid Detection of 2019 Novel Coronavirus. Frontiers in Cellular and Infection Microbiology, 2021, 11, 613304.	1.8	36
67	Rapid electrochemical detection of coronavirus SARS-CoV-2. Nature Communications, 2021, 12, 802.	5.8	281
68	Efficient Microfluidic-Based Air Sampling/Monitoring Platform for Detection of Aerosol SARS-CoV-2 On-site. Analytical Chemistry, 2021, 93, 4270-4276.	3.2	38
69	Virus-Like Particles as Positive Controls for COVID-19 RT-LAMP Diagnostic Assays. Biomacromolecules, 2021, 22, 1231-1243.	2.6	9
70	Microfluidic-based virus detection methods for respiratory diseases. Emergent Materials, 2021, 4, 143-168.	3.2	28
71	Comparative evaluation of 19 reverse transcription loop-mediated isothermal amplification assays for detection of SARS-CoV-2. Scientific Reports, 2021, 11, 2936.	1.6	36
72	Research progress in laboratory detection of SARS-CoV-2. Irish Journal of Medical Science, 2022, 191, 509-517.	0.8	4
73	Microfluidic detection of human diseases: From liquid biopsy to COVID-19 diagnosis. Journal of Biomechanics, 2021, 117, 110235.	0.9	22

#	Article	IF	CITATIONS
74	Mass molecular testing for COVID19 using NGS-based technology and a highly scalable workflow. Scientific Reports, 2021, 11, 7122.	1.6	12
75	Evaluation of a Lyophilized CRISPR-Cas12 Assay for a Sensitive, Specific, and Rapid Detection of SARS-CoV-2. Viruses, 2021, 13, 420.	1.5	29
76	Ophthalmological aspects of coronavirus infections. Rossiiskii Oftal'mologicheskii Zhurnal, 2021, 14, 7-14.	0.1	12
78	Development of a multiplex Loop-Mediated Isothermal Amplification (LAMP) assay for on-site diagnosis of SARS CoV-2. PLoS ONE, 2021, 16, e0248042.	1.1	49
79	Low-Cost and Scalable Platform with Multiplexed Microwell Array Biochip for Rapid Diagnosis of COVID-19. Research, 2021, 2021, 2813643.	2.8	13
80	A Simple, Affordable, Rapid, Stabilized, Colorimetric, Versatile RT-LAMP Assay to Detect SARS-CoV-2. Diagnostics, 2021, 11, 438.	1.3	33
81	Essential properties and pitfalls of colorimetric Reverse Transcription Loop-mediated Isothermal Amplification as a point-of-care test for SARS-CoV-2 diagnosis. Molecular Medicine, 2021, 27, 30.	1.9	36
82	Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. The Cochrane Library, 2022, 2022, CD013705.	1.5	482
83	Ultrasensitive nucleic acid detection based on phosphorothioated hairpin-assisted isothermal amplification. Scientific Reports, 2021, 11, 8399.	1.6	3
84	Virus Detection: A Review of the Current and Emerging Molecular and Immunological Methods. Frontiers in Molecular Biosciences, 2021, 8, 637559.	1.6	79
85	SARS-CoV-2 Enfeksiyonunun Mikrobiyolojik Tanısı. Süleyman Demirel Üniversitesi Tıp Fakültesi Dergi 0, , .	si _{0.0}	0
86	A HiPAD Integrated with rGO/MWCNTs Nanoâ€Circuit Heater for Visual Pointâ€ofâ€Care Testing of SARSâ€CoVâ€2. Advanced Functional Materials, 2021, 31, 2100801.	7.8	20
87	Rapid visual detection of SARS-CoV-2 by colorimetric loop-mediated isothermal amplification. BioTechniques, 2021, 70, 218-225.	0.8	12
88	Paper-Based Biosensors: Frontiers in Point-of-Care Detection of COVID-19 Disease. Biosensors, 2021, 11, 110.	2.3	39
91	A self-powered rapid loading microfluidic chip for vector-borne viruses detection using RT-LAMP. Sensors and Actuators B: Chemical, 2021, 333, 129521.	4.0	12
92	Colorimetric RT-LAMP SARS-CoV-2 diagnostic sensitivity relies on color interpretation and viral load. Scientific Reports, 2021, 11, 9026.	1.6	71
93	Evaluation of RT-qPCR and Loop-Mediated Isothermal Amplification (LAMP) Assays for the Detection of SARS-CoV-2 in Argentina. Genes, 2021, 12, 659.	1.0	6
95	RNA Coronaviruses' Outbreaks: Recent Progress on the SARS-CoV-2 Pandemic Diagnostic Tests, Vaccination and Therapeutics. Mini-Reviews in Medicinal Chemistry, 2022, 22, 617-628.	1.1	2

	CITATION	N REPORT	
#	Article	IF	CITATIONS
96	A novel One-pot rapid diagnostic technology for COVID-19. Analytica Chimica Acta, 2021, 1154, 338310.	2.6	22
97	Current and innovative methods for the diagnosis of COVID‑19 infection (Review). International Journal of Molecular Medicine, 2021, 47, .	1.8	110
98	Emerging point-of-care biosensors for rapid diagnosis of COVID-19: current progress, challenges, and future prospects. Analytical and Bioanalytical Chemistry, 2021, 413, 4137-4159.	1.9	69
99	Recent advances and challenges of RT-PCR tests for the diagnosis of COVID-19. Pathology Research and Practice, 2021, 221, 153443.	1.0	103
100	Low saliva pH can yield false positives results in simple RT-LAMP-based SARS-CoV-2 diagnostic tests. PLoS ONE, 2021, 16, e0250202.	1.1	40
101	Optimization and Clinical Evaluation of a Multi-Target Loop-Mediated Isothermal Amplification Assay for the Detection of SARS-CoV-2 in Nasopharyngeal Samples. Viruses, 2021, 13, 940.	1.5	8
102	Improved Visual Detection of speB Gene in Streptococcus pyogenes Isolates by Real-time Loop-Mediated Isothermal Amplification Turbidimetry Method. Jundishapur Journal of Microbiology, 2021, 14, .	0.2	1
