Well-Defined Gold Nanorod/Polymer Hybrid Coating w Photothermal Bactericidal Properties for Treating an In

ACS Nano 14, 2265-2275 DOI: 10.1021/acsnano.9b09282

Citation Report

#	Article	IF	CITATIONS
1	Fe-TCPP@CS nanoparticles as photodynamic and photothermal agents for efficient antimicrobial therapy. Biomaterials Science, 2020, 8, 6526-6532.	2.6	36
2	Recent advances: peptides and self-assembled peptide-nanosystems for antimicrobial therapy and diagnosis. Biomaterials Science, 2020, 8, 4975-4996.	2.6	69
3	Photoresponsive Materials for Antibacterial Applications. Cell Reports Physical Science, 2020, 1, 100245.	2.8	102
4	Synergistic Chemo-Photothermal Antibacterial Effects of Polyelectrolyte-Functionalized Gold Nanomaterials. ACS Applied Bio Materials, 2020, 3, 7168-7177.	2.3	6
5	Self-Propelled Active Photothermal Nanoswimmer for Deep-Layered Elimination of Biofilm In Vivo. Nano Letters, 2020, 20, 7350-7358.	4.5	108
6	An acidity-responsive polyoxometalate with inflammatory retention for NIR-II photothermal-enhanced chemodynamic antibacterial therapy. Biomaterials Science, 2020, 8, 6093-6099.	2.6	68
7	Biofilm-Responsive Polymeric Nanoparticles with Self-Adaptive Deep Penetration for <i>In Vivo</i> Photothermal Treatment of Implant Infection. Chemistry of Materials, 2020, 32, 7725-7738.	3.2	96
8	Functionalized biomaterials to combat biofilms. Biomaterials Science, 2020, 8, 4052-4066.	2.6	42
9	Nanomaterials for the Photothermal Killing of Bacteria. Nanomaterials, 2020, 10, 1123.	1.9	98
10	Mild-heat-inducible sequentially released liposomal complex remodels the tumor microenvironment and reinforces anti-breast-cancer therapy. Biomaterials Science, 2020, 8, 3916-3925.	2.6	16
11	Photothermal bactericidal surfaces: killing bacteria using light instead of biocides. Biomaterials Science, 2021, 9, 10-22.	2.6	109
12	Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously. Journal of Materials Science and Technology, 2021, 70, 24-38.	5.6	93
13	Plasmonically Modulated Gold Nanostructures for Photothermal Ablation of Bacteria. Advanced Healthcare Materials, 2021, 10, e2001158.	3.9	46
14	Recent development of nanomedicine for the treatment of bacterial biofilm infections. View, 2021, 2, 20200065.	2.7	73
15	Near-Infrared Light Brightens Bacterial Disinfection: Recent Progress and Perspectives. ACS Applied Bio Materials, 2021, 4, 3937-3961.	2.3	60
16	Inorganic-polymer composite coatings for biomedical devices. Smart Materials in Medicine, 2021, 2, 1-14.	3.7	32
17	The recent progress in photothermal-triggered bacterial eradication. Biomaterials Science, 2021, 9, 1995-2008.	2.6	33
18	Cascade catalytic nanoplatform constructed by laterally-functionalized pillar[5]arenes for antibacterial chemodynamic therapy. Journal of Materials Chemistry B, 2021, 9, 5069-5075.	2.9	22

#	Article	IF	CITATIONS
19	A photo-triggered antifungal nanoplatform with efflux pump and heat shock protein reversal activity for enhanced chemo-photothermal synergistic therapy. Biomaterials Science, 2021, 9, 3293-3299.	2.6	35
20	Mussel-Inspired Polymeric Coatings to Realize Functions from Single and Dual to Multiple Antimicrobial Mechanisms. ACS Applied Materials & Interfaces, 2021, 13, 3089-3097.	4.0	39
21	Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy. Nanoscale, 2021, 13, 8751-8772.	2.8	103
22	Fe ₃ O ₄ –Au–polydopamine hybrid microcapsules with photothermal–photodynamic synergistic anti-bacterial performance. CrystEngComm, 2021, 23, 6610-6619.	1.3	10
