Adjunct Immunotherapies for the Management of Seven

Cell Reports Medicine 1, 100016

DOI: 10.1016/j.xcrm.2020.100016

Citation Report

#	Article	IF	CITATIONS
1	PI3Kδ Inhibition as a Potential Therapeutic Target in COVID-19. Frontiers in Immunology, 2020, 11, 2094.	2.2	23
2	Harnessing Memory NK Cell to Protect Against COVID-19. Frontiers in Pharmacology, 2020, 11, 1309.	1.6	31
3	Immune dysfunction following COVID-19, especially in severe patients. Scientific Reports, 2020, 10, 15838.	1.6	56
4	Immune system changes during COVID-19 recovery play key role in determining disease severity. International Journal of Immunopathology and Pharmacology, 2020, 34, 205873842096649.	1.0	27
5	Clinical efficacy of intravenous immunoglobulin therapy in critical ill patients with COVIDâ€19: a multicenter retrospective cohort study. Clinical and Translational Immunology, 2020, 9, e1192.	1.7	111
6	Host-pathogen interaction in COVID-19: Pathogenesis, potential therapeutics and vaccination strategies. Immunobiology, 2020, 225, 152008.	0.8	65
7	Pharmaco-Immunomodulatory Therapy in COVID-19. Drugs, 2020, 80, 1267-1292.	4.9	208
8	The recent challenges of highly contagious COVIDâ \in 19, causing respiratory infections: Symptoms, diagnosis, transmission, possible vaccines, animal models, and immunotherapy. Chemical Biology and Drug Design, 2020, 96, 1187-1208.	1.5	91
9	Obesity, COVID-19 and immunotherapy: the complex relationship!. Immunotherapy, 2020, 12, 1105-1109.	1.0	18
10	SOCS, Intrinsic Virulence Factors, and Treatment of COVID-19. Frontiers in Immunology, 2020, 11, 582102.	2.2	31
11	The effect of tocilizumab on cytokine release syndrome in COVID-19 patients. Pharmacological Reports, 2020, 72, 1529-1537.	1.5	8
12	Cancer and Immune Checkpoint Inhibitor Treatment in the Era of SARS-CoV-2 Infection. Cancers, 2020, 12, 3383.	1.7	11
13	Nonâ€steroidal antiâ€inflammatory drugs, prostaglandins, and COVIDâ€19. British Journal of Pharmacology, 2020, 177, 4899-4920.	2.7	73
14	Potential Anti-COVID-19 Therapeutics that Block the Early Stage of the Viral Life Cycle: Structures, Mechanisms, and Clinical Trials. International Journal of Molecular Sciences, 2020, 21, 5224.	1.8	42
15	Intravenous immunoglobulin immunotherapy for coronavirus diseaseâ€19 (COVIDâ€19). Clinical and Translational Immunology, 2020, 9, e1198.	1.7	37
16	Interleukin-6: Molecule in the Intersection of Cancer, Ageing and COVID-19. International Journal of Molecular Sciences, 2020, 21, 7937.	1.8	45
17	Case Report: Canakinumab for the Treatment of a Patient With COVID-19 Acute Respiratory Distress Syndrome. Frontiers in Immunology, 2020, 11, 1942.	2.2	18
18	Hydroxychloroquine and dexamethasone in COVID-19: who won and who lost?. Clinical and Molecular Allergy, 2020, 18, 17.	0.8	27