103	Early detections of SARS-CoV-2 in wastewater and their use in COVID-19 epidemiological control. Research, Society and Development, 2021, 10, e45910515219.	0.0	1
104	Evaluating the Performance of a Magnetic Nanoparticle-Based Detection Method Using Circle-to-Circle Amplification. Biosensors, 2021, 11, 173.	2.3	4
106	Recent advances in biomedical, biosensor and clinical measurement devices for use in humans and the potential application of these technologies for the study of physiology and disease in wild animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200228.	1.8	13
108	Diagnostic accuracy of LAMP versus PCR over the course of SARS-CoV-2 infection. International Journal of Infectious Diseases, 2021, 107, 195-200.	1.5	52
109	Nanomedicine: A Diagnostic and Therapeutic Approach to COVID-19. Frontiers in Medicine, 2021, 8, 648005.	1.2	25
110	CRISPR/Cas12a Technology Combined with RT-ERA for Rapid and Portable SARS-CoV-2 Detection. Virologica Sinica, 2021, 36, 1083-1087.	1.2	10
111	Screening, Diagnostic and Prognostic Tests for COVID-19: A Comprehensive Review. Life, 2021, 11, 561.	1.1	19
112	Science's Response to CoVIDâ€19. ChemMedChem, 2021, 16, 2288-2314.	1.6	15
113	Reverse Transcriptase Loop Mediated Isothermal Amplification (RT-LAMP) for COVID-19 diagnosis: a systematic review and meta-analysis. Pathogens and Global Health, 2021, 115, 281-291.	1.0	20
114	Going to extremes – a metagenomic journey into the dark matter of life. FEMS Microbiology Letters, 2021, 368, .	0.7	16
115	RT-LAMP: A Cheaper, Simpler and Faster Alternative for the Detection of SARS-CoV-2 in Wastewater. Food and Environmental Virology, 2021, 13, 447-456.	1.5	23

#	Article	IF	CITATIONS
116	Rapid and Visual Detection of SARS-CoV-2 Using Multiplex Reverse Transcription Loop-Mediated Isothermal Amplification Linked With Gold Nanoparticle-Based Lateral Flow Biosensor. Frontiers in Cellular and Infection Microbiology, 2021, 11, 581239.	1.8	21
117	Nanotechnology-based Approaches and Investigational Therapeutics against COVID-19. Current Pharmaceutical Design, 2022, 28, 948-968.	0.9	10
118	Isothermal amplificationâ€based assays for rapid and sensitive detection of severe acute respiratory syndrome coronavirus 2: Opportunities and recent developments. Reviews in Medical Virology, 2022, 32, e2274.	3.9	13
119	Loop-Mediated Isothermal Amplification (LAMP): The Better Sibling of PCR?. Cells, 2021, 10, 1931.	1.8	132
120	Role of Laboratory Medicine in SARS-CoV-2 Diagnostics. Lessons Learned from a Pandemic. Healthcare (Switzerland), 2021, 9, 915.	1.0	5
121	The Hologic Aptima SARSâ€CoVâ€2 assay enables high ratio pooling saving reagents and improving turnaround time. Journal of Clinical Laboratory Analysis, 2021, 35, e23888.	0.9	9
123	COVID-19 Testing Pipeline: Lesson Learned. IOP Conference Series: Earth and Environmental Science, 2021, 794, 012118.	0.2	1
124	Recent Advances in Two-Dimensional Transition Metal Dichalcogenide Nanocomposites Biosensors for Virus Detection before and during COVID-19 Outbreak. Journal of Composites Science, 2021, 5, 190.	1.4	22
125	SARS-CoV-2 and other viruses in soil: An environmental outlook. Environmental Research, 2021, 198, 111297.	3.7	36
126	Current state of diagnostic, screening and surveillance testing methods for COVID-19 from an analytical chemistry point of view. Microchemical Journal, 2021, 167, 106305.	2.3	37
127	Clinical validation of optimised RT-LAMP for the diagnosis of SARS-CoV-2 infection. Scientific Reports, 2021, 11, 16193.	1.6	21
128	Clinical laboratory evaluation of COVID-19. Clinica Chimica Acta, 2021, 519, 172-182.	0.5	30
130	Optimizing testing regimes for the detection of COVID-19 in children and older adults. Expert Review of Molecular Diagnostics, 2021, 21, 999-1016.	1.5	14
131	Design considerations for point-of-need devices based on nucleic acid amplification for COVID-19 diagnostics and beyond. BioTechniques, 2021, 71, 505-509.	0.8	2
132	Recent Advances in Novel Lateral Flow Technologies for Detection of COVID-19. Biosensors, 2021, 11, 295.	2.3	66
133	A novel strategy for SARS-CoV-2 mass screening with quantitative antigen testing of saliva: a diagnostic accuracy study. Lancet Microbe, The, 2021, 2, e397-e404.	3.4	20
134	Optimization and validation of RT-LAMP assay for diagnosis of SARS-CoV2 including the globally dominant Delta variant. Virology Journal, 2021, 18, 178.	1.4	17
135	Novel approaches for rapid detection of COVID-19 during the pandemic: A review. Analytical Biochemistry, 2021, 634, 114362.	1.1	24

#	Article	IF	CITATIONS
137	Rapid and Visual Differentiation of Mycobacterium tuberculosis From the Mycobacterium tuberculosis Complex Using Multiplex Loop-Mediated Isothermal Amplification Coupled With a Nanoparticle-Based Lateral Flow Biosensor. Frontiers in Microbiology, 2021, 12, 708658.	1.5	12
138	Colorimetric Reverse Transcription–Loop-Mediated Isothermal Amplification Assay for Rapid Detection of SARS-CoV-2. American Journal of Tropical Medicine and Hygiene, 2021, 105, 375-377.	0.6	1
