Engineering new catalytic activities in enzymes

Nature Catalysis 3, 203-213 DOI: 10.1038/s41929-019-0385-5

Citation Report

#	Article	IF	CITATIONS
1	Using engineered 6- <i>O</i> -sulfotransferase to improve the synthesis of anticoagulant heparin. Organic and Biomolecular Chemistry, 2020, 18, 8094-8102.	1.5	7
2	Evolution of strept(avidin)-based artificial metalloenzymes in organometallic catalysis. Chemical Communications, 2020, 56, 14519-14540.	2.2	2
3	Immobilized lipases for biodiesel production: Current and future greening opportunities. Renewable and Sustainable Energy Reviews, 2020, 134, 110355.	8.2	61
4	Ancestral sequence reconstruction produces thermally stable enzymes with mesophilic enzyme-like catalytic properties. Scientific Reports, 2020, 10, 15493.	1.6	34
5	Nature's Machinery, Repurposed: Expanding the Repertoire of Iron-Dependent Oxygenases. ACS Catalysis, 2020, 10, 12239-12255.	5.5	78
6	Ru(II)-diimine complexes and cytochrome P450 working hand-in-hand. Journal of Inorganic Biochemistry, 2020, 213, 111254.	1.5	9
7	Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nature Chemistry, 2020, 12, 990-1004.	6.6	113
8	Addicting <i>Escherichia coli</i> to New-to-Nature Reactions. ACS Chemical Biology, 2020, 15, 3093-3098.	1.6	15
9	Catalysis in Pickering emulsions. Soft Matter, 2020, 16, 10221-10243.	1.2	83
10	High Throughput Screening with SAMDI Mass Spectrometry for Directed Evolution. Journal of the American Chemical Society, 2020, 142, 19804-19808.	6.6	17
11	Enhancing promiscuous chemistries of a Schiff-base forming enzyme by divergent evolution. Methods in Enzymology, 2020, 644, 95-120.	0.4	2
12	Designer metalloenzymes for synthetic biology: Enzyme hybrids for catalysis. Current Opinion in Chemical Biology, 2020, 58, 63-71.	2.8	25
13	Open Gate of <i>Corynebacterium glutamicum</i> Threonine Deaminase for Efficient Synthesis of Bulky α-Keto Acids. ACS Catalysis, 2020, 10, 9994-10004.	5.5	36
14	Scalable biocatalytic C–H oxyfunctionalization reactions. Chemical Society Reviews, 2020, 49, 8137-8155.	18.7	105
15	Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature, 2020, 584, 69-74.	13.7	171
16	Divergent synthesis of complex diterpenes through a hybrid oxidative approach. Science, 2020, 369, 799-806.	6.0	89
17	The Journey to In Vivo Synthetic Chemistry: From Azaelectrocyclization to Artificial Metalloenzymes. Bulletin of the Chemical Society of Japan, 2020, 93, 1275-1286.	2.0	12
18	Structural Basis of Specificity for Carboxyl-Terminated Acyl Donors in a Bacterial Acyltransferase. Journal of the American Chemical Society, 2020, 142, 16031-16038.	6.6	7

#	Article	IF	CITATIONS
19	A Selective Sulfide Oxidation Catalyzed by Heterogeneous Artificial Metalloenzymes Iron@NikA. Chemistry - A European Journal, 2020, 26, 16633-16638.	1.7	4
20	Discovery, Design, and Structural Characterization of Alkane-Producing Enzymes across the Ferritin-like Superfamily. Biochemistry, 2020, 59, 3834-3843.	1.2	11
21	Hemin-Catalyzed Oxidative Phenol-Hydrazone [3+3] Cycloaddition Enables Rapid Construction of 1,3,4-Oxadiazines. Organic Letters, 2020, 22, 6911-6916.	2.4	17
22	Recent Advances in Asymmetric Iron Catalysis. Molecules, 2020, 25, 3889.	1.7	37
23	Enzyme-Assisted Nucleic Acid Detection for Infectious Disease Diagnostics: Moving toward the Point-of-Care. ACS Sensors, 2020, 5, 2701-2723.	4.0	56
24	Photoenzymatic Generation of Unstabilized Alkyl Radicals: An Asymmetric Reductive Cyclization. Journal of the American Chemical Society, 2020, 142, 15673-15677.	6.6	76
25	Incorporation of a Cp*Rh(III)-dithiophosphate Cofactor with Latent Activity into a Protein Scaffold Generates a Biohybrid Catalyst Promoting C(sp ²)–H Bond Functionalization. Inorganic Chemistry, 2020, 59, 14457-14463.	1.9	12
26	An Elegant Four-Helical Fold in NOX and STEAP Enzymes Facilitates Electron Transport across Biomembranes—Similar Vehicle, Different Destination. Accounts of Chemical Research, 2020, 53, 1969-1980.	7.6	18
27	Enzymatic Bioreactors: An Electrochemical Perspective. Catalysts, 2020, 10, 1232.	1.6	20
28	Engineered biosynthetic pathways and biocatalytic cascades for sustainable synthesis. Current Opinion in Chemical Biology, 2020, 58, 146-154.	2.8	20
29	Enhancing a <i>de novo</i> enzyme activity by computationally-focused ultra-low-throughput screening. Chemical Science, 2020, 11, 6134-6148.	3.7	24
30	Iron- and cobalt-catalyzed C(sp ³)–H bond functionalization reactions and their application in organic synthesis. Chemical Society Reviews, 2020, 49, 5310-5358.	18.7	119
31	3D-printed xylanase within biocompatible polymers as excellent catalyst for lignocellulose degradation. Chemical Engineering Journal, 2020, 400, 125920.	6.6	21
32	Embracing Nature's Catalysts: A Viewpoint on the Future of Biocatalysis. ACS Catalysis, 2020, 10, 8418-8427.	5.5	188
33	Engineering Cytochrome P450s for Enantioselective Cyclopropenation of Internal Alkynes. Journal of the American Chemical Society, 2020, 142, 6891-6895.	6.6	63
34	Exploring the Mechanism of Catalysis with the Unified Reaction Valley Approach (URVA)—A Review. Catalysts, 2020, 10, 691.	1.6	20
35	Lightâ€driven catalysis with engineered enzymes and biomimetic systems. Biotechnology and Applied Biochemistry, 2020, 67, 463-483.	1.4	29
36	Exploring the molecular basis for selective C–H functionalization in plant P450s. Synthetic and Systems Biotechnology, 2020, 5, 97-98.	1.8	4

