Advances in Conjugated Microporous Polymers

Chemical Reviews 120, 2171-2214

DOI: 10.1021/acs.chemrev.9b00399

Citation Report

#	Article	IF	Citations
1	Porous Ladder Polymer Networks. CheM, 2020, 6, 2558-2590.	5.8	36
2	Superhydrophobic conjugated microporous polymers grafted silica microspheres for liquid chromatographic separation. Journal of Chromatography A, 2020, 1631, 461539.	1.8	8
3	Preparation of Hydrophilic Conjugated Microporous Polymers for Efficient Visible Light-Driven Nicotinamide Adenine Dinucleotide Regeneration and Photobiocatalytic Formaldehyde Reduction. ACS Catalysis, 2020, 10, 12976-12986.	5.5	50
4	Proton conductive covalent organic frameworks. Coordination Chemistry Reviews, 2020, 422, 213465.	9.5	129
5	A Pillar[5]arene Conjugated Polymer for Removal of Low-Molecular-Weight Organic Acids, Amines, and Alcohols from Water. ACS Applied Polymer Materials, 2020, 2, 5566-5573.	2.0	18
6	Facile synthesis of a porous polynorbornene with an azobenzene subunit: selective adsorption of 4-nitrophenol over 4-aminophenol in water. Polymer Chemistry, 2020, 11, 6429-6434.	1.9	4
7	Transformation between 2D covalent organic frameworks with distinct pore hierarchy <i>via</i> exchange of building blocks with different symmetries. Chemical Communications, 2020, 56, 15418-15421.	2.2	14
8	Synthesis of Conjugated Mesoporous Hyper-cross-linked Polymers for Efficient Capture of Dibenzothiophene and Iodine. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56454-56461.	4.0	10
9	Metal phosphate-oxalates with unique framework topologies: Solvent-free synthesis, water stability, and proton conduction. Journal of Solid State Chemistry, 2020, 292, 121709.	1.4	13
10	Five-Minute Mechanosynthesis of Hypercrosslinked Microporous Polymers. Chemistry of Materials, 2020, 32, 7694-7702.	3.2	41
11	Hybrids Based on BOPHY-Conjugated Porous Polymers as Photocatalysts for Hydrogen Production: Insight into the Charge Transfer Pathway. ACS Catalysis, 2020, 10, 9804-9812.	5.5	38
12	Porous organic polymer material supported palladium nanoparticles. Journal of Materials Chemistry A, 2020, 8, 17360-17391.	5.2	93
13	Microporous hyper-cross-linked polyacetylene networks: Covalent structure and texture modification by reversible Schiff-base chemistry. European Polymer Journal, 2020, 136, 109914.	2.6	4
14	Fe ₃ O ₄ @Void@Microporous Organic Polymer-Based Multifunctional Drug Delivery Systems: Targeting, Imaging, and Magneto-Thermal Behaviors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 37628-37636.	4.0	30
15	Polymerization in MOF-Confined Nanospaces: Tailored Architectures, Functions, and Applications. Langmuir, 2020, 36, 10657-10673.	1.6	35
16	Shaping of porous polymers. Polymer, 2020, 207, 122928.	1.8	7
17	Design of Metal-Organic Framework Templated Materials Using High-Throughput Computational Screening. Molecules, 2020, 25, 4875.	1.7	11
18	Toward a Deformable Two-Dimensional Covalent Organic Network with a Noncovalently Connected Skeleton. Chemistry of Materials, 2020, 32, 8139-8145.	3.2	4

#	ARTICLE	IF	CITATIONS
19	Covalently Sandwiching MXene by Conjugated Microporous Polymers with Excellent Stability for Supercapacitors. Small Methods, 2020, 4, 2000434.	4.6	57
20	Concomitant Covalent and Noncovalent Assembly: Self-Assembly of Sublimable Caffeine in the Formation of Microporous Organic Polymer for Morphology Evolution and Enhanced Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 13900-13907.	3.2	5
21	3D Cage COFs: A Dynamic Three-Dimensional Covalent Organic Framework with High-Connectivity Organic Cage Nodes. Journal of the American Chemical Society, 2020, 142, 16842-16848.	6.6	174
22	Heterogeneous Photocatalytic Organic Transformation Reactions Using Conjugated Polymers-Based Materials. ACS Catalysis, 2020, 10, 12256-12283.	5.5	161
23	Construction of Thiazolo[5,4- <i>d</i>]thiazole-based Two-Dimensional Network for Efficient Photocatalytic CO ₂ Reduction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 46483-46489.	4.0	43
24	Graphitic carbon nitride nanotubes: a new material for emerging applications. RSC Advances, 2020, 10, 34059-34087.	1.7	35
25	Exploiting Hansen solubility parameters to tune porosity and function in conjugated microporous polymers. Journal of Materials Chemistry A, 2020, 8, 22657-22665.	5.2	32
26	A New Squaraineâ€Linked Triazinylâ€Based Covalent Organic Frameworks: Preparation, Characterization and Application for Sensitive and Selective Determination of Fe ³⁺ Cations. ChemistrySelect, 2020, 5, 10632-10636.	0.7	13
27	Nonlinear optical properties of polyphthalocyanine porous organic frameworks. New Journal of Chemistry, 2020, 44, 15345-15349.	1.4	12
28	Sorbents for water purification based on conjugated polymers. Russian Chemical Reviews, 2020, 89, 1115-1131.	2.5	14
29	Dynamic Transformation between Covalent Organic Frameworks and Discrete Organic Cages. Journal of the American Chemical Society, 2020, 142, 21279-21284.	6.6	54
30	Metal Phthalocyanineâ€Porphyrinâ€based Conjugated Microporous Polymerâ€derived Bifunctional Electrocatalysts for Znâ€Air Batteries. Chemistry - an Asian Journal, 2020, 15, 1970-1975.	1.7	14
31	Synthetic Organic Design for Solar Fuel Systems. Angewandte Chemie - International Edition, 2020, 59, 17344-17354.	7.2	27
32	Synthetic Organic Design for Solar Fuel Systems. Angewandte Chemie, 2020, 132, 17496-17506.	1.6	5
33	Synthesis of conjugated polymers <i>via</i> cyclopentannulation reaction: promising materials for iodine adsorption. Polymer Chemistry, 2020, 11, 3066-3074.	1.9	33
34	Nanoparticulate Conjugated Microporous Polymer with Postâ€Modified Benzils for Enhanced Pseudocapacitor Performance. Chemistry - A European Journal, 2020, 26, 12343-12348.	1.7	17
35	An aromatic carbonyl compound-linked conjugated microporous polymer as an advanced cathode material for lithium-organic batteries. Materials Chemistry Frontiers, 2020, 4, 2697-2703.	3.2	34
36	Polymer photocatalysts for solar-to-chemical energy conversion. Nature Reviews Materials, 2021, 6, 168-190.	23.3	361

3

#	ARTICLE	IF	CITATIONS
37	Photophysical and crystallographic study of three integrated pyrazolo[1,5-a]pyrimidine–triphenylamine systems. Dyes and Pigments, 2021, 184, 108730.	2.0	26
38	Applications of Nanomaterials in Asymmetric Photocatalysis: Recent Progress, Challenges, and Opportunities. Advanced Materials, 2021, 33, e2001731.	11.1	108
39	Polyarylimide and porphyrin based polymer microspheres for zinc ion hybrid capacitors. Chemical Engineering Journal, 2021, 405, 127038.	6.6	76
40	Engineered Removal of Trace NH ₃ by Porous Organic Polymers Modified via Sequential Postâ€Sulfonation and Postâ€Alkylation. Advanced Sustainable Systems, 2021, 5, 2000161.	2.7	8
41	Rational Construction of Advanced Potassium Ion Diffusion and Storage Matrix. Advanced Functional Materials, 2021, 31, 2005933.	7.8	31
42	Solid-phase extraction and microextraction of chlorophenols and triazine herbicides with a novel hydrazone-based covalent triazine polymer as the adsorbent. Microchemical Journal, 2021, 160, 105634.	2.3	23
43	Recent Advances of Conjugated Microporous Polymers in Visible Light–Promoted Chemical Transformations. Solar Rrl, 2021, 5, 2000489.	3.1	37
44	\hat{l}^2 -Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities. Nano Research, 2021, 14, 1018-1025.	5.8	15
45	Photoactive amphiphilic nanoreactor: A chloroplast-like catalyst for natural oxidation of alcohols. Chemical Engineering Journal, 2021, 408, 127243.	6.6	4
46	Facile synthesis of spiro thiazolidinone via cyclic ketones, amines and thioglycolic acid by MCM-41-Schiff base-CuSO4·5H2O. Research on Chemical Intermediates, 2021, 47, 521-532.	1.3	9
47	Copper-incorporated porous organic polymer as efficient and recyclable catalyst for azide-alkyne cycloaddition. Microporous and Mesoporous Materials, 2021, 310, 110671.	2.2	13
48	Evaluation of C60 and C70 analogs bearing Cycloâ€metaâ€Phenylene faces as improved devices for Polymer:Fullerene solar cells from DFT calculations. Dyes and Pigments, 2021, 184, 108782.	2.0	2
49	BNâ€Doped Metal–Organic Frameworks: Tailoring 2D and 3D Porous Architectures through Molecular Editing of Borazines. Chemistry - A European Journal, 2021, 27, 4124-4133.	1.7	8
50	Facile preparation of composite flame retardantbased on conjugated microporous polymer hollow spheres. Journal of Colloid and Interface Science, 2021, 586, 152-162.	5.0	23
51	Microporous framework membranes for precise molecule/ion separations. Chemical Society Reviews, 2021, 50, 986-1029.	18.7	191
52	Covalent Organic Frameworks in Catalytic Organic Synthesis. Advanced Synthesis and Catalysis, 2021, 363, 144-193.	2.1	49
53	Immobilization of N and Si as center species toward microporous organic polymers for CO2 adsorption via dipole-quadrupole interaction. Polymer, 2021, 212, 123307.	1.8	9
54	Green synthesized cobalt-bipyridine constructed conjugated microporous polymer: An efficient heterogeneous catalyst for cycloaddition of epoxides via CO2 fixation under ambient conditions. Microporous and Mesoporous Materials, 2021, 319, 110758.	2.2	22