23	Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chemical Society Reviews, 2021, 50, 8762-8789.	18.7	337
24	Bioswitchable Antibacterial Coatings Enable Selfâ€Sterilization of Implantable Healthcare Dressings. Advanced Functional Materials, 2021, 31, 2011165.	7.8	36
25	Recent Progress in Bile Acid-Based Antimicrobials. Bioconjugate Chemistry, 2021, 32, 395-410.	1.8	16
26	Potential of Superhydrophobic Surface for Blood-Contacting Medical Devices. International Journal of Molecular Sciences, 2021, 22, 3341.	1.8	27
27	Advances and Prospects of Polymeric Particles for the Treatment of Bacterial Biofilms. ACS Applied Polymer Materials, 2021, 3, 2218-2232.	2.0	35
28	Terpene derivative-containing silicone two-component waterborne polyurethane for coatings. Progress in Organic Coatings, 2021, 153, 106137.	1.9	17
29	Polymer-Based Coatings with Integrated Antifouling and Bactericidal Properties for Targeted Biomedical Applications. ACS Applied Polymer Materials, 2021, 3, 2233-2263.	2.0	70
30	Green Synthesis of Leaning Tower[6]arene-Mediated Gold Nanoparticles for Label-Free Detection. Organic Letters, 2021, 23, 4677-4682.	2.4	12
31	Antibacterial Thermoplastic Polyurethane/PL-DOSS Composite Films. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1020-1028.	2.0	6
32	Intelligent Soft Surgical Robots for Nextâ€Generation Minimally Invasive Surgery. Advanced Intelligent Systems, 2021, 3, 2100011.	3.3	55
33	Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World Journal of Microbiology and Biotechnology, 2021, 37, 108.	1.7	117
34	Broadening the biocompatibility of gold nanorods from rat to Macaca fascicularis: advancing clinical potential. Journal of Nanobiotechnology, 2021, 19, 195.	4.2	6
35	Light-driven self-disinfecting textiles functionalized by PCN-224 and Ag nanoparticles. Journal of Hazardous Materials, 2021, 416, 125786.	6.5	31
36	Synergy of bioinspired chimeric protein and silver nanoparticles for fabricating "kill-release― antibacterial coating. Applied Surface Science, 2021, 557, 149799.	3.1	13

#	Article	IF	CITATIONS
37	Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. Advanced Science, 2021, 8, e2100368.	5.6	150
38	Nanotechnology against COVID-19: Immunization, diagnostic and therapeutic studies. Journal of Controlled Release, 2021, 336, 354-374.	4.8	30
39	Polydopamine nanoparticle-dotted food gum hydrogel with excellent antibacterial activity and rapid shape adaptability for accelerated bacteria-infected wound healing. Bioactive Materials, 2021, 6, 2647-2657.	8.6	142
40	Synthesis and characterization of lysozyme-conjugated Ag.ZnO@HA nanocomposite: A redox and pH-responsive antimicrobial agent with photocatalytic activity. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102418.	1.3	8
41	Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chemical Reviews, 2021, 121, 13342-13453.	23.0	237
42	Titanium carbide/zeolite imidazole framework-8/polylactic acid electrospun membrane for near-infrared regulated photothermal/photodynamic therapy of drug-resistant bacterial infections. Journal of Colloid and Interface Science, 2021, 599, 390-403.	5.0	48
43	One-step self-assembly of biogenic Au NPs/PEG-based universal coatings for antifouling and photothermal killing of bacterial pathogens. Chemical Engineering Journal, 2021, 421, 130005.	6.6	41
44	Development of a curcumin-based antifouling and anticorrosion sustainable polybenzoxazine resin composite coating. Composites Part B: Engineering, 2021, 225, 109263.	5.9	51