#	Article	IF	CITATIONS
37	Enzymatic Lactone-Carbene C–H Insertion to Build Contiguous Chiral Centers. ACS Catalysis, 2020, 10, 5393-5398.	5.5	38
38	Enabling protein-hosted organocatalytic transformations. RSC Advances, 2020, 10, 16147-16161.	1.7	5
39	Biocatalytic Reduction Reactions from a Chemist's Perspective. Angewandte Chemie - International Edition, 2021, 60, 5644-5665.	7.2	118
40	Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angewandte Chemie, 2021, 133, 5706-5727.	1.6	12
41	Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angewandte Chemie - International Edition, 2021, 60, 88-119.	7.2	711
42	Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angewandte Chemie, 2021, 133, 89-123.	1.6	89
43	High-throughput screening for high-efficiency small-molecule biosynthesis. Metabolic Engineering, 2021, 63, 102-125.	3.6	24
44	Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity. Chemistry - A European Journal, 2021, 27, 3315-3325.	1.7	15
45	Directed Evolution of a Cp*Rh ^{III} â€Linked Biohybrid Catalyst Based on a Screening Platform with Affinity Purification. ChemBioChem, 2021, 22, 679-685.	1.3	10
46	Biocatalysis – Key enabling tools from biocatalytic one-step and multi-step reactions to biocatalytic total synthesis. New Biotechnology, 2021, 60, 113-123.	2.4	31
47	Artificial metalloenzymes: The powerful alliance between protein scaffolds and organometallic catalysts. Current Opinion in Green and Sustainable Chemistry, 2021, 28, 100420.	3.2	9
48	Self-sufficient Cytochrome P450s and their potential applications in biotechnology. Chinese Journal of Chemical Engineering, 2021, 30, 121-135.	1.7	11
49	Arming Yourself for The In Silico Protein Design Revolution. Trends in Biotechnology, 2021, 39, 651-664.	4.9	13
50	Engineering Biofunctional Enzymeâ€Mimics for Catalytic Therapeutics and Diagnostics. Advanced Functional Materials, 2021, 31, 2007475.	7.8	47
51	Artificial Enzymes for Dielsâ€Alder Reactions. ChemBioChem, 2021, 22, 443-459.	1.3	11
52	Biocatalysis in Flow for Drug Discovery. Topics in Medicinal Chemistry, 2021, , 275-316.	0.4	1
53	Peptide sequence mediated self-assembly of molybdenum blue nanowheel superstructures. Chemical Science, 2021, 12, 2427-2432.	3.7	14
54	Artificial enzymes bringing together computational design and directed evolution. Organic and Biomolecular Chemistry, 2021, 19, 1915-1925.	1.5	20

ARTICLE IF CITATIONS # Engineering Escherichia coli for the utilization of ethylene glycol. Microbial Cell Factories, 2021, 20, 1.9 18 55 22. Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chemical 2.2 28 Communications, 2021, 57, 10661-10674. Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene 57 7.6 161 and Nitrene Transfer. Accounts of Chemical Research, 2021, 54, 1209-1225. Biocatalysis in Continuous-Flow Microfluidic Reactors. Advances in Biochemical Engineering/Biotechnology, 2021, , 211-246. Biomolecular QM/MM Simulations: What Are Some of the "Burning Issues�. Journal of Physical 59 1.2 68 Chemistry B, 2021, 125, 689-702. Histidine orientation in artificial peroxidase regioisomers as determined by paramagnetic NMR shifts. Chemical Communications, 2021, 57, 990-993. 2.2 Membrane transport inspired hydrolysis of non-activated esters at near physiological pH. Chemical 61 2.2 2 Communications, 2021, 57, 11088-11091. Reshaping the Active Pocket of Promiscuous Lactonases for Degrading Bulky Organophosphate Flame Retardants. Chemical Communications, 2021, 57, 6475-6478. The beauty of biocatalysis: sustainable synthesis of ingredients in cosmetics. Natural Product Reports, 63 5.2 25 2022, 39, 335-388. Power of Biocatalysis for Organic Synthesis. ACS Central Science, 2021, 7, 55-71. 5.3 A computational approach to understand the role of metals and axial ligands in artificial heme enzyme 65 1.3 15 catalyzed C–H insertion. Physical Chemistry Chemical Physics, 2021, 23, 9500-9511. Engineering ribose-5-phosphate isomerase B from a central carbon metabolic enzyme to a promising sugar biocatalyst. Applied Microbiology and Biotechnology, 2021, 105, 509-523. Enzymatic strategies for asymmetric synthesis. RSC Chemical Biology, 2021, 2, 958-989. 67 2.0 34 Enzyme promiscuity prediction using hierarchy-informed multi-label classification. Bioinformatics, 2021, 37, 2017-2024. 1.8 Heme-binding enables allosteric modulation in an ancient TIM-barrel glycosidase. Nature 69 5.8 20 Communications, 2021, 12, 380. Recent trends in biocatalysis. Chemical Society Reviews, 2021, 50, 8003-8049. Applied biocatalysis beyond just buffers – from aqueous to unconventional media. Options and 71 4.6 81 guidelines. Green Chemistry, 2021, 23, 3191-3206. Improving the activity and thermostability of GH2 βâ€glucuronidases via domain reassembly. Biotechnology and Bioengineering, 2021, 118, 1962-1972.

#	Article	IF	Citations
73	Computer-aided enzymatic retrosynthesis. Nature Catalysis, 2021, 4, 92-93.	16.1	8
74	Expanding the synthetic scope of biocatalysis by enzyme discovery and protein engineering. Tetrahedron, 2021, 82, 131926.	1.0	29
75	Catalytic Nanozyme for Radiation Protection. Bioconjugate Chemistry, 2021, 32, 411-429.	1.8	23
76	Chemoenzymatic Total Synthesis of Natural Products. Accounts of Chemical Research, 2021, 54, 1374-1384.	7.6	48
77	Molecular biology interventions for activity improvement and production of industrial enzymes. Bioresource Technology, 2021, 324, 124596.	4.8	22
78	Intramolecular Stereoselective Stetter Reaction Catalyzed by Benzaldehyde Lyase. Angewandte Chemie - International Edition, 2021, 60, 9326-9329.	7.2	16
79	Artificial Organelles: Towards Adding or Restoring Intracellular Activity. ChemBioChem, 2021, 22, 2051-2078.	1.3	38
80	Enzymkatalysierte spÃæ Modifizierungen: Besser spÃæals nie. Angewandte Chemie, 2021, 133, 16962-16993.	1.6	11
81	Intramolecular Stereoselective Stetter Reaction Catalyzed by Benzaldehyde Lyase. Angewandte Chemie, 2021, 133, 9412-9415.	1.6	5
82	Enzymatic Late‧tage Modifications: Better Late Than Never. Angewandte Chemie - International Edition, 2021, 60, 16824-16855.	7.2	75
83	Activation modes in biocatalytic radical cyclization reactions. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	15
84	Biohybrid Systems for Improved Bioinspired, Energyâ€Relevant Catalysis. ChemBioChem, 2021, 22, 2353-2367.	1.3	4
85	Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chemical Reviews, 2021, 121, 6173-6245.	23.0	62
86	A Perspective on Synthetic Biology in Drug Discovery and Development—Current Impact and Future Opportunities. SLAS Discovery, 2021, 26, 581-603.	1.4	10
87	Light-Driven CO2 Reduction by Co-Cytochrome b562. Frontiers in Molecular Biosciences, 2021, 8, 609654.	1.6	10
88	Exploring mechanism of enzyme catalysis by on-chip transient kinetics coupled with global data analysis and molecular modeling. CheM, 2021, 7, 1066-1079.	5.8	27
89	Fixing nature's carbon inefficiencies. Joule, 2021, 5, 765-767.	11.7	0
90	Revolutionizing enzyme engineering through artificial intelligence and machine learning. Emerging Topics in Life Sciences, 2021, 5, 113-125.	1.1	21

