Epitope-based vaccine design: a comprehensive overvie

Drug Discovery Today 25, 1034-1042 DOI: 10.1016/j.drudis.2020.03.006

Citation Report

#	Article	IF	CITATIONS
1	SARS-CoV-2 transcriptome analysis and molecular cataloguing of immunodominant epitopes for multi-epitope based vaccine design. Genomics, 2020, 112, 5044-5054.	1.3	8
2	The combination of artificial intelligence and systems biology for intelligent vaccine design. Expert Opinion on Drug Discovery, 2020, 15, 1267-1281.	2.5	26
3	Supramolecular Self-Assembled Peptide-Based Vaccines: Current State and Future Perspectives. Frontiers in Chemistry, 2020, 8, 598160.	1.8	40
4	Validation of a yellow fever vaccine model using data from primary vaccination in children and adults, re-vaccination and dose-response in adults and studies with immunocompromised individuals. BMC Bioinformatics, 2020, 21, 551.	1.2	4
5	An insight into the epitope-based peptide vaccine design strategy and studies against COVID-19. Turkish Journal of Biology, 2020, 44, 215-227.	2.1	24
6	Next-generation vaccines and the impacts of state-of-the-art in-silico technologies. Biologicals, 2021, 69, 83-85.	0.5	16
7	Advances in epitope mapping technologies for food protein allergens: A review. Trends in Food Science and Technology, 2021, 107, 226-239.	7.8	30
8	A peptide-based subunit candidate vaccine against SARS-CoV-2 delivered by biodegradable mesoporous silica nanoparticles induced high humoral and cellular immunity in mice. Biomaterials Science, 2021, 9, 7287-7296.	2.6	10
9	An Effective Analytics using Machine Learning Integrated Approaches for Diagnosis, Severity Estimation andPrediction of Heart Disease. IOP Conference Series: Materials Science and Engineering, 2021, 1074, 012006.	0.3	0
10	In-Silico Approach in the Development of <i>Salmonella</i> Epitope Vaccine. , 0, , .		0
11	A Multiepitope Peptide, rOmp22, Encapsulated in Chitosan-PLGA Nanoparticles as a Candidate Vaccine Against Acinetobacter baumannii Infection. International Journal of Nanomedicine, 2021, Volume 16, 1819-1836.	3.3	35
12	SeRenDIP-CE: sequence-based interface prediction for conformational epitopes. Bioinformatics, 2021, 37, 3421-3427.	1.8	18
13	Comparison of Immunological Profiles of SARS-CoV-2 Variants in the COVID-19 Pandemic Trends: An Immunoinformatics Approach. Antibiotics, 2021, 10, 535.	1.5	11
14	Immunogenomics guided design of immunomodulatory multi-epitope subunit vaccine against the SARS-CoV-2 new variants, and its validation through in silico cloning and immune simulation. Computers in Biology and Medicine, 2021, 133, 104420.	3.9	59
15	Vaccination with rEGVac elicits immunoprotection against different stages of Echinococcus granulosus life cycle: A pilot study. Acta Tropica, 2021, 218, 105883.	0.9	9
16	Immunoinformatics and molecular dynamics approaches: Next generation vaccine design against West Nile virus. PLoS ONE, 2021, 16, e0253393.	1.1	28
17	Immunoinformatic Analysis of Calcium-Dependent Protein Kinase 7 (CDPK7) Showed Potential Targets for Toxoplasma gondii Vaccine. Journal of Parasitology Research, 2021, 2021, 1-20.	0.5	3
18	Exploring peptide studies related to SARS-CoV to accelerate the development of novel therapeutic and prophylactic solutions against COVID-19. Journal of Infection and Public Health, 2021, 14, 1106-1119.	1.9	4

