A smartphone-based dual detection mode device integr immunoassays for multiplex mycotoxins in cereals

Biosensors and Bioelectronics 158, 112178 DOI: 10.1016/j.bios.2020.112178

Citation Report

#	Article	IF	CITATIONS
1	Competitive upconversion-linked immunoassay using peptide mimetics for the detection of the mycotoxin zearalenone. Biosensors and Bioelectronics, 2020, 170, 112683.	5.3	36
2	Recent advances on emerging nanomaterials for controlling the mycotoxin contamination: From detection to elimination. Food Frontiers, 2020, 1, 360-381.	3.7	32
3	Immunoassays for rapid mycotoxin detection: state of the art. Analyst, The, 2020, 145, 7088-7102.	1.7	38
4	Silanized Luminescent Quantum Dots for the Simultaneous Multicolor Lateral Flow Immunoassay of Two Mycotoxins. ACS Applied Materials & Interfaces, 2020, 12, 24575-24584.	4.0	62
5	Development of a sensitive non-competitive immunoassay via immunocomplex binding peptide for the determination of ethyl carbamate in wine samples. Journal of Hazardous Materials, 2021, 406, 124288.	6.5	30
6	Dual near-infrared fluorescence-based lateral flow immunosensor for the detection of zearalenone and deoxynivalenol in maize. Food Chemistry, 2021, 336, 127718.	4.2	48
7	Future of smartphone-based analysis. , 2021, , 417-430.		0
8	Applications of smartphones in food analysis. , 2021, , 249-268.		3
9	Recent Advances in Mycotoxin Analysis and Detection of Mycotoxigenic Fungi in Grapes and Derived Products. Sustainability, 2021, 13, 2537.	1.6	13
10	Developments in mycotoxin analysis: an update for 2019-2020. World Mycotoxin Journal, 2021, 14, 3-26.	0.8	34
11	Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. TrAC - Trends in Analytical Chemistry, 2021, 135, 116156.	5.8	38
12	From Smartphone Lateral Flow Immunoassay Screening to Direct MS Analysis: Development and Validation of a Semi-Quantitative Direct Analysis in Real-Time Mass Spectrometric (DART-MS) Approach to the Analysis of Deoxynivalenol. Sensors, 2021, 21, 1861.	2.1	7
13	Recent advances on immunosensors for mycotoxins in foods and other commodities. TrAC - Trends in Analytical Chemistry, 2021, 136, 116193.	5.8	58
14	Rapid, simultaneous detection of mycotoxins with smartphone recognition-based immune microspheres. Analytical and Bioanalytical Chemistry, 2021, 413, 3683-3693.	1.9	9
15	Recent Advancements in Enzyme-Based Lateral Flow Immunoassays. Sensors, 2021, 21, 3358.	2.1	39
16	Recent progress in visual methods for aflatoxin detection. Critical Reviews in Food Science and Nutrition, 2022, 62, 7849-7865.	5.4	10
17	Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends in Food Science and Technology, 2021, 111, 68-88.	7.8	68
18	AlEgens enabled ultrasensitive point-of-care test for multiple targets of food safety: Aflatoxin B1 and cyclopiazonic acid as an example. Biosensors and Bioelectropics, 2021, 182, 113188	5.3	109