45	Two-component waterborne polyurethane modified with terpene derivative-based polysiloxane for coatings via a thiol-ene click reaction. Industrial Crops and Products, 2021, 171, 113903.	2.5	18
46	Comparative study of an antimicrobial peptide and a neuropeptide conjugated with gold nanorods for the targeted photothermal killing of bacteria. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112117.	2.5	6
47	Hybridized nanolayer modified Ω-shaped fiber-optic synergistically enhances localized surface plasma resonance for ultrasensitive cytosensor and efficient photothermal therapy. Biosensors and Bioelectronics, 2021, 194, 113599.	5.3	12
48	Effective and biocompatible antibacterial surfaces via facile synthesis and surface modification of peptide polymers. Bioactive Materials, 2021, 6, 4531-4541.	8.6	34
49	Injectable stretchable self-healing dual dynamic network hydrogel as adhesive anti-oxidant wound dressing for photothermal clearance of bacteria and promoting wound healing of MRSA infected motion wounds. Chemical Engineering Journal, 2022, 427, 132039.	6.6	133
50	An injectable photothermally active antibacterial composite hydroxypropyl chitin hydrogel for promoting the wound healing process through photobiomodulation. Journal of Materials Chemistry B, 2021, 9, 4567-4576.	2.9	31
51	Low-dimensional nanomaterials for antibacterial applications. Journal of Materials Chemistry B, 2021, 9, 3640-3661.	2.9	36
52	Folate receptor-targeting mesoporous silica-coated gold nanorod nanoparticles for the synergistic photothermal therapy and chemotherapy of rheumatoid arthritis. RSC Advances, 2021, 11, 3567-3574.	1.7	17
53	Universal Antifouling and Photothermal Antibacterial Surfaces Based on Multifunctional Metal–Phenolic Networks for Prevention of Biofilm Formation. ACS Applied Materials & Interfaces, 2021, 13, 48403-48413.	4.0	44
54	Recent Advances in Antibacterial Superhydrophobic Coatings. Advanced Engineering Materials, 2022, 24, 2101053.	1.6	47

#	Article	IF	CITATIONS
55	Fast Broad-Spectrum Staining and Photodynamic Inhibition of Pathogenic Microorganisms by a Water-Soluble Aggregation-Induced Emission Photosensitizer. Frontiers in Chemistry, 2021, 9, 755419.	1.8	17
56	Ultrasmall gold nanorod-polydopamine hybrids for enhanced photoacoustic imaging and photothermal therapy in second near-infrared window. Nanotheranostics, 2022, 6, 79-90.	2.7	19
57	Dual-functional bacterial cellulose modified with phase-transitioned proteins and gold nanorods combining antifouling and photothermal bactericidal properties. Journal of Materials Science and Technology, 2022, 110, 14-23.	5.6	31
58	Enhancing the drug sensitivity of antibiotics on drug-resistant bacteria via the photothermal effect of FeTGNPs. Journal of Controlled Release, 2022, 341, 51-59.	4.8	13
59	Multifunctional antimicrobial materials: From rational design to biomedical applications. Progress in Materials Science, 2022, 125, 100887.	16.0	108
60	Bacterial Adhesion on Prosthetic and Orthotic Material Surfaces. Coatings, 2021, 11, 1469.	1.2	3
61	Gold Nanorod-Decorated Metallic MoS2 Nanosheets for Synergistic Photothermal and Photodynamic Antibacterial Therapy. Nanomaterials, 2021, 11, 3064.	1.9	26
62	Intelligent peptide-nanorods against drug-resistant bacterial infection and promote wound healing by mild-temperature photothermal therapy. Chemical Engineering Journal, 2022, 432, 134061.	6.6	26