139	A molecular test based on RT-LAMP for rapid, sensitive and inexpensive colorimetric detection of SARS-CoV-2 in clinical samples. Scientific Reports, 2021, 11, 16430.	1.6	92
140	Extraction-free rapid cycle RT-qPCR and extreme RT-PCR for SARS-CoV-2 virus detection. Journal of Molecular Diagnostics, 2021, 23, 1671-1679.	1.2	4
141	Herramientas biotecnológicas en el diagnóstico, prevención y tratamiento frente a pandemias. Revista Bionatura, 2021, 3, 2091-2113.	0.1	0
142	Advancements in detection of SARS-CoV-2 infection for confronting COVID-19 pandemics. Laboratory Investigation, 2022, 102, 4-13.	1.7	36
143	Rapid diagnosis of COVID-19 in the first year of the pandemic: A systematic review. International Immunopharmacology, 2021, 101, 108144.	1.7	12
144	A lab-on-a-chip platform for integrated extraction and detection of SARS-CoV-2 RNA in resource-limited settings. Analytica Chimica Acta, 2021, 1177, 338758.	2.6	31
145	Potential biomarkers for the early prediction of SARS-COV-2 disease outcome. Microbial Pathogenesis, 2021, 158, 105057.	1.3	18
146	Detection of SARS-CoV-2 virus using an alternative molecular method and evaluation of biochemical, hematological, inflammatory, and oxidative stress in healthcare professionals. Microbial Pathogenesis, 2021, 158, 104975.	1.3	4
147	Current diagnostic approaches to detect two important betacoronaviruses: Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathology Research and Practice, 2021, 225, 153565.	1.0	8
148	Nanobiotechnology enabled approaches for wastewater based epidemiology. TrAC - Trends in Analytical Chemistry, 2021, 143, 116400.	5.8	9
149	A CRISPR-based and post-amplification coupled SARS-CoV-2 detection with a portable evanescent wave biosensor. Biosensors and Bioelectronics, 2021, 190, 113418.	5.3	90
150	Ultrafast bacterial cell lysis using a handheld corona treater and loop-mediated isothermal amplification for rapid detection of foodborne pathogens. Food Control, 2021, 128, 108178.	2.8	12
151	An ultrafast SARS-CoV-2 virus enrichment and extraction method compatible with multiple modalities for RNA detection. Analytica Chimica Acta, 2021, 1180, 338846.	2.6	11
152	Viral detection and identification in 20Âmin by rapid single-particle fluorescence in-situ hybridization of viral RNA. Scientific Reports, 2021, 11, 19579.	1.6	16
153	A year into the COVID-19 pandemic: Rethinking of wastewater monitoring as a preemptive approach. Journal of Environmental Chemical Engineering, 2021, 9, 106063.	3.3	26
154	Capillary-based reverse transcriptase loop-mediated isothermal amplification for cost-effective and rapid point-of-care COVID-19 testing. Analytica Chimica Acta, 2021, 1185, 339002.	2.6	4

#	Article	IF	CITATIONS
155	A paper-based colorimetric molecular test for SARS-CoV-2 in saliva. Biosensors and Bioelectronics: X, 2021, 9, 100076.	0.9	44
156	Viral outbreaks detection and surveillance using wastewater-based epidemiology, viral air sampling, and machine learning techniques: A comprehensive review and outlook. Science of the Total Environment, 2022, 803, 149834.	3.9	48
157	Rapid, multiplexed, and nucleic acid amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor. Biosensors and Bioelectronics, 2022, 195, 113649.	5.3	45
158	Laboratory Methods for the Diagnosis of SARS-Cov-2. Advances in Medical Diagnosis, Treatment, and Care, 2022, , 58-77.	0.1	0
159	Loopâ€mediated isothermal amplification (LAMP): An effective molecular pointâ€ofâ€care technique for the rapid diagnosis of coronavirus SARSâ€CoVâ€2. Reviews in Medical Virology, 2021, 31, e2215.	3.9	90
160	Portable Tools for COVID-19 Point-of-Care Detection: A Review. IEEE Sensors Journal, 2021, 21, 1-1.	2.4	3
161	Sample-to-answer COVID-19 nucleic acid testing using a low-cost centrifugal microfluidic platform with bead-based signal enhancement and smartphone read-out. Lab on A Chip, 2021, 21, 2932-2944.	3.1	47
163	COVID-19 Diagnosis: A Comprehensive Review of Current Testing Platforms; Part A. , 2021, , 187-203.		0
164	Laboratory-Based Resources for COVID-19 Diagnostics: Traditional Tools and Novel Technologies. A Perspective of Personalized Medicine. Journal of Personalized Medicine, 2021, 11, 42.	1.1	6
165	COVID-19 in-vitro Diagnostics: State-of-the-Art and Challenges for Rapid, Scalable, and High-Accuracy Screening. Frontiers in Bioengineering and Biotechnology, 2020, 8, 605702.	2.0	32
166	Loopâ€mediated isothermal amplification for the detection of SARSâ€CoVâ€2 in saliva. Microbial Biotechnology, 2021, 14, 307-316.	2.0	34
167	Current advances in the detection of COVID-19 and evaluation of the humoral response. Analyst, The, 2021, 146, 382-402.	1.7	25
168	Analytical detection methods for diagnosis of COVID-19: developed methods and their performance. Biotechnology and Biotechnological Equipment, 2021, 35, 196-207.	0.5	7
169	Targets and assay types for COVID-19 diagnosis. Journal of Immunoassay and Immunochemistry, 2020, 41, 946-959.	0.5	5