Сіт	ΑΤΙ	ON	Rep	ORT
U		U		U

#	Article	IF	CITATIONS
19	Portable, Rapid, and Sensitive Time-Resolved Fluorescence Immunochromatography for On-Site Detection of Dexamethasone in Milk and Pork. Foods, 2021, 10, 1339.	1.9	19
20	Polystyrene Microsphere-Based Immunochromatographic Assay for Detection of Aflatoxin B1 in Maize. Biosensors, 2021, 11, 200.	2.3	8
21	The Existing Methods and Novel Approaches in Mycotoxins' Detection. Molecules, 2021, 26, 3981.	1.7	34
22	Recent Advances in Conventional Methods and Electrochemical Aptasensors for Mycotoxin Detection. Foods, 2021, 10, 1437.	1.9	11
23	Biosensors for Deoxynivalenol and Zearalenone Determination in Feed Quality Control. Toxins, 2021, 13, 499.	1.5	11
24	Ten Years of Lateral Flow Immunoassay Technique Applications: Trends, Challenges and Future Perspectives. Sensors, 2021, 21, 5185.	2.1	182
25	Identification of type B trichothecenes and zearalenone in Chilean cereals by planar chromatography coupled to mass spectroscopy. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2021, 38, 1778-1787.	1.1	5
26	A sensitive chemiluminescence immunoassay based on immunomagnetic beads for quantitative detection of zearalenone. European Food Research and Technology, 2021, 247, 2171-2181.	1.6	7
27	Recent progress in smartphone-based techniques for food safety and the detection of heavy metal ions in environmental water. Chemosphere, 2021, 275, 130096.	4.2	88
28	Lateral Flow Immunochromatography Assay for Detection of Furosemide in Slimming Health Foods. Foods, 2021, 10, 2041.	1.9	10
29	Surface plasma enhanced fluorescence combined aptamer sensor based on silica modified silver nanoparticles for signal amplification detection of cholic acid. Microchemical Journal, 2021, 168, 106524.	2.3	9
30	A Rapid and Sensitive Fluorescent Microsphere-Based Lateral Flow Immunoassay for Determination of Aflatoxin B1 in Distillers' Grains. Foods, 2021, 10, 2109.	1.9	7
31	A dual-colored persistent luminescence nanosensor for simultaneous and autofluorescence-free determination of aflatoxin B1 and zearalenone. Talanta, 2021, 232, 122395.	2.9	22
32	Development of a microarray lateral flow strip test using a luminescent organic compound for multiplex detection of five mycotoxins. Talanta, 2021, 233, 122540.	2.9	31
33	Chemical modification of M13 bacteriophage as nanozyme container for dramatically enhanced sensitivity of colorimetric immunosensor. Sensors and Actuators B: Chemical, 2021, 346, 130368.	4.0	21
34	Point-of-care applications of smartphone-based microscopy. Sensors and Actuators A: Physical, 2021, 331, 113048.	2.0	19
35	Colorimetric immunoassay via smartphone based on Mn2+-Mediated aggregation of AuNPs for convenient detection of fumonisin B1. Food Control, 2022, 132, 108481.	2.8	30
36	Single-emission dual-enzyme magnetosensor for multiplex immunofluorometric assay of adulterated colorants in chili seasoning. Food Chemistry, 2022, 366, 130594.	4.2	8

# 37	ARTICLE Broad-specific immunochromatography for simultaneous detection of various sulfonylureas in adulterated multi-herbal tea. Food Chemistry, 2022, 370, 131055.	IF 4.2	CITATIONS
38	Prussian blue immunochromatography with portable smartphone-based detection device for zearalenone in cereals. Food Chemistry, 2022, 369, 131008.	4.2	33
39	Smartphone: A new perspective in analysis. , 2021, , 1-18.		1
40	Smartphone-based optical and electrochemical sensing. , 2021, , 19-36.		0
41	Advances in Colorimetric Strategies for Mycotoxins Detection: Toward Rapid Industrial Monitoring. Toxins, 2021, 13, 13.	1.5	24
42	Rapid Monitoring of Vancomycin Concentration in Serum Using Europium (III) Chelate Nanoparticle-Based Lateral Flow Immunoassay. Frontiers in Chemistry, 2021, 9, 763686.	1.8	7
43	Recent advances in immunoassays and biosensors for mycotoxins detection in feedstuffs and foods. Journal of Animal Science and Biotechnology, 2021, 12, 108.	2.1	30
44	Quantitative pH Determination Based on the Dominant Wavelength Analysis of Commercial Test Strips. Analytical Chemistry, 2021, 93, 15452-15458.	3.2	17
45	An Overview for the Nanoparticlesâ€Based Quantitative Lateral Flow Assay. Small Methods, 2022, 6, e2101143.	4.6	48
46	A highly sensitive and quantitative time resolved fluorescent microspheres lateral flow immunoassay for streptomycin and dihydrostreptomycin in milk, honey, muscle, liver, and kidney. Analytica Chimica Acta, 2022, 1192, 339360.	2.6	28
47	Magnetic immunochromatographic assay with smartphone-based readout device for the on-site detection of zearalenone in cereals. Food Control, 2022, 134, 108760.	2.8	13
48	Self-Assembling Antibody Network Simplified Competitive Multiplex Lateral Flow Immunoassay for Point-of-Care Tests. Analytical Chemistry, 2022, 94, 1585-1593.	3.2	13
49	Antibody Generation and Rapid Immunochromatography Using Time-Resolved Fluorescence Microspheres for Propiconazole: Fungicide Abused as Growth Regulator in Vegetable. Foods, 2022, 11, 324.	1.9	11
50	Recent Progress in Rapid Determination of Mycotoxins Based on Emerging Biorecognition Molecules: A Review. Toxins, 2022, 14, 73.	1.5	26
51	An ultrasensitive microfluidic chip-based immunoassay for multiplex determination of 11 PDE-5 inhibitors in adulterated health foods. Sensors and Actuators B: Chemical, 2022, 358, 131450.	4.0	7
52	A comparative study of "turn-off―mode and "turn-on―mode lateral flow immunoassay for T-2 toxin detection. Sensors and Actuators B: Chemical, 2022, 359, 131545.	4.0	14
53	Difunctional immunochromatographic assay based on magnetic quantum dot for ultrasensitive and simultaneous detection of multiple mycotoxins in foods. Sensors and Actuators B: Chemical, 2022, 359, 131528.	4.0	32
54	Multiplex optical bioassays for food safety analysis: Toward onâ€site detection. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 1627-1656.	5.9	25