#	ARTICLE	IF	CITATIONS
55	Realizing high hydrogen evolution activity under visible light using narrow band gap organic photocatalysts. Chemical Science, 2021, 12, 1796-1802.	3.7	77
56	Scalable crystalline porous membranes: current state and perspectives. Chemical Society Reviews, 2021, 50, 1913-1944.	18.7	47
57	Sulfonamide-functionalized covalent organic framework (COF-SO3H): an efficient heterogeneous acidic catalyst for the one-pot preparation of polyhydroquinoline and 1,4-dihydropyridine derivatives. Research on Chemical Intermediates, 2021, 47, 1161-1179.	1.3	25
58	Engineering of amino microporous organic network on zeolitic imidazolate framework-67 derived nitrogen-doped carbon for efficient magnetic extraction of plant growth regulators. Talanta, 2021, 224, 121876.	2.9	23
59	A ferrocene-linked metal-covalent organic polymer as a peroxidase-enzyme mimic for dual channel detection of hydrogen peroxide. Analyst, The, 2021, 146, 487-494.	1.7	8
60	A facile one-step fabrication of holey carbon nitride nanosheets for visible-light-driven hydrogen evolution. Applied Catalysis B: Environmental, 2021, 283, 119637.	10.8	87
61	Microporous Organic Polymers: A Synthetic Platform for Engineering Heterogeneous Carbocatalysts. ChemSusChem, 2021, 14, 624-631.	3.6	6
62	Microwaveâ€Assisted Synthesis of Covalent Organic Frameworks: A Review. ChemSusChem, 2021, 14, 208-233.	3.6	80
63	Asymmetric Acceptor–Donor–Acceptor Polymers with Fast Charge Carrier Transfer for Solar Hydrogen Production. Chemistry - A European Journal, 2021, 27, 939-943.	1.7	31
64	Fibrous mesoporous polymer monoliths: macromolecular design and enhanced photocatalytic degradation of aromatic dyes. Polymer Chemistry, 2021, 12, 2464-2470.	1.9	6
65	Conjugated microporous polymer foams with excellent thermal insulation performance in a humid environment. RSC Advances, 2021, 11, 13957-13963.	1.7	4
66	Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. Materials Horizons, 2022, 9, 121-146.	6.4	51
67	Conjugated microporous polymers using a copper-catalyzed [4 + 2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption. Polymer Chemistry, 2021, 12, 2282-2292.	1.9	29
68	Functional Microporous Polymer Networks: Synthesis and Applications. , 2021, , 65-85.		0
69	Carbon black nanoparticle trapping: a strategy to realize the true energy storage potential of redox-active conjugated microporous polymers. Journal of Materials Chemistry A, 2021, 9, 17978-17984.	5.2	4
70	Crosslinked porous polyimides: structure, properties and applications. Polymer Chemistry, 2021, 12, 6494-6514.	1.9	23
71	Defect-rich CeO ₂ in a hollow carbon matrix engineered from a microporous organic platform: a hydroxide-assisted high performance pseudocapacitive material. Nanoscale, 2021, 13, 18173-18181.	2.8	1
72	Synthesis of functional conjugated microporous polymer/TiO2 nanocomposites and the mechanism of the photocatalytic degradation of organic pollutants. Journal of Materials Science, 2021, 56, 7936-7950.	1.7	20

#	Article	IF	CITATIONS
73	Tricycloquinazoline-containing 3D conjugated microporous polymers and 2D covalent quinazoline networks: microstructure and conductivity. Polymer Chemistry, 2021, 12, 650-659.	1.9	18
74	Solvent Sorption-Induced Actuation of Composites Based on a Polymer of Intrinsic Microporosity. ACS Applied Polymer Materials, 2021, 3, 920-928.	2.0	8
75	Multi length scale porosity as a playground for organic thermoelectric applications. Journal of Materials Chemistry C, 2021, 9, 10173-10192.	2.7	8
76	Exfoliated conjugated porous polymer nanosheets for highly efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 5787-5795.	5.2	81
77	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	18.7	170
78	Triboelectric energy harvesting using conjugated microporous polymer nanoparticles in polyurethane films. Journal of Materials Chemistry A, 2021, 9, 12560-12565.	5. 2	12
79	Transition-metal-free radical homocoupling polymerization to synthesize conjugated poly(phenylene) Tj ETQq0 0	0 rgBT /O	veglock 10 T
80	In situ microsynthesis of polyaniline: synthesis–structure–conductivity correlation. New Journal of Chemistry, 2021, 45, 15968-15976.	1.4	2
81	A Ni or Co single atom anchored conjugated microporous polymer for high-performance photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 19894-19900.	5.2	34
82	Synthesis of TEMPO radical decorated hollow porous aromatic frameworks for selective oxidation of alcohols. Chemical Communications, 2021, 57, 907-910.	2.2	14
83	Promoting charge separation in donor–acceptor conjugated microporous polymers <i>via</i> cyanation for the photocatalytic reductive dehalogenation of chlorides. Catalysis Science and Technology, 2021, 11, 7151-7159.	2.1	15
84	Probing the performance of imide linked micro-porous polymers for enhanced CO ₂ gas adsorption applications. New Journal of Chemistry, 2021, 45, 15487-15496.	1.4	2
85	Impact of Chemical Structure on the Dynamics of Mass Transfer of Water in Conjugated Microporous Polymers: A Neutron Spectroscopy Study. ACS Applied Polymer Materials, 2021, 3, 765-776.	2.0	5
86	Preparative separation and purification of loliolide and epiloliolide from <i>Ascophyllum nodosum</i> using amine-based microporous organic polymer for solid phase extraction coupled with macroporous resin and prep-HPLC. Analytical Methods, 2021, 13, 1939-1944.	1.3	5
87	[Fe(bpy) ₃] ²⁺ -based porous organic polymers with boosted photocatalytic activity for recyclable organic transformations. Journal of Materials Chemistry A, 2021, 9, 6361-6367.	5.2	15
88	Macrocycle-derived hierarchical porous organic polymers: synthesis and applications. Chemical Society Reviews, 2021, 50, 11684-11714.	18.7	90
89	Porous polymers-based adsorbent materials for CO2 capture. , 2021, , 31-52.		3
90	Porous shape-persistent rylene imine cages with tunable optoelectronic properties and delayed fluorescence. Chemical Science, 2021, 12, 5275-5285.	3.7	14

#	Article	IF	CITATIONS
91	Increasing the surface area and CO ₂ uptake of conjugated microporous polymers <i>via</i> a post-knitting method. Materials Chemistry Frontiers, 2021, 5, 5319-5327.	3.2	17
92	Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. Research, 2021, 2021, 3750689.	2.8	45
93	Porous organic polymers as metal free heterogeneous organocatalysts. Green Chemistry, 2021, 23, 7361-7434.	4.6	54
94	Conjugated macrocycle polymers. Polymer Chemistry, 2021, 12, 4613-4620.	1.9	17
95	Confined space design by nanoparticle self-assembly. Chemical Science, 2021, 12, 1632-1646.	3.7	12
96	Porous noria polymer: a cage-to-network approach toward a robust catalyst for CO ₂ fixation and nitroarene reduction. Chemical Communications, 2021, 57, 4404-4407.	2.2	11
97	Structure–property–function relationship of fluorescent conjugated microporous polymers. Materials Chemistry Frontiers, 2021, 5, 2506-2551.	3.2	34
98	Poly(p-phenylenevinylene) nanoparticles modified with antiEGFRvIII for specific glioblastoma therapy. Scientific Reports, 2021, 11, 4449.	1.6	6
99	Functional Porous Organic Polymers with Conjugated Triaryl Triazine as the Core for Superfast Adsorption Removal of Organic Dyes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6359-6366.	4.0	98
100	Roomâ€Temperature Sodium–Sulfur Batteries and Beyond: Realizing Practical High Energy Systems through Anode, Cathode, and Electrolyte Engineering. Advanced Energy Materials, 2021, 11, 2003493.	10.2	114
101	Valorization of Click-Based Microporous Organic Polymer: Generation of Mesoionic Carbene–Rh Species for the Stereoselective Synthesis of Poly(arylacetylene)s. Journal of the American Chemical Society, 2021, 143, 4100-4105.	6.6	15
102	Fabrication of Advanced Hierarchical Porous Polymer Nanosheets and Their Application in Lithium–Sulfur Batteries. Macromolecules, 2021, 54, 2992-2999.	2.2	13
103	Critical Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Mechanism Identification and Engineering Design. Environmental Science & Emp; Technology, 2021, 55, 4287-4304.	4.6	106
104	Macrocycles in Bioinspired Catalysis: From Molecules to Materials. Frontiers in Chemistry, 2021, 9, 635315.	1.8	8
105	Redox Donor–Acceptor Conjugated Microporous Polymers as Ultralongâ€Lived Organic Anodes for Rechargeable Air Batteries. Angewandte Chemie - International Edition, 2021, 60, 10164-10171.	7.2	44
106	Porphyrin-Based Conjugated Microporous Polymer Tubes: Template-Free Synthesis and A Photocatalyst for Visible-Light-Driven Thiocyanation of Anilines. Macromolecules, 2021, 54, 3543-3553.	2.2	25
107	Covalent Triazine Frameworks as Emerging Heterogeneous Photocatalysts. Chemistry of Materials, 2021, 33, 1909-1926.	3.2	116
108	Triazine interlinked covalent organic polymer as an efficient anti-bacterial agent. Materials Today Chemistry, 2021, 19, 100408.	1.7	7

#	Article	IF	CITATIONS
109	Multifunctional Two-Dimensional Conjugated Materials for Dopant-Free Perovskite Solar Cells with Efficiency Exceeding 22%. ACS Energy Letters, 0, , 1521-1532.	8.8	103
110	A fluorescent covalent triazine framework consisting of donor–acceptor structure for selective and sensitive sensing of Fe3+. European Polymer Journal, 2021, 147, 110297.	2.6	21
111	Redox Donor–Acceptor Conjugated Microporous Polymers as Ultralongâ€Lived Organic Anodes for Rechargeable Air Batteries. Angewandte Chemie, 2021, 133, 10252-10259.	1.6	4
112	Acetic Anhydride Polymerization as a Pathway to Functional Porous Organic Polymers and Their Application in Acid–Base Catalysis. ACS Applied Polymer Materials, 2021, 3, 2588-2597.	2.0	19
113	Benzene Ring Knitting Achieved by Ambientâ€Temperature Dehalogenation via Mechanochemical Ullmannâ€Type Reductive Coupling. Advanced Materials, 2021, 33, e2008685.	11.1	27
114	Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Progress in Polymer Science, 2021, 115, 101374.	11.8	117
115	Edge confined covalent organic framework with efficient biocompatibility and photothermic conversion. Nano Today, 2021, 37, 101101.	6.2	32
116	Porous organic/inorganic polymers based on double-decker silsesquioxane for high-performance energy storage. Journal of Polymer Research, 2021, 28, 1.	1.2	22
117	Boosting the Photocatalytic Hydrogen Evolution Activity for D–π–A Conjugated Microporous Polymers by Statistical Copolymerization. Advanced Materials, 2021, 33, e2008498.	11.1	143
118	Roomâ€Temperature Synthesis of a Hollow Microporous Organic Polymer Bearing Activated Alkyne IR Probes for Nonradical Thiolâ€yne Clickâ€Based Postâ€Functionalization. Chemistry - an Asian Journal, 2021, 16, 1398-1402.	1.7	8
119	Synthesis of chemically bound conjugated polymer on TiO2 for a visible-light-driven photocatalyst: Changeable surface wettability. Materials and Design, 2021, 203, 109630.	3.3	13
120	Pyrrole-Based Conjugated Microporous Polymers as Efficient Heterogeneous Catalysts for Knoevenagel Condensation. Frontiers in Chemistry, 2021, 9, 687183.	1.8	11
121	Molten Salt Templated Synthesis of Covalent Isocyanurate Frameworks with Tunable Morphology and High CO ₂ Uptake Capacity. ACS Applied Materials & Interfaces, 2021, 13, 26102-26108.	4.0	19
122	Recent developments of organic solvent resistant materials for membrane separations. Chemosphere, 2021, 271, 129425.	4.2	64
123	Band gap engineering of metal-organic frameworks for solar fuel productions. Coordination Chemistry Reviews, 2021, 435, 213785.	9.5	57
124	Regulating Utilization Efficiency of the Photogenerated Charge Carriers by Constructing Donor–I€â€"Acceptor Polymers for Upgrading Photocatalytic CO ₂ Reduction. ChemSusChem, 2021, 14, 2749-2756.	3.6	12
125	Metal-free Synthesis of Pyridyl Conjugated Microporous Polymers for Photocatalytic Hydrogen Evolution. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1004-1012.	2.0	13
126	Conjugated Cross-linked Phenothiazines as Green or Red Light Heterogeneous Photocatalysts for Copper-Catalyzed Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2021, 143, 9630-9638.	6.6	68