#	Article	IF	CITATIONS
92	Application of Ketoreductase in Asymmetric Synthesis of Pharmaceuticals and Bioactive Molecules: An Update (2018–2020). Chemical Record, 2021, 21, 1611-1630.	2.9	40
93	Rational Design of a Miniature Photocatalytic CO ₂ -Reducing Enzyme. ACS Catalysis, 2021, 11, 5628-5635.	5.5	20
94	Advancements in macromolecular crystallography: from past to present. Emerging Topics in Life Sciences, 2021, 5, 127-149.	1.1	17
95	E. coli Nickelâ€Iron Hydrogenase 1 Catalyses Nonâ€native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Eneâ€reductases**. Angewandte Chemie, 2021, 133, 13943-13947.	1.6	0
96	Reversal and Amplification of the Enantioselectivity of Biocatalytic Desymmetrization toward Meso Heterocyclic Dicarboxamides Enabled by Rational Engineering of Amidase. ACS Catalysis, 2021, 11, 6900-6907.	5.5	16
97	Enhancing the Photocatalytic Conversion of Pt(IV) Substrates by Flavoprotein Engineering. Journal of Physical Chemistry Letters, 2021, 12, 4504-4508.	2.1	9
98	Synthetic Biology towards Improved Flavonoid Pharmacokinetics. Biomolecules, 2021, 11, 754.	1.8	29
99	Biocatalytic Transformations of Silicon—the Other Group 14 Element. ACS Central Science, 2021, 7, 944-953.	5.3	28
100	<i>E. coli</i> Nickelâ€Iron Hydrogenase 1 Catalyses Nonâ€native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Eneâ€reductases**. Angewandte Chemie - International Edition, 2021, 60, 13824-13828.	7.2	8
102	Prospects of Using Biocatalysis for the Synthesis and Modification of Polymers. Molecules, 2021, 26, 2750.	1.7	16
103	Large-scale production of enzymes for biotechnology uses. Current Opinion in Biotechnology, 2021, 69, 68-76.	3.3	71
105	New-to-nature chemistry from old protein machinery: carbene and nitrene transferases. Current Opinion in Biotechnology, 2021, 69, 43-51.	3.3	57
106	The N-Acetyl Amino Acid Racemases (NAAARs); Native and evolved biocatalysts applied to the synthesis of canonical and non-canonical amino acids. Current Opinion in Biotechnology, 2021, 69, 212-220.	3.3	3
107	Enzymes in biotechnology: Critical platform technologies for bioprocess development. Current Opinion in Biotechnology, 2021, 69, 91-102.	3.3	34
108	An in vivo selection system with tightly regulated gene expression enables directed evolution of highly efficient enzymes. Scientific Reports, 2021, 11, 11669.	1.6	4
109	A dynamic understanding of cytochrome P450 structure and function through solution NMR. Current Opinion in Biotechnology, 2021, 69, 35-42.	3.3	9
110	Recent advancements in enzyme-mediated crosslinkable hydrogels: <i>In vivo</i> -mimicking strategies. APL Bioengineering, 2021, 5, 021502.	3.3	39
111	Bioinspired Selfâ€Assembling Materials for Modulating Enzyme Functions. Advanced Functional Materials, 2021, 31, 2104819.	7.8	21

#	Article	IF	CITATIONS
112	Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals. Frontiers in Bioengineering and Biotechnology, 2021, 9, 673005.	2.0	14
113	Computer-aided understanding and engineering of enzymatic selectivity. Biotechnology Advances, 2022, 54, 107793.	6.0	25
114	Structural basis of the stereoselective formation of the spirooxindole ring in the biosynthesis of citrinadins. Nature Communications, 2021, 12, 4158.	5.8	17
115	Directed Evolution: Methodologies and Applications. Chemical Reviews, 2021, 121, 12384-12444.	23.0	220
116	Late-stage C–H functionalization offers new opportunities in drug discovery. Nature Reviews Chemistry, 2021, 5, 522-545.	13.8	341
117	Photocatalyst-enzyme hybrid systems for light-driven biotransformation. Biotechnology Advances, 2022, 54, 107808.	6.0	25
118	Modification of the Enantioselectivity of Biocatalytic <i>meso</i> â€Desymmetrization for Synthesis of Both Enantiomers of <i>cis</i> â€1,2â€Disubstituted Cyclohexane by Amidase Engineering. Advanced Synthesis and Catalysis, 2021, 363, 4538-4543.	2.1	7
119	Enantioselective biocatalytic desymmetrization for synthesis of enantiopure cis-3,4-disubstituted pyrrolidines. Green Synthesis and Catalysis, 2021, 2, 324-327.	3.7	10
120	Oneâ€Pot Synthesis of Primary and Secondary Aliphatic Amines via Mild and Selective sp ³ Câ^'H Imination. Chemistry - A European Journal, 2021, 27, 17601-17608.	1.7	6
121	Protein Assembly by Design. Chemical Reviews, 2021, 121, 13701-13796.	23.0	123
122	Key mutation sites for improvement of the enantioselectivity of lipases through protein engineering. Biochemical Engineering Journal, 2021, 172, 108047.	1.8	14
123	Catalyst ontrolled Chemoselective Nitrene Transfers. Helvetica Chimica Acta, 2021, 104, e2100140.	1.0	16
125	Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis. Nature Catalysis, 2021, 4, 643-653.	16.1	32
126	Development of aldolase-based catalysts for the synthesis of organic chemicals. Trends in Biotechnology, 2022, 40, 306-319.	4.9	9
127	Biotechnological applications of S-adenosyl-methionine-dependent methyltransferases for natural products biosynthesis and diversification. Bioresources and Bioprocessing, 2021, 8, .	2.0	16
128	Repurposed and artificial heme enzymes for cyclopropanation reactions. Journal of Inorganic Biochemistry, 2021, 222, 111523.	1.5	11
129	A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. International Journal of Biological Macromolecules, 2021, 186, 1003-1166.	3.6	30
130	Singleâ€Atom Catalysis: From Simple Reactions to the Synthesis of Complex Molecules. Advanced Materials, 2022, 34, e2103882.	11.1	38

