A Distributed Multi-Agent Dynamic Area Coverage Algo Learning

IEEE Access 8, 33511-33521 DOI: 10.1109/access.2020.2967225

Citation Report

#	Article	IF	CITATIONS
1	A Deep Reinforcement Learning Approach for the Patrolling Problem of Water Resources Through Autonomous Surface Vehicles: The Ypacarai Lake Case. IEEE Access, 2020, 8, 204076-204093.	2.6	24
2	A reinforcement learningâ€based approach for modeling and coverage of an unknown field using a team of autonomous ground vehicles. International Journal of Intelligent Systems, 2021, 36, 1069-1084.	3.3	20
3	A Comprehensive Review of Coverage Path Planning in Robotics Using Classical and Heuristic Algorithms. IEEE Access, 2021, 9, 119310-119342.	2.6	69
4	Robust Adaptive Multi-Agent Coverage Control for Flood Monitoring. , 2021, , .		3
5	RL-based Path Planning for Autonomous Aerial Vehicles in Unknown Environments. , 2021, , .		1
6	Improving distributed anti-flocking algorithm for dynamic coverage of mobile wireless networks with obstacle avoidance. Knowledge-Based Systems, 2021, 225, 107133.	4.0	18
7	Adaptive Multi-Agent Coverage Control With Obstacle Avoidance. , 2022, 6, 944-949.		13
8	A Multiagent Deep Reinforcement Learning Approach for Path Planning in Autonomous Surface Vehicles: The YpacaraÃ-Lake Patrolling Case. IEEE Access, 2021, 9, 17084-17099.	2.6	43
9	Time-Efficient Mars Exploration of Simultaneous Coverage and Charging with Multiple Drones. , 2021, ,		0
10	Multi-Robot Hybrid Coverage Path Planning for 3D Reconstruction of Large Structures. IEEE Access, 2022, 10, 2037-2050.	2.6	5
11	Fibonacci tiles strategy for optimal coverage in IoT networks. Annales Des Telecommunications/Annals of Telecommunications, 2022, 77, 331-344.	1.6	1
12	Design of simulation-based pilot training systems using machine learning agents. Aeronautical Journal, 2022, 126, 907-931.	1.1	1
13	Survivor searching in a dynamically changing flood zone by multiple unmanned aerial vehicles. Artificial Life and Robotics, 0, , 1.	0.7	2
14	Event-Triggered Dynamic Coverage Control for Multiple Stratospheric Airships. Sensors, 2022, 22, 2734.	2.1	2
15	Multi-Robot Coverage Path Planning based on Deep Reinforcement Learning. , 2021, , .		3
16	Region coverage control for multiple stratospheric airships with combined self-/event-triggered mechanism. Defence Technology, 2023, 24, 254-268.	2.1	1
17	A deep reinforcement learning-based multi-agent area coverage control for smart agriculture. Computers and Electrical Engineering, 2022, 101, 108089.	3.0	13
18	Multi-UAV planning for cooperative wildfire coverage and tracking with quality-of-service guarantees. Autonomous Agents and Multi-Agent Systems, 2022, 36, .	1.3	12

#	Article	IF	CITATIONS
19	Research on Emergency Logistics Vehicle Route Scheduling and Optimization Method Based on Multi-Intelligent Decision System. Journal of Sensors, 2022, 2022, 1-15.	0.6	1
20	Spontaneous Area Coverage and Mapping of Restricted Zones with Multiple Mobile Agents. IFAC-PapersOnLine, 2022, 55, 240-245.	0.5	0
21	Adaptive Coverage Control for Dynamic Pattern Generation. , 2022, , .		1
22	Multi-Agent Dynamic Area Coverage Based on Reinforcement Learning with Connected Agents. Computer Systems Science and Engineering, 2023, 45, 215-230.	1.9	5
23	Optimal non-autonomous area coverage control with adaptive reinforcement learning. Engineering Applications of Artificial Intelligence, 2023, 122, 106068.	4.3	1
24	Reinforcement Learning for Combinatorial Optimization. , 2022, , 2857-2871.		0
25	Multi-UAV Coverage Path Planning: A Distributed Online Cooperation Method. IEEE Transactions on Vehicular Technology, 2023, 72, 11727-11740.	3.9	3
27	MazeCov-Q: An Efficient Maze-Based Reinforcement Learning Accelerator for Coverage. , 2023, , .		0
28	Collaborative Search Planning of UAV Swarms Based on Deep Reinforcement Learning. , 2023, , .		0
30	A Decentralized Cooperative Coverage Control for Networked Multiple UAVs Based on Deep Reinforcement Learning. , 2023, , .		0
31	Efficient Domain Coverage for Vehicles with Second-Order Dynamics via Multi-Agent Reinforcement Learning. , 2023, , .		0
33	Improved genetic algorithm approach for coordinating decision-making in technological disaster management. Neural Computing and Applications, 2024, 36, 4503-4521.	3.2	1

CITATION REPORT

0

34 Multi-Robot Heterogeneous Adversarial Coverage. , 2023, , .