#	Article	IF	CITATIONS
127	Recyclable Catalysts for Alkyne Functionalization. Molecules, 2021, 26, 3525.	1.7	2
128	Prevailing conjugated porous polymers for electrochemical energy storage and conversion: Lithium-ion batteries, supercapacitors and water-splitting. Coordination Chemistry Reviews, 2021, 436, 213782.	9.5	52
129	Precise Sub-Angstrom Ion Separation Using Conjugated Microporous Polymer Membranes. ACS Nano, 2021, 15, 11970-11980.	7.3	46
130	Pathways towards Boosting Solarâ€Driven Hydrogen Evolution of Conjugated Polymers. Small, 2021, 17, e2007576.	5.2	36
131	Application of microporous organic networks in separation science. TrAC - Trends in Analytical Chemistry, 2021, 139, 116268.	5.8	33
132	One-pot synthesis of spiro[indoline-3,2′-pyrrolidin]-ones catalyzed by mesoporous molecular sieve MCM-41. Tetrahedron, 2021, 93, 132283.	1.0	5
133	Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production. Beilstein Journal of Nanotechnology, 2021, 12, 607-623.	1.5	9
134	Advanced Applications and Challenges of Electropolymerized Conjugated Microporous Polymer Films. Advanced Functional Materials, 2021, 31, 2101861.	7.8	41
135	Decoration of conjugated polyquinoxaline dots on mesoporous TiO2 nanofibers for visible-light-driven photocatalysis. Polymer, 2021, 228, 123892.	1.8	18
136	Synthesis of high-performance conjugated microporous polymer/TiO2 photocatalytic antibacterial nanocomposites. Materials Science and Engineering C, 2021, 126, 112121.	3.8	30
137	Metallocorrole-based porous organic polymers as a heterogeneous catalytic nanoplatform for efficient carbon dioxide conversion. Nano Research, 2022, 15, 1145-1152.	5.8	17
138	Thiazolo[5,4â€'d]thiazole linked conjugated microporous polymer photocatalysis for selective aerobic oxidation of amines. Journal of Colloid and Interface Science, 2021, 593, 380-389.	5.0	21
139	Photoactive Hybrid Materials based on Conjugated Porous Polymers and Inorganic Nanoparticles. Advanced Photonics Research, 2021, 2, 2100060.	1.7	0
140	Coordination Polymers Constructed from Pyrogallol[4]arene-Assembled Metal–Organic Nanocapsules. Accounts of Chemical Research, 2021, 54, 3191-3203.	7.6	21
141	Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material. Renewable and Sustainable Energy Reviews, 2021, 145, 110854.	8.2	53
142	Conjugated microporous polymers for energy storage: Recent progress and challenges. Nano Energy, 2021, 85, 105958.	8.2	110
143	Design Zwitterionic Amorphous Conjugated Microâ€/Mesoporous Polymer Assembled Nanotentacle as Highly Efficient Sulfur Electrocatalyst for Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2101926.	10.2	32
144	On-Surface Bottom-Up Construction of COF Nanoshells towards Photocatalytic H ₂ Production. Research, 2021, 2021, 9798564.	2.8	10

#	Article	IF	Citations
145	Charge Transfer from Donor to Acceptor in Conjugated Microporous Polymer for Enhanced Photosensitization. Angewandte Chemie, 2021, 133, 22233-22240.	1.6	24
146	Hybrid porous polymers based on cage-like organosiloxanes: synthesis, properties and applications. Progress in Polymer Science, 2021, 119, 101419.	11.8	107
147	A carbon dotâ€based total green and selfâ€recoverable solidâ€state electrochemical cell fully utilizing O ₂ /H ₂ O redox couple. SusMat, 2021, 1, 448-457.	7.8	12
148	Covalent organic framework-based materials: Synthesis, modification, and application in environmental remediation. Coordination Chemistry Reviews, 2021, 441, 213989.	9.5	91
149	A novel electrochemical sensor based on MWCNTs-COOH/metal-covalent organic frameworks (MCOFs)/Co NPs for highly sensitive determination of DNA base. Microchemical Journal, 2021, 167, 106336.	2.3	28
150	Bridging-nitrogen defects modified graphitic carbon nitride nanosheet for boosted photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 27014-27025.	3.8	16
151	Controllable and Rapid Synthesis of Conjugated Microporous Polymer Membranes via Interfacial Polymerization for Ultrafast Molecular Separation. Chemistry of Materials, 2021, 33, 7047-7056.	3.2	35
152	Metal Catalysis with Knitting Aryl Polymers: Design, Catalytic Applications, and Future Trends. Chemistry of Materials, 2021, 33, 6616-6639.	3.2	25
153	Conjugated Porous Polymers: Groundâ€Breaking Materials for Solar Energy Conversion. Advanced Energy Materials, 2021, 11, 2101530.	10.2	44
154	Charge Transfer from Donor to Acceptor in Conjugated Microporous Polymer for Enhanced Photosensitization. Angewandte Chemie - International Edition, 2021, 60, 22062-22069.	7.2	37
155	Hollow porous organic polymers spheres decorated with silver nanoparticles for sterilization and oil/water separation. Microporous and Mesoporous Materials, 2021, 324, 111307.	2.2	7
156	A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. International Journal of Biological Macromolecules, 2021, 186, 1003-1166.	3.6	30
157	Triazine-Based Conjugated Microporous Polymers for Efficient Hydrogen Production. ACS Omega, 2021, 6, 23782-23787.	1.6	10
158	Inter- and Intra-Hydrogen Bonding Strategy to Control the Fluorescence of Acylhydrazone-Based Conjugated Microporous Polymers and Their Application to Nitroaromatics Detection. Macromol, 2021, 1, 234-242.	2.4	2
159	Introducing Secondary Acceptors into Conjugated Polymers to Improve Photocatalytic Hydrogen Evolution. Macromolecules, 2021, 54, 8839-8848.	2,2	31
160	Twoâ€dimensional Covalent Organic Frameworks for Electrochromic Switching. Chemistry - an Asian Journal, 2021, 16, 3055-3067.	1.7	12
161	Metal-Free Hyper-Cross-Linked Polymers from Benzyl Methyl Ethers: A Route to Polymerization Catalyst Recycling. Macromolecules, 2021, 54, 9217-9222.	2,2	19
162	Quantitative Coassembly for Precise Synthesis of Mesoporous Nanospheres with Pore Structureâ€Dependent Catalytic Performance. Advanced Materials, 2021, 33, e2103130.	11.1	13

#	Article	IF	CITATIONS
163	The need for a new generation of substructure searching software. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 676-682.	0.5	2
164	Recent Progress on Molecular Photoacoustic Imaging with Carbon-Based Nanocomposites. Materials, 2021, 14, 5643.	1.3	6
165	Metal-Free Catalysis: A Redox-Active Donor–Acceptor Conjugated Microporous Polymer for Selective Visible-Light-Driven CO ₂ Reduction to CH ₄ . Journal of the American Chemical Society, 2021, 143, 16284-16292.	6.6	155
166	Shining Light on Porous Liquids: From Fundamentals to Syntheses, Applications and Future Challenges. Advanced Functional Materials, 2022, 32, 2104162.	7.8	40
167	Tailored amino/hydroxyl bifunctional microporous organic network for efficient stir bar sorptive extraction of parabens and flavors from cosmetic and food samples. Journal of Chromatography A, 2021, 1655, 462521.	1.8	18
168	Thiol-yne click reaction mediated photoelectrochemical detection of multi-sulfhydryl compounds based on diacetylene functionalized conjugated polymer. Sensors and Actuators B: Chemical, 2021, 344, 130207.	4.0	10
169	Highly Porous Poly(arylene cyano-vinylene) Beads Derived through the Knoevenagel Condensation of the Oil-in-Oil-in-Oil Double Emulsion Templates. ACS Macro Letters, 2021, 10, 1248-1253.	2.3	8
170	Single molecular precursors for CxNy materials- Blending of carbon and nitrogen beyond g-C3N4. Carbon, 2021, 183, 332-354.	5.4	30
171	Effect of pore structure on the adsorption capacities to different sizes of adsorbates by ferrocene-based conjugated microporous polymers. Polymer, 2021, 233, 124192.	1.8	18
172	Conjugated microporous polyarylimides immobilization on carbon nanotubes with improved utilization of carbonyls as cathode materials for lithium/sodium-ion batteries. Journal of Colloid and Interface Science, 2021, 601, 446-453.	5.0	36
173	Covalent organic framework as an efficient fluorescence-enhanced probe to detect aluminum ion. Dyes and Pigments, 2021, 195, 109710.	2.0	29
174	Facile synthesis of Melamine-Modified porous organic polymer for mercury (II) removal. Separation and Purification Technology, 2021, 274, 119097.	3.9	19
175	Conjugate polymer-based membranes for gas separation applications: current status and future prospects. Materials Today Chemistry, 2021, 22, 100558.	1.7	14
176	Rational design of edges of covalent organic networks for catalyzing hydrogen peroxide production. Applied Catalysis B: Environmental, 2021, 298, 120605.	10.8	29
177	Preparation of sulfur-containing conjugated microporous polymer for adsorbing iodine and Fe3+ sensing. Journal of Environmental Chemical Engineering, 2021, 9, 106399.	3.3	13
178	Hydroxy functionalized triptycene based covalent organic polymers for ultra-high radioactive iodine uptake. Chemical Engineering Journal, 2022, 427, 130950.	6.6	35
179	Anion anchored conjugated microporous polymers as solid electrolytes. Chemical Engineering Journal, 2022, 427, 131728.	6.6	13
180	Nanometer scale porous structures. , 2021, , 53-76.		0

#	Article	IF	Citations
181	Construction of MXeneâ€Coupled Nitrogenâ€Doped Porous Carbon Hybrid from a Conjugated Microporous Polymer for Highâ€Performance Supercapacitors. Advanced Energy and Sustainability Research, 2021, 2, 2000052.	2.8	12
182	Multifunctional chiral cationic porous organic polymers: gas uptake and heterogeneous asymmetric organocatalysis. Polymer Chemistry, 2021, 12, 3367-3374.	1.9	5
183	Fluorinated Iron(<scp>ii</scp>) clathrochelate units in metalorganic based copolymers: improved porosity, iodine uptake, and dye adsorption properties. RSC Advances, 2021, 11, 14986-14995.	1.7	23
184	Organic photoelectrode engineering: accelerating photocurrent generation ⟨i⟩via⟨ i⟩ donorâ€"acceptor interactions and surface-assisted synthetic approach. Journal of Materials Chemistry A, 2021, 9, 7162-7171.	5.2	13
185	Applications of porous frameworks in solidâ€phase microextraction. Journal of Separation Science, 2021, 44, 1231-1263.	1.3	14
186	Controlled growth of ultrafine metal nanoparticles mediated by solid supports. Nanoscale Advances, 2021, 3, 1865-1886.	2.2	18
187	A spirobifluorene-based water-soluble imidazolium polymer for luminescence sensing. New Journal of Chemistry, 2021, 45, 13021-13028.	1.4	5
188	Dynamic porous organic polymers with tuneable crosslinking degree and porosity. RSC Advances, 2021, 11, 27714-27719.	1.7	12
189	Rational design of bifunctional conjugated microporous polymers. Nanoscale Advances, 2021, 3, 4891-4906.	2.2	23
190	Two-dimensional conjugated microporous polymer films: fabrication strategies and potential applications. Polymer Chemistry, 2021, 12, 807-821.	1.9	26
191	Side-chain-extended conjugation: a strategy for improving the photocatalytic hydrogen production performance of a linear conjugated polymer. Journal of Materials Chemistry A, 2021, 9, 8782-8791.	5.2	37
192	<scp>Redoxâ€Active</scp> Porous Organic Polymers for Energy Storage. Bulletin of the Korean Chemical Society, 2021, 42, 159-167.	1.0	13
193	Carbazole- and thiophene-containing conjugated microporous polymers with different planarity for enhanced photocatalytic hydrogen evolution. Chemical Communications, 2021, 57, 11968-11971.	2.2	37
194	Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chemical Society Reviews, 2021, 50, 12883-12896.	18.7	108
195	Enhancing charge separation in conjugated microporous polymers for efficient photocatalytic hydrogen evolution. Materials Advances, 2021, 2, 7379-7383.	2.6	2
196	Isotruxene-based porous polymers as efficient and recyclable photocatalysts for visible-light induced metal-free oxidative organic transformations. Green Chemistry, 2021, 23, 8878-8885.	4.6	18
197	Porous Organic Polymers for Catalytic Conversion of Carbon Dioxide. Chemistry - an Asian Journal, 2021, 16, 3833-3850.	1.7	14
198	Resolving Cross-Sensitivity Effect in Fluorescence Quenching for Simultaneously Sensing Oxygen and Ammonia Concentrations by an Optical Dual Gas Sensor. Sensors, 2021, 21, 6940.	2.1	11