#	Article	IF	CITATIONS
19	Immunogenicity and antigenicity based T-cell and B-cell epitopes identification from conserved regions of 10664 SARS-CoV-2 genomes. Infection, Genetics and Evolution, 2021, 92, 104823.	1.0	6
20	Bursal peptide BP-IV as a novel immunoadjuvant enhances the protective efficacy of an epitope peptide vaccine containing T and B cell epitopes of the H9N2 avian influenza virus. Microbial Pathogenesis, 2021, 158, 105095.	1.3	5
22	Designing and development of epitope-based vaccines against <i>Helicobacter pylori</i> . Critical Reviews in Microbiology, 2022, 48, 489-512.	2.7	4
23	A novel multi-objective metaheuristic algorithm for protein-peptide docking and benchmarking on the LEADS-PEP dataset. Computers in Biology and Medicine, 2021, 138, 104896.	3.9	15
24	HantavirusesDB: Vaccinomics and RNA-based therapeutics database for the potentially emerging human respiratory pandemic agents. Microbial Pathogenesis, 2021, 160, 105161.	1.3	4
25	Insights into the biochemical features and immunogenic epitopes of common bradyzoite markers of the ubiquitous Toxoplasma gondii. Infection, Genetics and Evolution, 2021, 95, 105037.	1.0	8
26	Predicted structural mimicry of spike receptor-binding motifs from highly pathogenic human coronaviruses. Computational and Structural Biotechnology Journal, 2021, 19, 3938-3953.	1.9	25
27	Leishmanolysin gp63: Bioinformatics evidences of immunogenic epitopes in Leishmania major for enhanced vaccine design against zoonotic cutaneous leishmaniasis. Informatics in Medicine Unlocked, 2021, 24, 100626.	1.9	13
28	Uncertain Quantification of Immunological Memory to Yellow Fever Virus. , 2020, , .		1
29	A domain-based vaccine construct against SARS-CoV-2, the causative agent of COVID-19 pandemic: development of self-amplifying mRNA and peptide vaccines. BioImpacts, 2021, 11, 65-84.	0.7	39
30	Toxoplasma gondii Tyrosine-Rich Oocyst Wall Protein: A Closer Look through an In Silico Prism. BioMed Research International, 2021, 2021, 1-13.	0.9	4
31	MMV-db: vaccinomics and RNA-based therapeutics database for infectious hemorrhagic fever-causing mammarenaviruses. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	1.4	7
32	Leveraging immune memory against measles virus as an antitumor strategy in a preclinical model of aggressive squamous cell carcinoma. , 2021, 9, e002170.		3
33	Designing of cytotoxic T lymphocyte-based multi-epitope vaccine against SARS-CoV2: a reverse vaccinology approach. Journal of Biomolecular Structure and Dynamics, 2021, , 1-16.	2.0	1
37	Engineering a multi-epitope vaccine candidate against Leishmania infantum using comprehensive Immunoinformatics methods. Biologia (Poland), 2022, 77, 277-289.	0.8	4
38	Structure-guided design of multi-epitopes vaccine against variants of concern (VOCs) of SARS-CoV-2 and validation through In silico cloning and immune simulations. Computers in Biology and Medicine, 2022, 140, 105122.	3.9	4
39	Evaluation of the Whole Proteome of Achromobacter xylosoxidans to Identify Vaccine Targets for mRNA and Peptides-Based Vaccine Designing Against the Emerging Respiratory and Lung Cancer-Causing Bacteria. Frontiers in Medicine, 2021, 8, 825876.	1.2	7
40	The search for a Buruli Ulcer vaccine and the effectiveness of the Bacillus Calmette–Guérin vaccine. Acta Tropica, 2022, 228, 106323.	0.9	2