184	Development and evaluation of a rapid and simple diagnostic assay for COVID-19 based on loop-mediated isothermal amplification. PLoS Neglected Tropical Diseases, 2020, 14, e0008855.	1.3	28
185	Rapid SARS-CoV-2 testing in primary material based on a novel multiplex RT-LAMP assay. PLoS ONE, 2020, 15, e0238612.	1.1	58
186	Optimizing direct RT-LAMP to detect transmissible SARS-CoV-2 from primary nasopharyngeal swab samples. PLoS ONE, 2020, 15, e0244882.	1.1	35
187	COVID-19 diagnostic laboratory strategies: modern technologies and development trends (review of) Tj ETQq1 I	0.784314	1 rgBT /Overle

ARTICLE IF CITATIONS # Point-Of-Care or Point-Of-Need Diagnostic Tests: Time to Change Outbreak Investigation and Pathogen 0.9 17 188 Detection. Tropical Medicine and Infectious Disease, 2020, 5, 151. The Main Molecular and Serological Methods for Diagnosing COVID-19: An Overview Based on the 189 1.5 Literature. Viruses, 2021, 13, 40. Challenges and Opportunities to Develop Diagnostics and Therapeutic Interventions for Severe Acute 190 1 Respiratory Syndrome- Corona Virus 2 (SARS-COV-2). , 2020, 6, 219-232. Six decades of lateral flow immunoassay: from determining metabolic markers to diagnosing COVID-19. AIMS Microbiology, 2020, 6, 280-304. Development of reverse transcription loop-mediated isothermal amplification assays for point-of-care 192 0.4 8 testing of avian influenza virus subtype H5 and H9. Genomics and Informatics, 2020, 18, e40. COOVID-19: What have we learned since the beginning of the epidemic until today?. Srpski Medicinski 0.1 Äesopis Lekarske Komore, 2021, 2, 248-265. Diagnostic performances of common nucleic acid tests for SARS-CoV-2 in hospitals and clinics: a 194 3.4 23 systematic review and meta-analysis. Lancet Microbe, The, 2021, 2, e704-e714. Development, evaluation of the PNA RT-LAMP assay for rapid molecular detection of SARS-CoV-2. 196 1.6 Scientific Reports, 2021, 11, 20471. Label-free detection of SARS-CoV-2 Spike S1 antigen triggered by electroactive gold nanoparticles on antibody coated fluorine-doped tin oxide (FTO) electrode. Analytica Chimica Acta, 2021, 1188, 339207. 197 2.6 58 Actualidad en estudios LibQUAL+ $\hat{A}^{ extsf{e}}$: paradigmas de la biblioteca informativa y social-creadora y cuestiÃ³n de género como reflejos de la realidad social. Revista Espanola De Documentacion Cientifica, 0.1 2020, 43, 264. Comprehensive analyses of bioinformatics applications in the fight against COVID-19 pandemic. 203 21 1.1 Computational Biology and Chemistry, 2021, 95, 107599. A semi-automated, isolation-free, high-throughput SARS-CoV-2 reverse transcriptase (RT) 204 1.6 loop-mediated isothermal amplification (LAMP) test. Scientific Reports, 2021, 11, 21385. 205 Diagnostic Approach to a Patient with Coronavirus Disease., 2020, , 51-65. 0 Molecular genetic analysis SARS-CoV-2 of asymptomatic patients in Rostov region. Medical Herald of the South of Russia, 2020, 11, 48-53. 0.2 Aptamer-Functionalized Nanochannels for One-Step Detection of SARS-CoV-2 in Samples from COVID-19 210 3.2 37 Patients. Analytical Chemistry, 2021, 93, 16646-16654. Improved Bst DNA Polymerase Variants Derived <i>via</i> a Machine Learning Approach. Biochemistry, 2023, 62, 410-418. Global Pandemic as a Result of Severe Acute Respiratory Syndrome Coronavirus 2 Outbreak: A 212 0.3 0 Biomedical Perspective. Journal of Pure and Applied Microbiology, 0, , . Paper-Based Test for Rapid On-Site Screening of SARS-CoV-2 in Clinical Samples. Biosensors, 2021, 11, 2.3 488.

#	Article	IF	CITATIONS
214	Two extraction-free reverse transcription loop-mediated isothermal amplification assays for detection of SARS-CoV-2. BMC Infectious Diseases, 2021, 21, 1162.	1.3	1
215	Optimization and Clinical Validation of Colorimetric Reverse Transcription Loop-Mediated Isothermal Amplification, a Fast, Highly Sensitive and Specific COVID-19 Molecular Diagnostic Tool That Is Robust to Detect SARS-CoV-2 Variants of Concern. Frontiers in Microbiology, 2021, 12, 713713.	1.5	22
216	Toward a next-generation diagnostic tool: A review on emerging isothermal nucleic acid amplification techniques for the detection of SARS-CoV-2 and other infectious viruses. Analytica Chimica Acta, 2022, 1209, 339338.	2.6	24
217	COVID-19 Diagnostic Methods and Detection Techniques. , 2023, , 17-32.		18
218	Point-of-care diagnostics: recent developments in a pandemic age. Lab on A Chip, 2021, 21, 4517-4548.	3.1	34
219	A method of sequential liquid dispensing for the multiplexed genetic diagnosis of viral infections in a microfluidic device. Lab on A Chip, 2021, 21, 4779-4790.	3.1	13
220	A Palm Germ-Radar (PaGeR) for rapid and simple COVID-19 detection by reverse transcription loop-mediated isothermal amplification (RT-LAMP). Biosensors and Bioelectronics, 2022, 200, 113925.	5.3	19
221	Foreign experience in molecular genetic and immunological diagnostics of SARS-CoV-2 (review). Laboratornaya Sluzhba, 2021, 10, 47.	0.0	2