#	Article	IF	CITATIONS
199	Unprecedented Processable Hypercrosslinked Polymers with Controlled Knitting. Macromolecular Rapid Communications, 2022, 43, e2100449.	2.0	4
200	Macrocycleâ€Based Porous Organic Polymers for Separation, Sensing, and Catalysis. Advanced Materials, 2022, 34, e2107401.	11.1	79
201	Visible Light-Driven D–A Conjugated Linear Polymer and Its Coating for Dual Highly Efficient Photocatalytic Degradation and Disinfection. ACS Applied Materials & Distriction (13, 51447-51458).	4.0	19
202	Conjugated Microporous Polymers via Solvent-Free Ionothermal Cyclotrimerization of Methyl Ketones. Chemistry of Materials, 2021, 33, 8334-8342.	3.2	12
203	A bisimidazolium-based cationic covalent triazine framework for CO2 capture and dye adsorption. European Polymer Journal, 2021, 161, 110821.	2.6	4
204	Ultrastable porous organic/inorganic polymers based on polyhedral oligomeric silsesquioxane (POSS) hybrids exhibiting high performance for thermal property and energy storage. Microporous and Mesoporous Materials, 2021, 328, 111505.	2.2	45
205	Isolated-alkene-linked porous organic polymers (BIT-POPs): facile synthesis <i>via</i> ROMP and distinguishing overlapping signals in solid-state ¹³ C NMR. Polymer Chemistry, 2021, 12, 6745-6754.	1.9	5
206	Introduction to green processing for sustainable materials. , 2022, , 1-42.		2
207	Sulfonic and phosphonic porous solids as proton conductors. Coordination Chemistry Reviews, 2022, 451, 214241.	9.5	63
208	N, S-codoped cross-linked polymers for low switch voltage and high thermal stable nonvolatile memory. Organic Electronics, 2022, 100, 106364.	1.4	2
209	Novel donor-acceptor-acceptor ternary conjugated microporous polymers with boosting forward charge separation and suppressing backward charge recombination for photocatalytic reduction of uranium (VI). Applied Catalysis B: Environmental, 2022, 301, 120819.	10.8	77
210	($\langle i \rangle E \langle i \rangle$)-1,2-Diphenylethene-based conjugated nanoporous polymers for a superior adsorptive removal of dyes from water. New Journal of Chemistry, 2021, 45, 21834-21843.	1.4	14
211	Calixarene-based Porous 3D Polymers and Copolymers with High Capacity and Binding Energy for CO2, CH4 and Xe Capture. Journal of Materials Chemistry A, O, , .	5.2	11
212	Insights into the progress of polymeric nano-composite membranes for hydrogen separation and purification in the direction of sustainable energy resources. Separation and Purification Technology, 2022, 282, 120029.	3.9	31
213	Fast uptake of organic pollutants from dilute aqueous solutions by nanoporous-crystalline PPO films with c-perpendicular orientation. European Polymer Journal, 2021, 161, 110864.	2.6	14
214	Contemporary Approaches for Conventional and Lightâ€Mediated Synthesis of Conjugated Heteroaromatic Polymers. Macromolecular Chemistry and Physics, 2021, 222, 2100334.	1.1	10
215	Graphitic Azaâ€Fused π onjugated Networks: Construction, Engineering, and Taskâ€5pecific Applications. Advanced Materials, 2022, 34, e2107947.	11.1	17
216	A review on 2D porous organic polymers for membrane-based separations: Processing and engineering of transport channels., 2021, 1, 100014.		19

#	Article	IF	CITATIONS
217	Recent Advancements of Hexaazatriphenylene-Based Materials for Energy Applications. Chinese Journal of Organic Chemistry, 2021, 41, 4167.	0.6	0
218	The O/S heteroatom effects of covalent triazine frameworks for photocatalytic hydrogen evolution. Chemical Communications, 2021, 58, 92-95.	2.2	19
219	One-pot synthesis of hierarchically porous carbons with high microporosity as high-rate electrocatalysts. Applied Surface Science, 2022, 576, 151853.	3.1	4
220	Polymers of intrinsic microporosity (PIMs) in sensing and in electroanalysis. Current Opinion in Chemical Engineering, 2022, 35, 100765.	3.8	10
221	Conjugated microporous polymer Janus membrane for dye rejection from water. Journal of Membrane Science, 2022, 644, 120096.	4.1	6
222	Combination of zeolitic imidazolate framework-67 and magnetic porous porphyrin organic polymer for preconcentration of neonicotinoid insecticides in river water. Journal of Chromatography A, 2022, 1661, 462685.	1.8	14
223	Direct conversion of aromatic amides into crystalline covalent triazine frameworks by a condensation mechanism. Cell Reports Physical Science, 2021, 2, 100653.	2.8	4
224	Conjugated Microporous Polycarbazole-Sulfur Cathode Used in a Lithium-Sulfur Battery. Journal of the Electrochemical Society, 2021, 168, 110542.	1.3	2
225	Nitrogenâ€Enriched Conjugated Polymer Enabled Metalâ€Free Carbon Nanozymes with Efficient Oxidaseâ€Like Activity. Small, 2022, 18, e2104993.	5.2	81
226	Proton/Electronâ€Donors Enhancing Electrocatalytic Activity of Supported Conjugated Microporous Polymers for CO2 Reduction. Angewandte Chemie, 0, , .	1.6	0
227	Proton/Electron Donors Enhancing Electrocatalytic Activity of Supported Conjugated Microporous Polymers for CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
228	Simple Solution Coating Towards C-C Bonded Conjugated Microporous Polymer Membranes with Excellent Nanofiltration Performance. SSRN Electronic Journal, 0, , .	0.4	0
229	Microporous Triazine-Based Ionic Hyper-Crosslinked Polymers for Efficient and Selective Separation of H $\langle sub \rangle 2 \langle sub \rangle S/Ch \langle sub \rangle 4 \langle sub \rangle N \langle sub \rangle 2 \langle sub \rangle SRN$ Electronic Journal, 0, , .	0.4	0
230	Pillararene-based molecular-scale porous materials. Chemical Communications, 2021, 57, 13429-13447.	2.2	47
231	Synthesis methods of microporous organic polymeric adsorbents: a review. Polymer Chemistry, 2021, 12, 6962-6997.	1.9	11
232	Azine- and imine-linked conjugated polyHIPEs through Schiff-base condensation reaction. Polymer Chemistry, 2022, 13, 474-478.	1.9	8
233	Efficient solid-phase microextraction of twelve halogens-containing environmental hormones from fruits and vegetables by triazine-based conjugated microporous polymer coating. Analytica Chimica Acta, 2022, 1195, 339458.	2.6	20
234	Identifying the impact of the covalent-bonded carbon matrix to FeN4 sites for acidic oxygen reduction. Nature Communications, 2022, 13, 57.	5.8	67

#	Article	IF	CITATIONS
235	Post-synthetic modification of conjugated microporous polymer with imidazolium for highly efficient anionic dyes removal from water. Separation and Purification Technology, 2022, 284, 120245.	3.9	14
236	Fast uptake of organic pollutants from dilute aqueous solutions by nanoporous-crystalline PPO films with c-perpendicular orientation. European Polymer Journal, 2022, 164, 110976.	2.6	3
237	Side-chain engineering on conjugated porous polymer photocatalyst with adenine groups enables high-performance hydrogen evolution from water. Polymer, 2022, 240, 124509.	1.8	11
238	Microporous triazine-based ionic hyper-crosslinked polymers for efficient and selective separation of H2S/CH4/N2. Separation and Purification Technology, 2022, 285, 120377.	3.9	16
239	Porous Organic Polymers Derived from Ferrocene and Tetrahedral Silicon-Centered Monomers for Carbon Dioxide Sorption. Polymers, 2022, 14, 370.	2.0	6
240	Encapsulation of Metal Clusters within Porous Organic Materials: From Synthesis to Catalysis Applications. Chemistry - an Asian Journal, 2022, 17 , .	1.7	16
241	Molecular Dipoleâ€Induced Photoredox Catalysis for Hydrogen Evolution over Selfâ€Assembled Naphthalimide Nanoribbons. Angewandte Chemie, 2022, 134, .	1.6	7
242	Post-synthetic modifications in porous organic polymers for biomedical and related applications. Chemical Society Reviews, 2022, 51, 43-56.	18.7	68
243	Fully π-conjugated, diyne-linked covalent organic frameworks formed <i>via</i> alkyne–alkyne cross-coupling reaction. Materials Chemistry Frontiers, 2022, 6, 466-472.	3.2	4
244	Microporous polymers prepared from non-porous hyper-cross-linked networks by removing covalently attached template molecules. Microporous and Mesoporous Materials, 2022, 330, 111636.	2.2	6
245	Ultralarge Freeâ€Standing Imineâ€Based Covalent Organic Framework Membranes Fabricated via Compression. Advanced Science, 2022, 9, e2104643.	5.6	31
246	Advances in porous organic polymers: syntheses, structures, and diverse applications. Materials Advances, 2022, 3, 707-733.	2.6	140
247	Nanostructured Hypercrosslinked Porous Organic Polymers: Morphological Evolution and Rapid Separation of Polar Organic Micropollutants. ACS Applied Materials & Interfaces, 2022, 14, 7369-7381.	4.0	43
248	Porous polyelectrolyte frameworks: synthesis, post-ionization and advanced applications. Chemical Society Reviews, 2022, 51, 237-267.	18.7	31
249	Large π-Conjugated Metal–Organic Frameworks for Infrared-Light-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2022, 144, 1218-1231.	6.6	63
250	Precise fabrication of porous polymer frameworks using rigid polyisocyanides as building blocks: from structural regulation to efficient iodine capture. Chemical Science, 2022, 13, 1111-1118.	3.7	40
251	Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chemical Reviews, 2022, 122, 4204-4256.	23.0	180
252	A Universal Strategy for Boosting Hydrogen Evolution Activity of Polymer Photocatalysts under Visible Light by Inserting a Narrowâ€Bandâ€Gap Spacer between Donor and Acceptor. Advanced Functional Materials, 2022, 32, .	7.8	51

