Metal–Organic Framework-Based Catalysts with Sing

Chemical Reviews 120, 12089-12174 DOI: 10.1021/acs.chemrev.9b00757

Citation Report

#	Article	IF	CITATIONS
1	Single-Atom Catalysts across the Periodic Table. Chemical Reviews, 2020, 120, 11703-11809.	23.0	690
2	Transforming Hydroxide-Containing Metal–Organic Framework Nodes for Transition Metal Catalysis. Trends in Chemistry, 2020, 2, 965-979.	4.4	14
3	Multiple catalytic sites in MOF-based hybrid catalysts for organic reactions. Organic and Biomolecular Chemistry, 2020, 18, 8508-8525.	1.5	11
4	Structure-dependent iron-based metal–organic frameworks for selective CO ₂ -to-CH ₄ photocatalytic reduction. Journal of Materials Chemistry A, 2020, 8, 25850-25856.	5.2	64
5	Enhanced Catalytic Performance of a Membrane Microreactor by Immobilizing ZIF-8-Derived Nano-Ag via Ion Exchange. Industrial & Engineering Chemistry Research, 2020, 59, 19553-19563.	1.8	19
6	Node-Accessible Zirconium MOFs. Journal of the American Chemical Society, 2020, 142, 21110-21121.	6.6	103
7	General synthesis of single atom electrocatalysts <i>via</i> a facile condensation–carbonization process. Journal of Materials Chemistry A, 2020, 8, 25959-25969.	5.2	14
8	Structure and Reactivity of Single-Site Vanadium Catalysts Supported on Metal–Organic Frameworks. ACS Catalysis, 2020, 10, 10051-10059.	5.5	14
9	Mechanistic Insight into the Catalytic NO Oxidation by the MIL-100 MOF Platform: Toward the Prediction of More Efficient Catalysts. ACS Catalysis, 2020, 10, 9445-9450.	5.5	22
10	Design of Organic/Inorganic Hybrid Catalysts for Energy and Environmental Applications. ACS Central Science, 2020, 6, 1916-1937.	5.3	38
11	Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chemical Reviews, 2020, 120, 11986-12043.	23.0	486
12	Influence of Thermal and Mechanical Stimuli on the Behavior of Al-CAU-13 Metal–Organic Framework. Nanomaterials, 2020, 10, 1698.	1.9	3
13	Robust Anionic Ln ^{III} –Organic Frameworks: Chemical Fixation of CO ₂ , Tunable Light Emission, and Fluorescence Recognition of Fe ³⁺ . Inorganic Chemistry, 2020, 59, 13407-13415.	1.9	25
14	Metal–organic frameworks as acid- and/or base-functionalized catalysts for tandem reactions. Dalton Transactions, 2020, 49, 14723-14730.	1.6	31
15	Synthesis and characterization of MOFs constructed from 5-(benzimidazole-1-yl)isophthalic acid and highly selective fluorescence detection of Fe(iii) and Cr(vi) in water. RSC Advances, 2020, 10, 34943-34952.	1.7	2
16	Acid Catalysis in Confined Channels of Metal–Organic Frameworks: Boosting Orthoformate Hydrolysis in Basic Solutions. Journal of the American Chemical Society, 2020, 142, 14848-14853.	6.6	31
17	Adsorptive removal of hazardous organics from water and fuel with functionalized metal-organic frameworks: Contribution of functional groups. Journal of Hazardous Materials, 2021, 403, 123655.	6.5	109
18	Synthesis, structure and fluorescent sensing for nitrobenzene of a Zn-based MOF. Journal of Molecular Structure, 2021, 1223, 129217.	1.8	26

TATION REDO

#	Article	IF	CITATIONS
19	Covalent organic framework-based materials for energy applications. Energy and Environmental Science, 2021, 14, 688-728.	15.6	209
20	Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol. Journal of Materials Chemistry A, 2021, 9, 1110-1118.	5.2	102
21	Which is Better for Nanomedicines: Nanocatalysts or Singleâ€Atom Catalysts?. Advanced Healthcare Materials, 2021, 10, e2001897.	3.9	13
22	Anion-Dependent Catalytic C–C Bond Cleavage of a Lignin Model within a Cationic Metal–Organic Framework. ACS Applied Materials & Interfaces, 2021, 13, 688-695.	4.0	9
23	Chemistry and applications of s-block metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 3828-3854.	5.2	31
24	Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable <scp>zincâ€air</scp> batteries. EcoMat, 2021, 3, e12067.	6.8	48
25	Porous crystalline frameworks for thermocatalytic CO ₂ reduction: an emerging paradigm. Energy and Environmental Science, 2021, 14, 320-352.	15.6	61
26	Visible light initiated oxidative coupling of alcohols and <i>o</i> -phenylenediamines to synthesize benzimidazoles over MIL-101(Fe) promoted by plasmonic Au. Green Chemistry, 2021, 23, 4161-4169.	4.6	33
27	Polyoxometalate-based metal–organic frameworks for heterogeneous catalysis. Inorganic Chemistry Frontiers, 2021, 8, 1865-1899.	3.0	90
28	Iron-based single-atom electrocatalysts: synthetic strategies and applications. RSC Advances, 2021, 11, 3079-3095.	1.7	27
29	Multiâ€Scale Design of Metal–Organic Frameworkâ€Derived Materials for Energy Electrocatalysis. Advanced Energy Materials, 2022, 12, 2003410.	10.2	81
30	Single-atom catalysis in advanced oxidation processes for environmental remediation. Chemical Society Reviews, 2021, 50, 5281-5322.	18.7	502
31	Pyrolysis-free polymer-based oxygen electrocatalysts. Energy and Environmental Science, 2021, 14, 2789-2808.	15.6	55
32	Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Synthesis and Microstructure Impacts. ACS ES&T Engineering, 2021, 1, 623-661.	3.7	61
33	Spontaneous Deracemizations. Chemical Reviews, 2021, 121, 2147-2229.	23.0	111
34	Metal–organic framework based catalytic nanoreactors: synthetic challenges and applications. Materials Chemistry Frontiers, 2021, 5, 3986-4021.	3.2	14
35	pH response of a hydroxyl-functionalized luminescent metal–organic framework based phosphor. New Journal of Chemistry, 2021, 45, 9394-9402.	1.4	7
36	Metal–organic architectures designed from a triphenyl-pentacarboxylate linker: hydrothermal assembly, structural multiplicity, and catalytic Knoevenagel condensation. Inorganic Chemistry Frontiers, 2021, 8, 4209-4221.	3.0	11

#	Article	IF	CITATIONS
37	The multifunctional design of metal–organic framework by applying linker desymmetrization strategy: synergistic catalysis for high CO ₂ -epoxide conversion. Inorganic Chemistry Frontiers, 2021, 8, 4990-4997.	3.0	12
38	Theoretical evaluation of the performance of IRMOFs and M-MOF-74 in the formation of 5-fluorouracil@MOF. RSC Advances, 2021, 11, 31090-31097.	1.7	11
39	Metal–organic framework (MOF)-derived catalysts for chemoselective hydrogenation of nitroarenes. New Journal of Chemistry, 2021, 45, 18268-18276.	1.4	18
40	Recent progress in the design and synthesis of zeolite-like metal–organic frameworks (ZMOFs). Dalton Transactions, 2021, 50, 3450-3458.	1.6	8
41	Rational Construction of an Artificial Binuclear Copper Monooxygenase in a Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 1107-1118.	6.6	70
42	<pre><scp>CO₂</scp>/<scp>N₂</scp> and <scp>O₂</scp>/<scp>N₂</scp> Separation Using <scp>Mixedâ€Matrix</scp> Membranes with <scp>MOF</scp>â€74 Nanocrystals Synthesized Via Microwave Reactions. Bulletin of the Korean Chemical Society. 2021, 42, 459-462.</pre>	1.0	25
43	Scalable and hierarchically designed MOF fabrics by netting MOFs into nanofiber networks for high-performance solar-driven water purification. Journal of Materials Chemistry A, 2021, 9, 21005-21012.	5.2	15
44	Soluble porous carbon cage-encapsulated highly active metal nanoparticle catalysts. Journal of Materials Chemistry A, 2021, 9, 13670-13677.	5.2	13
45	Active metal single-sites based on metal–organic frameworks: construction and chemical prospects. New Journal of Chemistry, 2021, 45, 1137-1162.	1.4	8
46	Two-dimensional stable and ultrathin cluster-based metal–organic layers for efficient electrocatalytic water oxidation. CrystEngComm, 2021, 23, 4700-4707.	1.3	4
47	Theoretical Research on Catalytic Performance of TMNxCy Catalyst for Nitrogen Reduction in Actual Water Solvent. Acta Chimica Sinica, 2021, 79, 1138.	0.5	1
48	Advances in cellulose-metal organic framework composites: preparation and applications. Journal of Materials Chemistry A, 2021, 9, 23353-23363.	5.2	49
49	2D metal–organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications. Nanoscale, 2021, 13, 3911-3936.	2.8	176
50	Boosted Catalytic Hydrogenation Performance Using Isolated Co Sites Anchored on Nitrogen-Incorporated Hollow Porous Carbon. Journal of Physical Chemistry C, 2021, 125, 5088-5098.	1.5	18
51	Rational Fabrication of Low oordinate Singleâ€Atom Ni Electrocatalysts by MOFs for Highly Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 7607-7611.	7.2	368
52	Rational Fabrication of Lowâ€Coordinate Singleâ€Atom Ni Electrocatalysts by MOFs for Highly Selective CO ₂ Reduction. Angewandte Chemie, 2021, 133, 7685-7689.	1.6	39
53	Singleâ€Atom Catalysts Derived from Metal–Organic Frameworks for Electrochemical Applications. Small, 2021, 17, e2004809.	5.2	139
54	Bifunctional Metal–Organic Layer with Organic Dyes and Iron Centers for Synergistic Photoredox Catalysis. Journal of the American Chemical Society, 2021, 143, 3075-3080.	6.6	60

#	Article	IF	CITATIONS
55	Selective Implantation of Diamines for Cooperative Catalysis in Isoreticular Heterometallic Titanium–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 11868-11873.	7.2	20
56	Macrocycles in Bioinspired Catalysis: From Molecules to Materials. Frontiers in Chemistry, 2021, 9, 635315.	1.8	8
57	Insights into the Structure–Activity Relationship in Aerobic Alcohol Oxidation over a Metal–Organic-Framework-Supported Molybdenum(VI) Catalyst. Journal of the American Chemical Society, 2021, 143, 4302-4310.	6.6	48
58	Atomically Dispersed Copper on Nâ€Doped Carbon Nanosheets for Electrocatalytic Synthesis of Carbamates from CO ₂ as a C ₁ Source. ChemSusChem, 2021, 14, 2050-2055.	3.6	11
59	Selective Implantation of Diamines for Cooperative Catalysis in Isoreticular Heterometallic Titanium–Organic Frameworks. Angewandte Chemie, 2021, 133, 11975-11980.	1.6	1
60	Atomically Dispersed Vanadium Sites Anchored on N-Doped Porous Carbon for the Efficient Oxidative Coupling of Amines to Imines. ACS Applied Materials & Interfaces, 2021, 13, 15168-15177.	4.0	25
61	Bimetallic NiCu Alloy Catalysts for Hydrogenation of Levulinic Acid. ACS Applied Nano Materials, 2021, 4, 3989-3997.	2.4	35
62	Au-Containing Coordination Polymers Based on Polyphosphorus Ligand Complexes. Inorganic Chemistry, 2021, 60, 6027-6039.	1.9	7
63	Micro/Nanoâ€Scaled Metalâ€Organic Frameworks and Their Derivatives for Energy Applications. Advanced Energy Materials, 2022, 12, 2003970.	10.2	64
64	A review of synthesis strategies for MOF-derived single atom catalysts. Korean Journal of Chemical Engineering, 2021, 38, 1104-1116.	1.2	22
65	In Situ Growth of ZIF-8 Nanocrystals on the Pore Walls of 3D Ordered Macroporous TiO2 for a One-Pot Cascade Reaction. Catalysts, 2021, 11, 533.	1.6	6
66	MXenes as Superexcellent Support for Confining Single Atom: Properties, Synthesis, and Electrocatalytic Applications. Small, 2021, 17, e2007113.	5.2	52
67	Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society, 2021, 143, 7104-7113.	6.6	198
68	Dimensional Reduction of Lewis Acidic Metal–Organic Frameworks for Multicomponent Reactions. Journal of the American Chemical Society, 2021, 143, 8184-8192.	6.6	59
69	Two Co(II)-Based MOFs Constructed from Resorcin[4]Arene Ligand: Syntheses, Structures, and Heterogeneous Catalyst for Conversion of CO2. Crystals, 2021, 11, 574.	1.0	2
70	Arsenic(III)-Capped 12-Tungsto-2-Arsenates(III) [M ₂ (As ^{III} W ₆ O ₂₅) ₂ (As ^{III} OH) <sub (M = Cr^{III}, Fe^{III}, Sc^{III}, In^{III}, Ti^{IV},) Tj ETQq1 1 0.78</sub 	> <j>x< 34314 rgB</j>	:/syb>] <sup T/Overlock</sup
71	Role of Zr ₆ Metal Nodes in Zr-Based Metal–Organic Frameworks for Catalytic Detoxification of Pesticides. Inorganic Chemistry, 2021, 60, 10249-10256.	1.9	8
72	Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts. EnergyChem, 2021, 3, 100056.	10.1	51