222	Initial Evaluation of a Mobile SARS-CoV-2 RT-LAMP Testing Strategy. Journal of Biomolecular Techniques, 2021, 32, 137-147.	0.8	11
223	Development of Loop-Mediated Isothermal Amplification Assay Targeting lytA and psaA Genes for Rapid and Visual Diagnosis of Streptococcus pneumoniae Pneumonia in Children. Frontiers in Microbiology, 2021, 12, 816997.	1.5	2
224	Developing RT-LAMP assays for rapid diagnosis of SARS-CoV-2 in saliva. EBioMedicine, 2022, 75, 103736.	2.7	61
225	Uncovering mechanisms of RT-LAMP colorimetric SARS-CoV-2 detection to improve assay reliability. Analytical Methods, 2022, 14, 378-382.	1.3	6
227	Performance of colorimetric reverse transcription loop-mediated isothermal amplification as a diagnostic tool for SARS-CoV-2 infection during the fourth wave of COVID-19 in Thailand. International Journal of Infectious Diseases, 2022, 116, 133-137.	1.5	14
228	Surface-enhanced Raman scattering-based immunoassay for severe acute respiratory syndrome coronavirus 2. Biosensors and Bioelectronics, 2022, 202, 114008.	5.3	30
229	The Complexity of SARS-CoV-2 Infection and the COVID-19 Pandemic. Frontiers in Microbiology, 2022, 13, 789882.	1.5	20
230	Diagnostic efficiency of RT-LAMP integrated CRISPR-Cas technique for COVID-19: A systematic review and meta-analysis. Pathogens and Clobal Health, 2022, 116, 410-420.	1.0	6
231	Current Trends of SARS-CoV-2 and its New Variants Diagnostics in Different Body Fluids: Surface Antigen, Antibody, Nucleic Acid, and RNA Sequencing Detection Techniques. SSRN Electronic Journal, 0, , .	0.4	0
232	Evaluation of RT-LAMP Assay for Rapid Detection of SARS-CoV-2. Laboratory Medicine, 2023, 54, 56-64.	0.8	2

#	Article	IF	CITATIONS
233	Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. Current Research in Microbial Sciences, 2022, 3, 100120.	1.4	26
234	Miniaturized analytical system for point-of-care coronavirus infection diagnostics. , 2022, , 305-340.		0
235	Multiplex, Real-Time, Point-of-care RT-LAMP for SARS-CoV-2 Detection Using the HFman Probe. ACS Sensors, 2022, 7, 730-739.	4.0	40
236	SARS-CoV-2 Identification Using Colorimetric Loop-Mediated Isothermal Amplification. Timisoara Medical Journal, 2022, 2022, 1.	0.1	0
238	Figure of Merit for CRISPR-Based Nucleic Acid-Sensing Systems: Improvement Strategies and Performance Comparison. ACS Sensors, 2022, 7, 900-911.	4.0	16
239	Self-Sampled Gargle Water Direct RT-LAMP as a Screening Method for the Detection of SARS-CoV-2 Infections. Diagnostics, 2022, 12, 775.	1.3	3
240	A Rapid RT-LAMP Assay for SARS-CoV-2 with Colorimetric Detection Assisted by a Mobile Application. Diagnostics, 2022, 12, 848.	1.3	6
241	Single-tube collection and nucleic acid analysis of clinical samples for SARS-CoV-2 saliva testing. Scientific Reports, 2022, 12, 3951.	1.6	3
242	Rapid and Highâ€Throughput SARSâ€CoVâ€2 RNA Detection without RNA Extraction and Amplification by Using a Microfluidic Biochip. Chemistry - A European Journal, 2022, 28, .	1.7	9
243	Rapid and Reliable Detection of SARS-CoV-2 Using Direct RT-LAMP. Diagnostics, 2022, 12, 828.	1.3	13
244	Choice of SARS-CoV-2 diagnostic test: challenges and key considerations for the future. Critical Reviews in Clinical Laboratory Sciences, 2022, 59, 445-459.	2.7	17
245	High Sensitivity, Rapid Detection of Virus in High Traffic Environments. Frontiers in Bioengineering and Biotechnology, 2022, 10, 877603.	2.0	3
246	One-step colorimetric isothermal detection of COVID-19 with AI-assisted automated result analysis: A platform model for future emerging point-of-care RNA/DNA disease diagnosis. Talanta, 2022, 249, 123375.	2.9	10
247	Three SARS-CoV-2 PCR-negative cases of COVID-19 diagnosed using isothermal amplification methods. Journal of Infection and Chemotherapy, 2022, 28, 1005-1007.	0.8	2
248	Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation. Biosensors and Bioelectronics, 2022, 209, 114222.	5.3	23
249	Improving RT-LAMP detection of SARS-CoV-2 RNA through primer set selection and combination. PLoS ONE, 2022, 17, e0254324.	1.1	8
250	PD-LAMP smartphone detection of SARS-CoV-2 on chip. Analytica Chimica Acta, 2022, 1203, 339702.	2.6	28
251	The Response of Emergency Departments (EDs) to the COVID-19 Pandemic: The Experience of 5 EDs in a Paris-Based Academic Hospital Trust. Quality Management in Health Care, 2023, 32, 46-52.	0.4	3

#	Article	IF	CITATIONS
252	A point-of-care SARS-CoV-2 test based on reverse transcription loop-mediated isothermal amplification without RNA extraction with diagnostic performance same as RT-PCR. Analytica Chimica Acta, 2022, 1200, 339590.	2.6	19
253	Validation of a rapid, saliva-based, and ultra-sensitive SARS-CoV-2 screening system for pandemic-scale infection surveillance. Scientific Reports, 2022, 12, 5936.	1.6	10
254	SaliVISION: a rapid saliva-based COVID-19 screening and diagnostic test with high sensitivity and specificity. Scientific Reports, 2022, 12, 5729.	1.6	6
255	Dual-site ligation-assisted loop-mediated isothermal amplification (dLig-LAMP) for colorimetric and point-of-care determination of real SARS-CoV-2. Mikrochimica Acta, 2022, 189, 176.	2.5	10