#	Article	IF	CITATIONS
19	Blocking of the High-Affinity Interaction-Synapse Between SARS-CoV-2 Spike and Human ACE2 Proteins Likely Requires Multiple High-Affinity Antibodies: An Immune Perspective. Frontiers in Immunology, 2020, 11, 570018.	2.2	43
20	A consideration of convalescent plasma and plasma derivatives in the care of Severely-ill patients with COVID-19. Transfusion and Apheresis Science, 2020, 59, 102936.	0.5	14
21	Immunotherapy for SARS-CoV-2: potential opportunities. Expert Opinion on Biological Therapy, 2020, 20, 1111-1116.	1.4	35
22	Identification of Potent and Safe Antiviral Therapeutic Candidates Against SARS-CoV-2. Frontiers in Immunology, 2020, 11, 586572.	2.2	69
23	Symptomatic Protective Action of Glycyrrhizin (Licorice) in COVID-19 Infection?. Frontiers in Immunology, 2020, 11, 1239.	2.2	104
24	Autophagy as an emerging target for COVID-19: lessons from an old friend, chloroquine. Autophagy, 2020, 16, 2260-2266.	4.3	54
25	Flattening the COVID-19 Curve With Natural Killer Cell Based Immunotherapies. Frontiers in Immunology, 2020, 11, 1512.	2.2	126
26	On the use of immune checkpoint inhibitors in patients with viral infections including COVID-19. , 2020, 8, e001145.		48
27	Thalidomide-Revisited: Are COVID-19 Patients Going to Be the Latest Victims of Yet Another Theoretical Drug-Repurposing?. Frontiers in Immunology, 2020, 11, 1248.	2.2	37
28	Potential of regulatory T-cell-based therapies in the management of severe COVID-19. European Respiratory Journal, 2020, 56, 2002182.	3.1	83
29	Targeting human TLRs to combat COVIDâ€19: A solution?. Journal of Medical Virology, 2021, 93, 615-617.	2.5	91
30	Neutralizing and cross-reacting antibodies: implications for immunotherapy and SARS-CoV-2 vaccine development. Human Vaccines and Immunotherapeutics, 2021, 17, 84-87.	1.4	19
31	Revisiting pharmacological potentials of <scp><i>Nigella sativa</i></scp> seed: A promising option for <scp>COVID</scp> â€19 prevention and cure. Phytotherapy Research, 2021, 35, 1329-1344.	2.8	52
32	COVID-19 and Hyperimmune sera: A feasible plan B to fight against coronavirus. International Immunopharmacology, 2021, 90, 107220.	1.7	18
33	Human immunology and immunotherapy: main achievements and challenges. Cellular and Molecular Immunology, 2021, 18, 805-828.	4.8	96
34	Intravenous Immunoglobulins at the Crossroad of Autoimmunity and Viral Infections. Microorganisms, 2021, 9, 121.	1.6	24
35	Review of pharmacologic and immunologic agents in the management of COVID-19. Biosafety and Health, 2021, 3, 148-155.	1.2	7
36	Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. Journal of Biomedical Science, 2021, 28, 9.	2.6	167

#	Article	IF	CITATIONS
37	Low compositions of human toll-like receptor $7/8$ -stimulating RNA motifs in the MERS-CoV, SARS-CoV and SARS-CoV-2 genomes imply a substantial ability to evade human innate immunity. PeerJ, 2021, 9, e11008.	0.9	2
38	Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. Nano Today, 2021, 36, 101051.	6.2	61
39	A Comparative Systematic Review of COVID-19 and Influenza. Viruses, 2021, 13, 452.	1.5	30
40	Natural Products from Medicinal Plants with Anti-Human Coronavirus Activities. Molecules, 2021, 26, 1754.	1.7	23
41	Epigenetic Lens to Visualize the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Infection in COVID-19 Pandemic. Frontiers in Genetics, 2021, 12, 581726.	1.1	28
42	Safety of current immune checkpoint inhibitors in non-small cell lung cancer. Expert Opinion on Drug Safety, 2021, 20, 651-667.	1.0	4
43	Modeling Dendritic Cell Pulsed Immunotherapy for Mice with Melanomaâ€"Protocols for Success and Recurrence. Applied Sciences (Switzerland), 2021, 11, 3199.	1.3	0
44	Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. International Journal of Molecular Sciences, 2021, 22, 4190.	1.8	40
45	Polymer-based nano-therapies to combat COVID-19 related respiratory injury: progress, prospects, and challenges. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1219-1249.	1.9	19
47	Exosomes contribution in COVID-19 patients' treatment. Journal of Translational Medicine, 2021, 19, 234.	1.8	25
48	Potential Therapeutic Targets and Vaccine Development for SARS-CoV-2/COVID-19 Pandemic Management: A Review on the Recent Update. Frontiers in Immunology, 2021, 12, 658519.	2.2	63
49	Natural killer cells play an important role in virus infection control: Antiviral mechanism, subset expansion and clinical application. Clinical Immunology, 2021, 227, 108727.	1.4	39
50	To Trap a Pathogen: Neutrophil Extracellular Traps and Their Role in Mucosal Epithelial and Skin Diseases. Cells, 2021, 10, 1469.	1.8	16
51	An overview of some potential immunotherapeutic options against COVID-19. International Immunopharmacology, 2021, 95, 107516.	1.7	7
52	COVID-19 Global Pandemic Fight by Drugs: A Mini-Review on Hope and Hype. Mini-Reviews in Organic Chemistry, 2021, 18, .	0.6	0
53	The contributory role of lymphocyte subsets, pathophysiology of lymphopenia and its implication as prognostic and therapeutic opportunity in COVID-19. International Immunopharmacology, 2021, 95, 107586.	1.7	26
54	Immunomodulation as a Potent COVID-19 Pharmacotherapy: Past, Present and Future. Journal of Inflammation Research, 2021, Volume 14, 3419-3428.	1.6	25
55	The microbiota-related coinfections in COVID-19 patients: a real challenge. Beni-Suef University Journal of Basic and Applied Sciences, 2021, 10, 47.	0.8	9