#	Article	IF	CITATIONS
253	Click-based conjugated microporous polymers as efficient heterogeneous photocatalysts for organic transformations. Catalysis Science and Technology, 2022, 12, 1202-1210.	2.1	11
254	Design, synthesis, and performance of adsorbents for heavy metal removal from wastewater: a review. Journal of Materials Chemistry A, 2022, 10, 1047-1085.	5.2	68
255	A physicochemical introspection of porous organic polymer photocatalysts for wastewater treatment. Chemical Society Reviews, 2022, 51, 1124-1138.	18.7	34
256	The Mechanochemical Synthesis and Activation of Carbonâ€Rich∢i>Ï€⟨/i>â€Conjugated Materials. Advanced Science, 2022, 9, e2105497.	5.6	28
257	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² â€Carbon Covalent Organic Framework Semiconductors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	38
258	Emerging porous organic polymers for biomedical applications. Chemical Society Reviews, 2022, 51, 1377-1414.	18.7	103
259	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² â€Carbon Covalent Organic Framework Semiconductors. Angewandte Chemie, 2022, 134, .	1.6	7
260	Micro-/Mesoporous Fluorescent Polymers and Devices for Visual Pesticide Detection with Portability, High Sensitivity, and Ultrafast Response. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5815-5824.	4.0	22
261	Enhanced Biological Imaging via Aggregation-Induced Emission Active Porous Organic Cages. ACS Nano, 2022, 16, 2355-2368.	7.3	21
262	Molecular Dipoleâ€Induced Photoredox Catalysis for Hydrogen Evolution over Selfâ€Assembled Naphthalimide Nanoribbons. Angewandte Chemie - International Edition, 2022, 61, .	7.2	31
263	BODIPY-linked conjugated porous polymers for dye wastewater treatment. Microporous and Mesoporous Materials, 2022, 332, 111711.	2.2	18
264	Machine learning-assisted array from fluorescent conjugated microporous polymers for multiple explosives recognition. Analytica Chimica Acta, 2022, 1192, 339343.	2.6	7
265	Two-stage polymerization towards C–C bonded Conjugated microporous polymer membranes with excellent nanofiltration performance. Journal of Membrane Science, 2022, 647, 120314.	4.1	1
266	Low temperature synthesis and superior lithium storage properties of fluorine-rich tubular porous carbon. Journal of Alloys and Compounds, 2022, 901, 163657.	2.8	9
267	Dibenzothiophene-S,S-dioxide-containing conjugated polymer with hydrogen evolution rate up to 147ÂmmolÂgâ^1 hâ^1. Applied Catalysis B: Environmental, 2022, 307, 121144.	10.8	40
268	Structure–function Relationship in Conjugated Porous Polymers. RSC Nanoscience and Nanotechnology, 2022, , 226-246.	0.2	2
269	Porous organic polymers for light-driven organic transformations. Chemical Society Reviews, 2022, 51, 2444-2490.	18.7	145
270	The bulky Pd-PEPPSI-embedded conjugated microporous polymer-catalyzed Suzuki–Miyaura cross-coupling of aryl chlorides and arylboronic acids. Polymer Chemistry, 2022, 13, 1547-1558.	1.9	8

#	Article	IF	CITATIONS
271	Fluorine-functionalized Porous Organic Polymers for Durable F-gas Capture from Semiconductor Etching Exhaust. Macromolecules, 2022, 55, 1435-1444.	2.2	11
272	A novel hierarchical nanostructured S-scheme RGO/Bi2MoO6/Bi2WO6 heterojunction: Excellent photocatalytic degradation activity for pollutants. Applied Surface Science, 2022, 588, 152788.	3.1	23
273	Porphyrin-based conjugated microporous polymers with dual active sites as anode materials for lithium-organic batteries. International Journal of Hydrogen Energy, 2022, 47, 10902-10910.	3.8	14
274	Post-crosslinking of conjugated microporous polymers using vinyl polyhedral oligomeric silsesquioxane for enhancing surface areas and organic micropollutants removal performance from water. Journal of Colloid and Interface Science, 2022, 615, 697-706.	5.0	8
275	Electron Delocalization Refining Via Single Atom Substitution in Conjugated Organic Polymers for Enhanced Photocatalytic Co2 Conversion:Get the Big Picture from Small Details. SSRN Electronic Journal, 0, , .	0.4	0
276	Porous organic polymers as a platform for sensing applications. Chemical Society Reviews, 2022, 51, 2031-2080.	18.7	140
277	Metal-free, atom and redox-economical construction of C–C bonds enabled by oligofluorene-containing hypercrosslinked polymers. Green Chemistry, 2022, 24, 2391-2396.	4.6	11
278	Porous organic polymers for high-performance supercapacitors. Chemical Society Reviews, 2022, 51, 3181-3225.	18.7	114
279	Pyridine-based conjugated microporous polymers as adsorbents for CO ₂ uptake <i>via</i> weak supramolecular interaction. New Journal of Chemistry, 2022, 46, 6394-6397.	1.4	1
280	The rise of morphology-engineered microporous organic polymers (ME-MOPs): synthesis and benefits. Journal of Materials Chemistry A, 2022, 10, 6950-6964.	5.2	20
281	Fabrication Strategies of Conjugated Microporous Polymer Membranes for Molecular Separation. Acta Chimica Sinica, 2022, 80, 168.	0.5	1
282	A sulfur-containing fluorescent hybrid porous polymer for selective detection and adsorption of Hg ²⁺ ions. Polymer Chemistry, 2022, 13, 2320-2330.	1.9	7
283	A Core-Shell Structured Magnetic Sulfonated Covalent Organic Framework for Effective Extraction of Benzoylureas Insecticides from Water, Pear Juice and Honey Samples. SSRN Electronic Journal, 0, , .	0.4	0
284	Electrosynthesis of Ionic Covalent Organic Frameworks for Chargeâ€Selective Separation of Molecules. Small, 2022, 18, e2107108.	5. 2	13
285	Structure–performance correlation guided applications of covalent organic frameworks. Materials Today, 2022, 53, 106-133.	8.3	76
286	A 2D covalent organic framework as a metal-free electrode towards electrochemical oxygen reduction reaction. Materials Today: Proceedings, 2022, 57, 228-233.	0.9	4
287	Finding the Sweet Spot of Photocatalysis─A Case Study Using Bipyridine-Based CTFs. ACS Applied Materials & Diterfaces, 2022, 14, 14182-14192.	4.0	22
288	Ultrastable Conjugated Microporous Polymers Containing Benzobisthiadiazole and Pyrene Building Blocks for Energy Storage Applications. Molecules, 2022, 27, 2025.	1.7	29

#	Article	IF	Citations
289	Low-cost and stable SFX-based semiconductor materials in organic optoelectronics. , 2023, 2, 100-109.		2
290	Spirobifluorene-Based Conjugated Microporous Polymer-Grafted Carbon Nanotubes for Efficient Supercapacitive Energy Storage. ACS Applied Energy Materials, 2022, 5, 3706-3714.	2.5	36
291	Effect of D/A Ratio on Photocatalytic Hydrogen Evolution Performance of Conjugated Polymer Photocatalysts. ACS Applied Energy Materials, 2022, 5, 4631-4640.	2.5	18
292	Ultrastable carbazole-tethered conjugated microporous polymers for high-performance energy storage. Microporous and Mesoporous Materials, 2022, 333, 111766.	2.2	10
293	Luminescent Conjugated Microporous Polymers for Selective Sensing and Ultrafast Detection of Picric Acid. ACS Applied Polymer Materials, 2022, 4, 2648-2655.	2.0	26
294	Imine-linked porous aromatic frameworks based on spirobifluorene building blocks for CO2 separation. Microporous and Mesoporous Materials, 2022, 334, 111779.	2.2	15
295	Polymer/non-fullerene acceptor bulk heterojunction nanoparticles for efficient photocatalytic hydrogen production from water. Polymer, 2022, 244, 124667.	1.8	9
296	Porous Organic Polymers via Diels–Alder Reaction for the Removal of Cr(VI) from Aqueous Solutions. ACS Macro Letters, 2022, 11, 447-451.	2.3	8
297	Connecting of conjugate microporous polymer nanoparticles by polypyrrole via sulfonic acid doping to form conductive nanocomposites for excellent microwaves absorption. Composites Science and Technology, 2022, 221, 109350.	3.8	27
298	Three-dimensional layered porous graphene aerogel hydrogen getters. International Journal of Hydrogen Energy, 2022, 47, 15296-15307.	3.8	5
299	Phenylphenothiazine-Based Porous Organic Polymers as Visible-Light Heterogeneous Photocatalysts for Switchable Bromoalkylation and Cyclopropanation of Unactivated Terminal Alkenes. ACS Sustainable Chemistry and Engineering, 2022, 10, 4650-4659.	3.2	16
300	Cyclized conjugated microporous polymer-coated silica nanospheres as fluorescent sensors for iron (III) and chromium (III). Chemical Engineering Journal, 2022, 435, 134368.	6.6	15
301	Triphenylamine-based conjugated microporous polymers as dye adsorbents and supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2022, 134, 104310.	2.7	14
302	Conjugated microporous polymer membranes for chemical separations. Chinese Journal of Chemical Engineering, 2022, 45, 1-14.	1.7	3
303	Rapid synthesis of self-standing covalent organic frameworks membrane via polyethylene glycol-assisted space-confined strategy. Journal of Membrane Science, 2022, 652, 120494.	4.1	7
304	Development of physicochemically stable Z-scheme MIL-88A/g-C3N4 heterojunction photocatalyst with excellent charge transfer for improving acid red 1 dye decomposition efficiency. Applied Surface Science, 2022, 590, 152954.	3.1	12
305	Electron delocalization refining via single atom substitution in conjugated organic polymers for enhanced photocatalytic CO2 conversion: Get the big picture from small details. Chemical Engineering Journal, 2022, 439, 135684.	6.6	8
306	Perfluorinated conjugated microporous polymer for targeted capture of Ag(I) from contaminated water. Environmental Research, 2022, 211, 113007.	3.7	5

#	Article	IF	CITATIONS
307	An ion sieving conjugated microporous thermoset ultrathin membrane for high-performance Li-S battery. Energy Storage Materials, 2022, 49, 1-10.	9.5	10
308	Hydroxyl group-enriched microporous organic network for high-performance solid-phase extraction of triazine herbicides: Experiment and DFT calculation on adsorption behavior. Chemical Engineering Journal, 2022, 442, 136171.	6.6	15
309	Catalyst-free nitro-coupling synthesis of azo-linked conjugated microporous polymers with superior aqueous energy storage capability. Science China Materials, 2022, 65, 958-966.	3.5	7
310	Metal-Free Pyrene-Based Conjugated Microporous Polymer Catalyst Bearing N- and S-Sites for Photoelectrochemical Oxygen Evolution Reaction. Frontiers in Chemistry, 2021, 9, 803860.	1.8	8
311	Preparation of Recyclable and Versatile Porous Poly(aryl thioether)s by Reversible Pd-Catalyzed Câ€"S/Câ€"S Metathesis. Journal of the American Chemical Society, 2021, 143, 21331-21339.	6.6	19
312	1,3,5â€Triphenylbenzene Based Porous Conjugated Polymers for Highly Efficient Photoreduction of Lowâ€Concentration CO ₂ in the Gasâ€Phase System. Solar Rrl, 2022, 6, .	3.1	8
314	Storing Mg Ions in Polymers: A Perspective. Macromolecular Rapid Communications, 2022, 43, e2200198.	2.0	2
315	<i>c</i> â€perpendicular orientation in thin <scp>nanoporousâ€crystalline</scp> poly(2,6â€dimethylâ€1,4â€phenylene)oxide films. Polymers for Advanced Technologies, 2022, 33, 2344-2351.	1.6	3
317	Photoexcited charge manipulation in conjugated polymers bearing a Ru(<scp>ii</scp>) complex catalyst for visible-light CO ₂ reduction. Journal of Materials Chemistry A, 2022, 10, 19821-19828.	5.2	3
318	Disclosing the Role of Defective Uio-66ÂOver Sb(V)ÂRemoval: AÂJoint Experimental and Theoretical Study. SSRN Electronic Journal, 0, , .	0.4	0
319	Conjugated microporous polymers containing ferrocene units for high carbon dioxide uptake and energy storage. Materials Chemistry and Physics, 2022, 287, 126177.	2.0	19
320	Novel Bismaleimide Porous Polymer Microsphere by Self-Stabilized Precipitation Polymerization and Its Application for Catalytic Microreactors. Macromolecules, 2022, 55, 3723-3733.	2.2	11
321	Ultrathin triphenylamine $\hat{a} \in \hat{b}$ perylene diimide polymer with $\hat{b} \in \hat{b}$ structure for photocatalytic oxidation of $\hat{b} \in \hat{b}$ beterocycles using ambient air. EcoMat, 2022, 4, .	6.8	10
322	2D Covalent Organic Frameworks as Photocatalysts for Solar Energy Utilization. Macromolecular Rapid Communications, 2022, 43, e2200108.	2.0	17
323	Reaction Pathways toward Sustainable Photosynthesis of Hydrogen Peroxide by Polymer Photocatalysts. Chemistry of Materials, 2022, 34, 4259-4273.	3.2	60
324	Electrospun Donor/Acceptor Nanofibers for Efficient Photocatalytic Hydrogen Evolution. Nanomaterials, 2022, 12, 1535.	1.9	0
325	Combining BrÃ,nsted base and photocatalysis into conjugated microporous polymers: Visible light-induced oxidation of thiols into disulfides with oxygen. Journal of Colloid and Interface Science, 2022, 622, 1045-1053.	5.0	8
326	Conjugated Boron Porous Polymers Having Strong pâ°'Ï€* Conjugation for Amine Sensing and Absorption. Macromolecules, 2022, 55, 3850-3859.	2.2	9