256	Design and simulation of a millifluidic device for differential detection of SARS-CoV-2 and H1N1 based on triboelectricity. Bioelectrochemistry, 2022, 145, 108096.	2.4	2
257	Loop-mediated isothermal amplification-based electrochemical sensor for detecting SARS-CoV-2 in wastewater samples. Journal of Environmental Chemical Engineering, 2022, 10, 107488.	3.3	37
258	Review of COVID-19 testing and diagnostic methods. Talanta, 2022, 244, 123409.	2.9	112
259	Attomolar Sensitive Magnetic Microparticles and a Surface-Enhanced Raman Scattering-Based Assay for Detecting SARS-CoV-2 Nucleic Acid Targets. ACS Applied Materials & Interfaces, 2022, 14, 138-149.	4.0	9
260	Evolution of Diagnostic Methods and Prevalence Detection of COVID-19: A Review. , 0, , .		0
261	Functionalized Terpolymer-Brush-Based Biointerface with Improved Antifouling Properties for Ultra-Sensitive Direct Detection of Virus in Crude Clinical Samples. ACS Applied Materials & Interfaces, 2021, 13, 60612-60624.	4.0	19
262	Evaluation of the efficacy of LAMP-based SARS-CoV-2 detection with simple RNA extraction from nasopharyngeal swabs: A prospective observational study. PLoS ONE, 2021, 16, e0260732.	1.1	1
263	Alzheimer's Disease: A Silent Pandemic – A Systematic Review on the Situation and Patent Landscape of the Diagnosis. Recent Patents on Biotechnology, 2022, 16, .	0.4	0
264	Measuring the Possibility of Middle Ear Discharge for COVID-19 Test Material. Interdisciplinary Perspectives on Infectious Diseases, 2022, 2022, 1-7.	0.6	4
265	A Portable Nanoprobe for Rapid and Sensitive Detection of SARS-CoV-2 S1 Protein. Biosensors, 2022, 12, 232.	2.3	7
268	Developed an Enzyme Probe Isothermal Amplification (Epia) Method for Rapid Detection of Bat Adenovirus. SSRN Electronic Journal, 0, , .	0.4	0
269	A lyophilized colorimetric RT-LAMP test kit for rapid, low-cost, at-home molecular testing of SARS-CoV-2 and other pathogens. Scientific Reports, 2022, 12, 7043.	1.6	8
270	Microfluidics-Based Point-of-Care Testing (POCT) Devices in Dealing with Waves of COVID-19 Pandemic: The Emerging Solution. ACS Applied Bio Materials, 2022, 5, 2046-2068.	2.3	37
271	VIR-CRISPR: Visual in-one-tube ultrafast RT-PCR and CRISPR method for instant SARS-CoV-2 detection. Analytica Chimica Acta, 2022, 1212, 339937.	2.6	4

#	Article	IF	CITATIONS
272	Integration of RT-LAMP and Microfluidic Technology for Detection of SARS-CoV-2 in Wastewater as an Advanced Point-of-Care Platform. Food and Environmental Virology, 2022, 14, 364-373.	1.5	13
273	Detection of SARSâ€CoVâ€2 in Different Human Biofluids Using the Loopâ€Mediated Isothermal Amplification Assay: A Prospective Diagnostic Study in Fortaleza, Brazil. Journal of Medical Virology, 2022, , .	2.5	1
274	Diagnostic utility and validation of a newly developed real time loop mediated isothermal amplification method for the detection of SARS CoV-2 infection. Journal of Clinical Virology Plus, 2022, , 100081.	0.4	3
275	Molecular and serology methods in the diagnosis of COVID-19: An overview. World Journal of Methodology, 2022, 12, 83-91.	1.1	0
276	The Safety of Cold-Chain Food in Post-COVID-19 Pandemic: Precaution and Quarantine. Foods, 2022, 11, 1540.	1.9	3
277	Testing and diagnosis of SARS-CoV-2 infection. , 2022, , 49-79.		0
278	Performance of Loop-Mediated Isothermal Amplification (LAMP) Targeting the Nucleocapsid (N) Gene of SARS-CoV-2 for Rapid Diagnosis of COVID-19: Systematic Review and Meta-Analysis. Covid, 2022, 2, 759-766.	0.7	1
279	An updated review of <scp>SARSâ€CoV</scp> â€2 detection methods in the context of a novel coronavirus pandemic. Bioengineering and Translational Medicine, 2023, 8, .	3.9	19
281	Rapid self-test of unprocessed viruses of SARS-CoV-2 and its variants in saliva by portable wireless graphene biosensor. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	32
282	SARS-CoV-2, MANEJO DIAGNÓSTICO- TERAPEÊTICO. , 0, , .		0
283	Unveiling Distinguished Methodologies for the Diagnosis of COVID-19. , 2022, , 99-120.		0
284	A quantitative <scp>RTâ€qLAMP</scp> for the detection of <scp>SARSâ€CoV</scp> â€2 and human gene in clinical application. Microbial Biotechnology, 0, , .	2.0	2
285	Molecular and antigen tests, and sample types for diagnosis of COVID-19: aÂreview. Future Virology, 2022, 17, 675-685.	0.9	3
286	A Rotatable Paper Device Integrating Reverse Transcription Loop-Mediated Isothermal Amplification and a Food Dye for Colorimetric Detection of Infectious Pathogens. Biosensors, 2022, 12, 488.	2.3	3
287	A one-tube rapid visual CRISPR assay for the field detection of Japanese encephalitis virus. Virus Research, 2022, 319, 198869.	1.1	11
288	A Visual Assay of a Loop-Mediated Isothermal Amplification Based Vertical Immunoassay for SARS-CoV-2 RNA Detection. Frontiers in Microbiology, 0, 13, .	1.5	0
289	Polymeric-based interface for the development of COVID-19 biosensor. , 2022, , 57-82.		0