63	An antifouling electrochemical aptasensor based on hyaluronic acid functionalized polydopamine for thrombin detection in human serum. Bioelectrochemistry, 2022, 145, 108073.	2.4	10
64	Recent progress in tannic acid-driven antibacterial/antifouling surface coating strategies. Journal of Materials Chemistry B, 2022, 10, 2296-2315.	2.9	46
65	Light-driven self-healing polyurethane based on PDA@Ag nanoparticles with improved mechanical and antibacterial properties. Journal of Materials Chemistry B, 2022, 10, 1085-1093.	2.9	16
66	Diversified antibacterial modification and latest applications of polysaccharide-based hydrogels for wound healthcare. Applied Materials Today, 2022, 26, 101396.	2.3	16
67	NIR-responsive waterborne polyurethane-polydopamine coatings for light-driven disinfection of surfaces. Progress in Organic Coatings, 2022, 164, 106669.	1.9	4
68	Super-lubricating hybrid elastomer with rapid photothermal sterilization and strong anti-cell adhesion. Chemical Engineering Journal, 2022, 434, 134763.	6.6	12
69	Progress for the development of antibacterial surface based on surface modification technology. , 2022, 1, 100008.		2
70	Surface-Charge-Switchable and Size-Transformable Thermosensitive Nanocomposites for Chemo-Photothermal Eradication of Bacterial Biofilms <i>in Vitro</i> and <i>in Vivo</i> . ACS Applied Materials & Interfaces, 2022, 14, 8847-8864.	4.0	29
71	Research of Synergistic Photothermal Antibacterial Strategy Based on Polymeric Guanidine Derivative Grafted on Mesoporous Carbon Nanospheres. Acta Chimica Sinica, 2022, 80, 265.	0.5	2
72	A self-defense hierarchical antibacterial surface with inherent antifouling and bacteria-activated bacterials for infection resistance. Biomaterials Science, 2022, 10, 1968-1980	2.6	5

#	Article	IF	CITATIONS
73	Multi-Stimulus Responsive Multilayer Coating for Treatment of Device-Associated Infections. Journal of Functional Biomaterials, 2022, 13, 24.	1.8	7
74	Degradable Pseudo Conjugated Polymer Nanoparticles with NIRâ€II Photothermal Effect and Cationic Quaternary Phosphonium Structural Bacteriostasis for Antiâ€Infection Therapy. Advanced Science, 2022, 9, e2200732.	5.6	46
75	A Smart Hydrogel with Antiâ€Biofilm and Antiâ€Virulence Activities to Treat <i>Pseudomonas aeruginosa</i> Infections. Advanced Healthcare Materials, 2022, 11, e2200299.	3.9	12
76	Polypeptide coatings on biominerals with superior antimicrobial and antifouling properties inspired by human salivary proteins. Applied Materials Today, 2022, 27, 101446.	2.3	1
77	Photoâ€ŧriggered polymeric antimicrobial peptide mimics with excellent selectivity and antifouling and antimicrobial hydrogels. Giant, 2022, 10, 100097.	2.5	5
78	Recent mitigation strategies in engineered healthcare materials towards antimicrobial applications. Current Opinion in Biomedical Engineering, 2022, 22, 100377.	1.8	3
79	Phytic Acid-Promoted rapid fabrication of natural polypeptide coatings for multifunctional applications. Chemical Engineering Journal, 2022, 440, 135917.	6.6	14
80	Thermoresponsive Nanostructures: From Mechano-Bactericidal Action to Bacteria Release. ACS Applied Materials & Interfaces, 2021, 13, 60865-60877.	4.0	21
81	Two-dimensional copper metal-organic frameworks as antibacterial agents for biofilm treatment. Science China Technological Sciences, 2022, 65, 1052-1058.	2.0	11
82	Antimicrobial Properties of Silver and Gold Nanomaterials. , 2022, , .		0
82 83	Antimicrobial Properties of Silver and Gold Nanomaterials. , 2022, , . Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	4.2	0 85