CITATION REPORT

#	Article	IF	CITATIONS
41	Identification of Cytotoxic T lymphocyte (CTL) Epitope and design of an immunogenic multi-epitope of Bovine Ephemeral Fever Virus (BEFV) Glycoprotein G for Vaccine Development. Research in Veterinary Science, 2022, 144, 18-26.	0.9	4
42	Review on Approved and Inprogress COVID-19 Vaccines. Iranian Journal of Pharmaceutical Research, 2022, 21, .	0.3	6
43	Vaccine development to control the rising scourge of antibiotic-resistant Acinetobacter baumannii: a systematic review. 3 Biotech, 2022, 12, 85.	1.1	16
44	Echinococcus granulosus cyclophilin: Immunoinformatics analysis to provide insights into the biochemical properties and immunogenic epitopes. Informatics in Medicine Unlocked, 2022, 30, 100925.	1.9	1
45	Whole Proteome-Based Therapeutic Targets Annotation and Designing of Multi-Epitope-Based Vaccines against the Gram-Negative XDR-Alcaligenes faecalis Bacterium. Vaccines, 2022, 10, 462.	2.1	12
46	Immune epitopes identification and designing of a multi-epitope vaccine against bovine leukemia virus: a molecular dynamics and immune simulation approaches. Cancer Immunology, Immunotherapy, 2022, 71, 2535-2548.	2.0	12
47	In silico designed Staphylococcus aureus B-cell multi-epitope vaccine did not elicit antibodies against target antigens suggesting multi-domain approach. Journal of Immunological Methods, 2022, 504, 113264.	0.6	1
48	TonB-dependent receptor epitopes expressed in M. bovis BCG induced significant protection in the hamster model of leptospirosis. Applied Microbiology and Biotechnology, 2022, 106, 173-184.	1.7	7
50	Prediction of Novel Drug Targets and Vaccine Candidates against Human Lice (Insecta), Acari (Arachnida), and Their Associated Pathogens. Vaccines, 2022, 10, 8.	2.1	8
51	Global Scientific Research on SARS-CoV-2 Vaccines: A Bibliometric Analysis. Cell Journal, 2021, 23, 523-531.	0.2	4
52	Design of a Multi-Epitope Vaccine against Tropheryma whipplei Using Immunoinformatics and Molecular Dynamics Simulation Techniques. Vaccines, 2022, 10, 691.	2.1	13
53	PLGA Nanospheres as Delivery Platforms for Eimeria mitis 1a Protein: A Novel Strategy to Improve Specific Immunity. Frontiers in Immunology, 2022, 13, .	2.2	2
54	Complexity of Viral Epitope Surfaces as Evasive Targets for Vaccines and Therapeutic Antibodies. Frontiers in Immunology, 0, 13, .	2.2	6
55	Mining of Marburg Virus Proteome for Designing an Epitope-Based Vaccine. Frontiers in Immunology, 0, 13, .	2.2	7
56	Vaccinomics strategy to design an epitope peptide vaccine against Helicobacter pylori. Process Biochemistry, 2022, 121, 380-395.	1.8	2
57	<i>In silico</i> based multi-epitope vaccine design against norovirus. Journal of Biomolecular Structure and Dynamics, 2023, 41, 5696-5706.	2.0	3
58	Immunoinformatic screening of Marburgvirus epitopes and computational investigations of epitope-allele complexes. International Immunopharmacology, 2022, 111, 109109.	1.7	1
59	Genome-Wide Subtraction Analysis and Reverse Vaccinology to Detect Novel Drug Targets and Potential Vaccine Candidates Against Ehrlichia chaffeensis. Applied Biochemistry and Biotechnology, 2023, 195, 107-124.	1.4	7