#	Article	IF	CITATIONS
327	Room temperature ferromagnetism in Fe3O4 nanoparticle-embedded polymer semiconductors. Journal of Physics and Chemistry of Solids, 2022, 167, 110750.	1.9	4
328	Porous materials for capture and catalytic conversion of CO2 at low concentration. Coordination Chemistry Reviews, 2022, 465, 214576.	9.5	74
329	Synthesis of a novel freestanding conjugated triazine-based microporous membrane through superacid-catalyzed polymerization for superior CO2 separation. Chemical Engineering Journal Advances, 2022, 11, 100315.	2.4	8
330	Coaxially grafting conjugated microporous polymers containing single-atom cobalt catalysts to carbon nanotubes enhances sulfur cathode reaction kinetics. Chemical Engineering Journal, 2022, 444, 136546.	6.6	24
331	A directly linked COF-like conjugated microporous polymer based on naphthalene diimides for high performance supercapacitors. Chemical Communications, 2022, 58, 6809-6812.	2.2	18
332	Effective Photocatalytic Initiation of Reactive Oxygen Species by a Photoactive Covalent Organic Framework for Oxidation Reactions. , 2022, 4, 1160-1167.		38
333	Multivariate Synthetic Strategy for Improving Crystallinity of Zwitterionic Squaraineâ€Linked Covalent Organic Frameworks with Enhanced Photothermal Performance. Small, 2022, 18, e2201275.	5.2	17
334	Porous organic polymers in solar cells. Chemical Society Reviews, 2022, 51, 4465-4483.	18.7	21
335	Photocatalytic membranes containing homocoupled conjugated microporous poly(phenylene) Tj ETQq0 0 0 rgBT 2022, , 106463.	Overlock 1.6	10 Tf 50 42 0
336	Crosslinked porous porphyrin-based polyimides based on terminal alkynyl groups for high carbon dioxide selectivity. Separation and Purification Technology, 2022, 296, 121355.	3.9	2
337	Low crossâ€linked polyimide aerogel with imidazole for <scp>CO₂</scp> adsorption. Journal of Applied Polymer Science, 2022, 139, .	1.3	1
338	Bifunctional conjugated microporous polymer based filters for highly efficient PM and gaseous iodine capture. Polymer Chemistry, 2022, 13, 3681-3688.	1.9	2
339	Mechanochemistryâ€Driven Construction of Azaâ€fused Ï€â€Conjugated Networks Toward Enhanced Energy Storage. Advanced Functional Materials, 2022, 32, .	7.8	9
340	Recent Advances in Porphyrin-Based Systems for Electrochemical Oxygen Evolution Reaction. International Journal of Molecular Sciences, 2022, 23, 6036.	1.8	19
341	Rational Construction of Yolk–Shell Bimetal-Modified Quinonyl-Rich Covalent Organic Polymers with Ultralong Lithium-Storage Mechanism. ACS Nano, 2022, 16, 9830-9842.	7. 3	29
342	Guest-induced amorphous-to-crystalline transformation enables sorting of haloalkane isomers with near-perfect selectivity. Science Advances, 2022, 8, .	4.7	29
343	Covalent Triazine Frameworks Embedded with Ir Complexes for Enhanced Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 7473-7478.	2.5	10
344	Highly efficient solar photothermal conversion of graphene-coated conjugated microporous	5.0	15

#	Article	IF	CITATIONS
345	Conjugated microporous polymers incorporating Thiazolo[5,4-d]thiazole moieties for Sunlight-Driven hydrogen production from water. Chemical Engineering Journal, 2022, 446, 137158.	6.6	48
346	Amine-functionalized porous organic polymers for carbon dioxide capture. Materials Advances, 2022, 3, 6668-6686.	2.6	17
347	Synthesis of Crown Ether-Based Microporous Organic Networks: A New Type of Efficient Adsorbents for Chlorophenols. SSRN Electronic Journal, 0, , .	0.4	0
348	Extending the 2D conjugated microporous polymers linked by thiazolo[5,4- <i>d</i>)thiazole for green light-driven selective aerobic oxidation of amines. Journal of Materials Chemistry A, 2022, 10, 14965-14975.	5.2	15
349	Nanotechnology Research for Alternative Renewable Energy. RSC Nanoscience and Nanotechnology, 2022, , 277-298.	0.2	0
350	Direct synthesis of triphenylamine-based ordered mesoporous polymers for metal-free photocatalytic aerobic oxidation. Journal of Materials Chemistry A, 2022, 10, 13978-13986.	5.2	9
351	Carbonate-based hyper-cross-linked polymers with pendant versatile electron-withdrawing functional groups for CO ₂ adsorption and separation. Journal of Materials Chemistry A, 2022, 10, 15062-15073.	5.2	8
352	Conjugated microporous polymer membranes for light-gated ion transport. Science Advances, 2022, 8,	4.7	15
353	Synthesis of an Acidochromic and Nitroaromatic Responsive Hydrazoneâ€Linked Pillararene Framework by a Macrocycleâ€Toâ€Framework Strategy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
354	Highly efficient removal of PM and VOCs from air by a self-supporting bifunctional conjugated microporous polymers membrane. Journal of Membrane Science, 2022, 659, 120728.	4.1	8
355	Synthesis of an Acidochromic and Nitroaromatic Responsive Hydrazoneâ€Linked Pillararene Framework by a Macrocycleâ€Toâ€Framework Strategy. Angewandte Chemie, 2022, 134, .	1.6	1
356	Covalent organic framework with active C=O/C=N groups for high performance cathode material for lithiumâ€ion batteries. International Journal of Energy Research, 2022, 46, 15174-15181.	2.2	2
357	Ultramicroporous Organophosphorus Polymers via Self-Accelerating P–C Coupling Reactions: Kinetic Effects on Crosslinking Environments and Porous Structures. Journal of the American Chemical Society, 2022, 144, 11748-11756.	6.6	12
358	Role of aromatic ring spacer in homoâ€coupled conjugated microporous polymers in selective <scp>CO₂</scp> separation. Journal of Applied Polymer Science, 2022, 139, .	1.3	1
359	Recent Progress in the Development of Hyper-Cross-Linked Polymers for Adsorption of Gaseous Volatile Organic Compounds. Polymer Reviews, 2023, 63, 365-393.	5.3	11
360	Porous Organic Polymers: Promising Testbed for Heterogeneous Reactive Oxygen Species Mediated Photocatalysis and Nonredox CO ₂ Fixation. Chemical Record, 2022, 22, .	2.9	12
361	A novel strategy to improve gas capture performance of metal-free azo-bridged porphyrin porous organic polymers: The design of traps. European Polymer Journal, 2022, 175, 111359.	2.6	4
362	Rapid preparation of melamine based magnetic covalent triazine polymers for highly efficient extraction of copper(II), chromium(III) and lead(II) ions from environmental and biological samples. Microchemical Journal, 2022, 181, 107698.	2.3	10

#	Article	IF	CITATIONS
363	Electrifying Schiff-based networks as model catalysts towards deeply understanding the crucial role of sp2-carbon in nitrogen-doped carbocatalyst for oxygen reduction reaction. Applied Surface Science, 2022, 599, 153961.	3.1	2
364	Donor-acceptor carbazole-based conjugated microporous polymers as photocatalysts for visible-light-driven H2 and O2 evolution from water splitting. Applied Catalysis B: Environmental, 2022, 316, 121624.	10.8	46
365	Disclosing the role of defective UiO-66 over Sb(V) removal: A joint experimental and theoretical study. Chemical Engineering Journal, 2022, 448, 137612.	6.6	16
366	One-pot route to fine-tuned hypercrosslinked polymer solid acid catalysts. Materials Advances, 2022, 3, 6335-6342.	2.6	11
367	A thiazolo[5,4- <i>d</i>) thiazole functionalized covalent triazine framework showing superior photocatalytic activity for hydrogen production and dye degradation. Journal of Materials Chemistry A, 2022, 10, 16328-16336.	5.2	12
368	Fluorine-Functionalized Conjugated Microporous Polymer as Adsorbents for Solid-Phase Extraction of Nine Perfluorinated Alkyl Substances. SSRN Electronic Journal, 0, , .	0.4	0
369	Solvent-Directed Morphological Transformation in Covalent Organic Polymers. Frontiers in Materials, 0, 9, .	1.2	2
370	An Efficient Electron Donor for Conjugated Microporous Polymer Photocatalysts with High Photocatalytic Hydrogen Evolution Activity. Small, 2022, 18, .	5.2	47
371	Tuning Acceptor Length in Photocatalytic <scp>Donorâ€Acceptor</scp> Conjugated Polymers for Efficient <scp>Solarâ€toâ€Hydrogen</scp> Energy Conversion. Chinese Journal of Chemistry, 2022, 40, 2457-2467.	2.6	9
372	Fluorescent/magnetic nano-aggregation via electrostatic force between modified quantum dot and iron oxide nanoparticles for bimodal imaging of U87MG tumor cells. Analytical Sciences, 2022, 38, 1141-1147.	0.8	2
373	The progress on porous organic materials for chiral separation. Journal of Chromatography A, 2022, 1677, 463341.	1.8	8
374	The synthesis, characterization and carbon dioxide adsorption of polyimide aerogels containing Tröger's base units. High Performance Polymers, 0, , 095400832211155.	0.8	0
375	Advanced porous organic polymer membranes: Design, fabrication, and energy-saving applications. EnergyChem, 2022, 4, 100079.	10.1	21
376	Versatile Electrochemical Platform Developed By Pyrophosphatase-Guided Triggered-Release System Based on Cu(II) Coordination. Journal of the Electrochemical Society, 2022, 169, 077507.	1.3	0
377	Covalent Organic Frameworks: Chemistry of Pore Interface and Wall Surface Perturbation and Impact on Functions. Accounts of Materials Research, 2022, 3, 879-893.	5.9	29
378	DFT-Assisted Design of D–A Conjugated Polymers for Photocatalytic Reduction of Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2022, 10, 9460-9468.	3.2	8
379	Chiral self-sorting and guest recognition of porous aromatic cages. Nature Communications, 2022, 13,	5.8	20
380	Coupling reactions induced by ionic palladium species deposited onto porous support materials. Coordination Chemistry Reviews, 2022, 470, 214696.	9.5	11