#	Article	IF	CITATIONS
131	Structural model and functional properties of an exo-polygalacturonase from Neosartorya glabra. International Journal of Biological Macromolecules, 2021, 186, 909-918.	3.6	3
133	Tuning enzymatic properties by protein engineering toward catalytic tetrad of carbonyl reductase. Biotechnology and Bioengineering, 2021, 118, 4643-4654.	1.7	2
134	Nitrene transfers mediated by natural and artificial iron enzymes. Journal of Inorganic Biochemistry, 2021, 225, 111613.	1.5	5
135	Engineering a Carbonyl Reductase as a Potential Tool for the Synthesis of Chiral αâ€Tetralinols. ChemCatChem, 2021, 13, 4625-4633.	1.8	2
136	The past, present, and future of enzyme-based therapies. Drug Discovery Today, 2022, 27, 117-133.	3.2	12
137	Rational Redesign of Enzyme via the Combination of Quantum Mechanics/Molecular Mechanics, Molecular Dynamics, and Structural Biology Study. Journal of the American Chemical Society, 2021, 143, 15674-15687.	6.6	32
138	Boosted activity by engineering the enzyme microenvironment in cascade reaction: A molecular understanding. Synthetic and Systems Biotechnology, 2021, 6, 163-172.	1.8	6
139	Biocatalytic Asymmetric Cyclopropanations via Enzymeâ€Bound Iminium Ion Intermediates. Angewandte Chemie, 2021, 133, 24261-24265.	1.6	10
140	Biocatalytic Asymmetric Cyclopropanations via Enzymeâ€Bound Iminium Ion Intermediates. Angewandte Chemie - International Edition, 2021, 60, 24059-24063.	7.2	18
141	Systems for inÂvivo hypermutation: a quest for scale and depth in directed evolution. Current Opinion in Chemical Biology, 2021, 64, 20-26.	2.8	27
142	Hybrid enzyme catalysts synthesized by a de novo approach for expanding biocatalysis. Chinese Journal of Catalysis, 2021, 42, 1625-1633.	6.9	10
143	Bio-based resources, bioprocesses and bioproducts in value creation architectures for bioeconomy markets and beyond $\hat{a} \in$ "What really matters. EFB Bioeconomy Journal, 2021, 1, 100009.	1.1	7
144	Chemical modification of M13 bacteriophage as nanozyme container for dramatically enhanced sensitivity of colorimetric immunosensor. Sensors and Actuators B: Chemical, 2021, 346, 130368.	4.0	21
145	Rationally engineered chitin deacetylase from Arthrobacter sp. AW19M34-1 with improved catalytic activity toward crystalline chitin. Carbohydrate Polymers, 2021, 274, 118637.	5.1	9
146	Cofactor-free organic nanozyme with assembly-induced catalysis and light-regulated activity. Chemical Engineering Journal, 2021, 426, 130855.	6.6	15
147	Iterative conformational dynamics-guided protein engineering reshapes biocatalyst properties for efficient and cost-effective cytidine 5Ê ¹ -monophosphate production. Chemical Engineering Journal, 2021, 425, 131597.	6.6	12
148	A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nature Catalysis, 2021, 4, 105-115.	16.1	83
149	Preparation and application of solvent-free liquid proteins with enhanced thermal and anhydrous stabilities. New Journal of Chemistry, 2021, 45, 6577-6585.	1.4	5

#	Article	IF	CITATIONS
150	Enzyme entrapment, biocatalyst immobilization without covalent attachment. Green Chemistry, 2021, 23, 4980-5005.	4.6	125
151	Enzymatic production of β-glucose 1,6-bisphosphate through manipulation of catalytic magnesium coordination. Green Chemistry, 2021, 23, 752-762.	4.6	3
152	Aqueous chemoenzymatic one-pot enantioselective synthesis of tertiary α-aryl cycloketones <i>via</i> Pd-catalyzed C–C formation and enzymatic C asymmetric hydrogenation. Green Chemistry, 2021, 23, 1960-1964.	4.6	29
153	Solid/Gas Reactivity of Organometallic Species in Confined Spaces. Monographs in Supramolecular Chemistry, 2021, , 282-321.	0.2	0
154	Biosynthesis of chiral cyclic and heterocyclic alcohols <i>via</i> Cî€O/C–H/C–O asymmetric reactions. Catalysis Science and Technology, 2021, 11, 2637-2651.	2.1	11
155	Engineering aldolases for asymmetric synthesis. Methods in Enzymology, 2020, 644, 149-167.	0.4	5
156	Enzymatic Primary Amination of Benzylic and Allylic C(sp ³)–H Bonds. Journal of the American Chemical Society, 2020, 142, 10279-10283.	6.6	116
157	Quaternary Charge-Transfer Complex Enables Photoenzymatic Intermolecular Hydroalkylation of Olefins. Journal of the American Chemical Society, 2021, 143, 97-102.	6.6	84
158	Importance learning estimator for the site-averaged turnover frequency of a disordered solid catalyst. Journal of Chemical Physics, 2020, 153, 244120.	1.2	8
159	Ligand Exchange Strategy for Delivery of Ruthenium Complex Unit to Biomolecules Based on Ruthenium–Olefin Specific Interactions. Chemistry Letters, 2020, 49, 1490-1493.	0.7	4
160	Stereo-selective synthesis of non-canonical γ-hydroxy-α-amino acids by enzymatic carbon–carbon bond formation. Catalysis Science and Technology, 2021, 11, 7380-7385.	2.1	2
161	A protein scaffold enables hydrogen evolution for a Ni-bisdiphosphine complex. Dalton Transactions, 2021, 50, 15754-15759.	1.6	2
162	MD simulations and QM/MM calculations reveal the key mechanistic elements which are responsible for the efficient C–H amination reaction performed by a bioengineered P450 enzyme. Chemical Science, 2021, 12, 14507-14518.	3.7	21
163	Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry—A review. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5938-5964.	5.9	25
164	Enzymatic synthesis of fluorinated compounds. Applied Microbiology and Biotechnology, 2021, 105, 8033-8058.	1.7	14
165	Dual-function enzyme catalysis for enantioselective carbon–nitrogen bond formation. Nature Chemistry, 2021, 13, 1166-1172.	6.6	48
166	Parallels between enzyme catalysis, electrocatalysis, and photoelectrosynthesis. Chem Catalysis, 2021, 1, 978-996.	2.9	3
167	Controlling Selectivity in the Synthesis of <i>Z</i> â€Î±,βâ€Unsaturated Amidines by Tuning the <i>N</i> â€Sulfonyl Group in a Rhodium(II) Catalyzed 1,2â€H Shift. European Journal of Organic Chemistry, 2021, 2021, 5857-5861.	1.2	5

# 168	ARTICLE Engineering and emerging applications of artificial metalloenzymes with whole cells. Nature	IF 16.1	Citations
169	Rational Design of Biocatalytic Deuteration Platform of Aldehydes. ACS Catalysis, 2021, 11, 13348-13354.	5.5	9
174	Research fronts of Chemical Biology. Pure and Applied Chemistry, 2021, 93, 1473-1485.	0.9	0
175	<i>De Novo</i> Design, Solution Characterization, and Crystallographic Structure of an Abiological Mn–Porphyrin-Binding Protein Capable of Stabilizing a Mn(V) Species. Journal of the American Chemical Society, 2021, 143, 252-259.	6.6	19
176	Enzyme-photo-coupled catalytic systems. Chemical Society Reviews, 2021, 50, 13449-13466.	18.7	61
177	Engineering a Nonâ€Natural Photoenzyme for Improved Photon Efficiency**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
178	Biocatalytic Alkylation Chemistry: Building Molecular Complexity with High Selectivity. ChemPlusChem, 2022, 87, .	1.3	10
179	Engineering a Nonâ€Natural Photoenzyme for Improved Photon Efficiency. Angewandte Chemie, 0, , .	1.6	1
180	Cofactorâ€Assisted Artificial Enzyme with Multiple Liâ€Bond Networks for Sustainable Polysulfide Conversion in Lithium–Sulfur Batteries. Advanced Science, 2022, 9, e2104205.	5.6	20
181	A chemoenzymatic cascade with the potential to feed the world and allow humans to live in space. Engineering Microbiology, 2022, 2, 100006.	2.2	2
183	Inorganic Nanozymes: Prospects for Disease Treatments and Detection Applications. Frontiers in Chemistry, 2021, 9, 773285.	1.8	11
184	Directed Evolution of Artificial Metalloenzymes in Whole Cells. Angewandte Chemie, 2022, 134, e202110519.	1.6	2
185	Enzyme-mimicking capacities of carbon-dots nanozymes: Properties, catalytic mechanism, and applications – A review. International Journal of Biological Macromolecules, 2022, 194, 676-687.	3.6	72
186	Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chemical Reviews, 2022, 122, 1052-1126.	23.0	105
187	Directed Evolution of Artificial Metalloenzymes in Whole Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
188	Photoenzymatic Synthesis of α-Tertiary Amines by Engineered Flavin-Dependent "Ene―Reductases. Journal of the American Chemical Society, 2021, 143, 19643-19647.	6.6	45
189	O-Protected NH-free hydroxylamines: emerging electrophilic aminating reagents for organic synthesis. Chemical Communications, 2021, 57, 13495-13505.	2.2	8
190	<i>N</i> -Phenylputrescine (NPP): a natural product inspired amine donor for biocatalysis. Green Chemistry, 2022, 24, 2010-2016.	4.6	11