#	Article	IF	Citations
60	An Update of Bovine Hemoplasmas Based on Phylogenetic and Genomics Analysis. Microorganisms, 2022, 10, 1916.	1.6	1
61	Designing of Peptide Based Multi-Epitope Vaccine Construct against Gallbladder Cancer Using Immunoinformatics and Computational Approaches. Vaccines, 2022, 10, 1850.	2.1	0
62	Computational Clues of Immunogenic Hotspots in Plasmodium falciparum Erythrocytic Stage Vaccine Candidate Antigens: In Silico Approach. BioMed Research International, 2022, 2022, 1-21.	0.9	0
63	Immunoinformatics Approach to Design Multi-Epitope-Based Vaccine against Machupo Virus Taking Viral Nucleocapsid as a Potential Candidate. Vaccines, 2022, 10, 1732.	2.1	6
64	CD8+ T-cell immune escape by SARS-CoV-2 variants of concern. Frontiers in Immunology, 0, 13, .	2.2	8
65	Protein Informatics and Vaccine Development: Cancer Case Study. Current Topics in Medicinal Chemistry, 2022, 22, 2207-2220.	1.0	1
66	Potential of a novel flagellin epitope as a broad-spectrum vaccine candidate against enteric fever. Microbial Pathogenesis, 2023, 174, 105936.	1.3	2
67	Bioinformatics analysis of structural protein to approach a vaccine candidate against Vibrio cholerae infection. Immunogenetics, 2023, 75, 99-114.	1.2	4
68	Actin depolymerizing factor-based nanomaterials: A novel strategy to enhance E. mitis-specific immunity. Frontiers in Immunology, 0, 13, .	2.2	0
69	Role of Supramolecules in Vaccine Development. , 2022, , 301-317.		0
70	An in silico reverse vaccinology approach to design a novel multiepitope peptide vaccine for non-small cell lung cancers. Informatics in Medicine Unlocked, 2023, 37, 101169.	1.9	1
71	Targeted Protein-Specific Multi-Epitope-Based Vaccine Designing against Human Cytomegalovirus by Using Immunoinformatics Approaches. Vaccines, 2023, 11, 203.	2.1	3
72	Smart de novo Macromolecular Structure Modeling from Cryo-EM Maps. Journal of Molecular Biology, 2023, 435, 167967.	2.0	2
73	State of the art in epitope mapping and opportunities in COVID-19. Future Science OA, 2023, 9, .	0.9	4
74	Vaccine Omics: role of bioinformatics in vaccinology. , 2022, , 33-54.		0
75	Immunoinformatics Study: Multi-Epitope Based Vaccine Design from SARS-CoV-2 Spike Glycoprotein. Vaccines, 2023, 11, 399.	2.1	1
76	Integration of immunoinformatics and cheminformatics to design and evaluate a multitope vaccine against Klebsiella pneumoniae and Pseudomonas aeruginosa coinfection. Frontiers in Molecular Biosciences, 0, 10, .	1.6	1
77	A mannosylated polymer with endosomal release properties for peptide antigen delivery. Journal of Controlled Release, 2023, 356, 232-241.	4.8	6

CITATION REPORT

	Сіта	on Report	
#	Article	IF	CITATIONS
79	Immunoselective progression of a multi-epitope-based subunit vaccine candidate to convey protection against the parasite Onchocerca lupi. Informatics in Medicine Unlocked, 2023, 38, 101209.	1.9	1
80	Development and Evaluation of Recombinant B-Cell Multi-Epitopes of PDHA1 and GAPDH as Subunit Vaccines against Streptococcus iniae Infection in Flounder (Paralichthys olivaceus). Vaccines, 2023, 11, 624.	2.1	3
81	Self-assembled nanomaterials as vaccines for COVID-19 and future pandemics. , 2023, , 453-468.		0
82	Novel adjuvant nano-vaccine induced immune response against Acinetobacter baumannii. AMB Express, 2023, 13, .	1.4	8
83	In silico design of a novel peptide-based vaccine against the ubiquitous apicomplexan Toxoplasma gondii using surface antigens. In Silico Pharmacology, 2023, 11, .	1.8	0
84	Vaccine Development for Human Leishmaniasis. , 2023, , 307-326.		Ο
85	Identification of Bacterial Strains and Development of anmRNA-Based Vaccine to Combat Antibiotic Resistance in Staphylococcus aureus via In Vitro and In Silico Approaches. Biomedicines, 2023, 11, 1039	. 1.4	2
86	Artificial intelligence in vaccine development: Significance and challenges ahead. , 2023, , 467-486.		Ο
87	An <i>in silico</i> approach for prediction of B cell and T cell epitope candidates against Chikungunya virus. Immunological Medicine, 2023, 46, 163-174.	1.4	0
92	Applications in the Field of Bioinformatics. , 2023, , 175-188.		1