#	Article	IF	CITATIONS
73	Supported Single Atom Catalysts for Câ^'H Activation: Selective Câ^'H Oxidations, Dehydrogenations and Oxidative Câ^'H/Câ^'H Couplings. ChemCatChem, 2021, 13, 2751-2765.	1.8	15
74	Metal organic framework-derived Ni-Cu bimetallic electrocatalyst for efficient oxygen evolution reaction. Journal of King Saud University - Science, 2021, 33, 101379.	1.6	19
75	Metal substitution in the metalloporphyrin linker of metalâ^'organic framework PCN-601 for photocatalytic CO ₂ reduction. JPhys Energy, 2021, 3, 034016.	2.3	5
76	Novel lignin-based single atom catalysts as peroxymonosulfate activator for pollutants degradation: Role of single cobalt and electron transfer pathway. Applied Catalysis B: Environmental, 2021, 286, 119910.	10.8	209
77	Ionic Liquid-Stabilized Single-Atom Rh Catalyst Against Leaching. CCS Chemistry, 2021, 3, 1814-1822.	4.6	30
78	Mechanically Constrained Catalytic Mn(CO) ₃ Br Single Sites in a Two-Dimensional Covalent Organic Framework for CO ₂ Electroreduction in H ₂ O. ACS Catalysis, 2021, 11, 7210-7222.	5.5	43
79	Asymmetric catalysis using metal-organic frameworks. Coordination Chemistry Reviews, 2021, 437, 213845.	9.5	80
80	A Practice of Reticular Chemistry: Construction of a Robust Mesoporous Palladium Metal–Organic Framework via Metal Metathesis. Journal of the American Chemical Society, 2021, 143, 9901-9911.	6.6	60
81	Synthesis of a Boron–Imidazolate Framework Nanosheet with Dimer Copper Units for CO ₂ Electroreduction to Ethylene. Angewandte Chemie - International Edition, 2021, 60, 16687-16692.	7.2	99
82	Synthesis of a Boron–Imidazolate Framework Nanosheet with Dimer Copper Units for CO 2 Electroreduction to Ethylene. Angewandte Chemie, 2021, 133, 16823-16828.	1.6	10
83	High Enhancement in Proton Conductivity by Incorporating Sulfonic Acids into a Zirconium-Based Metal–Organic Framework via "Click―Reaction. Inorganic Chemistry, 2021, 60, 10089-10094.	1.9	17
84	CoMo carbide/nitride from bimetallic MOF precursors for enhanced OER performance. International Journal of Hydrogen Energy, 2021, 46, 22268-22276.	3.8	78
85	Using Postsynthetic X-Type Ligand Exchange to Enhance CO ₂ Adsorption in Metal–Organic Frameworks with Kuratowski-Type Building Units. Inorganic Chemistry, 2021, 60, 11784-11794.	1.9	11
86	Engineering the atomic interface of porous ceria nanorod with single palladium atoms for hydrodehalogenation reaction. Nano Research, 2022, 15, 1338-1346.	5.8	15
87	Metal/metal-organic framework interfacial ensemble-induced dual site catalysis towards hydrogen generation. Applied Catalysis B: Environmental, 2021, 286, 119946.	10.8	39
88	Single-Atom Catalysts Designed and Prepared by the Atomic Layer Deposition Technique. ACS Catalysis, 2021, 11, 7018-7059.	5.5	106
89	The ligand effect resulted in different fluorescence responses of two similar zinc-based MOFs to high-valence metal ions and amino acids. Microporous and Mesoporous Materials, 2021, 321, 111130.	2.2	17
90	Bifunctional carbon-based cathode catalysts for zinc-air battery: A review. Chinese Chemical Letters, 2022, 33, 683-692.	4.8	45

# 91	ARTICLE One-Step Synthesis of Ultrathin Carbon Nanoribbons from Metal–Organic Framework Nanorods for Oxygen Reduction and Zinc–Air Batteries. CCS Chemistry, 2022, 4, 194-204.	IF 4.6	CITATIONS
92	Integration of metal-organic frameworks and covalent organic frameworks: Design, synthesis, and applications. Matter, 2021, 4, 2230-2265.	5.0	158
93	Pd Nanoparticles Embedded Into MOF-808: Synthesis, Structural Characteristics, and Catalyst Properties for the Suzuki–Miyaura Coupling Reaction. Catalysis Letters, 2022, 152, 1545-1554.	1.4	11
94	MOF-based multi-stimuli-responsive supramolecular nanoplatform equipped with macrocycle nanovalves for plant growth regulation. Acta Biomaterialia, 2021, 134, 664-673.	4.1	23
95	Atomically Dispersed Copper Sites in a Metal–Organic Framework for Reduction of Nitrogen Dioxide. Journal of the American Chemical Society, 2021, 143, 10977-10985.	6.6	66
96	Effect of Surfactants on the Corrosion and Wear Performance of Zinc-Epoxy Powder Composite Coatings. International Journal of Electrochemical Science, 0, , ArticleID:210753.	0.5	2
97	Dirhodium-Based Supramolecular Framework Catalyst for Visible-Light-Driven Hydrogen Evolution. Inorganic Chemistry, 2021, 60, 12634-12643.	1.9	5
98	Metal-bipyridine/phenanthroline-functionalized porous crystalline materials: Synthesis and catalysis. Coordination Chemistry Reviews, 2021, 438, 213907.	9.5	21
99	18.1% single palladium atom catalysts on mesoporous covalent organic framework for gas phase hydrogenation of ethylene. Cell Reports Physical Science, 2021, 2, 100495.	2.8	19
100	Strategic Defect Engineering of Metal–Organic Frameworks for Optimizing the Fabrication of Singleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2103597.	7.8	68
101	Peptide-Based Biosensor with a Luminescent Copper-Based Metal–Organic Framework as an Electrochemiluminescence Emitter for Trypsin Assay. Analytical Chemistry, 2021, 93, 9704-9710.	3.2	27
102	Heterogenized Phosphinic Acid on UiO-66-NH2: A Bifunctional Catalyst for the Synthesis of Polyhydroquinolines. Catalysis Letters, 2022, 152, 1517-1529.	1.4	7
103	Octahedral to Tetrahedral Conversion upon a Ligand-Substitution-Induced Single-Crystal to Single-Crystal Transformation in a Rectangular Zn(II) Metal–Organic Framework and Its Photocatalysis. Crystal Growth and Design, 2021, 21, 5373-5382.	1.4	7
104	Atomically dispersed Fe atoms anchored on S and N–codoped carbon for efficient electrochemical denitrification. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	49
105	Art of Architecture: Efficient Transport through Solvent-Filled Metal–Organic Frameworks Regulated by Topology. Chemistry of Materials, 2021, 33, 6832-6840.	3.2	12
106	<scp>Fe₂Mn</scp> (<scp><i>ι/4</i>₃â€O</scp>)(<scp>COO</scp>) ₆ Cluster Based Stable <scp>MOF</scp> for Oxidative Coupling of Amines via Heterometallic Synergy. Chinese Journal of Chemistry, 2021, 39, 2983-2989.	2.6	9
107	Advances and Prospects in Metal–Organic Frameworks as Key Nexus for Chemocatalytic Hydrogen Production. Small, 2021, 17, e2102201.	5.2	12
108	Metal–organic frameworks containing uncoordinated nitrogen: Preparation, modification, and application in adsorption. Materials Today, 2021, 51, 566-585.	8.3	50

#	Article	IF	CITATIONS
109	Amino-functionalized zirconium and cerium MOFs: Catalysts for visible light induced aerobic oxidation of benzylic alcohols and microwaves assisted N-Alkylation of amines. Applied Catalysis A: General, 2021, 623, 118287.	2.2	17
110	Coordination Polymers Driven by Carboxy Functionalized Picolinate Linkers: Hydrothermal Assembly, Structural Multiplicity, and Catalytic Features. Crystal Growth and Design, 2021, 21, 5145-5157.	1.4	10
111	Boosting the activation of molecular oxygen and the degradation of tetracycline over high loading Ag single atomic catalyst. Water Research, 2021, 201, 117314.	5.3	99
112	Metal Catalysis with Knitting Aryl Polymers: Design, Catalytic Applications, and Future Trends. Chemistry of Materials, 2021, 33, 6616-6639.	3.2	25
113	Electrospun graphene oxide/MIL-101(Fe)/poly(acrylonitrile-co-maleic acid) nanofiber: A high-efficient and reusable integrated photocatalytic adsorbents for removal of dye pollutant from water samples. Journal of Colloid and Interface Science, 2021, 597, 196-205.	5.0	42
114	Facile, Low ost and Flexible Ammonia Sensor Arrays Based on Metallic Ion Charge Carriers and Polymer Matrices. Advanced Materials Technologies, 0, , 2100789.	3.0	1
115	Mutual-activation between Zero-Valent iron and graphitic carbon for Cr(VI) Removal: Mechanism and inhibition of inherent Side-reaction. Journal of Colloid and Interface Science, 2022, 608, 588-598.	5.0	15
116	Single-atom engineering of metal-organic frameworks toward healthcare. CheM, 2021, 7, 2635-2671.	5.8	55
117	Pyrimidineâ€Functionalized Covalent Organic Framework and its Cobalt Complex as an Efficient Electrocatalyst for Oxygen Evolution Reaction. ChemSusChem, 2021, 14, 4556-4562.	3.6	26
118	Anchoring Sites Engineering in Singleâ€Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. Advanced Materials, 2021, 33, e2102801.	11.1	64
119	Selective hydroboration of alkynes via multisite synergistic catalysis by PCN-222(Cu). Journal of Catalysis, 2021, 401, 63-69.	3.1	15
120	Rare Fluorescence Red-Shifted Metal–Organic Framework Sensor for Methylamine Derived from an N-Donor Ligand. Crystal Growth and Design, 2021, 21, 5765-5772.	1.4	18
121	Inhibition by Water during Heterogeneous BrÃ,nsted Acid Catalysis by Three-Dimensional Crystalline Organic Salts. Crystal Growth and Design, 2021, 21, 6364-6372.	1.4	3
122	Binder-Free Flexible Three-Dimensional Porous Electrodes by Combining Microstructures and Catalysis to Enhance the Performance of Lithium-Oxygen Batteries. Industrial & Engineering Chemistry Research, 2021, 60, 14113-14123.	1.8	2
123	Targeted degradation of refractory organic compounds in wastewaters based on molecular imprinting catalysts. Water Research, 2021, 203, 117541.	5.3	36
124	Glucose Detection Devices and Methods Based on Metal–Organic Frameworks and Related Materials. Advanced Functional Materials, 2021, 31, 2106023.	7.8	78
125	Two-dimensional materials for electrochromic applications. EnergyChem, 2021, 3, 100060.	10.1	21
126	Well-dispersed iron and nitrogen co-doped hollow carbon microsphere anchoring by g-C3N4 for efficient peroxymonosulfate activation. Chemosphere, 2021, 280, 130911	4.2	40