290	A Rapid and Sensitive Microfluidics-Based Tool for Seroprevalence Immunity Assessment of COVID-19 and Vaccination-Induced Humoral Antibody Response at the Point of Care. Biosensors, 2022, 12, 621.	2.3	7

#	Article	IF	Citations
291	Diagnostic Approaches For COVID-19: Lessons Learned and the Path Forward. ACS Nano, 2022, 16, 11545-11576.	7.3	18
292	State-of-the-Art Smart and Intelligent Nanobiosensors for SARS-CoV-2 Diagnosis. Biosensors, 2022, 12, 637.	2.3	12
293	Visual Detection of COVID-19 from Materials Aspect. Advanced Fiber Materials, 2022, 4, 1304-1333.	7.9	15
294	Two Years into the COVID-19 Pandemic: Lessons Learned. ACS Infectious Diseases, 2022, 8, 1758-1814.	1.8	47
295	A precise review on <scp>NAATs</scp> â€based diagnostic assays for <scp>COVID</scp> â€19: A motion in fast <scp>POC</scp> molecular tests. European Journal of Clinical Investigation, 2022, 52, .	1.7	6
296	A comprehensive review of COVID-19 detection techniques: From laboratory systems to wearable devices. Computers in Biology and Medicine, 2022, 149, 106070.	3.9	10
297	Current trends in COVID-19 diagnosis and its new variants in physiological fluids: Surface antigens, antibodies, nucleic acids, and RNA sequencing. TrAC - Trends in Analytical Chemistry, 2022, 157, 116750.	5.8	16
298	Current clinical testing approach of COVID. , 2022, , 231-274.		0
299	Recent Advances in Biosensors for Detection of COVID-19 and Other Viruses. IEEE Reviews in Biomedical Engineering, 2023, 16, 22-37.	13.1	21
300	Passengers screening for SARS-CoV-2 infection at Rome Fiumicino Airport: a strategy aimed at limiting the spreading of the infection through COVID-free air flights revealed the airport role as a formidable sentinel center for monitoring pandemic trends and viral variants circulation. Microbiologia Medica. 2022. 37.	0.3	0
301	Development of a multiâ€recombinase polymerase amplification assay for rapid identification of COVIDâ€19, influenza A and B. Journal of Medical Virology, 2023, 95, .	2.5	7
302	Development and Validation of Reverse Transcriptase Loop-Mediated Isothermal Amplification (RT-LAMP) as a Simple and Rapid Diagnostic Tool for SARS-CoV-2 Detection. Diagnostics, 2022, 12, 2232.	1.3	7
303	Development of a Loop-Mediated Isothermal Amplification Method for Rapid and Visual Detection of Monkeypox Virus. Microbiology Spectrum, 2022, 10, .	1.2	27
304	Colorimetric and fluorometric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for diagnosis of SARS-CoV-2. Functional and Integrative Genomics, 2022, 22, 1391-1401.	1.4	14
305	Developing a Loop-Mediated Isothermal Amplification Assay for the Rapid Detection of Seven Respiratory Viruses including SARS-CoV-2. Medicina (Lithuania), 2022, 58, 1224.	0.8	3
307	A robust, low-cost instrument for real-time colorimetric isothermal nucleic acid amplification. PLoS ONE, 2022, 17, e0256789.	1.1	3
308	A New Auto-RPA-Fluorescence Detection Platform for SARS-CoV-2. Laboratory Medicine, 2023, 54, 182-189.	0.8	1
309	Translating diagnostics and drug delivery technologies to low-resource settings. Science Translational Medicine, 2022, 14, .	5.8	7

		CITATION REPORT	
# 310	ARTICLE Advances in Biosensing Technologies for Diagnosis of COVID-19. Biosensors, 2022, 12, 898.	IF 2.3	Citations 8
011	RT-LAMP in SARS-CoV-2 detection: point to improve primer designing and decrease molecular diagr	nosis	
911	pitfalls. Expert Review of Molecular Diagnostics, 0, , 1-9.	1.0	U
312	Recent review of COVID-19 management: diagnosis, treatment and vaccination. Pharmacological Reports, 2022, 74, 1120-1148.	1.5	37
313	Microfluidic Devices for HIV Diagnosis and Monitoring at Point-of-Care (POC) Settings. Biosensors, 2022, 12, 949.	2.3	7
314	Outlook of various diagnostics and nanodiagnostic techniques for COVID-19. Biosensors and Bioelectronics: X, 2022, 12, 100276.	0.9	2
315	Molecular detection of "Candidatus Rickettsia tarasevichiae―by Loop-mediated Isothermal Amplification (LAMP) of the ompA gene. Journal of Microbiological Methods, 2022, 202, 106601.	0.7	2
316	Development of CRISPR-Mediated Nucleic Acid Detection Technologies and Their Applications in th Livestock Industry. Genes, 2022, 13, 2007.	e 1.0	2
317	Visual detection of SARS-CoV-2 with a CRISPR/Cas12b-based platform. Talanta, 2023, 253, 124093	. 2.9	Ο
318	Carbon nanotubes (CNTs): Smart theranostic tools for the recognition and preclusion of SARS-CoV variants. Nano LIFE, 0, , .	.2 0.6	0
319	Self-directed molecular diagnostics (SdMDx) system for COVID-19 via one-pot processing. Sensors Actuators B: Chemical, 2023, 378, 133193.	and 4.0	Ο
320	Virus Detection and Identification in Minutes Using Single-Particle Imaging and Deep Learning. ACS Nano, 2023, 17, 697-710.	7.3	16
321	Development of an optimized colorimetric RT-LAMP for SARS-CoV-2 assay with enhanced procedure controls for remote diagnostics. Scientific Reports, 2022, 12, .	2 1.6	5
322	Development and Validation of a Novel COVID-19 nsp8 One-Tube RT-LAMP-CRISPR Assay for SARS- Diagnosis. Microbiology Spectrum, 2022, 10, .	CoV-2 1.2	2