#	Article	IF	CITATIONS
381	3D Ionic Olefin-Linked Conjugated Microporous Polymers for Selective Detection and Removal of TcO $<$ sub $>$ 4 $<$ sub $><$ sup $>$ â \in " $<$ sup $>$ ReO $<$ sub $>$ 4 $<$ sub $><$ sup $>$ â \in " $<$ sup $>$ from Wastewater. Analytical Chemistry, 2022, 94, 10850-10856.	3.2	17
382	Hollow microtubular chalcogen derived conjugated organic polymers for CO2 photoreduction: Morphology regulation and electron delocalization refining via atom substitution. Applied Catalysis B: Environmental, 2022, 318, 121782.	10.8	7
383	Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chemical Society Reviews, 2022, 51, 7810-7882.	18.7	80
384	Hydroboration of Hollow Microporous Organic Polymers: A Promising Postsynthetic Modification Method for Functional Materials. ACS Macro Letters, 2022, 11, 1034-1040.	2.3	7
385	Fluorine-Induced Electric Field Gradient in 3D Porous Aromatic Frameworks for Highly Efficient Capture of Xe and F-Gases. ACS Applied Materials & Samp; Interfaces, 2022, 14, 35126-35137.	4.0	13
386	Reusable Copper Catecholâ€based Porous Polymers for the Highly Efficient Heterogeneous Catalytic Oxidation of Secondary Alcohols. ChemCatChem, 2022, 14, .	1.8	4
387	Advanced Nanostructured Conjugated Microporous Polymer Application in a Tandem Photoelectrochemical Cell for Hydrogen Evolution Reaction. Small, 2022, 18, .	5.2	9
388	Enhancing Built-in Electric Field via Molecular Dipole Control in Conjugated Microporous Polymers for Boosting Charge Separation. ACS Applied Materials & Enhancing Charge Separation. ACS Applied Materials & Enhancing Charge Separation.	4.0	29
389	A Triazine-Based Cationic Covalent Organic Framework as a Robust Adsorbent for Removal of Methyl Orange. Polycyclic Aromatic Compounds, 2023, 43, 5940-5957.	1.4	2
390	Processable Conjugated Microporous Polymer Gels and Monoliths: Fundamentals and Versatile Applications. ACS Applied Materials & Early; Interfaces, 2022, 14, 39701-39726.	4.0	11
391	Biopolymer composites for removal of toxic organic compounds in pharmaceutical effluents $\hat{a} \in \hat{a}$ a review. Carbohydrate Polymer Technologies and Applications, 2022, 4, 100239.	1.6	5
392	Acidâ€Modulated Synthesis of Novel Ï€â€Conjugated Microporous Polymers for Efficient Metalâ€Free Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2022, 28, .	1.7	4
393	A core-shell structured magnetic sulfonated covalent organic framework for the extraction of benzoylureas insecticides from water, pear juice and honey samples. Journal of Chromatography A, 2022, 1679, 463387.	1.8	8
394	Efficient sol-gel immobilization of microporous polymer on silica-based adsorbent for the enrichment of non-steroidal anti-inflammatory drugs. Microporous and Mesoporous Materials, 2022, 344, 112152.	2.2	2
395	Cationically Anchored Conjugated Microporous Polymers for Fast Adsorption of Negative Dyes from Aqueous Solution. ACS Applied Polymer Materials, 2022, 4, 6582-6591.	2.0	4
396	A novel chemical approach for synthesizing highly porous graphene analogue and its composite with Ag nanoparticles for efficient electrochemical oxygen reduction. Chemical Engineering Journal, 2023, 451, 138766.	6.6	8
397	Nanoarchitectured Conjugated Microporous Polymers: State of the Art Synthetic Strategies and Opportunities for Adsorption Science. Chemistry of Materials, 2022, 34, 7598-7619.	3.2	23
398	Pyrene-based conjugated microporous polymers for red light-powered oxidation of amines to imines. Applied Catalysis B: Environmental, 2022, 318, 121875.	10.8	18

#	Article	IF	Citations
399	Novel phenothiazine-based hyper-cross-linked porous polymers containing N, S double electrically rich atoms for efficient iodine capture. Microporous and Mesoporous Materials, 2022, 343, 112157.	2.2	10
400	Diaza-substitution on dibenzothiophene sulfone-based linear conjugated polymers for highly efficient visible-light photo-catalytic hydrogen evolution via substituted-position optimization. Dyes and Pigments, 2022, 206, 110645.	2.0	3
401	Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coordination Chemistry Reviews, 2022, 471, 214723.	9.5	25
402	The emerging aqueous zinc-organic battery. Coordination Chemistry Reviews, 2022, 472, 214772.	9.5	42
403	Monomer-mediated fabrication of microporous organic network@silica microsphere for reversed-phase/hydrophilic interaction mixed-mode chromatography. Talanta, 2023, 251, 123763.	2.9	9
404	Fluorine-functionalized conjugated microporous polymer as adsorbents for solid-phase extraction of nine perfluorinated alkyl substances. Journal of Chromatography A, 2022, 1681, 463457.	1.8	2
405	Porous aerogel with aligned hierarchical channels based on chitosan and halloysite for efficient solar steam generation. Applied Clay Science, 2022, 229, 106691.	2.6	11
406	A carbon dot based metal-free photoelectrochemical cell using O2/H2O redox couple in real seawater. Applied Catalysis B: Environmental, 2022, 319, 121914.	10.8	2
407	A new synthetic strategy of Aluminium(III)-porphyrin-based conjugated microporous polymers with efficient CO2 catalytic conversion at ambient conditions. Fuel, 2023, 331, 125828.	3.4	5
408	The order–disorder conundrum: a trade-off between crystalline and amorphous porous organic polymers for task-specific applications. Journal of Materials Chemistry A, 2022, 10, 17077-17121.	5.2	32
409	Rationally designed conjugated microporous polymers for efficient photocatalytic chemical transformations of isocyanides. Catalysis Science and Technology, 2022, 12, 6548-6555.	2.1	2
410	One-pot two-step synthesis of micro- and mesoporous organic fibrils for efficient pseudocapacitors. Journal of Materials Chemistry A, 2022, 10, 17511-17519.	5.2	5
411	Facile metal-free synthesis of pyrrolo[3,2- <i>b</i>)pyrrolyl-based conjugated microporous polymers for high-performance photocatalytic degradation of organic pollutants. Polymer Chemistry, 2022, 13, 5300-5308.	1.9	16
412	Facile synthesis of a triazine-based porous organic polymer containing thiophene units for effective loading and releasing of temozolomide. E-Polymers, 2022, 22, 664-675.	1.3	1
413	Coreâ€Shell ZnO@Microporous Organic Polymer Nanospheres as Enhanced Piezoâ€Triboelectric Energy Harvesting Materials. Angewandte Chemie, 0, , .	1.6	0
414	Charge Distribution Controls Onâ€₹arget Separation of Low Nucleophilicity Anions in Layered Double Hydroxides. Advanced Materials Interfaces, 2022, 9, .	1.9	2
415	Hybrid Photocatalyst for Hydrogen Production: The Effect of Fluorine on Optoelectronic Properties of Conjugated Porous Polymers. Advanced Sustainable Systems, 2022, 6, .	2.7	3
416	Structure–Property Relationship of Cyanoâ€Functionalized Conjugated Polymers for Photocatalytic Hydrogen Production. Chemistry - A European Journal, 2023, 29, .	1.7	10

#	Article	IF	Citations
417	Coreâ€Shell ZnO@Microporous Organic Polymer Nanospheres as Enhanced Piezoâ€Triboelectric Energy Harvesting Materials. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
418	An Ultrastable Porous Polyhedral Oligomeric Silsesquioxane/Tetraphenylthiophene Hybrid as a High-Performance Electrode for Supercapacitors. Molecules, 2022, 27, 6238.	1.7	15
419	Construction of Ultrastable Conjugated Microporous Polymers Containing Thiophene and Fluorene for Metal Ion Sensing and Energy Storage. Micromachines, 2022, 13, 1466.	1.4	16
420	Conjugated porous polymers for photocatalysis: The road from catalytic mechanism, molecular structure to advanced applications. EnergyChem, 2022, 4, 100094.	10.1	11
421	Lightâ€Enabled Access to Oxidative Polymerization: A Short Perspective on Bioinspired Oxidative Photopolymerization. Solar Rrl, 2022, 6, .	3.1	3
422	Nickelâ€Catalyzed Direct Arylation Polymerization for the Synthesis of Thiopheneâ€based Crossâ€linked Polymers. Chemistry - A European Journal, 0, , .	1.7	1
423	Redox-active conjugated microporous anthraquinonylamine-based polymer network grafted with activated graphene toward high-performance flexible asymmetric supercapacitor electrodes. Electrochimica Acta, 2022, 434, 141315.	2.6	7
424	Highly sensitive, selective and reliable detection of picric acid in aqueous media based on conjugated porous polymer nanoparticles. Microchemical Journal, 2022, 183, 108022.	2.3	3
425	Tris(4-ethynylphenyl)amine-Based Conjugated Microporous Polymers and Its Photocatalytic Water Splitting Hydrogen Evolution. Chinese Journal of Organic Chemistry, 2022, 42, 2967.	0.6	0
426	Boosting exciton dissociation and charge separation in pyrene-based linear conjugated polymers for efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 2022, 10, 24064-24072.	5.2	16
427	Solvent-controlled ion-coupled charge transport in microporous metal chalcogenides. Chemical Science, 2022, 13, 12747-12759.	3.7	1
428	Hierarchical Porous Carbon Fibers Synthesized by Solution-Plasma-Generated Soot Deposition and Their CO2 Adsorption Capacity. Coatings, 2022, 12, 1620.	1.2	0
429	Conjugated Microporous Poly(aniline) Enabled Hierarchical Porous Carbons for Hg(II) Adsorption. Langmuir, 2022, 38, 13238-13247.	1.6	6
430	Hairy Conjugated Microporous Polymer Nanoparticles Facilitate Heterogeneous Photoredox Catalysis with Solvent-Specific Dispersibility. ACS Nano, 2022, 16, 17041-17048.	7.3	8
431	Advances in Supercapacitor Development: Materials, Processes, and Applications. Journal of Electronic Materials, 2023, 52, 96-129.	1.0	26
432	Synthesis of melamine-based crystalline porous polymers and its silver-doped composites with one-pot approach for catalytic reduction of 4-nitrophenol. Microporous and Mesoporous Materials, 2022, 346, 112297.	2.2	4
433	N-Rich, Polyphenolic Porous Organic Polymer and Its In Vitro Anticancer Activity on Colorectal Cancer. Molecules, 2022, 27, 7326.	1.7	3
434	Chromatographic Regulation by the Building Blocks for Triazine Polymer-Based Core–Shell Stationary Phases. ACS Applied Polymer Materials, 2022, 4, 8057-8064.	2.0	1

#	Article	IF	CITATIONS
435	One-Pot Synthesis of Deep Eutectic Solvents Containing Three-Dimensional Polymeric Materials with Excellent Catalytic Activity in the Knoevenagel Condensation Reaction. ACS Applied Polymer Materials, 2022, 4, 8092-8097.	2.0	1
436	Open-channel metal particle superlattices. Nature, 2022, 611, 695-701.	13.7	26
437	Industry-compatible covalent organic frameworks for green chemical engineering. Science China Chemistry, 2022, 65, 2144-2162.	4.2	10
438	Ultrastable Three-Dimensional Triptycene- and Tetraphenylethene-Conjugated Microporous Polymers for Energy Storage. ACS Applied Energy Materials, 2022, 5, 14239-14249.	2.5	28
439	Integrated conjugated microporous polymers/carbon nanotube composite boosting superior anodic lithium storage behavior. Batteries and Supercaps, 0, , .	2.4	0
440	Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities. ACS Nano, 2022, 16, 17613-17640.	7. 3	15
441	Nitrogen-rich based conjugated microporous polymers for highly efficient adsorption and removal of COVID-19 antiviral drug chloroquine phosphate from environmental waters. Separation and Purification Technology, 2023, 305, 122517.	3.9	14
442	Advanced electrochemical energy storage and conversion on graphdiyne interface., 2022, 1, e9120036.		24
443	Design, electrosynthesis and electrochromic properties of conjugated microporous polymer films based on butterfly-shaped diphenylamine-thiophene derivatives. Electrochimica Acta, 2022, 436, 141450.	2.6	4
444	Constructing an acidic microenvironment by sulfonated polymers for photocatalytic reduction of hexavalent chromium under neutral conditions. Journal of Colloid and Interface Science, 2023, 630, 235-248.	5.0	7
445	Carbonized conjugated microporous polymers hollow spheres incorporated with fatty alcohols for ultra-highly efficient energy storage and conversion. Solar Energy Materials and Solar Cells, 2023, 250, 112076.	3.0	6
446	Synthesis of crown ether-based microporous organic networks: A new type of efficient adsorbents for chlorophenols. Journal of Hazardous Materials, 2023, 443, 130268.	6.5	9
447	Room-temperature synthesis of nitrogen-rich conjugated microporous polymers for solid-phase extraction of trace synthetic musks. Food Chemistry, 2023, 404, 134681.	4.2	2
448	The preparation of N-containing functionalized porous organic polymers for selective synthesis of C3-alkylated indoles and triazine derivatives. New Journal of Chemistry, 2022, 46, 22797-22803.	1.4	4
449	A phenazine-conjugated microporous polymer-based quartz crystal microbalance for sensitive detection of formaldehyde vapors at room temperature: an experiment and density functional theory study. Journal of Materials Chemistry A, 2023, 11, 764-774.	5.2	13
450	The preparation of conjugated microporous polymer composite materials with montmorillonite template and its improvement in photocatalytic degradation for multiple antibiotics. Applied Clay Science, 2023, 231, 106752.	2.6	7
451	3D-printed cardiovascular polymer scaffold reinforced by functional nanofiber additives for tunable mechanical strength and controlled drug release. Chemical Engineering Journal, 2023, 454, 140118.	6.6	9
452	Imine and imine-derived linkages in two-dimensional covalent organic frameworks. Nature Reviews Chemistry, 2022, 6, 881-898.	13.8	79