#	Article	IF	CITATIONS
127	Zeolotic imidazolate frameworks (ZIFs) derived porous carbon: A review from crystal growth & green synthesis to oxygen reduction reaction activity. International Journal of Hydrogen Energy, 2021, 46, 33782-33800.	3.8	40
128	Single sites in heterogeneous catalysts: separating myth from reality. Trends in Chemistry, 2021, 3, 850-862.	4.4	23
129	Covalent organic framework-supported Zn single atom catalyst for highly efficient N-formylation of amines with CO2 under mild conditions. Applied Catalysis B: Environmental, 2021, 294, 120238.	10.8	43
130	Direct electrochemistry of silver nanoparticles-decorated metal-organic frameworks for telomerase activity sensing via allosteric activation of an aptamer hairpin. Analytica Chimica Acta, 2021, 1184, 339036.	2.6	11
131	Influence of different solvents on structures and electronic properties of new Fe2S2 complexes containing bis(2-diphenylphosphinophenyl)ether. Journal of Molecular Structure, 2021, 1243, 130848.	1.8	5
132	Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review. Coordination Chemistry Reviews, 2021, 446, 214115.	9.5	123
133	Toxicity assessment and underlying mechanisms of multiple metal organic frameworks using the green algae Chlamydomonas reinhardtii model. Environmental Pollution, 2021, 291, 118199.	3.7	20
134	Gold nanodot assembly within a cobalt chalcogenide nanoshell: Promotion of electrocatalytic activity. Journal of Colloid and Interface Science, 2022, 605, 274-285.	5.0	5
135	Advanced electrocatalysts with Dual-metal doped carbon Materials: Achievements and challenges. Chemical Engineering Journal, 2022, 428, 132558.	6.6	28
136	Micro/macrostructure and multicomponent design of catalysts by MOF-derived strategy: Opportunities for the application of nanomaterials-based advanced oxidation processes in wastewater treatment. Science of the Total Environment, 2022, 804, 150096.	3.9	47
137	Hollow sea-urchin-shaped carbon-anchored single-atom iron as dual-functional electro-Fenton catalysts for degrading refractory thiamphenicol with fast reaction kinetics in a wide pH range. Chemical Engineering Journal, 2022, 427, 130996.	6.6	44
138	Porphyrin-based Ti-MOFs conferred with single-atom Pt for enhanced photocatalytic hydrogen evolution and NO removal. Chemical Engineering Journal, 2022, 428, 132045.	6.6	42
139	Thickness-controllable synthesis of MOF-derived Ni@N-doped carbon hexagonal nanoflakes with dielectric-magnetic synergy toward wideband electromagnetic wave absorption. Chemical Engineering Journal, 2022, 427, 130940.	6.6	108
140	An uncoordinated tertiary nitrogen based tricarboxylate calcium network with Lewis acid–base dual catalytic sites for cyanosilylation of aldehydes. Dalton Transactions, 2021, 50, 1740-1745.	1.6	8
141	Metal–organic frameworks as catalytic selectivity regulators for organic transformations. Chemical Society Reviews, 2021, 50, 5366-5396.	18.7	130
142	Immobilization of Rh(<scp>i</scp>) precursor in a porphyrin metal–organic framework – turning on the catalytic activity. Dalton Transactions, 2021, 50, 9051-9058.	1.6	7
143	Extending photocatalysis to the visible and NIR: the molecular strategy. Nanoscale, 2021, 13, 9147-9159.	2.8	26
144	Refine the crystallinity of upconversion nanoparticles for NIR-enhanced photocatalysis. CrystEngComm, 2021, 23, 6117-6127.	1.3	16

#	Article	IF	CITATIONS
145	Atomic regulation of metal–organic framework derived carbon-based single-atom catalysts for the electrochemical CO ₂ reduction reaction. Journal of Materials Chemistry A, 2021, 9, 23382-23418.	5.2	46
146	Fe–N ₄ and Co–N ₄ dual sites for boosting oxygen electroreduction in Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 13678-13687.	5.2	72
147	Prussian Blue Analogs and Their Derived Nanomaterials for Electrochemical Energy Storage and Electrocatalysis. Small Methods, 2021, 5, e2001000.	4.6	81
148	Aliphatic amine mediated assembly of [M6(mna)6] (M = Cu/Ag) into extended two-dimensional structures: synthesis, structure and Lewis acid catalytic studies. New Journal of Chemistry, 2021, 45, 6503-6511.	1.4	2
149	Zero-valent metals in metal–organic frameworks: <i>fac</i> -M(CO) ₃ (pyrazine) _{3/2} . Chemical Communications, 2021, 57, 3861-3864.	2.2	12
150	Carbon support tuned electrocatalytic activity of a single-site metal–organic framework toward the oxygen reduction reaction. Chemical Science, 2021, 12, 7908-7917.	3.7	26
151	Supramolecular catalysis: the role of H-bonding interactions in substrate orientation and activation. Dalton Transactions, 2021, 50, 14951-14966.	1.6	7
152	Progress in batch preparation of single-atom catalysts and application in sustainable synthesis of fine chemicals. Green Chemistry, 2021, 23, 8754-8794.	4.6	39
153	Boosting Oxygen Electroreduction over Strained Silver. ACS Applied Materials & Interfaces, 2020, 12, 57134-57140.	4.0	3
154	Single Metal Site and Versatile Transfer Channel Merged into Covalent Organic Frameworks Facilitate High-Performance Li-CO ₂ Batteries. ACS Central Science, 2021, 7, 175-182.	5.3	69
155	Facile synthesis of novel NH ₂ -MIL-53(Fe)/AgSCN heterojunction composites as a highly efficient photocatalyst for ciprofloxacin degradation and H ₂ production under visible-light irradiation. Reaction Chemistry and Engineering, 2021, 7, 84-100.	1.9	7
156	Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chemical Reviews, 2021, 121, 13620-13697.	23.0	136
157	Synthesis, crystal structure and magnetic properties of a one-dimensional Mn ²⁺ complex constructed from (+)-dibenzoyltartaric acid and 2,2′-bipyridine. Acta Crystallographica Section C, Structural Chemistry, 2021, 77, 707-712.	0.2	0
158	Highâ€Performance Capacitive Deionization and Killing Microorganism in Surfaceâ€Water by ZIFâ€9 Derived Carbon Composites. Small Methods, 2021, 5, e2101070.	4.6	36
159	Relation Between Coordination and Lewisâ€Acid Property of MOFâ€Derived Mononuclear Zn(II) Catalyst Toward Epoxide Hydroxylation. ChemCatChem, 2021, 13, 5236-5242.	1.8	6
160	Material Evolution with Nanotechnology, Nanoarchitectonics, and Materials Informatics: What will be the Next Paradigm Shift in Nanoporous Materials?. Advanced Materials, 2022, 34, e2107212.	11.1	81
161	Heterogenizing a Homogeneous Nickel Catalyst Using Nanoconfined Strategy for Selective Synthesis of Mono- and 1,2-Disubstituted Benzimidazoles. Inorganic Chemistry, 2021, 60, 16042-16047.	1.9	5
162	Recent advances and perspectives of metal/covalent-organic frameworks in metal-air batteries. Journal of Energy Chemistry, 2021, 63, 113-129.	7.1	25

#	Article	IF	CITATIONS
163	Layer or Tube? Uncovering Key Factors Determining the Rolling-up of Layered Coordination Polymers. Journal of the American Chemical Society, 2021, 143, 17587-17598.	6.6	10
164	Fe ₃ O ₄ Nanorods Coated with ZIF-8 and Decorated with Pt Nanoparticles as Magnetically Actuated Nanoscale Stirring Bars for Catalytic Dye Degradation, H ₂ Production, and Hydrogenation of Olefins. ACS Applied Nano Materials, 2021, 4, 10999-11006.	2.4	13
165	A Review of Heteroatom Doped Materials for Advanced Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, 2107166.	7.8	113
166	Design and synthesis of noble metal–based electrocatalysts using metal–organic frameworks and derivatives. Materials Today Nano, 2022, 17, 100144.	2.3	17
167	Supramolecular Strategies for the Recycling of Homogeneous Catalysts. Chemistry - an Asian Journal, 2021, 16, 3851-3863.	1.7	16
168	Design of MOFs with Absolute Structures: A Case Study. Israel Journal of Chemistry, 0, , .	1.0	5
169	Maximizing Electroactive Sites in a Threeâ€Dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	83
170	6, 13-pentacenequinone/zinc oxide nanocomposites for organic dye degradation. Materials Today: Proceedings, 2022, 52, 17-20.	0.9	2
171	Tuning metal catalysts via nitrogen-doped nanocarbons for energy chemistry: From metal nanoparticles to single metal sites. EnergyChem, 2021, 3, 100066.	10.1	31
172	Stateâ€ofâ€theâ€Art Advancements in Photocatalytic Hydrogenation: Reaction Mechanism and Recent Progress in Metalâ€Organic Framework (MOF)â€Based Catalysts. Advanced Science, 2022, 9, e2103361.	5.6	47
173	MILâ€96â€Al for Li–S Batteries: Shape or Size?. Advanced Materials, 2022, 34, e2107836.	11.1	205
174	Persistence and Recovery of ZIF-8 and ZIF-67 Phytotoxicity. Environmental Science & Technology, 2021, 55, 15301-15312.	4.6	46
175	Anchoring metal ions in amine-functionalized boron imidazolate framework for photocatalytic reduction of CO2. Chinese Chemical Letters, 2022, 33, 2915-2918.	4.8	6
176	Maximizing Electroactive Sites in a Threeâ€dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie, 0, , .	1.6	30
177	A Tandem Electrocatalysis of Sulfur Reduction by Bimetal 2D MOFs. Advanced Energy Materials, 2021, 11, 2102819.	10.2	68
178	Supports promote single-atom catalysts toward advanced electrocatalysis. Coordination Chemistry Reviews, 2022, 451, 214261.	9.5	187
179	Nickel-based bimetallic battery-type materials for asymmetric supercapacitors. Coordination Chemistry Reviews, 2022, 451, 214242.	9.5	86
180	Metal-organic frameworks (MOFs) and their derivatives as emerging catalysts for electro-Fenton process in water purification. Coordination Chemistry Reviews, 2022, 451, 214277.	9.5	97

#	Article	IF	CITATIONS
181	Metal- and covalent organic frameworks as catalyst for organic transformation: Comparative overview and future perspectives. Coordination Chemistry Reviews, 2022, 451, 214259.	9.5	40
182	Metal-organic frameworks bearing free carboxylic acids: Preparation, modification, and applications. Coordination Chemistry Reviews, 2022, 450, 214237.	9.5	66
183	Carbon-wrapped Fe–Ni bimetallic nanoparticle-catalyzed Friedel–Crafts acylation for green synthesis of aromatic ketones. Catalysis Science and Technology, 0, , .	2.1	6
184	Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nature Communications, 2021, 12, 6390.	5.8	117
185	Active site engineering of single-atom carbonaceous electrocatalysts for the oxygen reduction reaction. Chemical Science, 2021, 12, 15802-15820.	3.7	28
186	Rational construction of thermally stable single atom catalysts: From atomic structure to practical applications. Chinese Journal of Catalysis, 2022, 43, 71-91.	6.9	15
187	Functional role of single-atom catalysts in electrocatalytic hydrogen evolution: Current developments and future challenges. Coordination Chemistry Reviews, 2022, 452, 214289.	9.5	54
188	Emerging MXene@Metal–Organic Framework Hybrids: Design Strategies toward Versatile Applications. ACS Nano, 2021, 15, 18742-18776.	7.3	81
189	Recent advances and challenges of metal–organic framework/graphene-based composites. Composites Part B: Engineering, 2022, 230, 109532.	5.9	66
190	Toward Optimal Photocatalytic Hydrogen Generation from Water Using Pyrene-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 57118-57131.	4.0	16
191	Advanced Support Materials and Interactions for Atomically Dispersed Nobleâ€Metal Catalysts: From Support Effects to Design Strategies. Advanced Energy Materials, 2022, 12, 2102556.	10.2	78
192	Hollow CoP Encapsulated in an N-Doped Carbon Nanocage as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Nano Materials, 2021, 4, 13450-13458.	2.4	20
193	Experimental and computational investigation of a green Knoevenagel condensation catalyzed by zeolitic imidazolate framework-8. Environmental Research, 2022, 204, 112364.	3.7	17
194	A Zn-coordination polymer with serine-derived backbone and its use as bifunctional luminescence sensor for Ce(III) and Cu(II). Journal of Solid State Chemistry, 2022, 306, 122717.	1.4	4
195	Non-Bonding Interaction of Neighboring Fe and Ni Single-Atom Pairs on MOF-Derived N-Doped Carbon for Enhanced CO ₂ Electroreduction. Journal of the American Chemical Society, 2021, 143, 19417-19424.	6.6	305
196	Dimensional Reduction of <scp>Euâ€Based Metalâ€Organic</scp> Framework as Catalysts for Oxidation Catalysis of C(sp ³)–H Bond. Chinese Journal of Chemistry, 2022, 40, 480-486.	2.6	4
197	Metalâ€Organicâ€Frameworkâ€Based Singleâ€Atomic Catalysts for Energy Conversion and Storage: Principles, Advances, and Theoretical Understandings. Advanced Sustainable Systems, 2022, 6, .	2.7	7
198	Amorphous V-doped Co3S4 yolk-shell hollow spheres derived from metal-organic framework for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2022, 895, 162720.	2.8	13