		Citation Re	PORT	
# 191	ARTICLE High-Throughput Experimentation in Organometallic Chemistry and Catalysis. , 2022, 1	, 502-555.	IF	CITATIONS 2
192	Single-Molecule Sampling of Dihydrofolate Reductase Shows Kinetic Pauses and an En Linked to Catalysis. ACS Catalysis, 2022, 12, 1228-1236.	dosteric Effect	5.5	5
193	Design for Solubility May Reveal Induction of Amide Hydrogen/Deuterium Exchange by Self-Association. Journal of Molecular Biology, 2022, 434, 167398.	/ Protein	2.0	1
194	Deconvoluting the Directed Evolution Pathway of Engineered Acyltransferase LovD. Cl 2022, 14, e202101349.	nemCatChem,	1.8	7
195	Fragment antigen binding domains (Fabs) as tools to study assembly-line polyketide sy Synthetic and Systems Biotechnology, 2022, 7, 506-512.	nthases.	1.8	3
196	Opportunities for interfacing organometallic catalysts with cellular metabolism. , 2021			0
197	Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Cata Catalysis, 2022, 65, 6-39.	alysis. Topics in	1.3	27
198	Synthetic and biosynthetic methods for selective cyclisations of 4,5-epoxy alcohols to tetrahydropyrans. Organic and Biomolecular Chemistry, 2022, 20, 1150-1175.		1.5	14
199	Atomic Chromium Coordinated Graphitic Carbon Nitride for Bioinspired Antibiofouling Advanced Science, 2022, 9, e2105346.	in Seawater.	5.6	27
200	Synthetic Applications of Carbene and Nitrene C H Insertion. , 2022, , .			0
201	Ensuring the Sustainability of Biocatalysis. ChemSusChem, 2022, 15, .		3.6	8
202	Biosynthesis of Chiral Amino Alcohols via an Engineered Amine Dehydrogenase in E. cc Bioengineering and Biotechnology, 2021, 9, 778584.	li. Frontiers in	2.0	7
203	Synthetic prodrug design enables biocatalytic activation in mice to elicit tumor growth Nature Communications, 2022, 13, 39.	1 suppression.	5.8	34
204	Efficient 2-Step Enzymatic Cascade for the Bioconversion of Oleuropein into Hydroxyt Antioxidants, 2022, 11, 260.	yrosol.	2.2	7
205	Combining chemistry and protein engineering for new-to-nature biocatalysis. , 2022, 1	, 18-23.		80
206	Forty years of directed evolution and its continuously evolving technology toolbox: A r patent landscape. Biotechnology and Bioengineering, 2022, 119, 693-724.	eview of the	1.7	4
207	Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conju Biodegradation. Materials, 2022, 15, 1037.	gates and	1.3	13
208	Reaching New Biocatalytic Reactivity Using Continuous Flow Reactors. Chemistry - A E Journal, 2022, 28, .	uropean	1.7	18

#	Article	IF	Citations
209	Engineered Cyclohexylamine Oxidase with Improved Activity and Stereoselectivity for Asymmetric Synthesis of a Bulky Dextromethorphan Precursor and Its Analogues. ChemCatChem, 2022, 14, .	1.8	3
210	Research update of emergent gold nanoclusters: A reinforced approach towards evolution, synthesis mechanism and application. Talanta, 2022, 241, 123228.	2.9	12
211	Development of dual-enhancer biocatalyst with photothermal property for the degradation of cephalosporin. Journal of Hazardous Materials, 2022, 429, 128294.	6.5	13
212	Tailored enzymes as next-generation food-packaging tools. Trends in Biotechnology, 2022, 40, 1004-1017.	4.9	10
213	Tandem Friedelâ€Craftsâ€Alkylationâ€Enantioselectiveâ€Protonation by Artificial Enzyme Iminium Catalysis. ChemCatChem, 2022, 14, .	1.8	7
214	Local Electric Fields Dictate Function: The Different Product Selectivities Observed for Fatty Acid Oxidation by Two Deceptively Very Similar P450-Peroxygenases OleT and BSβ. Journal of Chemical Information and Modeling, 2022, 62, 1025-1035.	2.5	12
215	Hot spots-making directed evolution easier. Biotechnology Advances, 2022, 56, 107926.	6.0	35
216	Nitric oxide producing artificial enzymes based on metalloporphyrins. Materials Today Chemistry, 2022, 23, 100743.	1.7	4
217	The Interplay of Electrostatics and Chemical Positioning in the Evolution of Antibiotic Resistance in TEM β-Lactamases. ACS Central Science, 2021, 7, 1996-2008.	5.3	19
218	Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science, 2021, 374, 1612-1616.	6.0	73
219	Chemical Bonding in Homogenous Catalysis – Seen Through the Eyes of Vibrational Spectroscopy. , 2024, , 622-648.		0
220	Properties and Mechanisms of Flavin-Dependent Monooxygenases and Their Applications in Natural Product Synthesis. International Journal of Molecular Sciences, 2022, 23, 2622.	1.8	11
221	Non-Canonical Amino Acid-Based Engineering of (R)-Amine Transaminase. Frontiers in Chemistry, 2022, 10, 839636.	1.8	9
222	In silico evolution of nucleic acid-binding proteins from a nonfunctional scaffold. Nature Chemical Biology, 2022, 18, 403-411.	3.9	4
223	Rational design of allosteric switchable catalysts. Exploration, 0, , 20210095.	5.4	9
224	Integrating protein engineering into biocatalytic process scale-up. Trends in Chemistry, 2022, 4, 371-373.	4.4	4
225	Computational Design of Homotetrameric Peptide Bundle Variants Spanning a Wide Range of Charge States. Biomacromolecules, 2022, 23, 1652-1661.	2.6	3
226	Photobiocatalysis for Abiological Transformations. Accounts of Chemical Research, 2022, 55, 1087-1096.	7.6	73

