The select of internal architecture for porous Ti alloy sc mechanical properties and permeability

Materials and Design 192, 108754

DOI: 10.1016/j.matdes.2020.108754

Citation Report

#	Article	IF	Citations
1	Microstructural features and compressive properties of SLM Ti6Al4V lattice structures. Surface and Coatings Technology, 2020, 403, 126419.	2.2	47
2	Structural and Material Determinants Influencing the Behavior of Porous Ti and Its Alloys Made by Additive Manufacturing Techniques for Biomedical Applications. Materials, 2021, 14, 712.	1.3	37
3	Functional repair of critically sized femoral defects treated with bioinspired titanium gyroid-sheet scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116, 104380.	1.5	24
4	Mechanical properties and fluid permeability of gyroid and diamond lattice structures for intervertebral devices: functional requirements and comparative analysis. Science and Technology of Advanced Materials, 2021, 22, 285-300.	2.8	29
5	Biomorphic porous Ti6Al4V gyroid scaffolds for bone implant applications fabricated by selective laser melting. Progress in Additive Manufacturing, 2021, 6, 455-469.	2.5	19
6	Microstructure and compressive properties of Alâ€Si10â€Mg lattice structures manufactured using selective laser melting. Materialwissenschaft Und Werkstofftechnik, 2021, 52, 762-771.	0.5	2
7	Mechanical and energy absorption properties of functionally graded lattice structures based on minimal curved surfaces. International Journal of Advanced Manufacturing Technology, 2022, 118, 995-1008.	1.5	17
8	Effects of porosity gradient pattern on mechanical performance of additive manufactured Ti-6Al-4V functionally graded porous structure. Materials and Design, 2021, 208, 109911.	3.3	30
9	Biodegradable ZnLiCa ternary alloys for critical-sized bone defect regeneration at load-bearing sites: In vitro and in vivo studies. Bioactive Materials, 2021, 6, 3999-4013.	8.6	40
10	Surface treatment of 3D printed Cu-bearing Ti alloy scaffolds for application in tissue engineering. Materials and Design, 2022, 213, 110350.	3.3	13
11	Spray-deposited Ag nanoparticles on micro/nano structured Ti6Al4V surface for enhanced bactericidal property and cytocompatibility. Surface and Coatings Technology, 2022, 431, 128010.	2.2	9
12	Topological design, mechanical responses and mass transport characteristics of high strength-high permeability TPMS-based scaffolds. International Journal of Mechanical Sciences, 2022, 217, 107023.	3.6	27
13	Manufacturing of porous titanium using friction stir welding. Materials Letters, 2022, 310, 131430.	1.3	3
14	Challenges in computational fluid dynamics applications for bone tissue engineering. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, 20210607.	1.0	6
15	Effect of Surface Curvature on the Mechanical and Mass-Transport Properties of Additively Manufactured Tissue Scaffolds with Minimal Surfaces. ACS Biomaterials Science and Engineering, 2022, 8, 1623-1643.	2.6	12
16	Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. International Journal of Extreme Manufacturing, 2022, 4, 022001.	6.3	139
17	Surface functionalization of 3D printed Ti scaffold with Zn-containing mesoporous bioactive glass. Surface and Coatings Technology, 2022, 435, 128236.	2.2	14
18	Ultra-high specific strength Ti6Al4V alloy lattice material manufactured via selective laser melting. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142956.	2.6	14

#	Article	IF	Citations
19	On the design evolution of hip implants: A review. Materials and Design, 2022, 216, 110552.	3.3	60
20	Biomedical porous scaffold fabrication using additive manufacturing technique: Porosity, surface roughness and process parameters optimization. International Journal of Lightweight Materials and Manufacture, 2022, 5, 384-396.	1.3	8
21	Multi-objective Shape Optimization of Bone Scaffolds: Enhancement of Mechanical Properties and Permeability. Acta Biomaterialia, 2022, 146, 317-340.	4.1	18
22	Application of finite element analysis for optimizing selection and design of Ti-based biometallic alloys for fractures and tissues rehabilitation: a review. Journal of Materials Research and Technology, 2022, 19, 121-139.	2.6	8
23	Anisotropic mechanical and mass-transport performance of Ti6Al4V plate-lattice scaffolds prepared by laser powder bed fusion. Acta Biomaterialia, 2022, 148, 374-388.	4.1	13
24	Pore Strategy Design of a Novel NiTi-Nb Biomedical Porous Scaffold Based on a Triply Periodic Minimal Surface. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	12
25	Osteoimmunityâ€Regulating Biomimetically Hierarchical Scaffold for Augmented Bone Regeneration. Advanced Materials, 2022, 34, .	11.1	90
26	Additive manufacturing of functionally graded porous titanium scaffolds for dental applications. , 2022, 139, 213018.		13
27	Self-lubricating coating design strategy for titanium alloy by additive manufacturing. Applied Surface Science, 2022, 602, 154333.	3.1	7
28	Structural design and performance study of primitive triply periodic minimal surfaces Ti6Al4V biomimetic scaffold. Scientific Reports, 2022, 12, .	1.6	1
29	Ti6Al4V orthopedic implant with biomimetic heterogeneous structure via 3D printing for improving osteogenesis. Materials and Design, 2022, 221, 110964.	3.3	11
30	Geometry-Based Computational Fluid Dynamic Model for Predicting the Biological Behavior of Bone Tissue Engineering Scaffolds. Journal of Functional Biomaterials, 2022, 13, 104.	1.8	9
31	Effect of laser scanning speed on microstructure and mechanical properties of SLM porous Ti-5Al-5V-5Mo-3Cr-1Fe alloy. Frontiers in Materials, 0, 9, .	1.2	1
32	Structure-property relationships of imperfect additively manufactured lattices based on triply periodic minimal surfaces. Materials and Design, 2022, 222, 111036.	3.3	8
33	Self-lubricating coating with zero weight loss performance on additively manufactured Ti-6Al-4V. Surface and Coatings Technology, 2022, 447, 128847.	2.2	4
34	Biomechanical behavior of customized scaffolds: A three-dimensional finite element analysis. Materials and Design, 2022, 223, 111173.	3.3	4
35	DESIGNING OF DIFFERENT TYPES OF GYROID SCAFFOLD ARCHITECTURE TO ACHIEVE PATIENT-SPECIFIC OSSEOINTEGRATION FRIENDLY MECHANICAL ENVIRONMENT. International Journal for Multiscale Computational Engineering, 2023, 21, 1-15.	0.8	2
36	Study on bioactivity of SLMed variable gradient TC4 biomedical porous scaffolds with micro-arc oxidation treatment. Anti-Corrosion Methods and Materials, 2022, 69, 660-666.	0.6	6