#	Article	IF	CITATIONS
199	Metal–organic framework with atomically dispersed Ni–N4 sites for greatly-raised visible-light photocatalytic H2 production. Chemical Engineering Journal, 2022, 431, 133944.	6.6	20
200	Ionothermal-Transformation Strategy to Synthesize Hierarchically Tubular Porous Single-Iron-Atom Catalysts for High-Performance Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 58576-58584.	4.0	12
201	Proton/Electronâ€Đonors Enhancing Electrocatalytic Activity of Supported Conjugated Microporous Polymers for CO2 Reduction. Angewandte Chemie, 0, , .	1.6	0
202	Proton/Electron Donors Enhancing Electrocatalytic Activity of Supported Conjugated Microporous Polymers for CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
203	Hetero-metallic metal-organic frameworks for room-temperature NO2 sensing. Journal of Colloid and Interface Science, 2022, 610, 304-312.	5.0	15
204	Budget MOF-derived catalyst to realize full conversion from furfural to furfuryl alcohol. Molecular Catalysis, 2022, 518, 112092.	1.0	8
205	Redox-active metal-organic frameworks for the removal of contaminants of emerging concern. Separation and Purification Technology, 2022, 284, 120246.	3.9	15
206	A viologen-derived host-guest MOF material: Photochromism, photoswitchable luminescence, and inkless and erasable printing. Journal of Solid State Chemistry, 2022, 306, 122812.	1.4	11
207	Selective regulation of peroxydisulfate-to-hydroxyl radical for efficient in-situ chemical oxidation over Fe-based metal-organic frameworks under visible light. Journal of Catalysis, 2022, 406, 1-8.	3.1	13
208	In situ transmission electron microscopy and artificial intelligence enabled data analytics for energy materials. Journal of Energy Chemistry, 2022, 68, 454-493.	7.1	33
209	Solvent-free bottom-up patterning of zeolitic imidazolate frameworks. Nature Communications, 2022, 13, 420.	5.8	20
210	Switching charge transfer of g-C3N4/BiVO4 heterojunction from type II to Z-scheme via interfacial vacancy engineering for improved photocatalysis. International Journal of Hydrogen Energy, 2022, 47, 8749-8760.	3.8	34
211	One-step solvent-free aerobic oxidation of aliphatic alcohols to esters using a tandem Sc–RuâŠ,MOF catalyst. Green Chemistry, 2022, 24, 1474-1480.	4.6	4
212	Templated synthesis of zirconium(<scp>iv</scp>)-based metal–organic layers (MOLs) with accessible chelating sites. Chemical Communications, 2022, 58, 957-960.	2.2	6
213	Metal–Organic Frameworks with Zero and Lowâ€Valent Metal Nodes Connected by Tetratopic Phosphine Ligands. Angewandte Chemie, 0, , .	1.6	2
214	Mycotoxins detection: view in the lens of molecularly imprinted polymer and nanoparticles. Critical Reviews in Food Science and Nutrition, 2023, 63, 6034-6068.	5.4	8
215	Hierarchical porous metal–organic framework materials for efficient oil–water separation. Journal of Materials Chemistry A, 2022, 10, 2751-2785.	5.2	48
216	Microchannel tube NH3 sensor based on metal-organic framework UiO-66 modified polyaniline. Materials Research Bulletin, 2022, 150, 111770.	2.7	8

#	Article	IF	CITATIONS
217	Metal–Organic Frameworks with Zero and Lowâ€Valent Metal Nodes Connected by Tetratopic Phosphine Ligands. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
218	Realization of Ti MOF/MoS2 hybrid nanostructure and their catalytic activity towards 4-nitrophenol reduction. Journal of Materials Research and Technology, 2022, 17, 1760-1769.	2.6	13
219	Twoâ€Ðimensional Metal–Organic Framework Nanosheets: Synthesis and Applications in Electrocatalysis and Photocatalysis. ChemSusChem, 2022, 15, .	3.6	33
220	MOFs-derived hollow structure as a versatile platform for highly-efficient multifunctional electrocatalyst toward overall water-splitting and Zn-air battery. , 2022, , 251-270.		Ο
221	Siteâ€Specific Axial Oxygen Coordinated FeN ₄ Active Sites for Highly Selective Electroreduction of Carbon Dioxide. Advanced Functional Materials, 2022, 32, .	7.8	38
222	Proton Conductive Lanthanide-Based Metal–Organic Frameworks: Synthesis Strategies, Structural Features, and Recent Progress. Topics in Current Chemistry, 2022, 380, 9.	3.0	23
223	In-situ construction of bifunctional MIL-125(Ti)/BiOI reactive adsorbent/photocatalyst with enhanced removal efficiency of organic contaminants. Applied Surface Science, 2022, 583, 152423.	3.1	21
224	Synthesis of Covalent Boroxine Frameworks by Polycondensation of Tetrahydroxydiboron. Heterocycles, 2022, 104, 979.	0.4	1
225	Insight into the Effect of the d-Orbital Energy of Copper Ions in Metal–Organic Frameworks on the Selectivity of Electroreduction of CO ₂ to CH ₄ . ACS Catalysis, 2022, 12, 2749-2755.	5.5	53
226	Phosphine Oxide Porous Organic Polymers Incorporating Cobalt(II) Ions: Synthesis, Characterization, and Investigation of H ₂ Production. ACS Omega, 2022, 7, 6104-6112.	1.6	8
227	Uniform single atomic Cu1-C4 sites anchored in graphdiyne for hydroxylation of benzene to phenol. National Science Review, 2022, 9, .	4.6	22
228	Two supramolecular architectures of Ni-based complexes for magnetic properties and the luminescent sensitive detection of Fe3+ and Cr6+. Journal of Solid State Chemistry, 2022, 309, 122949.	1.4	1
229	Mixed Metal-Metal Organic Frameworks (MM-MOFs) and Their Use as Efficient Photocatalysts for Hydrogen Evolution from Water Splitting Reactions. SSRN Electronic Journal, 0, , .	0.4	0
230	Active site regulated Z-scheme MIL-101(Fe)/Bi ₂ WO ₆ /Fe(<scp>iii</scp>) with the synergy of hydrogen peroxide and visible-light-driven photo-Fenton degradation of organic contaminants. Nanoscale, 2022, 14, 7055-7074.	2.8	12
231	Rational Design of Ag Nanoparticles on Zif-67-Functionalized Carbon Nanotube for Enzymeless Glucose Detection and Electrocatalytic Water Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
232	Structure, magnetic properties and spin density of two alternative Mn(<scp>ii</scp>) coordination polymers based on 1,4-bis(2′-carboxyphenoxy)benzene. Dalton Transactions, 2022, 51, 4869-4877.	1.6	4
233	PPy-constructed core–shell structures from MOFs for confining lithium polysulfides. Inorganic Chemistry Frontiers, 2022, 9, 2389-2394.	3.0	25
234	Application of novel metal–organic framework [Zr-UiO-66-PDC-SO ₃ H]FeCl ₄ in the synthesis of dihydrobenzo[<i>g</i>]pyrimido[4,5- <i>b</i>]quinoline derivatives. RSC Advances, 2022, 12, 9058-9068.	1.7	10

#	Article	IF	CITATIONS
235	Rational Design of Ag Nanoparticles on Zif-67-Functionalized Carbon Nanotube for Enzymeless Glucose Detection and Electrocatalytic Water Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
236	Research Progresses of Metal-organic Framework HKUST-1-Based Membranes in Gas Separations [※] . Acta Chimica Sinica, 2022, 80, 340.	0.5	6
238	Theoretical Investigation on the Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reactions Performances of Two-Dimensional Metal-Organic Frameworks Fe3(C2X)12 (X = NH, O, S). Molecules, 2022, 27, 1528.	1.7	10
239	Integration of CdS with a Fiber-Based Cadmium Coordination Polymer for Turning On Photocatalytic Oxidative Coupling Reactions. Crystal Growth and Design, 2022, 22, 1792-1800.	1.4	7
240	Encapsulation of Polymetallic Oxygen Clusters in a Mesoporous/Microporous Thorium-Based Porphyrin Metal–Organic Framework for Enhanced Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2022, 61, 3368-3373.	1.9	16
241	Hexagonal Layer Manganese Metal–Organic Framework for Photocatalytic CO ₂ Cycloaddition Reaction. ACS Omega, 2022, 7, 9958-9963.	1.6	16
242	Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture. Nature Communications, 2022, 13, 1249.	5.8	42
243	Mechanism for Catalytic Stability Enhancement of Fe ^{III} [Co ^{III} (CN) ₆] by Doping Divalent Ions for Organophosphate Hydrolysis. Journal of Physical Chemistry C, 2022, 126, 5564-5574.	1.5	3
244	Increasing the Stability of Metal–Organic Frameworks by Coating with Poly(tetrafluoroethylene). Inorganic Chemistry, 2022, 61, 5092-5098.	1.9	8
245	Copper(II) Frameworks with Varied Active Site Distribution for Modulating Selectivity of Carbon Dioxide Electroreduction. ACS Applied Materials & Interfaces, 2022, 14, 13645-13652.	4.0	20
246	Halogen hydrogen-bonded organic framework (XHOF) constructed by singlet open-shell diradical for efficient photoreduction of U(VI). Nature Communications, 2022, 13, 1389.	5.8	51
247	In Situ Monitoring of Dynamic Photocatalysis of Metal–Organic Frameworks by Three-Dimensional Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Analytical Chemistry, 2022, 94, 5699-5706.	3.2	11
248	Construction and Sensing Amplification of Raspberry-Shaped MOF@MOF. Inorganic Chemistry, 2022, 61, 4705-4713.	1.9	13
249	Bimetallic Cageâ€Based Metal–Organic Frameworks for Electrochemical Hydrogen Evolution Reaction with Enhanced Activity. Chemistry - A European Journal, 2022, 28, .	1.7	11
250	Metal–nitrogen–carbon-based nanozymes: advances and perspectives. Journal Physics D: Applied Physics, 2022, 55, 323001.	1.3	6
251	Staged oxidation of hydrocarbons with simultaneously enhanced conversion and selectivity employing O2 as oxygen source catalyzed by 2D metalloporphyrin-based MOFs possessing bimetallic active centers. Chemical Engineering Journal, 2022, 443, 136126.	6.6	15
252	Recent advances in single-atom catalysts for thermally driven reactions. Chemical Engineering Science, 2022, 255, 117654.	1.9	2
253	Metal-organic framework-derived multifunctional photocatalysts. Chinese Journal of Catalysis, 2022, 43, 971-1000.	6.9	64