#	Article	IF	CITATIONS
227	Enhancing Enzyme Activity by the Modulation of Covalent Interactions in the Confined Channels of Covalent Organic Frameworks. Angewandte Chemie, 2022, 134, .	1.6	7
228	Detection of cellular metabolites by redox enzymatic cascades. Biotechnology Journal, 2022, 17, e2100466.	1.8	2
229	Enhancing Enzyme Activity by the Modulation of Covalent Interactions in the Confined Channels of Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	7.2	48
230	New catalytic reactions by enzyme engineering. Trends in Chemistry, 2022, 4, 363-366.	4.4	9
231	Modulating Electron Transfer in Vanadiumâ€Based Artificial Enzymes for Enhanced ROS atalysis and Disinfection. Advanced Materials, 2022, 34, e2108646.	11.1	44
232	Proteinâ€Mediated Biosynthesis of Semiconductor Nanocrystals for Photocatalytic NAD(P)H Regeneration and Chiral Amine Production. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
233	Dynamic coupling of residues within proteins as a mechanistic foundation of many enigmatic pathogenic missense variants. PLoS Computational Biology, 2022, 18, e1010006.	1.5	16
234	Oxygenating Biocatalysts for Hydroxyl Functionalisation in Drug Discovery and Development. ChemMedChem, 2022, 17, .	1.6	15
235	Proteinâ€Mediated Biosynthesis of Semiconductor Nanocrystals for Photocatalytic NAD(P)H Regeneration and Chiral Amine Production. Angewandte Chemie, 0, , .	1.6	2
236	Biocatalysts used for multi-step reactions in continuous flow. Chemical Engineering Journal, 2022, 437, 135400.	6.6	11
237	Metabolite-based biosensors for natural product discovery and overproduction. Current Opinion in Biotechnology, 2022, 75, 102699.	3.3	12
238	Immobilized fungal enzymes: Innovations and potential applications in biodegradation and biosynthesis. Biotechnology Advances, 2022, 57, 107936.	6.0	23
239	Proteomic analysis of Fusarium sp. NF01 revealed a multi-level regulatory machinery for lignite biodegradation. Energy, 2022, 250, 123763.	4.5	3
240	Compuestos organometálicos y de coordinación: Más que sólo una buena relación de metales de transición y moléculas orgánicas. TECNOCIENCIA (México), 2021, 15, 261-276.	0.1	0
241	Biocatalytic Site-Selective Hydrogen Isotope Exchange of Unsaturated Fragments with D ₂ 0. ACS Catalysis, 2022, 12, 783-788.	5.5	6
242	De novo metalloprotein design. Nature Reviews Chemistry, 2022, 6, 31-50.	13.8	44
243	Chemoenzymatic synthesis of natural products using plant biocatalysts. Current Opinion in Green and Sustainable Chemistry, 2022, 35, 100627.	3.2	4
244	Methods for the directed evolution of biomolecular interactions. Trends in Biochemical Sciences, 2022, 47, 403-416.	3.7	3

#	Article	IF	CITATIONS
245	Yeast Surface Display: New Opportunities for a Time-Tested Protein Engineering System. Methods in Molecular Biology, 2022, 2491, 3-25.	0.4	7
246	Mechanistic Studies on the Epoxidation of Alkenes by Macrocyclic Manganese Porphyrin Catalysts. European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
248	"Multiagent―Screening Improves Directed Enzyme Evolution by Identifying Epistatic Mutations. ACS Synthetic Biology, 2022, 11, 1971-1983.	1.9	4
249	Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition. Nature Catalysis, 2022, 5, 586-593.	16.1	50
250	Biocatalytic Enantioselective βâ€Hydroxylation of Unactivated C–H Bonds in Aliphatic Carboxylic Acids. Angewandte Chemie, 0, , .	1.6	0
251	Biocatalytic Enantioselective βâ€Hydroxylation of Unactivated Câ^'H Bonds in Aliphatic Carboxylic Acids. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
252	Rationally engineering santalene synthase to readjust the component ratio of sandalwood oil. Nature Communications, 2022, 13, 2508.	5.8	12
253	Expanding the use of ethanol as a feedstock for cell-free synthetic biochemistry by implementing acetyl-CoA and ATP generating pathways. Scientific Reports, 2022, 12, 7700.	1.6	6
254	New Horizons for Biocatalytic Science. Frontiers in Catalysis, 2022, 2, .	1.8	2
255	Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp ³)â^'H azidation. Science, 2022, 376, 869-874.	6.0	36
257	In vivo hypermutation and continuous evolution. Nature Reviews Methods Primers, 2022, 2, .	11.8	39
259	Enzyme-photo-coupled catalysis in gas-sprayed microdroplets. Chemical Science, 2022, 13, 8341-8348.	3.7	6
260	Combined MD and QM/MM Calculations Reveal Allosteryâ€Driven Promiscuity in Dipeptide Epimerases of Enolase Family. Chemistry - an Asian Journal, 2022, 17, .	1.7	2
261	A chemoenzymatic strategy for site-selective functionalization of native peptides and proteins. Science, 2022, 376, 1321-1327.	6.0	22
262	Catalysis driven by biohybrid nanozyme. , 2022, 1, 100024.		4
263	An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp ³ C–H Functionalization via Intramolecular Carbene Insertion. Journal of the American Chemical Society, 2022, 144, 11676-11684.	6.6	11
264	Multiconfiguration Pair-Density Functional Theory Calculations of Iron(II) Porphyrin: Effects of Hybrid Pair-Density Functionals and Expanded RAS and DMRG Active Spaces on Spin-State Orderings. Journal of Physical Chemistry A, 2022, 126, 3957-3963.	1.1	10
265	Evolved Biosensor with High Sensitivity and Specificity for Measuring Cadmium in Actual Environmental Samples. Environmental Science & 2007, 2022, 56, 10062-10071.	4.6	16

#	Article	IF	CITATIONS
266	Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction. Nature Catalysis, 2022, 5, 662-672.	16.1	98
267	Engineered P450 Atom-Transfer Radical Cyclases are Bifunctional Biocatalysts: Reaction Mechanism and Origin of Enantioselectivity. Journal of the American Chemical Society, 2022, 144, 13344-13355.	6.6	12
268	Biocatalytic Friedel rafts Reactions. ChemCatChem, 2022, 14, .	1.8	11
269	Binding of Dual-Function Hybridized Metal – Organic Capsules to Enzymes for Cascade Catalysis. Jacs Au, 0, , .	3.6	2
270	Complexity reduction and opportunities in the design, integration and intensification of biocatalytic processes for metabolite synthesis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
271	Lactulose production from lactose isomerization by chemo-catalysts and enzymes: Current status and future perspectives. Biotechnology Advances, 2022, 60, 108021.	6.0	11
273	Nearâ€Infrared Optical Sensing of Biomacromolecules with Upconversion Nanoplatforms. Advanced Photonics Research, 2023, 4, .	1.7	0
274	YfeX – A New Platform for Carbene Transferase Development with High Intrinsic Reactivity. Chemistry - A European Journal, 0, , .	1.7	3
275	Engineering a Feruloyl–Coenzyme A Synthase for Bioconversion of Phenylpropanoid Acids into High-Value Aromatic Aldehydes. Journal of Agricultural and Food Chemistry, 2022, 70, 9948-9960.	2.4	10
276	Catalytic Peptides: the Challenge between Simplicity and Functionality. Israel Journal of Chemistry, 2022, 62, .	1.0	6
277	Going Beyond the Local Catalytic Activity Space of Chitinase Using a Simulation-Based Iterative Saturation Mutagenesis Strategy. ACS Catalysis, 2022, 12, 10235-10244.	5.5	8
278	Hydroxylation Regiochemistry Is Robust to Active Site Mutations in Cytochrome P450 _{cam} (CYP101A1). Biochemistry, 0, , .	1.2	3
279	Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma. Nature Communications, 2022, 13, .	5.8	72
280	Frontiers in the enzymology of thiamin diphosphate-dependent enzymes. Current Opinion in Structural Biology, 2022, 76, 102441.	2.6	11
281	Engineered myoglobin as a catalyst for atom transfer radical cyclisation. Chemical Communications, 2022, 58, 10989-10992.	2.2	6
282	Engineering the activity of amine dehydrogenase in the asymmetric reductive amination of hydroxyl ketones. Catalysis Science and Technology, 2022, 12, 5952-5960.	2.1	5
283	Clean biocatalysis in sponge-like ionic liquids. , 2022, , 155-182.		1
284	Not a Mistake but a Feature: Promiscuous Activity of Enzymes Meeting Mycotoxins. Catalysts, 2022, 12, 1095.	1.6	6