#	ARTICLE	IF	CITATIONS
37	Relationship between the Composition and Elastic Modulus of TiZrTa Alloys for Implant Materials. Metals, 2022, 12, 1582.	1.0	2
38	Modular-based gradient scaffold design and experimental studies for tissue engineering: enabling customized structures and mechanical properties. Journal of Materials Science, 0, , .	1.7	0
39	Structural Design and Mechanical Properties Analysis of Fused Triply Periodic Minimal Surface Porous Scaffold. Journal of Materials Engineering and Performance, 2023, 32, 4083-4096.	1.2	2
40	Mechanical Characterisation and Numerical Modelling of TPMS-Based Gyroid and Diamond Ti6Al4V Scaffolds for Bone Implants: An Integrated Approach for Translational Consideration. Bioengineering, 2022, 9, 504.	1.6	14
41	Optimal microstructure and mechanical properties of open-cell porous titanium structures produced by selective laser melting. Frontiers in Bioengineering and Biotechnology, $0,10,10$	2.0	1
42	Mechanical and permeability properties of porous scaffold developed by Voronoi tessellation for bone tissue engineering. Journal of Materials Chemistry B, O, , .	2.9	3
43	Wall Shear Stress Analysis and Optimization in Tissue Engineering TPMS Scaffolds. Materials, 2022, 15, 7375.	1.3	3
44	Gyroid-based functionally graded porous titanium scaffolds for dental application: Design, simulation and characterizations. Materials and Design, 2022, 224, 111300.	3.3	12
45	Wide-range tuning of the mechanical properties of TPMS lattice structures through frequency variation. Materials and Design, 2022, 224, 111370.	3.3	3
46	Design of bone-like continuous gradient porous scaffold based on triply periodic minimal surfaces. Journal of Materials Research and Technology, 2022, 21, 3650-3665.	2.6	15
47	Investigating mechanical and biological properties of additive manufactured Ti6Al4V lattice structures for orthopedic implants. Journal of Materials Research, 2023, 38, 507-518.	1.2	2
48	Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Progress in Materials Science, 2023, 134, 101072.	16.0	32
49	Auxetic metamaterials for bone-implanted medical devices: Recent advances and new perspectives. European Journal of Mechanics, A/Solids, 2023, 98, 104905.	2.1	18
50	Enhancement in the fatigue resistances of triply periodic surfaces-based scaffolds. International Journal of Mechanical Sciences, 2023, 245, 108119.	3.6	9
51	Gradient scaffolds developed by parametric modeling with selective laser sintering. International Journal of Mechanical Sciences, 2023, 248, 108221.	3.6	9
52	Compressive behavior and property prediction of gradient cellular structures fabricated by selective laser melting. Materials Today Communications, 2023, 35, 105853.	0.9	3
53	The ordered nanoporous CrFe alloy with rapid strain hardening ability. Journal of Materials Research and Technology, 2023, 24, 1679-1691.	2.6	0
54	Corrosion fatigue behavior of porous Cu-bearing Ti alloy fabricated by selective laser melting. Journal of Materials Research and Technology, 2023, 23, 1630-1643.	2.6	5

#	Article	IF	CITATIONS
55	Research progress on the design and performance of porous titanium alloy bone implants. Journal of Materials Research and Technology, 2023, 23, 2626-2641.	2.6	28
56	Numerical Simulation and Experimental Study of Porous Titanium Implants under Compressive Loading Conditions. Journal of Materials Engineering and Performance, 0, , .	1.2	0
57	Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration. Bioactive Materials, 2023, 25, 374-386.	8.6	13
58	Additive manufacturing of titanium-based lattice structures for medical applications – A review. Bioprinting, 2023, 30, e00267.	2.9	10
59	Enhanced Osteogenic Properties of Bone Repair Scaffolds through Synergistic Effects of Mechanical and Biochemical Stimulation. Advanced Engineering Materials, 2023, 25, .	1.6	0
61	Plate lattice metamaterials. , 2023, , 267-323.		O
65	Research Progress on Mechanical Properties of 3D Printed Biomedical Titanium Alloys. Journal of Materials Engineering and Performance, 0, , .	1.2	0
72	Investigating the fatigue behavior of 3D-printed bone scaffolds. Journal of Materials Science, 2023, 58, 12929-12953.	1.7	0
86	Analysis ofÂLattices Based onÂTPMS forÂBone Scaffold. Lecture Notes in Bioengineering, 2023, , 59-67.	0.3	0