ARTICLE IF CITATIONS # Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon 254 25.0 81 dioxide with industrial current densities. EScience, 2022, 2, 295-303. Metal-organic framework sensors based on triazole carboxylic acid ligands for ion sensing and dye 1.4 adsorption. Journal of Solid State Chemistry, 2022, 311, 123113. Solvo-thermal synthesis of a unique cluster-based nano-porous zinc(II) luminescent metal-organic 256 framework for highly sensitive detection of anthrax biomarker and dichromate. Spectrochimica Acta -2.0 4 Part A: Molecular and Biomolecular Spectroscopy, 2022, 274, 121132. Development of physicochemically stable Z-scheme MIL-88A/g-C3N4 heterojunction photocatalyst with excellent charge transfer for improving acid red 1 dye decomposition efficiency. Applied Surface Science, 2022, 590, 152954. 3.1 Rational design of Ag nanoparticles on ZIF-67-functionalized carbon nanotube for enzymeless glucose 258 2.8 12 detection and electrocatalytic water oxidation. Journal of Alloys and Compounds, 2022, 910, 164878. A strongly hydrophobic ethane-selective metal-organic framework for efficient ethane/ethylene separation. Chemical Engineering Journal, 2022, 442, 136152. 6.6 Electrochemical aptasensing strategy based on a multivariate polymertitanium-metal-organic 260 4.2 16 framework for zearalenone analysis. Food Chemistry, 2022, 385, 132654. Single palladium atoms stabilized by Î²-FeOOH nanorod with superior performance for selective 5.8 34 hydrogenation of cinnamaldehyde. Nano Research, 2022, 15, 3114-3121. A Substrateâ€Induced Fabrication of Active Freeâ€Standing Nanocarbon Film as Air Cathode in 262 5.2 15 Rechargeable Zinc–Air Batteries. Small, 2022, 18, 2106606. A General Strategy to Immobilize Singleâ€Atom Catalysts in Metal–Organic Frameworks for Enhanced 11.1 Photocatalysis. Advanced Materials, 2022, 34, e2109203. Metalâ€"Support Interactions of Single-Atom Catalysts for Biomedical Applications. ACS Applied 264 4.016 Materials & amp; Interfaces, 2021, 13, 60815-60836. Tailoring Amine-Functionalized Ti-MOFs via a Mixed Ligands Strategy for High-Efficiency CO2 Capture. Nanomaterials, 2021, 11, 3348. Single-Atoms on Covalent or Metal–Organic Frameworks: Current Findings and Perspectives for 266 Pollutants Abatement, Hydrogen Evolution, and Reduction of CO2. Topics in Current Chemistry, 2022, 3.0 5 380.7. Applications of Metalâ \in Organic Frameworks in Water Treatment: A Review. Small, 2022, 18, e2105715. 5.2 94 Installation of high-valence tungsten in MIL-125(Ti) for boosted photocatalytic hydrogen evolution. 268 3.5 4 Science China Materials, 2022, 65, 1237-1244. Friedläder, Knoevenagel, and Michael Reactions Employing the Same MOF: Synthesis, Structure, and

#	Article	IF	CITATIONS
272	Iridium pair sites anchored to Zr6O8 nodes of the metal–organic framework UiO-66 catalyze ethylene hydrogenation. Journal of Catalysis, 2022, 411, 177-186.	3.1	3
273	Structural and interfacial engineering of well-defined metal-organic ensembles for electrocatalytic carbon dioxide reduction. Chinese Journal of Catalysis, 2022, 43, 1417-1432.	6.9	11
274	Hetero-interpenetrating porous coordination polymers. Dalton Transactions, 2022, 51, 7025-7034.	1.6	2
275	Shaping MOF oxime oxidation catalysts as three-dimensional porous aerogels through structure-directing growth inside chitosan microspheres. Green Chemistry, 2022, 24, 4533-4543.	4.6	16
276	Copper-Containing Polyoxometalate-Based Metal–Organic Frameworks as Heterogeneous Catalysts for the Synthesis of N-Heterocycles. Inorganic Chemistry, 2022, 61, 6934-6942.	1.9	29
277	Future Paradigm of 3D Printed Ni-Based Metal Organic Framework Catalysts for Dry Methane Reforming: Techno-economic and Environmental Analyses. ACS Omega, 2022, 7, 15369-15384.	1.6	7
278	Coexistence of Fe Nanoclusters Boosting Fe Single Atoms to Generate Singlet Oxygen for Efficient Aerobic Oxidation of Primary Amines to Imines. ACS Catalysis, 2022, 12, 5595-5604.	5.5	58
279	Encapsulation-Led Adsorption of Neutral Dyes and Complete Photodegradation of Cationic Dyes and Antipsychotic Drugs by Lanthanide-Based Macrocycles. Inorganic Chemistry, 2022, 61, 7682-7699.	1.9	12
280	Construction of isolated Ni sites on nitrogen-doped hollow carbon spheres with Ni–N3 configuration for enhanced reduction of nitroarenes. Nano Research, 2022, 15, 6001-6009.	5.8	19
281	Direct Observation of Ammonia Storage in UiO-66 Incorporating Cu(II) Binding Sites. Journal of the American Chemical Society, 2022, 144, 8624-8632.	6.6	24
282	Engineering of catalytically active sites in photoactive metal–organic frameworks. Coordination Chemistry Reviews, 2022, 465, 214561.	9.5	22
283	Mixed metal-metal organic frameworks (MM-MOFs) and their use as efficient photocatalysts for hydrogen evolution from water splitting reactions. Coordination Chemistry Reviews, 2022, 464, 214542.	9.5	49
284	Facile synthesis disposable MOF membrane filter: Growth of NH2-MIL-125 (Ti) on filter paper for fast removal of organophosphorus pesticides in aqueous solution and vegetables. Food Chemistry, 2022, 389, 133056.	4.2	20
285	Enhanced adsorption desulfurization performance of Cu+-exchanged UiO-66(Zr) with hierarchical porous structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129191.	2.3	6
286	Mixed-Linker Isoreticular Zn(II) Metal–Organic Frameworks as BrÃุnsted Acid–Base Bifunctional Catalysts for Knoevenagel Condensation Reactions. Inorganic Chemistry, 2022, 61, 8339-8348.	1.9	27
287	MOF nanoparticles as heterogeneous catalysts for direct amide bond formations. Dalton Transactions, 2022, 51, 8368-8376.	1.6	10
288	Pd single-atom catalysts derived from strong metal-support interaction for selective hydrogenation of acetylene. Nano Research, 2022, 15, 10037-10043.	5.8	28
289	The catalytic mechanism of hydroformylation of 1-butene on rhodium-coordinated organic linkers in MOFs: A computational study. Computational and Theoretical Chemistry, 2022, 1213, 113743.	1.1	2

#	Article	IF	CITATIONS
290	CO Oxidation over HKUST-1 Catalysts: The Role of Defective Sites. Journal of Physical Chemistry C, 2022, 126, 9652-9664.	1.5	2
291	Recyclable L Uminescence S EnsorÂFor Cu 2+ , Cr 2 O 7 2- ÂAnd Cro42- in Water and Acid/Base Vapor Response Based OnÂWater-Stable Bipyridyl-Based Ln-Mofs. SSRN Electronic Journal, 0, , .	0.4	0
292	Construction and application of base-stable MOFs: a critical review. Chemical Society Reviews, 2022, 51, 6417-6441.	18.7	147
293	Chapter 8. Nanocatalysis With Sustainability. RSC Nanoscience and Nanotechnology, 2022, , 220-254.	0.2	1
294	Carbon-efficient conversion of natural gas and natural-gas condensates to chemical products and intermediate feedstocks <i>via</i> catalytic metal–organic framework (MOF) chemistry. Energy and Environmental Science, 2022, 15, 2819-2842.	15.6	6
295	Single-atom site catalysts based on high specific surface area supports. Physical Chemistry Chemical Physics, 2022, 24, 17417-17438.	1.3	11
296	METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. Journal of Structural Chemistry, 2022, 63, 671-843.	0.3	35
297	Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Research, 2022, 15, 10063-10069.	5.8	52
298	Efficient and Sustainable in situ Photoâ€Fenton Reaction to Remove Phenolic Pollutants by NH ₂ â€MILâ€101(Fe)/Ti ₃ C ₂ T _x Schottkyâ€Heterojunctions. Chemistry - A European Journal, 2022, 28, .	1.7	6
299	Engineering Metal–Organic Framework Hybrid AlEgens with Tumor-Activated Accumulation and Emission for the Image-Guided GSH Depletion ROS Therapy. ACS Applied Materials & Interfaces, 2022, 14, 29599-29612.	4.0	18
300	Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. Journal of the American Chemical Society, 2022, 144, 10663-10687.	6.6	174
301	Hybrid Metal–Organic Frameworks Encapsulated Hybrid Ni-Doped CdS Nanoparticles for Visible-Light-Driven CO ₂ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 28123-28132.	4.0	11
302	Access to <i>ortho</i> -Hydroxyphenyl Ketimines via Imine Anion-Mediated Smiles Rearrangement. Organic Letters, 2022, 24, 4140-4144.	2.4	1
303	3D hierarchical Cu-MOF nanosheets-based antibacterial mesh. Chemical Engineering Journal, 2022, 446, 137381.	6.6	18
304	Recent advances in MOFs/MOF derived nanomaterials toward high-efficiency aqueous zinc ion batteries. Coordination Chemistry Reviews, 2022, 468, 214642.	9.5	55
305	Single atoms meet metal–organic frameworks: collaborative efforts for efficient photocatalysis. Energy and Environmental Science, 2022, 15, 3722-3749.	15.6	107
306	Ni-soc-MOF derived carbon hollow sphere encapsulated Ni ₃ Se ₄ nanocrystals for high-rate supercapacitors. Chemical Communications, 2022, 58, 8846-8849.	2.2	6
307	Metal-organic frameworks (MOFs), rare earth MOFs, and rare earth functionalized MOF hybrid materials. , 2022, , 3-40.		0

#	Article	IF	CITATIONS
308	Designing of robust and sensitive assay via encapsulation of highly emissive and stable blue copper nanocluster into zeolitic imidazole framework (ZIF-8) with quantitative detection of tetracycline. Journal of Analytical Science and Technology, 2022, 13, .	1.0	15
309	Tailoring Coordination Microenvironment of Cu(I) in Metal–Organic Frameworks for Enhancing Electroreduction of CO ₂ to CH ₄ . Advanced Functional Materials, 2022, 32, .	7.8	42
310	Synthesis, Structure, and Thermal Stability of a Mesoporous Titanium(III) Amine-Containing MOF. Inorganic Chemistry, 2022, 61, 11084-11094.	1.9	5
311	2D Metal–Organic Framework Cu ₃ (HHTT) ₂ Films for Broadband Photodetectors from Ultraviolet to Midâ€Infrared. Advanced Materials, 2022, 34, .	11.1	16
312	Reverse Replacement in NH ₂ â€MILâ€125 with 1,4â€Dicarboxybenzene for Enhanced Photocata Hydrogen Generation. Chemistry - A European Journal, 2022, 28, .	llytic 1.7	5
313	Rational design and synthesis of two-dimensional conjugated metal-organic polymers for electrocatalysis applications. CheM, 2022, 8, 1822-1854.	5.8	32
314	Simple Approximation for the Ideal Reference State of Gases Adsorbed on Solid-State Surfaces. Journal of the American Chemical Society, 2022, 144, 12850-12860.	6.6	3
315	Rational design of self-sacrificial template derived quasi-Cu-MOF composite as anodes for high-performance lithium-ion batteries. Chinese Chemical Letters, 2023, 34, 107675.	4.8	2
316	Dualâ€Atomic Catalysts Deduced from dâ~'Ï€ Conjugated Metalâ^'Organic Frameworks for Efficient Oxygen Evolution Reaction. Advanced Materials Interfaces, 2022, 9, .	1.9	4
317	Relay catalysis of hydrocarbon oxidation using O2 in the confining domain of 3D metalloporphyrin-based metal-organic frameworks with bimetallic catalytic centers. Chemical Engineering Science, 2022, 260, 117825.	1.9	9
318	Ultrathin binary MOF nanozyme with boosted activity via introduction of active iron sites for detecting sulfide ion. Sensors and Actuators B: Chemical, 2022, 369, 132365.	4.0	17
319	Recyclable luminescence sensor for Cu2+, Cr2O72â^ and CrO42â^ in water and acid/base vapor response based on water-stable bipyridyl-based Ln-MOFs. Journal of Solid State Chemistry, 2022, 314, 123423.	1.4	6
320	Heterogenization of Molecular Electrocatalytic Active Sites through Reticular Chemistry. Advanced Materials, 2023, 35, .	11.1	11
321	Catalytic CO Oxidation by Cu Single Atoms on the UiO-66 Metal–Organic Framework: The Role of the Oxidation State. Journal of Physical Chemistry C, 2022, 126, 12507-12518.	1.5	4
322	Fe–N–C single atom catalysts for the electrochemical conversion of carbon, nitrogen and oxygen elements. Materials Reports Energy, 2022, 2, 100141.	1.7	5
323	S-doped M-N-C catalysts for the oxygen reduction reaction: Synthetic strategies, characterization, and mechanism. Journal of Electroanalytical Chemistry, 2022, 920, 116637.	1.9	14
324	Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chemical Society Reviews, 2022, 51, 7810-7882.	18.7	80
325	Tailoring Single-Atom Fen4 Moieties as a Robust Heterogeneous Catalyst for High-Performance Electro-Fenton Treatment of Organic Pollutants. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
326	CHAPTER 7. Two-dimensional Nanomaterials Design and Reactor Engineering of Different Methods for CO2 Electrochemical Conversion Process. , 2022, , 211-229.		0
327	Polymelamine Formaldehyde-Coated MIL-101 as an Efficient Dual-Functional Core–Shell Composite to Catalyze the Deacetalization–Knoevenagel Tandem Reaction. Inorganic Chemistry, 2022, 61, 13678-13684.	1.9	7
328	Sequentially Regulating the Structural Transformation of Copper Metal–Organic Frameworks (Cu-MOFs) for Controlling Site-Selective Reaction. ACS Applied Materials & Interfaces, 2022, 14, 36845-36854.	4.0	6
329	The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst. Nano Research, 2023, 16, 309-317.	5.8	20
330	Single-Atom Pd Catalysts Supported on Covalent Triazine Frameworks for Hydrogen Production from Formic Acid. ACS Applied Nano Materials, 2022, 5, 12887-12896.	2.4	13
331	Precise Introduction of Single Vanadium Site into Indium–Organic Framework for CO ₂ Capture and Photocatalytic Fixation. Inorganic Chemistry, 2022, 61, 14131-14139.	1.9	13
332	MOFâ€Based Chemiresistive Gas Sensors: Toward New Functionalities. Advanced Materials, 2023, 35, .	11.1	59
333	Chemo-Biocascade Reactions Enabled by Metal–Organic Framework Micro-Nanoreactor. Research, 2022, 2022, .	2.8	2
334	Metal–organic framework derived single-atom catalysts for CO2 conversion to methanol. Current Opinion in Green and Sustainable Chemistry, 2022, 37, 100660.	3.2	12
335	Improving the Performance of Photocatalytic Hydrogen Production through Adjusting the Size of Defective Quantum Dots Coâ€Catalyst Affected by Intramolecular Steric Hindrance on Thermal Stability of Functional Groups. Solar Rrl, 2022, 6, .	3.1	1
336	Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chemical Reviews, 2022, 122, 13235-13400.	23.0	77
337	Construction of Ultrathin Sâ€Scheme Heterojunctions of Single Ni Atom Immobilized Tiâ€MOF and BiVO ₄ for CO ₂ Photoconversion of nearly 100% to CO by Pure Water. Advanced Materials, 2022, 34, .	11.1	51
338	Surface Cu+ modified ZnIn2S4 for promoted visible-light photocatalytic hydrogen evolution. Journal of Energy Chemistry, 2022, 74, 341-348.	7.1	18
339	One-dimensional coordination polymers based on metal–nitrogen linkages. Coordination Chemistry Reviews, 2022, 471, 214735.	9.5	23
340	Metal-organic frameworks composed of nitro groups: Preparation and applications in adsorption and catalysis. Chemical Engineering Journal, 2023, 451, 138538.	6.6	39
341	Metal–Organic Frameworkâ€Based Nanomaterials for Electrocatalytic Oxygen Evolution. Small Methods, 2022, 6, .	4.6	53
342	Advanced MOF-based electrode materials for supercapacitors and electrocatalytic oxygen reduction. Nano Research, 2023, 16, 1338-1361.	5.8	29
343	Single-atom Zn on bipyridine-functionalized porous organic polymers towards highly efficient N-formylation of amines with CO2 under mild conditions. Journal of CO2 Utilization, 2022, 65, 102214.	3.3	2