#	Article	IF	Citations
56	Surface Engineering of Graphene through Heterobifunctional Supramolecular-Covalent Scaffolds for Rapid COVID-19 Biomarker Detection. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43696-43707.	4.0	13
57	Cellular Immunotherapy and the Lung. Vaccines, 2021, 9, 1018.	2.1	5
58	Intravenous immunoglobulin as an important adjunct in the prevention and therapy of coronavirus 2019 disease. Scandinavian Journal of Immunology, 2021, 94, e13101.	1.3	16
60	Efficacy and Safety of Azithromycin for the Treatment of COVID-19: A Systematic Review and Meta-analysis. Tuberculosis and Respiratory Diseases, 2021, 84, 299-316.	0.7	13
61	Immunotherapies and COVID-19 related Neurological manifestations: A Comprehensive Review Article. Journal of Immunoassay and Immunochemistry, 2020, 41, 960-975.	0.5	6
62	Autoimmunity as the comet tail of COVID-19 pandemic. World Journal of Clinical Cases, 2020, 8, 3621-3644.	0.3	50
64	Purification of polyclonal immunoglobulin G from human serum using peptideâ€based adsorbents. AICHE Journal, 2021, 67, e17482.	1.8	1
66	Use of Intravenous Immunoglobulin in the Treatment of Severe COVID-19 Disease – A Case Series. European Journal of Medical and Health Sciences, 2021, 3, 38-44.	0.1	0
67	Immunopathology and Immunopathogenesis of COVID-19, what we know and what we should learn. Gene Reports, 2021, 25, 101417.	0.4	15
68	Non-clinical safety assessment and in vivo biodistribution of CoviFab, an RBD-specific F(ab′)2 fragment derived from equine polyclonal antibodies. Toxicology and Applied Pharmacology, 2022, 434, 115796.	1.3	3
69	Safety and Seroconversion of Immunotherapies against SARS-CoV-2 Infection: A Systematic Review and Meta-Analysis of Clinical Trials. Pathogens, 2021, 10, 1537.	1.2	19
70	In Silico Analyses on the Comparative Potential of Therapeutic Human Monoclonal Antibodies Against Newly Emerged SARS-CoV-2 Variants Bearing Mutant Spike Protein. Frontiers in Immunology, 2021, 12, 782506.	2.2	24
71	Genetic Predisposition and Inflammatory Inhibitors in COVID-19: Where Do We Stand?. Biomedicines, 2022, 10, 242.	1.4	14
72	Treating COVID-19: Evolving approaches to evidence in a pandemic. Cell Reports Medicine, 2022, 3, 100533.	3.3	7
73	Toll-Like Receptors (TLRs) as Therapeutic Targets for Treating SARS-CoV-2: An Immunobiological Perspective. Advances in Experimental Medicine and Biology, 2021, 1352, 87-109.	0.8	11
75	Impact of the COVID-19 pandemic on daily life, mood, and behavior of adults with Down syndrome. Disability and Health Journal, 2022, 15, 101278.	1.6	12
76	SARS-CoV-2 Induces Cytokine Responses in Human Basophils. Frontiers in Immunology, 2022, 13, 838448.	2.2	11
77	Cellular Therapy: The Hope for Covid-19. Avicenna Journal of Medical Biotechnology, 0, , .	0.2	2