#	Article	IF	CITATIONS
55	Ultrasensitive Magnetic Assisted Lateral Flow Immunoassay Based on Chiral Monoclonal Antibody against <i>R</i> -(â^')-Salbutamol of Broad-Specificity for 38 β-Agonists Detection in Swine Urine and Pork. Journal of Agricultural and Food Chemistry, 2022, 70, 4112-4122.	2.4	9
56	Smartphone-Based Platforms for Clinical Detections in Lung-Cancer-Related Exhaled Breath Biomarkers: A Review. Biosensors, 2022, 12, 223.	2.3	8
57	The evolution of multiplex detection of mycotoxins using immunoassay platform technologies. Journal of Hazardous Materials, 2022, 432, 128706.	6.5	38
58	Ultrasensitive and rapid colorimetric detection of paraquat via a high specific VHH nanobody. Biosensors and Bioelectronics, 2022, 205, 114089.	5.3	18
59	Immunochromatographic assays based on three kinds of nanoparticles for the rapid and highly sensitive detection of tylosin and tilmicosin in eggs. Mikrochimica Acta, 2022, 189, 42.	2.5	9
60	Dual Gold Nanoparticle/Chemiluminescent Immunoassay for Sensitive Detection of Multiple Analytes. Analytical Chemistry, 2022, 94, 6628-6634.	3.2	25
61	Advances in 3D printed sensors for food analysis. TrAC - Trends in Analytical Chemistry, 2022, 154, 116672.	5.8	15
62	Development of Fluorescent Immunochromatographic Test Strip for Qualitative and Quantitative Detection of Zearalenone. Food Analytical Methods, 2022, 15, 2547-2557.	1.3	3
63	A novel self-aggregated gold nanoparticles based on sensitive immunochromatographic assays for highly detection of opium poppy in herbal teas. Food Chemistry, 2022, 390, 133188.	4.2	0
64	Mussel-inspired Fe-based Tannic acid Nanozyme: A renewable bioresource-derived high-affinity signal tag for dual-readout multiplex lateral flow immunoassay. Chemical Engineering Journal, 2022, 446, 137382.	6.6	29
65	Graphene oxide-based three-dimensional Au nanofilm with high-density and controllable hotspots: A powerful film-type SERS tag for immunochromatographic analysis of multiple mycotoxins in complex samples. Chemical Engineering Journal, 2022, 448, 137760.	6.6	28
66	Amines-mediated β-glucose pentaacetate to generate photoluminescent polymer-carbon nanodots for visual monitoring the freshness of shrimp. Talanta, 2022, 249, 123706.	2.9	6
67	A survey on parameter identification, state estimation and data analytics for lateral flow immunoassay: from systems science perspective. International Journal of Systems Science, 2022, 53, 3556-3576.	3.7	46
68	Comparison of lateral flow immunoassays based on oriented and nonoriented immobilization of antibodies for the detection of aflatoxin B1. Analytica Chimica Acta, 2022, 1221, 340135.	2.6	15
69	Rainbow latex microspheres lateral flow immunoassay with smartphone-based device for simultaneous detection of three mycotoxins in cereals. Analytica Chimica Acta, 2022, 1221, 340138.	2.6	15
70	Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 12488-12512.	5.4	12
71	Overview—gold nanoparticles-based sensitive nanosensors in mycotoxins detection. Critical Reviews in Food Science and Nutrition, 2023, 63, 11734-11749.	5.4	8
72	Visual Detection of Chicken Adulteration Based on a Lateral Flow Strip-PCR Strategy. Foods, 2022, 11, 2351.	1.9	7