#	Article	IF	CITATIONS
344	Adsorptive desulfurization using Cu+ modified UiO-66(Zr) via ethanol vapor reduction. Journal of Environmental Chemical Engineering, 2022, 10, 108578.	3.3	7
345	Influence of counter ions on supramolecular structures of copper(II) complexes derived from 1,8-naphthalimide tecton. Journal of Molecular Structure, 2023, 1271, 134086.	1.8	3
346	Chiral templated synthesis of homochiral metal-organic frameworks. Coordination Chemistry Reviews, 2023, 474, 214852.	9.5	15
347	Tuned layered double hydroxide-based catalysts inducing singlet oxygen evolution: Reactive oxygen species evolution mechanism exploration, norfloxacin degradation and catalysts screen based on machine learning. Applied Catalysis B: Environmental, 2023, 320, 121880.	10.8	19
348	Cobalt nanoparticles embedded in a nitrogen-doped carbon matrix for reductive amination of biomass-derived furfural to furfurylamine. Sustainable Energy and Fuels, 2022, 6, 4692-4705.	2.5	3
349	MOF-Stabilized Pd Single Sites for CO Esterification to Dimethyl Carbonate. Acta Chimica Sinica, 2022, 80, 867.	0.5	1
350	Analysing the role of anions in the synthesis of catalytically active urea-based MOFs. Dalton Transactions, 2022, 51, 16316-16324.	1.6	3
351	lonic encapsulation of a methanol carbonylation catalyst in a microporous metal–organic framework. Chemical Communications, 2022, 58, 11252-11255.	2.2	3
352	A multi-technique approach to unveil the redox behaviour and potentiality of homoleptic Cu ^I complexes based on substituted bipyridine ligands in oxygenation reactions. Dalton Transactions, 2022, 51, 14439-14451.	1.6	1
353	Open metal site (OMS)-inspired investigation of adsorption and catalytic functions in a porous metal–organic framework (MOF). Dalton Transactions, 2022, 51, 15496-15506.	1.6	8
354	Metal-Organic Frameworks for Gas Sensors. , 2022, , 225-244.		0
355	Nanoparticle/metal–organic framework hybrid catalysts: elucidating the role of the MOF. Chemical Communications, 2022, 58, 10757-10767.	2.2	18
356	Unprecedented bi- and trinuclear palladium(II)-sodium complexes from a salophen-type Schiff base: Synthesis, characterization, thermal behavior, and in vitro biological activities. Journal of Molecular Structure, 2023, 1272, 134224.	1.8	7
357	MOF-derived single-atom catalysts: The next frontier in advanced oxidation for water treatment. Chemical Engineering Journal, 2023, 452, 139446.	6.6	28
358	Progress in metal-organic-framework-based single-atom catalysts for environmental remediation. Coordination Chemistry Reviews, 2023, 474, 214855.	9.5	35
359	Tuning band structures of Hf-PCN-224(M) for β-Carbonyl C(sp3)-H bond activation and difunctionalization: Tandem C(sp3) radical cross-coupling through photoredox. Applied Catalysis B: Environmental, 2023, 321, 122049.	10.8	2
360	Ultrathin Self-Assembly Two-Dimensional Metal–Organic Framework Films as Hole Transport Layers in Ideal-Bandgap Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 3362-3369.	8.8	18
361	The Progress and Outlook of Metal Single-Atom-Site Catalysis. Journal of the American Chemical Society, 2022, 144, 18155-18174.	6.6	151

#	Article	IF	CITATIONS
362	Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. Electrochemical Energy Reviews, 2022, 5, .	13.1	43
363	Metalâ€organic framework derived porous structures towards lithium rechargeable batteries. EcoMat, 2023, 5, .	6.8	33
364	Single-Atom Iridium-Catalyst-Embedded Zeolitic Imidazolate Frameworks for CO ₂ and Glycerol Transformations. Chemistry of Materials, 2022, 34, 8153-8162.	3.2	6
365	Porphyrin-Containing Metallacage with Precise Active Sites and Super Long-Term Stability as a Specific Peroxidase Mimic for Versatile Analyte Determination. Analytical Chemistry, 2022, 94, 13261-13268.	3.2	5
366	Four metal–organic architectures from a triphenyl-tricarboxylic acid: synthesis, crystal structures, and catalytic features. Transition Metal Chemistry, 0, , .	0.7	0
367	Metal-organic framework-based single-atom catalysts for efficient electrocatalytic CO2 reduction reactions. Catalysis Today, 2023, 410, 68-84.	2.2	13
368	Ni-B-Co nanoparticles based on ZIF-67 as efficient electrocatalyst for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 923, 116838.	1.9	3
369	Immobilizing a homogeneous manganese catalyst into MOF pores for α-alkylation of methylene ketones with alcohols. Dalton Transactions, 2022, 51, 17973-17977.	1.6	4
370	Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chemical Society Reviews, 2022, 51, 9068-9126.	18.7	30
371	Enhanced anaerobic digestion for degradation of swine wastewater through a Fe/Ni-MOF modified microbial electrolysis cell. Journal of Cleaner Production, 2022, 380, 134773.	4.6	10
372	Remarkable stability of Ni-modified polyoxometalates to H2, CO, and CH4 during propylene oligomerization. Applied Catalysis A: General, 2022, 647, 118914.	2.2	1
373	Selfâ€Reconstructed Metalâ€Organic Framework Heterojunction for Switchable Oxygen Evolution Reaction. Angewandte Chemie, 0, , .	1.6	4
374	Post-synthetic electrostatic adsorption-assisted fabrication of efficient single-atom Fe-N-C oxygen reduction catalysts for Zn-air batteries. Science China Materials, 0, , .	3.5	3
375	Selfâ€Reconstructed Metalâ€Organic Framework Heterojunction for Switchable Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	53
376	Screening and design of 2D metal–organic frameworks for hydrogen evolution reaction through controlling transition metals and heteroligands. Materials Today Nano, 2022, 20, 100278.	2.3	2
377	The single-atom iron nanozyme mimicking peroxidase remodels energy metabolism and tumor immune landscape for synergistic chemodynamic therapy and photothermal therapy of triple-negative breast cancer. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	1
378	One-step synthesis of ZIF-8 for rapid and high-capacity capture of mercury from aqueous solution. Journal of Environmental Chemical Engineering, 2022, , 108852.	3.3	3
379	Mo-Doped Metal–Organic Frameworks for Efficient Nitrogen Reduction Reaction: A Density Functional Theory Study. ACS Sustainable Chemistry and Engineering, 2022, 10, 14064-14072.	3.2	10

#	Article	IF	CITATIONS
380	Graphene-Based Metal–Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chemical Reviews, 2022, 122, 17241-17338.	23.0	81
381	Superstructures of Zeolitic Imidazolate Frameworks to Single―and Multiatom Sites for Electrochemical Energy Conversion. Small, 2022, 18, .	5.2	13
382	Coordination Polymers Constructed from an Adaptable Pyridine-Dicarboxylic Acid Linker: Assembly, Diversity of Structures, and Catalysis. Inorganic Chemistry, 2022, 61, 17951-17962.	1.9	5
383	Metal-organic frameworks for advanced aqueous ion batteries and supercapacitors. EnergyChem, 2022, 4, 100090.	10.1	22
384	Regulation of Porosity in MOFs: A Review on Tunable Scaffolds and Related Effects and Advances in Different Applications. Journal of Environmental Chemical Engineering, 2022, 10, 108836.	3.3	23
385	Efficient CoNi-bimetal phosphide embedded carbon matrix derived from a novel phosphonate complex for hydrazine-assisted electrolytic hydrogen production. Electrochimica Acta, 2022, 435, 141406.	2.6	4
386	Metal-organic framework-based catalysts for lithium-sulfur batteries. Coordination Chemistry Reviews, 2023, 475, 214879.	9.5	32
387	Ferrocene doped ZIF-8 derived Fe-N-C single atom catalyst to active peroxymonosulfate for removal of bisphenol A. Separation and Purification Technology, 2023, 305, 122402.	3.9	19
388	Nitrogen-doped carbon-based single-atom Fe catalysts: Synthesis, properties, and applications in advanced oxidation processes. Coordination Chemistry Reviews, 2023, 475, 214874.	9.5	44
389	Tailoring single-atom FeN4 moieties as a robust heterogeneous catalyst for high-performance electro-Fenton treatment of organic pollutants. Applied Catalysis B: Environmental, 2023, 322, 122116.	10.8	24
390	Ce-hydroxamate metal–organic frameworks for photocatalytic H ₂ generation. Chemical Communications, 2022, 58, 13503-13506.	2.2	6
391	Atomically dispersed Pt inside MOFs for highly efficient photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 0, , .	1.3	0
392	Enwrapping g-C3N4 on In2O3 hollow hexagonal tubular for photocatalytic CO2 conversion: Construction, characterization, and Z-scheme mechanism insight. Journal of Colloid and Interface Science, 2023, 631, 122-132.	5.0	26
393	Electron-Deficient Zn-N6 Configuration Enabling Polymeric Carbon Nitride for Visible-Light Photocatalytic Overall Water Splitting. Nano-Micro Letters, 2022, 14, .	14.4	21
394	Adsorption and Degradation of the G-Type Nerve Agent Soman and Its Simulant Dimethyl 4-Nitrophenylphosphate by Metal-Exchange-Modified MFU-4 <i>I</i> Metal–Organic Frameworks. Journal of Physical Chemistry C, 2022, 126, 19159-19168.	1.5	2
395	Multi-dimensional Pt–Mo/Co@NC nanocomposites with low platinum contents for methanol oxidation. Journal of Solid State Electrochemistry, 2023, 27, 327-336.	1.2	2
396	High-Selective CO2 Capture in Amine-Decorated Al-MOFs. Nanomaterials, 2022, 12, 4056.	1.9	5
397	A macro library for monatomic catalysts. Chinese Journal of Catalysis, 2023, 44, 1-3.	6.9	8