323	Advancements in Detection Approaches of Severe Acute Respiratory Syndrome Coronavirus 2. The Malaysian Journal of Medical Sciences, 2022, 29, 15-33.	0.3	0
324	Biosensors - A Miraculous Detecting Tool in Combating the War against COVID-19. Current Pharmaceutical Biotechnology, 2023, 24, .	0.9	0
325	CRISPR/Cas12a-Assisted Dual Visualized Detection of SARS-CoV-2 on Frozen Shrimps. Biosensors, 2 13, 138.	.023, 2.3	2
326	Rapid and Flexible RT-qPCR Surveillance Platforms To Detect SARS-CoV-2 Mutations. Microbiology Spectrum, 0, , .	1.2	4
327	Rapid and Visual Detection of SARS-CoV-2 RNA Based on Reverse Transcription-Recombinase Polym Amplification with Closed Vertical Flow Visualization Strip Assay. Microbiology Spectrum, 0, , .	ierase 1.2	4

#	Article	IF	CITATIONS
328	Digital CRISPR systems for the next generation of nucleic acid quantification. TrAC - Trends in Analytical Chemistry, 2023, 159, 116917.	5.8	8
330	An immobilization-based, loop-mediated isothermal amplification device for nucleic acid detection of SARS-CoV-2 <i>N</i> gene. Biotechnology and Biotechnological Equipment, 2022, 36, 838-847.	0.5	0
331	Reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay as a rapid molecular diagnostic tool for COVID-19 in healthcare workers. Journal of Clinical Virology Plus, 2023, 3, 100134.	0.4	3
332	Electrocatalytic Palladium Nanoclusters as Versatile Indicators of Bioassays: Rapid Electroanalytical Detection of SARS oVâ€2 by Reverse Transcription Loopâ€Mediated Isothermal Amplification. Advanced Healthcare Materials, 2023, 12, .	3.9	3
333	Recent progress on wastewater-based epidemiology for COVID-19 surveillance: A systematic review of analytical procedures and epidemiological modeling. Science of the Total Environment, 2023, 878, 162953.	3.9	17
334	Starting from scratch: Step-by-step development of diagnostic tests for SARS-CoV-2 detection by RT-LAMP. PLoS ONE, 2023, 18, e0279681.	1.1	3
335	Review—Role of Nanomaterials in Screenprinted Electrochemical Biosensors for Detection of Covid-19 and for Post-Covid Syndromes. , 2023, 2, 016502.		4
336	Malachite Green-Based Detection of SARS-CoV-2 by One-Step Reverse Transcription Loop-Mediated Isothermal Amplification. , 2023, 47, 359-367.		1
337	Reconstruction surgery in head and neck cancer patients amidst the COVID-19 pandemic: Current practice and lessons for the future. World Journal of Clinical Cases, 0, 11, 1434-1441.	0.3	0
338	Vivid COVID-19 LAMP is an ultrasensitive, quadruplexed test using LNA-modified primers and a zinc ion and 5-Br-PAPS colorimetric detection system. Communications Biology, 2023, 6, .	2.0	2
339	Binding-Induced Folding of DNA Oligonucleotides Targeted to the Nucleocapsid Gene Enables Electrochemical Sensing of SARS-CoV-2. ACS Applied Bio Materials, 2023, 6, 1133-1145.	2.3	2
340	Isolation and Identification of Pathogens from Fish: Tilapia Lake Virus (TiLV). Springer Protocols, 2023, , 49-58.	0.1	0
341	Scalable RT‣AMPâ€based SARSâ€CoVâ€2 testing for infection surveillance with applications in pandemic preparedness. EMBO Reports, 2023, 24, .	2.0	5
342	CDetection.v2: One-pot assay for the detection of SARS-CoV-2. Frontiers in Microbiology, 0, 14, .	1.5	2
343	Nanotechnology laying new foundations for combating COVID-19 pandemic. , 2023, , 459-506.		0
344	Research progress of severe acute respiratory syndrome coronavirus 2 on aerosol collection and detection. Chinese Chemical Letters, 2024, 35, 108378.	4.8	0
345	Development of loop-mediated isothermal amplification (LAMP) assays using five primers reduces the false-positive rate in COVID-19 diagnosis. Scientific Reports, 2023, 13, .	1.6	9
346	CoVSense: Ultrasensitive Nucleocapsid Antigen Immunosensor for Rapid Clinical Detection of Wildtype and Variant SARSâ€CoVâ€2. Advanced Science, 2023, 10, .	5.6	2

#	Article	IF	CITATIONS
347	Magnetic biosensors for identification of SARS-CoV-2, Influenza, HIV, and Ebola viruses: a review. Nanotechnology, 2023, 34, 272001.	1.3	1
348	Nanotechnology-Based Diagnostics for Diseases Prevalent in Developing Countries: Current Advances in Point-of-Care Tests. Nanomaterials, 2023, 13, 1247.	1.9	11
349	Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chemical Science, 2023, 14, 6149-6206.	3.7	12
368	Evolution of Viral Diagnostics: A Peek into Time. , 2023, , 587-618.		0
375	Revisiting JC virus and progressive multifocal leukoencephalopathy. Journal of NeuroVirology, 0, , .	1.0	0
391	Advanced Microbiological Diagnostic Techniques in Viral Infections of the Central Nervous System. , 2023, , 399-418.		0
396	COVID-19 laboratory diagnosis. , 2024, , 2727-2741.		0
397	Coxiella and Q fever. , 2024, , 1811-1847.		0
398	Versatility of reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) from diagnosis of early pathological infection to mutation detection in organisms. Molecular Biology Reports, 2024, 51, .	1.0	0
408	Wastewater-Based Epidemiology for Early Warning and Surveillance of Covid-19. , 2024, , 223-246.		0