82 83 84	Antimicrobial Properties of Silver and Gold Nanomaterials. , 2022, , . Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075. Antifouling zwitterionic poly-Î ² -peptides. Applied Materials Today, 2022, 27, 101511.	4.2 2.3	0 85 6
82 83 84 85	Antimicrobial Properties of Silver and Gold Nanomaterials. , 2022, , . Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075. Antifouling zwitterionic poly-β-peptides. Applied Materials Today, 2022, 27, 101511. β-CD/PEI/PVA composite hydrogels with superior self-healing ability and antibacterial activity for wound healing. Composites Part B: Engineering, 2022, 238, 109921.	4.2 2.3 5.9	0 85 6 32
82 83 84 85 86	Antimicrobial Properties of Silver and Gold Nanomaterials. , 2022, , . Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075. Antifouling zwitterionic poly-β-peptides. Applied Materials Today, 2022, 27, 101511. β-CD/PEI/PVA composite hydrogels with superior self-healing ability and antibacterial activity for wound healing. Composites Part B: Engineering, 2022, 238, 109921. Biocompatible hierarchical zwitterionic polymer brushes with bacterial phosphatase activated antibacterial activity. Journal of Materials Science and Technology, 2022, 126, 191-202.	4.2 2.3 5.9 5.6	0 85 6 32 18
82 83 84 85 86 87	Antimicrobial Properties of Silver and Gold Nanomaterials. , 2022, , . Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075. Antifouling zwitterionic poly-β-peptides. Applied Materials Today, 2022, 27, 101511. β-CD/PEI/PVA composite hydrogels with superior self-healing ability and antibacterial activity for wound healing. Composites Part B: Engineering, 2022, 238, 109921. Biocompatible hierarchical zwitterionic polymer brushes with bacterial phosphatase activated antibacterial activity. Journal of Materials Science and Technology, 2022, 126, 191-202. Plasmonic anisotropic gold nanorods: Preparation and biomedical applications. Nano Research, 2022, 15, 6372-6398.	4.2 2.3 5.9 5.6 5.8	0 85 6 32 18
82 83 84 85 86 87 88	Antimicrobial Properties of Silver and Cold Nanomaterials. , 2022, , . Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075. Antifouling zwitterionic poly-Î ² -peptides. Applied Materials Today, 2022, 27, 101511. Î ² -CD/PEI/PVA composite hydrogels with superior self-healing ability and antibacterial activity for wound healing. Composites Part B: Engineering, 2022, 238, 109921. Biocompatible hierarchical zwitterionic polymer brushes with bacterial phosphatase activated antibacterial activity. Journal of Materials Science and Technology, 2022, 126, 191-202. Plasmonic anisotropic gold nanorods: Preparation and biomedical applications. Nano Research, 2022, 15, 6372-6398. Enabling Antibacterial and Antifouling Coating <i>xia</i> Science and Technology of a Nitric Oxide-Releasing Ionic Liquid on Silicone Rubber. Biomacromolecules, 2022, 23, 2329-2341.	4.2 2.3 5.9 5.6 5.8 2.6	0 85 6 32 18 15
82 83 84 85 86 87 88 88	Antimicrobial Properties of Silver and Gold Nanomaterials., 2022, , . Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075. Antifouling zwitterionic poly-12-peptides. Applied Materials Today, 2022, 27, 101511. Î ² -CD/PEI/PVA composite hydrogels with superior self-healing ability and antibacterial activity for wound healing. Composites Part B: Engineering, 2022, 238, 109921. Biocompatible hierarchical zwitterionic polymer brushes with bacterial phosphatase activated antibacterial activity. Journal of Materials Science and Technology, 2022, 126, 191-202. Plasmonic anisotropic gold nanorods: Preparation and biomedical applications. Nano Research, 2022, 15, 6372-6398. Enabling Antibacterial and Antifouling Coating <>>xia Scienting of a Nitric Oxide-Releasing Ionic Liquid on Silicone Rubber. Biomacromolecules, 2022, 23, 2329-2341. Auâ€"Cu Bimetallic Nanostructures for Photothermal Antibacterial and Wound Healing Promotion. ACS Applied Nano Materials, 2022, 5, 8621-8630.	4.2 2.3 5.9 5.6 5.8 2.6 2.4	0 85 6 32 18 15 10

#	Article	IF	CITATIONS
91	Deploying Gold Nanomaterials in Combating Multi-Drug-Resistant Bacteria. ACS Nano, 2022, 16, 10066-10087.	7.3	55
92	Gold Nanorods-Based Photothermal Therapy: Interactions Between Biostructure, Nanomaterial, and Near-Infrared Irradiation. Nanoscale Research Letters, 2022, 17, .	3.1	17
93	In Situ Surfaceâ€Directed Assembly of 2D Metal Nanoplatelets for Drugâ€Free Treatment of Antibioticâ€Resistant Bacteria. Advanced Healthcare Materials, 2022, 11, .	3.9	2
94	Recent Developments in Multifunctional Antimicrobial Surfaces and Applications toward Advanced Nitric Oxide-Based Biomaterials. ACS Materials Au, 2022, 2, 525-551.	2.6	23
95	Dual-functional antibacterial hybrid film with antifouling and NIR-activated bactericidal properties. Composites Part B: Engineering, 2022, 244, 110143.	5.9	14
96	Carbon dots derived from folic acid as an ultra-succinct smart antimicrobial nanosystem for selective killing of S. aureus and biofilm eradication. Carbon, 2022, 199, 395-406.	5.4	27
97	Scalable anti-infection polyurethane catheters with long-acting and autoclavable properties. Chemical Engineering Journal, 2023, 451, 138495.	6.6	9
98	Scavenging ROS and inflammation produced during treatment to enhance the wound repair efficacy of photothermal injectable hydrogel. , 2022, 141, 213096.		8
99	A nanoarchitecture of a gold cluster conjugated gold nanorod hybrid system and its application in fluorescence imaging and plasmonic photothermal therapy. Nanoscale, 2022, 14, 13561-13569.	2.8	12
100	Biodegradable Zn _{<i>x</i>} Ni _{1â^'<i>x</i>} S hollow nanospheres for NIR-driven photothermal antibacterial therapy. Materials Chemistry Frontiers, 2022, 6, 3409-3421.	3.2	1
101	Fluorination of Polyethylenimines for Augmentation of Antibacterial Potency via Structural Damage and Potential Dissipation of Bacterial Membranes. ACS Applied Materials & Interfaces, 2022, 14, 44173-44182.	4.0	9
102	Cross-Linked Collagen-Based Scaffold: Anti-infective Potential, Hydrophilic, and Biocompatible. ACS Applied Polymer Materials, 2022, 4, 8694-8704.	2.0	2
103	A Nearâ€Infraredâ€Responsive Quaternary Ammonium/Gold Nanorod Hybrid Coating with Enhanced Antibacterial Properties. Advanced NanoBiomed Research, 2022, 2, .	1.7	2
104	Multifunctional Au Modified Ti ₃ C ₂ -MXene for Photothermal/Enzyme Dynamic/Immune Synergistic Therapy. Nano Letters, 2022, 22, 8321-8330.	4.5	31
105	Copper sulfide anchored MXene improving photo-responsive self-healing polyurethane with enhanced mechanical and antibacterial properties. Journal of Colloid and Interface Science, 2023, 630, 511-522.	5.0	10
106	Quad-band microwave absorbers based on MoO3-x@MWCNT with tunable morphologies for multifunctional multiband absorption. Carbon, 2023, 201, 1160-1173.	5.4	10
107	The synergetic effect of a gold nanocluster–calcium phosphate composite: enhanced photoluminescence intensity and superior bioactivity. Physical Chemistry Chemical Physics, 2022, 24, 29034-29042.	1.3	1