#	Article	IF	CITATIONS
398	Ultrahigh pressure-induced modification of morphology and performance of MOFs-derived Cu@C electrocatalysts. Nanoscale Advances, 0, , .	2.2	0
399	Synergetic catalytic oxidation of C-H bonds in cycloalkanes and alkyl aromatics by dimetallic active sites in 3D metalloporphyrinic MOFs employing O2 as oxidant with increased conversion and unconsumed selectivity. Molecular Catalysis, 2023, 535, 112853.	1.0	3
400	Anomalous thermal expansion of strontium squarate trihydrate induced by hydrogen-bond weakening. Inorganic Chemistry Frontiers, 2023, 10, 552-557.	3.0	1
401	Visible-to-near-infrared light-harvesting A-Ï€-D-Ï€-A porphyrins for boosted photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2023, 11, 1473-1481.	5.2	6
402	When nitrogen reduction meets single-atom catalysts. Progress in Materials Science, 2023, 132, 101044.	16.0	14
403	MOF-based nanomedicines inspired by structures of natural active components. Nano Today, 2023, 48, 101690.	6.2	17
404	Bi-Porphyrins MOF with confinement and ion-attracting effects in concert with RuO2-doped CNT as efficient electrocatalysts for HER in acidic and alkaline media. Applied Surface Science, 2023, 612, 155870.	3.1	11
405	A novel epoxy coating with nanocatalytic anticorrosion performance achieved by single-atom Fe-N-C catalyst. Journal of Colloid and Interface Science, 2023, 633, 575-588.	5.0	3
406	MOFâ€derived bimetallic NiCo nanoalloys for the hydrogenation of biomassâ€derived levulinic acid to γâ€valerolactone. AICHE Journal, 2023, 69, .	1.8	13
407	High-Performance FeCo/NC-Mo ₂ TiC ₂ /Carbon Nanotube Hybrid Support Catalyst toward Oxygen Reduction for Alkaline Anion Exchange Membrane Fuel Cell. ACS Sustainable Chemistry and Engineering, 2022, 10, 15735-15740.	3.2	6
408	Matching Bidentate Ligand Anchoring: an Accurate Control Strategy for Stable Singleâ€Atom/ZIF Nanocatalysts. Advanced Materials, 2023, 35, .	11.1	13
409	A Doubly Interpenetrated Cu(II)â€based Metalâ€Organic Framework as a Heterogeneous Catalyst for the <i>ipso</i> â€Hydroxylation of Arylboronic Acids. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	2
410	Controversy on the ferroelectricity in metal–formate frameworks. Lithuanian Journal of Physics, 2022, 62, .	0.1	1
411	Synthesis and Catalytic Application of MTsCOOâ€Cu as a Melamineâ€Based Metalâ€Organic Framework in Facile Preparation of the 5â€Substitutedâ€1 <i>H </i> â€Tetrazoles. ChemistrySelect, 2022, 7, .	0.7	1
412	Single‣ite Metal–Organic Framework and Copper Foil Tandem Catalyst for Highly Selective CO ₂ Electroreduction to C ₂ H ₄ . Small, 2023, 19, .	5.2	14
413	Rational Design of a Core–Shell Structured Plasmonic Au@MIL-100(Fe) Nanocomposite for Efficient Photocatalysis. ACS Applied Materials & Interfaces, 2022, 14, 56930-56937.	4.0	6
414	Metalâ€Organic Frameworks for Greenhouse Gas Applications. Small, 2023, 19, .	5.2	17
415	Photodynamic Inactivation of Bacteria and Biofilms with Benzoselenadiazole-Doped Metal-Organic Frameworks. Molecules, 2022, 27, 8908.	1.7	3

#	Article	IF	CITATIONS
416	Selective Luminescence Turn-On-Based Sensing of Phosphate in the Presence of Other Interfering Anions Using a Heterobimetallic (3d–4d) MOF with an Acidic Pocket. Inorganic Chemistry, 2023, 62, 591-600.	1.9	4
418	Microenvironment Modulation of Metal–Organic Frameworks (MOFs) for Coordination Olefin Oligomerization and (co)Polymerization. Small, 2023, 19, .	5.2	5
419	Engineering the Electronic Structure of Singleâ€Atom Iron Sites with Boosted Oxygen Bifunctional Activity for Zinc–Air Batteries. Advanced Materials, 2023, 35, .	11.1	63
420	Molecule-Enhanced Electrocatalysis of Sustainable Oxygen Evolution Using Organoselenium Functionalized Metal–Organic Nanosheets. Journal of the American Chemical Society, 2023, 145, 1144-1154.	6.6	16
421	Regulating Morphological Features of Nickel Singleâ€Atom Catalysts for Selective and Enhanced Electroreduction of CO ₂ . Small Methods, 2023, 7, .	4.6	7
422	From Blue to White: Sustainable Luminescent Metal Organic Framework for Hybrid Lightâ€Emitting Diodes. Advanced Optical Materials, 2023, 11, .	3.6	2
423	Pristine Metal–Organic Frameworks and their Composites for Renewable Hydrogen Energy Applications. Advanced Functional Materials, 2023, 33, .	7.8	18
424	Four unprecedented V14 clusters as highly efficient heterogeneous catalyst for CO2 fixation with epoxides and oxidation of sulfides. Science China Chemistry, 2023, 66, 107-116.	4.2	6
425	Atomically Precise Integration of Multiple Functional Motifs in Catalytic Metal–Organic Frameworks for Highly Efficient Nitrate Electroreduction. Jacs Au, 2022, 2, 2765-2777.	3.6	8
426	Paper-based optical sensors paired with smartphones for biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis, 2023, 225, 115207.	1.4	8
427	Recent Advances on Multivariate MOFs for Photocatalytic CO ₂ Reduction and H ₂ Evolution. Advanced Sustainable Systems, 2023, 7, .	2.7	6
428	Dense Conductive Metal–Organic Frameworks as Robust Electrocatalysts for Biosensing. Analytical Chemistry, 2022, 94, 17177-17185.	3.2	14
429	Facile immobilization of P ^N N ^N P-Pd pincer complexes in MFU-4 <i>l</i> -OH and the effects of guest loading on Lewis acid catalytic activity. Dalton Transactions, 0, , .	1.6	1
430	Chargeâ€transferâ€regulated bimetal ferroceneâ€based organic frameworks for promoting electrocatalytic oxygen evolution. , 2023, 5, .		18
431	High-loading single cobalt atoms on ultrathin MOF nanosheets for efficient photocatalytic CO2 reduction. Science China Chemistry, 2023, 66, 570-577.	4.2	13
432	Development of a General and Selective Nanostructured Cobalt Catalyst for the Hydrogenation of Benzofurans, Indoles and Benzothiophenes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
433	Role of the Support Effects in Singleâ€Atom Catalysts. Chemistry - an Asian Journal, 2023, 18, .	1.7	5
434	Development of a general and selective nanostructured cobalt catalyst for the hydrogenation of benzofurans, indoles and benzothiophenes. Angewandte Chemie, 0,	1.6	О

#	Article	IF	CITATIONS
435	Tailoring Motif and Channel Terminating Groups of Conventional Copper MOFs for Their Enhanced Activity, Selectivity, and Stability toward the Electroreduction of CO ₂ to Hydrocarbons. ACS Applied Energy Materials, 2023, 6, 1378-1388.	2.5	2
436	Functional Metal/Carbon Composites Derived from Metal–Organic Frameworks: Insight into Structures, Properties, Performances, and Mechanisms. ACS Catalysis, 2023, 13, 1759-1790.	5.5	74
437	Co-based MOF derived metal catalysts: from nano-level to atom-level. Tungsten, 2023, 5, 201-216.	2.0	18
438	Covalent post-synthetic modified metal-organic framework UIO-66-NH2-HNA for selective and sensitive turn-on detection of acetylacetone, S2â^', and PO43â°'. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 438, 114539.	2.0	1
439	Electrocatalytic Porphyrin/Phthalocyanineâ€Based Organic Frameworks: Building Blocks, Coordination Microenvironments, Structureâ€Performance Relationships. Advanced Science, 2023, 10, .	5.6	23
440	Polyoxometalate-encapsulated metal-organic frameworks with diverse cages for the C–H bond oxidation of alkylbenzenes. , 2023, 42, 100011.		2
441	A review on development of metal–organic framework-derived bifunctional electrocatalysts for oxygen electrodes in metal–air batteries. RSC Advances, 2023, 13, 1137-1161.	1.7	18
442	A general approach to 3D-printed single-atom catalysts. , 2023, 2, 129-139.		39
443	Magnetic Cu/Co nanoparticles supported on nitrogenâ€doped porous carbon derived from Cu/Co@aZIF: Investigation of catalytic activity and structural properties. Applied Organometallic Chemistry, 2023, 37, .	1.7	3
444	Early-Stage Formation of the SIFSIX-3-Zn Metal–Organic Framework: An Automated Computational Study. Inorganic Chemistry, 2023, 62, 1210-1217.	1.9	3
445	Copper-Based Metal–Organic Frameworks (MOFs) as an Emerging Catalytic Framework for Click Chemistry. Catalysts, 2023, 13, 130.	1.6	23
446	MOF-Derived CeO2 and CeZrOx Solid Solutions: Exploring Ce Reduction through FTIR and NEXAFS Spectroscopy. Nanomaterials, 2023, 13, 272.	1.9	3
447	Recent advances and future perspectives in MOF-derived single-atom catalysts and their application: a review. Journal of Materials Chemistry A, 2023, 11, 3315-3363.	5.2	28
448	Plasmon-enhanced visible-light photocatalytic antibacterial activity of metal–organic framework/gold nanocomposites. Journal of Materials Chemistry A, 2023, 11, 2391-2401.	5.2	7
449	Critical roles of metal–organic frameworks in improving the Zn anode in aqueous zinc-ion batteries. Chemical Engineering Journal, 2023, 457, 141334.	6.6	43
450	Synergistic Effect of Fe ^{II} and Mn ^{II} Ions in Cyano-Bridged Heterometallic Coordination Polymers on Catalytic Selectivity of Benzene Oxygenation to Phenol. Journal of Physical Chemistry Letters, 2023, 14, 158-163.	2.1	0
451	Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chemical Reviews, 2023, 123, 5948-6002.	23.0	50
452	Polyaromatic Group Embedded Cd(II)-Coordination Polymers for Microwave-Assisted Solvent-Free Strecker-Type Cyanation of Acetals. Molecules, 2023, 28, 945.	1.7	0