#	Article	IF	CITATIONS
285	Transformer-based protein generation with regularized latent space optimization. Nature Machine Intelligence, 2022, 4, 840-851.	8.3	24
286	Hydrophilicityâ€Based Engineering of the Active Pocket of Dâ€Amino Acid Oxidase Leading to Highly Improved Specificity toward Dâ€Glufosinate. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
287	Hydrophilicityâ€Based Engineering of the Active Pocket of Dâ€Amino Acid Oxidase Leading to Highly Improved Specificity toward Dâ€Glufosinate. Angewandte Chemie, 0, , .	1.6	0
288	Enantioselective [2+2]-cycloadditions with triplet photoenzymes. Nature, 2022, 611, 715-720.	13.7	54
289	Continuous Flow Biocatalytic Reductive Amination by Coâ€Entrapping Dehydrogenases with Agarose Gel in a 3Dâ€Printed Mould Reactor. ChemBioChem, 2022, 23, .	1.3	7
290	Enzymes based biocatalysis for the treatment of organic pollutants and bioenergy production. Current Opinion in Green and Sustainable Chemistry, 2022, , 100709.	3.2	2
291	NMR-guided directed evolution. Nature, 2022, 610, 389-393.	13.7	23
292	Near infrared light-induced dynamic modulation of enzymatic activity through polyphenol-functionalized liquid metal nanodroplets. Chinese Chemical Letters, 2023, 34, 107795.	4.8	4
293	Lipase and Its Unique Selectivity: A Mini-Review. Journal of Chemistry, 2022, 2022, 1-11.	0.9	5
294	Nanozyme Based on Porphyrinic Metal–Organic Framework for Electrocatalytic CO ₂ Reduction. Small Structures, 2023, 4, .	6.9	2
295	Industrially useful enzymology: Translating biocatalysis from laboratory to process. Chem Catalysis, 2022, 2, 2499-2505.	2.9	5
296	Pickering Emulsions Stabilized by Lignin/Chitosan Nanoparticles for Biphasic Enzyme Catalysis. Langmuir, 2022, 38, 12849-12858.	1.6	11
297	Biocatalytic Thionation of Epoxides for Enantioselective Synthesis of Thiiranes. Angewandte Chemie, 0, , .	1.6	0
298	Design and Characterization of In-One Protease-Esterase PluriZyme. International Journal of Molecular Sciences, 2022, 23, 13337.	1.8	7
299	Biocatalytic Thionation of Epoxides for Enantioselective Synthesis of Thiiranes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
300	A versatile artificial metalloenzyme scaffold enabling direct bioelectrocatalysis in solution. Science Advances, 2022, 8, .	4.7	2
301	Artificial multi-enzyme cascades for natural product synthesis. Current Opinion in Biotechnology, 2022, 78, 102831.	3.3	6
302	Cytochromes P450 in biosensing and biosynthesis applications: Recent progress and future perspectives. TrAC - Trends in Analytical Chemistry, 2023, 158, 116791.	5.8	6

#	Article	IF	CITATIONS
303	Liquid Fluxional Ga Single Atom Catalysts for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	94
304	Liquid Fluxional Ga Single Atom Catalysts for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie, 2023, 135, .	1.6	13
305	Selection and modification of enzymes prior to immobilization. , 2023, , 17-35.		0
306	Future perspectives in enzyme immobilization. , 2023, , 403-426.		0
307	Genetically Encoded Phosphine Ligand for Metalloprotein Design. Journal of the American Chemical Society, 2022, 144, 22831-22837.	6.6	4
309	Protein trap-engineered metal-organic frameworks for advanced enzyme encapsulation and mimicking. Nano Research, 2023, 16, 3364-3371.	5.8	9
310	A Photoenzymatic Strategy for Radicalâ€mediated Stereoselective Hydroalkylation with Diazo Compounds. Angewandte Chemie, 0, , .	1.6	0
311	Undirected biocatalytic amination of unactivated C(sp3)â^'H bonds. Chem Catalysis, 2022, 2, 3287-3289.	2.9	0
312	Development of an Integrated System for Highly Selective Photoenzymatic Synthesis of Formic Acid from CO ₂ . ChemSusChem, 2023, 16, .	3.6	5
313	A Photoenzymatic Strategy for Radicalâ€Mediated Stereoselective Hydroalkylation with Diazo Compounds. Angewandte Chemie - International Edition, 2023, 62, .	7.2	14
314	Structure-driven protein engineering for production of valuable natural products. Trends in Plant Science, 2023, 28, 460-470.	4.3	3
315	Molecular Complementarity of Proteomimetic Materials for Targetâ€5pecific Recognition and Recognitionâ€Mediated Complex Functions. Advanced Materials, 2023, 35, .	11.1	1
316	Engineering approaches for O2-dependent enzymes. Current Opinion in Green and Sustainable Chemistry, 2023, 40, 100733.	3.2	3
317	Peptide Variant Detection by a Living Yeast Biosensor via an Epitope-Selective Protease. Biodesign Research, 2023, 5, .	0.8	2
318	Asymmetric <i>C</i> -Alkylation of Nitroalkanes <i>via</i> Enzymatic Photoredox Catalysis. Journal of the American Chemical Society, 2023, 145, 787-793.	6.6	19
319	Alteration of Chain-Length Selectivity and Thermostability of <i>Rhizopus oryzae</i> Lipase via Virtual Saturation Mutagenesis Coupled with Disulfide Bond Design. Applied and Environmental Microbiology, 2023, 89, .	1.4	10
321	Moving towards the Application of Biocatalysis in Food Waste Biorefinery. Fermentation, 2023, 9, 73.	1.4	3
322	Manipulation of IME4 expression, a global regulation strategy for metabolic engineering in Saccharomyces cerevisiae. Acta Pharmaceutica Sinica B, 2023, 13, 2795-2806.	5.7	2

