An Enhanced Receiver to Decode Superposed LoRa-Like

IEEE Internet of Things Journal 7, 7419-7431

DOI: 10.1109/jiot.2020.2986164

Citation Report

#	Article	IF	CITATIONS
1	An Open-Source LoRa Physical Layer Prototype on GNU Radio. , 2020, , .		55
2	Multiuser Detection for Downlink Communication in LoRa-Like Networks. IEEE Access, 2020, 8, 199001-199015.	4.2	9
3	On the Advantage of Coherent LoRa Detection in the Presence of Interference. IEEE Internet of Things Journal, 2021, 8, 11581-11593.	8.7	28
4	Theoretical Performance of LoRa System in Multipath and Interference Channels. IEEE Internet of Things Journal, 2022, 9, 6830-6843.	8.7	7
5	A Low-Complexity LoRa Synchronization Algorithm Robust to Sampling Time Offsets. IEEE Internet of Things Journal, 2022, 9, 3756-3769.	8.7	23
6	A reinforcement learning based collision avoidance mechanism to superposed LoRa signals in distributed massive IoT systems. IEICE Communications Express, 2021, 10, 289-294.	0.4	3
7	A Dual Waveform Differential Chirp Spread Spectrum Transceiver for LEO Satellite Communications. , 2021, , .		1
8	Effect of noise, partial synchronization, and sampling frequency inaccuracies on amplitude measurement of multiple linear chirp signals. Measurement: Journal of the International Measurement Confederation, 2021, 181, 109635.	5.0	1
9	Interference Cancellation for LoRa Gateways and Impact on Network Capacity. IEEE Access, 2021, 9, 128133-128146.	4.2	17
10	Enhancing the Reliability of Dense LoRaWAN Networks With Multi-User Receivers. IEEE Open Journal of the Communications Society, 2021, 2, 2725-2738.	6.9	4
11	CoLoRa: Enabling Multi-Packet Reception in LoRa Networks. IEEE Transactions on Mobile Computing, 2021, , 1-1.	5.8	1
12	A Downlink Non Orthogonal Multiple Access for Chirp Spread Spectrum Communications. , 2020, , .		4
13	A Spectral Efficiency Enhancement for Chirp Spread Spectrum Downlink Communications. , 2020, , .		1
14	Hybrid Chirp Signal Design for Improved Long-Range (LoRa) Communications. Signals, 2022, 3, 1-10.	1.9	5
15	Simple and Efficient LoRa Receiver Scheme for Multipath Channel. IEEE Internet of Things Journal, 2022, 9, 15771-15785.	8.7	2
16	A New LoRa-like Transceiver Suited for LEO Satellite Communications. Sensors, 2022, 22, 1830.	3.8	10
17	Differential Chirp Spread Spectrum to perform Acoustic Long Range Underwater Localization and Communication. , 2021, , .		2
18	A Two-User Successive Interference Cancellation LoRa Receiver with Soft-Decoding. , 2021, , .		1

#	Article	IF	CITATIONS
19	A Novel Approach for Cancelation of Nonaligned Inter Spreading Factor Interference in LoRa Systems. IEEE Open Journal of the Communications Society, 2022, 3, 718-728.	6.9	4
20	Interference Mitigation and Decoding Through Gateway Diversity in LoRaWAN. IEEE Transactions on Wireless Communications, 2022, 21, 9068-9081.	9.2	10
21	A Communication Framework for Image Transmission through LPWAN Technology. Electronics (Switzerland), 2022, 11, 1764.	3.1	2
22	Recent Advances in LoRa: A Comprehensive Survey. ACM Transactions on Sensor Networks, 2022, 18, 1-44.	3.6	22
23	A Maximum-Likelihood-Based Two-User Receiver for LoRa Chirp Spread-Spectrum Modulation. IEEE Internet of Things Journal, 2022, 9, 22993-23007.	8.7	3
24	A Reinforcement Learning Based Transmission Parameter Selection and Energy Management for Long Range Internet of Things. Sensors, 2022, 22, 5662.	3.8	1
25	A LoRa Network Emulator Using Software Defined Radio. , 2022, , .		0
26	Efficient LoRa-like Transmitter Stacks for SDR Applications. , 2022, , .		0
27	Successive Interference Cancellation for Signal Demodulation of Multiple LPWA Systems. , 2022, , .		0
28	Iterative Semi-Coherent Receiver for Coded LoRa Systems. IEEE Communications Letters, 2023, 27, 971-975.	4.1	0
29	Interference Cancelation for Coexistence of LoRaWAN With Wireless Power Transfer. IEEE Internet of Things Journal, 2023, 10, 13109-13122.	8.7	1
30	Nonorthogonal Replication Scheme for ALOHA Uplink in LPWAN. IEEE Transactions on Industrial Informatics, 2024, 20, 1575-1584.	11.3	0
31	Spreading Factor Optimization for Interference Mitigation in Dense Indoor LoRa Networks., 2023,,.		2
32	A Survey on Scalable LoRaWAN for Massive IoT: Recent Advances, Potentials, and Challenges. IEEE Communications Surveys and Tutorials, 2023, 25, 1841-1876.	39.4	28
33	Simple Peak Interference Cancellation (SPIC): Interference Cancellation Prior to Packet Decoding in LoRa Networks. , 2023, , .		0
34	An LR-FHSS Receiver for a Massive IoT Connectivity. , 2023, , .		О