#	Article	IF	CITATIONS
453	Supported single-atom catalysts in carbon dioxide electrochemical activation and reduction. , 2023, , 547-560.		0
454	Highly Sensitive and Selective Real-Time Breath Isoprene Detection using the Gas Reforming Reaction of MOF-Derived Nanoreactors. ACS Applied Materials & Interfaces, 2023, 15, 7102-7111.	4.0	9
455	2D Metal–Organic Frameworks as Competent Electrocatalysts for Water Splitting. Small, 2023, 19, .	5.2	31
456	High-Throughput Experimentation, Theoretical Modeling, and Human Intuition: Lessons Learned in Metal–Organic-Framework-Supported Catalyst Design. ACS Central Science, 2023, 9, 266-276.	5.3	5
457	Synthesis of Phenol-Tagged Ruthenium Alkylidene Olefin Metathesis Catalysts for Robust Immobilisation Inside Metal–Organic Framework Support. Catalysts, 2023, 13, 297.	1.6	1
458	Probing gas phase catalysis by atomic metal cations with flow tube mass spectrometry. Mass Spectrometry Reviews, 0, , .	2.8	2
459	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ Reduction. Angewandte Chemie, 2023, 135, .	1.6	14
460	Hybrid nanoarrays of Cu-MOFs@H-substituted graphdiyne with various levels of Lewis acidity for nitrate electroreduction. Chemical Communications, 2023, 59, 4348-4351.	2.2	3
461	A turn-on fluorescent Zn(<scp>ii</scp>) metal–organic framework sensor for quantitative anthrax biomarker detection. Dalton Transactions, 2023, 52, 6067-6076.	1.6	11
462	Single atom Pd1/ZIF-8 catalyst via partial ligand exchange. Nano Research, 2023, 16, 8003-8011.	5.8	4
463	Exclusive Coâ€N4 Sites Confined in Twoâ€dimensional Metalâ€Organic Layers Enabling Highly Selective CO2 Electroreduction at Industrialâ€level Current. Angewandte Chemie, 0, , .	1.6	0
464	Exclusive Coâ€N ₄ Sites Confined in Twoâ€dimensional Metalâ€Organic Layers Enabling Highly Selective CO ₂ Electroreduction at Industrialâ€Level Current. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
465	Mechanism of the application of single-atom catalyst-activated PMS/PDS to the degradation of organic pollutants in water environment: A review. Journal of Cleaner Production, 2023, 397, 136468.	4.6	28
466	Metal-carbon hybrid materials induced persulfate activation: Application, mechanism, and tunable reaction pathways. Water Research, 2023, 234, 119808.	5.3	36
467	Structure-directed growth and morphology of multifunctional metal-organic frameworks. Coordination Chemistry Reviews, 2023, 484, 215101.	9.5	22
468	Engineering sensitive gas sensor based on MOF-derived hollow metal-oxide semiconductor heterostructures. Talanta, 2023, 258, 124442.	2.9	6
469	A new resonance Rayleigh scattering method for phenol based on Cr(III) metal–organic framework probe and 4-aminoantipyrine reaction. Microchemical Journal, 2023, 190, 108747.	2.3	1
470	Recent advances in thermocatalytic hydrogenation of unsaturated organic compounds with Metal-Organic Frameworks-based materials: Construction strategies and related mechanisms. Coordination Chemistry Reviews, 2023, 487, 215159.	9.5	11

#	Article	IF	CITATIONS
471	Insights into the uses of two azine decorated d10-MOFs for corrosion inhibition application on mild steel surface in saline medium: Experimental as well as theoretical investigation. Journal of Molecular Liquids, 2023, 381, 121789.	2.3	11
472	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ Reduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	81
473	Preparation, characterization, and application of supported phosphate acid on the UiO-66-NH2 as an efficient and bifunctional catalyst for the synthesis of acridines. Research on Chemical Intermediates, 2023, 49, 1545-1561.	1.3	1
474	Chemo-Selective Protection of Aldehydes Functional Group Catalyzed by MOFs. , 0, , .		0
475	Metal–organic frameworks as catalysts and biocatalysts for methane oxidation: The current state of the art. Coordination Chemistry Reviews, 2023, 481, 215042.	9.5	19
476	Thermally activated bipyridyl-based Mn-MOFs with Lewis acid–base bifunctional sites for highly efficient catalytic cycloaddition of CO ₂ with epoxides and Knoevenagel condensation reactions. Dalton Transactions, 2023, 52, 3671-3681.	1.6	5
477	Amide Functionalized Mesoporous MOF LOCOM-1 as a Stable Highly Active Basic Catalyst for Knoevenagel Condensation Reaction. ACS Omega, 2023, 8, 6638-6649.	1.6	0
478	Double spatial confinement on ruthenium nanoparticles inside carbon frameworks as durable catalysts for a quasiâ€solidâ€state Li–O ₂ battery. , 2023, 5, .		2
479	Modulating the Catalytic Properties of Bimetallic Atomic Catalysts: Role of Dangling Bonds and Charging. ChemSusChem, 2023, 16, .	3.6	1
480	Quasi-HKUST-1 Nanostructures with Enhanced Catalytic Activity and Water Stability for Bacteria-Infected Diabetic Wound Therapy. ACS Applied Nano Materials, 2023, 6, 3835-3847.	2.4	4
481	Waterâ€Induced Singleâ€Crystal to Singleâ€Crystal Transformation of Ionic Hydrogenâ€Bonded Organic Frameworks with Enhanced Proton Conductivity. Chemistry - A European Journal, 2023, 29, .	1.7	3
482	Microenvironment Engineering of Single/Dualâ€Atom Catalysts for Electrocatalytic Application. Advanced Materials, 2023, 35, .	11.1	56
483	Recent advances in carbon-supported non-precious metal single-atom catalysts for energy conversion electrocatalysis. , 2023, 2, 20220059.		6
484	Recent advances in the regulation of the coordination structures and environment of single-atom catalysts for carbon dioxide reduction reaction. Journal of Materials Chemistry A, 2023, 11, 7949-7986.	5.2	6
485	Microenvironment modulation of cobalt single-atom catalysts for boosting both radical oxidation and electron-transfer process in Fenton-like system. Applied Catalysis B: Environmental, 2023, 329, 122558.	10.8	43
486	Site-coverage dependent single-atom-layer catalysts toward hydrogen production. Chem Catalysis, 2023, 3, 100538.	2.9	3
487	Molecular engineering of Fe-MIL-53 electrocatalyst for effective oxygen evolution reaction. Chemical Engineering Journal, 2023, 462, 142179.	6.6	5
488	Ligand-based modulation of the electronic structure at metal nodes in MOFs to promote the oxygen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 7239-7245.	5.2	16

#	Article	IF	CITATIONS
489	N ontaining Carbons Derived from Microporous Coordination Polymers for Use in Post ombustion Flue Gas Capture. Advanced Functional Materials, 2023, 33, .	7.8	2
491	Impact of Ligands on the Properties of Lanthanide Metalâ€Organic Frameworks. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2023, 649, .	0.6	1
492	Heterogenized Molecular Rhodium Phosphine Catalysts within Metal–Organic Frameworks for Alkene Hydroformylation. ACS Catalysis, 2023, 13, 4193-4204.	5.5	5
493	Structure–Activity Relationship Insights for Organophosphonate Hydrolysis at Ti(IV) Active Sites in Metal–Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 7435-7445.	6.6	9
494	Spin-Resolved Band Structure of Hoffman Clathrate [Fe(pz) ₂ Pt(CN) ₄] as an Essential Tool to Predict Optical Spectra of Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2023, 15, 15848-15862.	4.0	1
495	Interfacial Engineering of Bimetallic Ni/Co-MOFs with H-Substituted Graphdiyne for Ammonia Electrosynthesis from Nitrate. ACS Nano, 2023, 17, 6687-6697.	7.3	18
496	MicMec: Developing the Micromechanical Model to Investigate the Mechanics of Correlated Node Defects in UiO-66. Journal of Physical Chemistry C, 2023, 127, 6060-6070.	1.5	1
498	One-dimensional metal-organic frameworks: Synthesis, structure and application in electrocatalysis. , 2023, 1, 100010.		2
499	Metal Phosphates/Phosphonates for Supercapacitor Applications. Engineering Materials, 2023, , 245-266.	0.3	0
500	Mechanistic Investigation of the Synthesis of Dianionic In-Derived Coordination Polymers. Inorganic Chemistry, 2023, 62, 5881-5885.	1.9	0
501	Computational Screening of Twoâ€Dimensional Metalâ€Organic Frameworks as Efficient Singleâ€Atom Catalysts for Oxygen Reduction Reaction. Chemistry - A European Journal, 2023, 29, .	1.7	2
502	Self-adaptive Metal–Organic Framework Assembles Di-iron Active Sites to Mimic Monooxygenases. Journal of the American Chemical Society, 0, , .	6.6	2
503	Implanting MWCNTs in BiCu-MOFs to enhance electrocatalytic CO2 reduction to formate. Separation and Purification Technology, 2023, 317, 123806.	3.9	2
504	Integration of Metal–Organic Frameworks and Metals: Synergy for Electrocatalysis. Small, 2023, 19, .	5.2	7
505	Dinuclear metal synergistic catalysis for energy conversion. Chemical Society Reviews, 2023, 52, 3170-3214.	18.7	21
506	Axial modulation of Fe sites realizing high-performance oxygen reduction reaction of FeN ₄ catalysts. Journal of Materials Chemistry A, 2023, 11, 11326-11333.	5.2	1
507	Charge Separation in Metalâ€Organic Framework Enables Heterogeneous Thiol Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
508	Charge Separation in Metalâ€Organic Framework Enables Heterogeneous Thiol Catalysis. Angewandte Chemie, 0, , .	1.6	0

#	Article	IF	CITATIONS
509	Dynamic Bond-Directed Synthesis of Stable Mesoporous Metal–Organic Frameworks under Room Temperature. Journal of the American Chemical Society, 2023, 145, 10227-10235.	6.6	5
510	Recent Advance of Atomically Dispersed Dualâ€Metal Sites Carbocatalysts: Properties, Synthetic Materials, Catalytic Mechanisms, and Applications in Persulfateâ€Based Advanced Oxidation Process. Advanced Functional Materials, 2023, 33, .	7.8	3
511	Versatile Triphenylphosphine-Containing Polymeric Catalysts and Elucidation of Structure–Function Relationships. Journal of the American Chemical Society, 2023, 145, 9686-9692.	6.6	4
521	Effects of nanomaterial-based MOFs on single-atom catalysis. , 2023, , 239-259.		0
541	MOFganic Chemistry: Challenges and Opportunities for Metal–Organic Frameworks in Synthetic Organic Chemistry. Chemistry of Materials, 2023, 35, 4883-4896.	3.2	4
555	Progress in photocatalytic CO ₂ reduction based on single-atom catalysts. RSC Advances, 2023, 13, 20889-20908.	1.7	3
560	Pt single atoms meet metal–organic frameworks to enhance electrocatalytic hydrogen evolution activity. Nanoscale Horizons, 0, , .	4.1	0
573	Cellulose acetate-based membrane for wastewater treatment—A state-of-the-art review. Materials Advances, 2023, 4, 4054-4102.	2.6	2
575	Recent advances in metal-organic frameworks for oxygen evolution reaction electrocatalysts. Science China Chemistry, 2023, 66, 2754-2779.	4.2	2
577	Sustainable zinc–air battery chemistry: advances, challenges and prospects. Chemical Society Reviews, 2023, 52, 6139-6190.	18.7	24
579	Synthesis, characterization & catalysis of ITQ 2D metal–organic frameworks and spectroscopic & photodynamic properties of their composites with organic dyes. Journal of Materials Chemistry C, O, , .	2.7	0
580	Single-atom site catalysis in Li–S batteries. Physical Chemistry Chemical Physics, 2023, 25, 25942-25960.	1.3	1
581	Amazing enhancement of OER performances: creating a well-designed functional Ni and N-doped carbon layer as a support material for fabricating a NiFe-LDH electrocatalyst. Chemical Communications, 2023, 59, 11572-11575.	2.2	1
587	The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Research, 0, , .	5.8	16
600	Synthesis of metal organic frameworks and their applications in drug delivery. AIP Conference Proceedings, 2023, , .	0.3	0
603	Atomically precise metal nanoclusters as catalysts for electrocatalytic CO ₂ reduction. Green Chemistry, 2024, 26, 122-163.	4.6	2
614	Harnessing single-atom catalysts for CO ₂ electroreduction: a review of recent advances. , 2024, 2, 71-93.		0
622	Heterogenization of molecular catalysts within porous solids: the case of Ni-catalyzed ethylene oligomerization from zeolites to metal–organic frameworks. Chemical Society Reviews, 2023, 52, 8059-8076.	18.7	1

#	Article	IF	CITATIONS
637	Metal–organic framework-derived metal oxides for resistive gas sensing: a review. Physical Chemistry Chemical Physics, 0, , .	1.3	0
654	Ferrocene carboxylic acid-doped copper MOFs as a nanozyme with high peroxidase-mimicking activity for catalytic dye degradation. New Journal of Chemistry, 0, , .	1.4	Ο
675	MOF-derived carbonaceous materials. , 2024, , 63-84.		0
678	Introduction to single-atom catalysts. , 2024, , 1-33.		Ο

Porous coordination polymers in energy storage and conversion. , 2024, , 207-235.