	CITATION R	CITATION REPORT	
# 393	ARTICLE	IF 4.6	CITATIONS
323		4.0	54
324	Activity Regulating Strategies of Nanozymes for Biomedical Applications. Small, 2023, 19, .	5.2	24
325	Synthesis of cyclopenta[<i>b</i>]benzofurans <i>via</i> biomimetic oxidative phenol–enamine [3 + 2] cycloaddition. Organic Chemistry Frontiers, 2023, 10, 1213-1218.	2.3	4
329	Antioxidaseâ€Like Nanobiocatalysts with Ultrafast and Reversible Redoxâ€Centers to Secure Stem Cells and Periodontal Tissues. Advanced Functional Materials, 2023, 33, .	7.8	9
330	Coenzyme Engineering of Glucose-6-phosphate Dehydrogenase on a Nicotinamide-Based Biomimic and Its Application as a Glucose Biosensor. ACS Catalysis, 2023, 13, 1983-1998.	5.5	5
331	Expanding the Cation Cage: Squalene-Hopene Cyclase-Mediated Enantioselective Semipinacol Rearrangement. ACS Catalysis, 2023, 13, 1946-1951.	5.5	10
332	Chemodivergent C(sp3)–H and C(sp2)–H cyanomethylation using engineered carbene transferases. Nature Catalysis, 2023, 6, 152-160.	16.1	6
333	Comparative biochemical characterization of mammalian-derived CYP11A1s with cholesterol side-chain cleavage activities. Journal of Steroid Biochemistry and Molecular Biology, 2023, 229, 106268.	1.2	1
334	An Immobilised Silicon arbon Bondâ€Forming Enzyme for Anaerobic Flow Biocatalysis. ChemCatChem, 2023, 15, .	1.8	1
335	Designing artificial pathways for improving chemical production. Biotechnology Advances, 2023, 64, 108119.	6.0	4
336	Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy. Advanced Healthcare Materials, 2023, 12, .	3.9	12
337	Biological pretreatment for algal biomass feedstock for biofuel production. Journal of Environmental Chemical Engineering, 2023, 11, 109870.	3.3	19
338	Manganeseâ€Based Antioxidaseâ€Inspired Biocatalysts with Axial Mnâ^'N ₅ Sites and 2D dâ€Ï€â€Conjugated Networks for Rescuing Stem Cell Fate. Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
339	Asymmetric synthesis of syn-aryl-(2S,3R)-2-chloro-3-hydroxy esters via an engineered ketoreductase-catalyzed dynamic reductive kinetic resolution. Chinese Chemical Letters, 2023, 34, 108178.	4.8	4
341	Reactivity Tuning of Metalâ€Free Artificial Photoenzymes through Binding Site Specific Bioconjugation. European Journal of Organic Chemistry, 2023, 26, .	1.2	3
342	Expanding the Promiscuity of a Copperâ€Dependent Oxidase for Enantioselective Crossâ€Coupling of Indoles. Angewandte Chemie, 2023, 135, .	1.6	0
343	Expanding the Promiscuity of a Copperâ€Dependent Oxidase for Enantioselective Cross oupling of Indoles. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
344	Engineering Modular and Highly Sensitive Cell-Based Biosensors for Aromatic Contaminant Monitoring and High-Throughput Enzyme Screening. ACS Synthetic Biology, 2023, 12, 877-891.	1.9	2

#	Article	IF	CITATIONS
346	Evolutionary Engineering of a Cp*Rh(III) Complex-Linked Artificial Metalloenzyme with a Chimeric β-Barrel Protein Scaffold. Journal of the American Chemical Society, 0, , .	6.6	1
347	Enzyme Grafting with a Cofactor-Decorated Metal-Organic Capsule for Solar-to-Chemical Conversion. Journal of the American Chemical Society, 2023, 145, 6719-6729.	6.6	6
348	A pharmacophore-based approach to demonstrating the scope of alcohol dehydrogenases. Bioorganic and Medicinal Chemistry, 2023, 83, 117255.	1.4	1
349	AsiteDesign: a Semirational Algorithm for an Automated Enzyme Design. Journal of Physical Chemistry B, 2023, 127, 2661-2670.	1.2	4
350	Therapeutic and Diagnostic Agents Based on Bioactive Endogenous and Exogenous Coordination Compounds. Current Medicinal Chemistry, 2023, 30, .	1.2	0
351	Unnatural activities and mechanistic insights of cytochrome P450 PikC gained from site-specific mutagenesis by non-canonical amino acids. Nature Communications, 2023, 14, .	5.8	4
352	Bioelectrocatalysis with a palladium membrane reactor. Nature Communications, 2023, 14, .	5.8	9
353	Ene Reductase Enabled Intramolecular βâ€Câ^'H Functionalization of Substituted Cyclohexanones for Efficient Synthesis of Bridged Bicyclic Nitrogen Scaffolds. Angewandte Chemie, 0, , .	1.6	0
354	Ene Reductase Enabled Intramolecular βâ€Câ^'H Functionalization of Substituted Cyclohexanones for Efficient Synthesis of Bridged Bicyclic Nitrogen Scaffolds. Angewandte Chemie - International Edition, 0, , .	7.2	1
355	Manganeseâ€Based Antioxidaseâ€Inspired Biocatalysts with Axial Mnâ€N5 Sites and 2D dâ€Ï€â€Conjugated Networks for Rescuing Stem Cell Fate. Angewandte Chemie, 0, , .	1.6	0
356	Gold(I) N-heterocyclic carbene complexes with tunable electronic properties for sensitive colorimetric detection of glutathione. Materials Chemistry Frontiers, 0, , .	3.2	0
357	Whole-cell-catalyzed hydrogenation/deuteration of aryl halides with a genetically repurposed photodehalogenase. CheM, 2023, 9, 1897-1909.	5.8	4
358	Advances in One-Pot Chiral Amine Synthesis Enabled by Amine Transaminase Cascades: Pushing the Boundaries of Complexity. ACS Catalysis, 2023, 13, 5584-5598.	5.5	5
359	Lignocellulosic biomass valorization via bio-photo/electro hybrid catalytic systems. Biotechnology Advances, 2023, 66, 108157.	6.0	5
360	Aptamerâ€Modified Homogeneous Catalysts, Heterogenous Nanoparticle Catalysts, and Photocatalysts: Functional "Nucleoapzymesâ€; "Aptananozymesâ€; and "Photoaptazymesâ€: Advanced Materials, 202	24 <mark>, 36</mark> , .	4
365	Artificial Metalloenzymes for Enantioselective Catalysis. , 2022, , .		0
373	An Overview of N-Heterocycle Syntheses Involving Nitrene Transfer Reactions. Topics in Heterocyclic Chemistry, 2023, , 313-377.	0.2	1
378	Microbial enzyme bioprocesses in biobleaching of pulp and paper: technological updates. , 2023, , 319-337.		0

#	Article	IF	CITATIONS
385	Best Practices of Using Al-Based Models in Crystallography and Their Impact in Structural Biology. Journal of Chemical Information and Modeling, 2023, 63, 3637-3646.	2.5	3
394	Catalyst-controlled Stereoselective Carbon‒heteroatom Bond Formations by N-Heterocyclic Carbene (NHC) Organocatalysis. Organic Chemistry Frontiers, 0, , .	2.3	1
407	Hydroxynitrile lyase engineering for promiscuous asymmetric Henry reaction with enhanced conversion, enantioselectivity and catalytic efficiency. Chemical Communications, 2023, 59, 12274-12277.	2.2	2
416	P450-catalyzed atom transfer radical cyclization. Methods in Enzymology, 2023, , 31-49.	0.4	0
420	Photoenzymatic Catalysis for Organic Synthesis. , 2023, , .		0
432	A Co(TAML)-based artificial metalloenzyme for asymmetric radical-type oxygen atom transfer catalysis. Chemical Communications, 2023, 59, 14567-14570.	2.2	Ο
443	Recent Advances in Microbial Production of Terpenoids from Biomass-derived Feedstocks. Chemical Research in Chinese Universities, 2024, 40, 20-28.	1.3	0
446	Novel applications of photobiocatalysts in chemical transformations. RSC Advances, 2024, 14, 2590-2601.	1.7	Ο