Indoor concentrations of PM2.5 and associated water-so fractions in workplaces: implications for inhalation hea

Environmental Science and Pollution Research 28, 58983-58993

DOI: 10.1007/s11356-019-07584-8

Citation Report

#	Article	IF	CITATIONS
1	Unraveling the blood transcriptome after real-life exposure of Wistar-rats to PM2.5, PM1 and water-soluble metals in the ambient air. Toxicology Reports, 2020, 7, 1469-1479.	3.3	14
2	Genotoxicity induced in vitro by water-soluble indoor PM2.5 fractions in relation to heavy metal concentrations. Environmental Monitoring and Assessment, 2021, 193, 82.	2.7	5
3	Air quality and particulate matter speciation in a beauty salon and surrounding outdoor environment: Exploratory study. Atmospheric Pollution Research, 2021, 12, 101174.	3.8	14
4	Indoor air quality in a domestic environment: Combined contribution of indoor and outdoor PM sources. Building and Environment, 2021, 202, 108050.	6.9	21
5	Innovative aspects of environmental chemistry and technology regarding air, water, and soil pollution. Environmental Science and Pollution Research, 2021, 28, 58958-58968.	5.3	3
6	Soluble trace metals associated with atmospheric fine particulate matter in the two most populous cities in Vietnam. Atmospheric Environment: X, 2022, 15, 100178.	1.4	7
7	The Fate of Inhaled Uranium-Containing Particles upon Clearance to Gastrointestinal Tract. Environmental Sciences: Processes and Impacts, 0, , .	3.5	1
8	Label-free detection and quantification of ultrafine particulate matter in lung and heart of mouse and evaluation of tissue injury. Particle and Fibre Toxicology, 2022, 19, .	6.2	5
9	Analytical Methods for Physicochemical Characterization and Toxicity Assessment of Atmospheric Particulate Matter: A Review. Sustainability, 2022, 14, 13481.	3.2	2
10	Spatial and seasonal variations in the carbon and lead isotopes of PM2.5 in air of residential buildings and their applications for source identification. Environmental Pollution, 2023, 316, 120654.	7.5	4
11	Chemical characterization, source apportionment, and health risk assessment nexus of PM2.5-bound major heavy metals in Bien Hoa city, southern Vietnam. Atmospheric Environment: X, 2023, 17, 100209.	1.4	1
12	Comparisons of Spatial and Temporal Variations in PM2.5-Bound Trace Elements in Urban and Rural Areas of South Korea, and Associated Potential Health Risks. Atmosphere, 2023, 14, 753.	2.3	3
13	Appraising the characteristics of particulate matter from leather tanning micro-environments, their respirational risks, and dysfunctions amid exposed working cohorts. Environmental Monitoring and Assessment, 2023, 195, .	2.7	0
14	Health risk assessments of heavy metals and trace elements exposure in the breast milk of lactating mothers in the Northeastern Iran. Environmental Science and Pollution Research, 2024, 31, 25892-25906.	5.3	O