#	Article	IF	CITATIONS
73	Identifying an emergent adulterant hydrochlorothiazide in food: A simple lateral flow strip with high sensitivity by time-resolved fluorescence. Food Control, 2023, 143, 109265.	2.8	8
74	A sensitive and quantitative immunochromatographic assay for simultaneous detection of three stimulant laxatives in slimming food. Food Chemistry, 2023, 398, 133861.	4.2	1
75	A customizable automated container-free multi-strip detection and line recognition system for colorimetric analysis with lateral flow immunoassay for lean meat powder based on machine vision and smartphone. Talanta, 2023, 253, 123925.	2.9	7
76	A monoclonal antibody-based time-resolved fluorescence microsphere lateral flow immunoassay for paclobutrazol detection. Current Research in Food Science, 2022, 5, 1395-1402.	2.7	4
77	Multiplexed lateral flow immunoassay based on inner filter effect for mycotoxin detection in maize. Sensors and Actuators B: Chemical, 2023, 374, 132793.	4.0	14
78	Facile Fabrication of Highly Quantum Dot/AuNP-Loaded Tags for a Dual-Modal Colorimetric/Reversed Ratiometric Fluorescence Immunochromatographic Assay. Analytical Chemistry, 2022, 94, 13463-13472.	3.2	10
79	Toward Next Generation Lateral Flow Assays: Integration of Nanomaterials. Chemical Reviews, 2022, 122, 14881-14910.	23.0	83
80	Highly sensitive and quantitative fluorescent strip immunosensor based on an independent control system for rapid detection of tetrodotoxin in shellfish. Food Control, 2022, , 109403.	2.8	1
81	Color-selective labyrinth-like quantum dot nanobeads enable point-of-care dual assay of Mycotoxins. Sensors and Actuators B: Chemical, 2023, 376, 132956.	4.0	7
82	The Simultaneous Determination of Chlorpyrifos–Ethyl and –Methyl with a New Format of Fluorescence-Based Immunochromatographic Assay. Biosensors, 2022, 12, 1006.	2.3	0
83	Merging microfluidics with luminescence immunoassays for urgent point-of-care diagnostics of COVID-19. TrAC - Trends in Analytical Chemistry, 2022, 157, 116814.	5.8	13
84	Best practices and current implementation of emerging smartphone-based (bio)sensors – Part 1: Data handling and ethics. TrAC - Trends in Analytical Chemistry, 2023, 158, 116863.	5.8	7
85	Fe3O4 @polydopamine-based microchannel resistance immunosensor for detecting deoxynivalenol in wheat samples. Sensors and Actuators B: Chemical, 2023, 378, 133151.	4.0	8
86	Recent advances in immunoassay-based mycotoxin analysis and toxicogenomic technologies. Journal of Food and Drug Analysis, 2022, 30, 549-561.	0.9	4
87	Chromatographic methods for rapid aflatoxin B1 analysis in food: a review. Critical Reviews in Food Science and Nutrition, 0, , 1-18.	5.4	4
88	Nanodiagnostic Tools for Mycotoxins Detection. , 2023, , 361-381.		0
89	Type B Trichothecenes in Cereal Grains and Their Products: Recent Advances on Occurrence, Toxicology, Analysis and Post-Harvest Decontamination Strategies. Toxins, 2023, 15, 85.	1.5	10
90	Dual-Modal Immunosensor Made with the Multifunction Nanobody for Fluorescent/Colorimetric Sensitive Detection of Aflatoxin B ₁ in Maize. ACS Applied Materials & Interfaces, 2023, 15, 2771-2780.	4.0	23

#	Article	IF	CITATIONS
91	The natural occurrence, toxicity mechanisms and management strategies of Fumonisin B1:A review. Environmental Pollution, 2023, 320, 121065.	3.7	10
92	An Ultrasensitive Lateral Flow Immunoassay Based on Metal-Organic Framework-Decorated Polydopamine for Multiple Sulfonylureas Adulteration in Functional Foods. Foods, 2023, 12, 539.	1.9	4
93	Recent advances in integrated dual-mode optical sensors for food safety detection. Trends in Food Science and Technology, 2023, 135, 14-31.	7.8	15
94	Smartphone-based chemiluminescence detection of aflatoxin B1 via labelled and label-free dual sensing systems. Food Chemistry, 2023, 413, 135654.	4.2	5
95	Two kinds of lateral flow immunoassays based on multifunctional magnetic prussian blue nanoenzyme and colloidal gold for the detection of 38 β-agonists in swine urine and pork. Food Chemistry, 2023, 417, 135897.	4.2	11
96	A fluorescence immunoassay based on GSH destroying MnO2@QDs for the simultaneous ultrasensitive detection of four mycotoxins in cereals. Food Chemistry, 2023, 420, 136099.	4.2	4
97	Pt/Ti3C2Tx nanozyme-amplified colorimetric lateral flow biosensor for dual-readout detection of HIV-DNA. Sensors and Actuators B: Chemical, 2023, 381, 133444.	4.0	5
98	Design of Pyrrole-Based Gate-Controlled Molecular Junctions Optimized for Single-Molecule Aflatoxin B1 Detection. Sensors, 2023, 23, 1687.	2.1	2
99	Recent progress of nanozymes with different spatial dimensions for bioanalysis. Materials Today Nano, 2023, 22, 100330.	2.3	7
107	New technologies and reagents in lateral flow assay (LFA) designs for enhancing accuracy and sensitivity. Analytical Methods, 2023, 15, 4351-4376.	1.3	2