Comfort temperature and preferred adaptive behaviour UK higher learning environments

Energy and Buildings 211, 109814 DOI: 10.1016/j.enbuild.2020.109814

Citation Report

#	Article	IF	CITATIONS
1	Reliability of human environmental "sensors― Evidence from first- and third-person methods. Building and Environment, 2020, 186, 107303.	6.9	1
2	The influence of acclimatization, age and gender-related differences on thermal perception in university buildings: Case studies in Scotland and England. Building and Environment, 2020, 179, 106933.	6.9	45
3	A field investigation on adaptive thermal comfort in school buildings in the temperate climatic region of Nepal. Building and Environment, 2021, 190, 107523.	6.9	48
4	Heating behavior using household air-conditioners during the COVID-19 lockdown in Wuhan: An exploratory and comparative study. Building and Environment, 2021, 195, 107731.	6.9	19
5	Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward. Sustainability, 2021, 13, 10315.	3.2	33
6	Test rooms to study human comfort in buildings: A review of controlled experiments and facilities. Renewable and Sustainable Energy Reviews, 2021, 149, 111359.	16.4	32
7	A Review and CFD Case Study: The Effect of Temperature, Humidity, Aerodynamics on Corona Virus Transmission, Mitigation in Open and Enclosed Environments. Biomedical Journal of Scientific & Technical Research, 2020, 32, .	0.1	0
8	Assessment of the Indoor Environment in the Intelligent Building. Civil and Environmental Engineering, 2021, .	1.2	12
9	Thermal performance of energy-efficient buildings for sustainable development. Environmental Science and Pollution Research, 2022, 29, 51130-51142.	5.3	16
10	Brain Response and Reaction Time in Natural and Comfort Conditions, with Energy-Saving Potential in an Office Environment. Energies, 2021, 14, 7598.	3.1	1
11	Interaction between Thermal Comfort, Indoor Air Quality and Ventilation Energy Consumption of Educational Buildings: A Comprehensive Review. Buildings, 2021, 11, 591.	3.1	36
12	Analyzing the Time-Varying Thermal Perception of Students in Classrooms and Its Influencing Factors from a Case Study in Xi'an, China. Buildings, 2022, 12, 75.	3.1	7
13	Residential wintry thermal comfort and adaptive behaviors in a cold climate in Beijing, China. Energy and Buildings, 2022, 265, 111942.	6.7	10
14	Course timetable optimization for a university teaching building considering the building energy efficiency and time-varying thermal perception of students. Building and Environment, 2022, , 109175.	6.9	6
15	Thermal comfort evaluation in architectural studio classrooms – A summer study in a warm to moderate Indian climate. Indoor and Built Environment, 2022, 31, 2331-2365.	2.8	7
16	Thermal Comfort in the Design Classroom for Architecture in the Cold Area of China. Sustainability, 2022, 14, 8307.	3.2	5
17	Quantitative analysis of the influence of air temperature variability on thermal perception of Brazilian university students. Work, 2023, 74, 955-966.	1.1	1
18	Investigation on Summer Thermal Comfort and Passive Thermal Improvements in Naturally Ventilated Nepalese School Buildings. Energies, 2023, 16, 1251.	3.1	10

CITATION REPORT

#	ARTICLE	IF	CITATIONS
19	Thermal comfort and adaptive capacities: Differences among students at various school stages. Building and Environment, 2023, 237, 110340.	6.9	10
20	Predicting the Temperature of Smart Classroom Environment Based on SSA-RF-LSTM Model. , 2023, , .		0
21	Impact of Indoor Environmental Quality on Students' Comfort in High School Buildings during the Summer Season in an Extreme Climate. Journal of Architectural Engineering, 2023, 29, .	1.6	2
22	Investigating the effects of climate on thermal adaptation: A comparative field study in naturally ventilated university classrooms. Energy and Buildings, 2023, 294, 113227.	6.7	8
23	Building Occupants, Their Behavior and the Resulting Impact on Energy Use in Campus Buildings: A Literature Review with Focus on Smart Building Systems. Energies, 2023, 16, 6104.	3.1	3
24	Critical Review of the Literature on Thermal Comfort in Educational Buildings: Study of the Influence of the COVID-19 Pandemic. Indoor Air, 2023, 2023, 1-36.	4.3	2
25	In Search for Untapped Energy-Saving Potential in Green and Smart Higher Educational Buildings—An Empirical Case Study Involving the Building Occupants. Buildings, 2023, 13, 3103.	3.1	1
26	Deriving thermal sensitivity across educational stages: Evidence-based definition of Griffiths' coefficient. Journal of Building Engineering, 2024, 87, 109081.	3.4	0