108	High-strength, fatigue-resistant, and fast self-healing antibacterial nanocomposite hydrogels for wound healing. Chemical Engineering Journal, 2023, 455, 140854.	6.6	22

#	Article	IF	Citations
109	Biomedical applications and prospects of temperature $\hat{a} \in 0$ rchestrated photothermal therapy. , 2022, 1, .		5
110	Plasma-Induced Diallyldimethylammonium Chloride Antibacterial Hernia Mesh. ACS Applied Bio Materials, 2022, 5, 5645-5656.	2.3	1
111	Antibacterial Properties of Gold Nanoparticles in the Modification of Medical Implants: A Systematic Review. Pharmaceutics, 2022, 14, 2654.	2.0	10
112	"Self-Defensive―Antifouling Zwitterionic Hydrogel Coatings on Polymeric Substrates. ACS Applied Materials & Interfaces, 2022, 14, 56097-56109.	4.0	21
113	Science-based strategies of antibacterial coatings with bactericidal properties for biomedical and healthcare settings. Current Opinion in Biomedical Engineering, 2023, 25, 100442.	1.8	2
114	Recent nanotechnology-based strategies for interfering with the life cycle of bacterial biofilms. Biomaterials Science, 2023, 11, 1648-1664.	2.6	4
115	Metal-Phenolic Networks Assembled on TiO ₂ Nanospikes for Antimicrobial Peptide Deposition and Osteoconductivity Enhancement in Orthopedic Applications. Langmuir, 2023, 39, 1238-1249.	1.6	5
116	Multifunctional Textile Constructed via Polyaniline-Mediated Copper Sulfide Nanoparticle Growth for Rapid Photothermal Antibacterial and Antioxidation Applications. ACS Applied Nano Materials, 2023, 6, 1212-1223.	2.4	6
117	Biological Effects, Applications and Design Strategies of Medical Polyurethanes Modified by Nanomaterials. International Journal of Nanomedicine, 0, Volume 17, 6791-6819.	3.3	9
118	Ultralow Charge Voltage Triggering Exceptional Post harging Antibacterial Capability of Co ₃ O ₄ /MnOOH Nanoneedles for Skin Infection Treatment. Advanced Science, 0, , 2207594.	5.6	2
119	A novel donor–acceptor structured diketopyrrolopyrrole-based conjugated polymer synthesized by direct arylation polycondensation (DArP) for highly efficient antimicrobial photothermal therapy. Biomaterials Science, 2023, 11, 2151-2157.	2.6	5
120	A robust carbon dot-based antibacterial CDs-PVA film as a wound dressing for antibiosis and wound healing. Journal of Materials Chemistry B, 2023, 11, 1940-1947.	2.9	6
121	Near-infrared light-responsive multifunctional hydrogel releasing peptide-functionalized gold nanorods sequentially for diabetic wound healing. Journal of Colloid and Interface Science, 2023, 639, 369-384.	5.0	21
122	Preparation of functional and reactive nanosilver nanogels using oxidized carboxymethyl cellulose. International Journal of Biological Macromolecules, 2023, 233, 123515.	3.6	3
123	Phototheranostics: Combining Targeting, Imaging, Therapy. , 2023, , 649-691.		0
124	Growth Reaction of Gold Nanorods in the Presence of Mutated Peptides and Amineâ€Modified Single‧tranded Nucleic Acids. Chemistry - an Asian Journal, 2023, 18, .	1.7	1
125	BODIPYâ€Functionalized Natural Polymer Coatings for Multimodal Therapy of Drugâ€Resistant Bacterial Infection. Advanced Science, 2023, 10, .	5.6	12
126	Bimodal Antimicrobial Surfaces of Phytic Acid–Prussian Blue Nanoparticles–Cationic Polymer Networks. Advanced Science, 2023, 10,	5.6	4

#	Article	IF	CITATIONS
140	Recent advances in nanomaterial-mediated bacterial molecular action and their applications in wound therapy. Biomaterials Science, 2023, 11, 6748-6769.	2.6	1