#	Article	IF	Citations
78	A Comprehensive Investigation Regarding the Differentiation of the Procurable COVID-19 Vaccines. AAPS PharmSciTech, 2022, 23, 95.	1.5	3
79	Immunotherapy and CRISPR Cas Systems: Potential Cure of COVID-19?. Drug Design, Development and Therapy, 2022, Volume 16, 951-972.	2.0	4
80	MOLECULAR DOCKING STUDY ON PHYTOCONSTITUENTS OF TRADITIONAL AYURVEDIC DRUG TULSI (OCIMUM) Pharmacy and Pharmaceutical Sciences, 0, , 44-50.	Tj ETQq0 0.3	0 0 rgBT /Ove 6
81	Severe COVID-19 is characterised by inflammation and immature myeloid cells early in disease progression. Heliyon, 2022, 8, e09230.	1.4	16
82	Lipid rafts as viral entry routes and immune platforms: A double-edged sword in SARS-CoV-2 infection?. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2022, 1867, 159140.	1.2	10
83	Inhibitory Immune Checkpoint Molecules and Exhaustion of T cells in COVID-19. Physiological Research, 2021, 70, S227-S247.	0.4	13
84	Embelin Alleviates Severe Airway Inflammation in OVA-LPS-Induced Rat Model of Allergic Asthma. Journal of Asthma and Allergy, 2021, Volume 14, 1511-1525.	1.5	4
85	Cell movement and respiratory diseases. , 2022, , 237-244.		O
86	Recent advances in passive immunotherapies for COVID-19: The Evidence-Based approaches and clinical trials. International Immunopharmacology, 2022, 109, 108786.	1.7	7
87	Lactoferrin as Immune-Enhancement Strategy for SARS-CoV-2 Infection in Alzheimer's Disease Patients. Frontiers in Immunology, 2022, 13, 878201.	2.2	5
88	Therapeutic approaches and vaccination in fighting COVID-19 infections: A review. Gene Reports, 2022, 27, 101619.	0.4	3
89	Reviving the mutual impact of SARS-COV-2 and obesity on patients: From morbidity to mortality. Biomedicine and Pharmacotherapy, 2022, 151, 113178.	2.5	8
90	Efficacy of tocilizumab therapy in severe COVID-19 pneumonia patients and determination of the prognostic factors affecting 30 days mortality. Marmara Medical Journal, 0, , .	0.2	0
91	Immunotherapy as an emerging and promising tool against viral infections. , 2023, , 625-651.		O
92	Incursions by severe acute respiratory syndrome coronavirus-2 on the host anti-viral immunity during mild, moderate, and severe coronavirus disease 2019 disease. Exploration of Medicine, 0, , 794-811.	1.5	1
93	Thalidomide for the treatment of COVID-19 pneumonia: A randomized controlled clinical trial. Advanced Biomedical Research, 2023, 12, 14.	0.2	0
94	Role of natural killer and B cell interaction in inducing pathogen specific immune responses. International Reviews of Immunology, 2023, 42, 304-322.	1.5	1
95	Two Resveratrol Oligomers Inhibit Cathepsin L Activity to Suppress SARS-CoV-2 Entry. Journal of Agricultural and Food Chemistry, 2023, 71, 5535-5546.	2.4	4

#	Article	IF	CITATIONS
99	Plant Immunoenhancers: Promising Ethnopharmacological Candidates for Anti-SARS-CoV-2 Activity. , 2023, , 39-84.		0
102	Passive antibody therapy in emerging infectious diseases. Frontiers of Medicine, 2023, 17, 1117-1134.	1.5	2