#	Article	IF	CITATIONS
453	Electronic Effectâ€Modulated Enhancements of Proton Conductivity in Porous Organic Polymers. Angewandte Chemie, 0, , .	1.6	0
454	Tuning the Photocatalytic Activity through Linkages of Porous Conjugated Polymers Based on Triazines for a Selective Oxidation Reaction. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	5
455	Electronic Effectâ€Modulated Enhancements of Proton Conductivity in Porous Organic Polymers. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
456	Imine-linked triazine-based conjugated microporous polymers/carbon nanotube composites as organic anode materials for lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130496.	2.3	2
457	Tissue paper-liked conjugated microporous polymers film for bacteria inhibition. Journal of Environmental Chemical Engineering, 2022, 10, 108933.	3.3	6
458	Triptycene based fluorinated polymers with improved carbon dioxide capture and hydrogen/methane storage. Microporous and Mesoporous Materials, 2022, 346, 112320.	2.2	3
459	AIE-Active Fluorescent Porous Polymers for Recognizable Detection of Imidacloprid and Structure–Property Relationship. Chemistry of Materials, 2022, 34, 10701-10710.	3.2	13
460	Advances in organic microporous membranes for CO ₂ separation. Energy and Environmental Science, 2023, 16, 53-75.	15.6	24
461	Triphenylamine–anthraquinone based donor–acceptor conjugated microporous polymers for photocatalytic hydroxylation of phenylboronic acids. Chemical Communications, 2023, 59, 635-638.	2,2	10
462	A 1,3,5-triazine and benzodithiophene based donor-acceptor type semiconducting conjugated polymer for photocatalytic overall water splitting. Journal of Solid State Chemistry, 2023, 318, 123769.	1.4	5
463	Porous polymer networks cross-linked by novel copper Schiff base complex: From synthesis to catalytic activity. European Polymer Journal, 2023, 184, 111772.	2.6	3
464	Understanding solar fuel photocatalysis using covalent organic frameworks. Photochemistry, 2022, , 403-427.	0.2	0
465	The literature of heterocyclic chemistry, Part XX, 2020. Advances in Heterocyclic Chemistry, 2023, , 201-274.	0.9	1
466	Covalent organic frameworks as promising materials for the removal of metal and organic pollutants from water. Materials Today Sustainability, 2023, 21, 100279.	1.9	11
467	Donor to Acceptor Charge Transfer in Carbazoleâ€based Conjugated Microporous Polymers for Enhanced Visibleâ€Lightâ€Driven Photocatalytic Water Splitting. ChemCatChem, 2023, 15, .	1.8	10
468	<scp>Potassiumâ€ionâ€bound</scp> porous organic polymers having crown ether struts enable cooperative conversion of <scp>CO₂</scp> to cyclic carbonates under mild conditions. Journal of Polymer Science, 0, , .	2.0	1
469	Synthesis of a Triazaisotruxene-Based Porous Organic Polymer and Its Application in Iodine Capture. Molecules, 2022, 27, 8722.	1.7	5
470	Pyreneâ€Based Dâ€A Molecules as Efficient Heterogeneous Catalysts for Visibleâ€Lightâ€Induced Aerobic Organic Transformations. ChemSusChem, 2023, 16, .	3.6	1

#	ARTICLE	IF	CITATIONS
471	Synthesis of D-A-Type Polymers Containing Thieno [3,2-b] thiophene Unit, Their Composites with Carbon, and Lithium Storage Performance as Anode Materials. Coatings, 2022, 12, 1912.	1.2	2
472	New carbazole-based conjugated frameworks for carbon dioxide capture and water purification: Insights on the adsorptive sites' chemistry. Microporous and Mesoporous Materials, 2023, 349, 112427.	2.2	1
473	Enhanced Photocatalytic Activity of Hyperâ€Crossâ€Linked Polymers Toward Amines Oxidation Coupled with H ₂ O ₂ Generation through Extending Monomer's Conjugation Degree. Chemistry - A European Journal, 2023, 29, .	1.7	5
474	Organic Heterocyclic Strategy for Precisely Regulating Electronic State of Palladium Interface to Boost Alcohol Oxidation. Advanced Functional Materials, 2023, 33, .	7.8	12
475	Selectively sensing amines through aldehyde-functional conjugated microporous organic polymers via Pd-catalyzed direct arylation. Polymer Journal, 2023, 55, 133-140.	1.3	1
476	Porous Materials for Water Purification. Angewandte Chemie - International Edition, 2023, 62, .	7.2	38
477	Controlled Removal of Organic Dyes from Aqueous Systems Using Porous Cross-Linked Conjugated Polyanilines. ACS Applied Polymer Materials, 0, , .	2.0	1
478	Porous Materials for Water Purification. Angewandte Chemie, 2023, 135, .	1.6	0
479	Photocatalysis of Covalent Organic Frameworks. , 0, , .		1
480	Unravelling the Multiple Synergies in MOF/CMP Supramolecular Heterojunction for Enhanced Artificial Photosynthesis. Advanced Materials Interfaces, 2023, 10, .	1.9	1
481	Synchronous construction of high sulfonic acid grafting degree and large surface area in conjugated microporous polymer adsorbents for efficient removal of uranium (VI). Separation and Purification Technology, 2023, 309, 122953.	3.9	5
482	<i>N</i> , <i>N</i> ,²i>Nê²-octyl biphenothiazine and dibenzothiophene dioxide-based soluble porous organic polymer for biphasic photocatalytic hydrogen evolution. Chemical Communications, 2023, 59, 2584-2587.	2.2	2
483	Metal organic polymers with dual catalytic sites for oxygen reduction and oxygen evolution reactions. , 2023, 5 , .		15
484	Photovoltaic Materials as Heterogeneous Photocatalysts: A Golden Opportunity for Sustainable Organic Syntheses. Solar Rrl, 2023, 7, .	3.1	4
485	2D conjugated microporous polyacetylenes synthesized via halogen-bond-assisted radical solid-phase polymerization for high-performance metal-ion absorbents. Nature Communications, 2023, 14, .	5.8	2
486	Conjugated hypercrosslinked polymers imprinted with 3,5-dinitrosalicylic acid for the fluorescent determination of \hat{l}_{\pm} -amylase activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 291, 122383.	2.0	3
487	Amine-based sorbents for CO2 capture from air and flue gasâ€"a short review and perspective. Research on Chemical Intermediates, 2023, 49, 791-817.	1.3	8
488	Supramolecular engineering of cathode materials for aqueous zinc-ion hybrid supercapacitors: novel thiophene-bridged donor–acceptor sp ² carbon-linked polymers. Journal of Materials Chemistry A, 2023, 11, 2718-2725.	5.2	5

#	Article	IF	CITATIONS
489	Electrocatalytic Porphyrin/Phthalocyanineâ€Based Organic Frameworks: Building Blocks, Coordination Microenvironments, Structureâ€Performance Relationships. Advanced Science, 2023, 10, .	5.6	23
490	Dual Molecular Oxygen Activation Sites on Conjugated Microporous Polymers for Enhanced Photocatalytic Formation of Benzothiazoles. ACS Applied Materials & Interfaces, 2023, 15, 2825-2831.	4.0	8
491	Covalent Pyrimidine Frameworks via a Tandem Polycondensation Method for Photocatalytic Hydrogen Production and Proton Conduction. Small, 2023, 19, .	5.2	7
492	Fundamental Understanding of Electronic Structure in FeN ₄ Site on Electrocatalytic Activity via <i>dz</i> ^{<i>2</i>} â€Orbitalâ€Driven Charge Tuning for Acidic Oxygen Reduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
493	Constructing the o-FCMP adsorbent as a redox-reactor to implement in situ regeneration of binding sites for selective capture of precious metals. Chemical Engineering Journal, 2023, 456, 141165.	6.6	1
494	Fundamental Understanding of Electronic Structure in FeN ₄ Site on Electrocatalytic Activity via <i>dz</i> ^{<i>2</i>^{à€Orbitalâ€Driven Charge Tuning for Acidic Oxygen Reduction. Angewandte Chemie, 2023, 135, .}}	1.6	3
495	Peptide-based porous materials and their applications. Science China Materials, 2023, 66, 470-484.	3.5	2
496	Boosting the photoreduction uranium activity for donor–acceptor–acceptor type conjugated microporous polymers by statistical copolymerization. Separation and Purification Technology, 2023, 312, 123291.	3.9	7
497	Fluorescence determination of tannic acid imprinted in conjugated hypercrosslinked polymers by Friedelâ \in "Crafts acylation. Mikrochimica Acta, 2023, 190, .	2.5	5
498	Pendant Length-Dependent Electrochemical Performances for Conjugated Organic Polymers as Solid-State Polymer Electrolytes in Lithium Metal Batteries. ACS Applied Materials & Samp; Interfaces, 2023, 15, 5283-5292.	4.0	2
499	Ultrathin Hollow Co/N/C Spheres from Hyperâ€Crosslinked Polymers by a New Universal Strategy with Boosted ORR Efficiency. Small, 2023, 19, .	5.2	3
500	Stille type P–C coupling polycondensation towards phosphorus-crosslinked polythiophenes with P-regulated photocatalytic hydrogen evolution. Chemical Science, 2023, 14, 2990-2998.	3.7	4
501	Organic polymers for CO2 capture and conversion. , 2023, , 77-99.		0
502	Porous organic polymers: a progress report in China. Science China Chemistry, 0, , .	4.2	5
503	Highly Active and Durable Metalâ€Free Carbon Catalysts for Anionâ€Exchange Membrane Fuel Cells. Advanced Energy Materials, 2023, 13, .	10.2	7
504	Design and Synthesis of Bisulfone-Linked Two-Dimensional Conjugated Microporous Polymers for CO2 Adsorption and Energy Storage. Molecules, 2023, 28, 3234.	1.7	27
505	An "off-on―electrochemical luminescence biosensor with aggregation-induced emission for ultrasensitive detection of aflatoxin B1. Sensors and Actuators B: Chemical, 2023, 380, 133407.	4.0	10
506	Hypercrosslinked microporous polystyrene: from synthesis to properties to applications. Materials Today Chemistry, 2023, 29, 101392.	1.7	12

#	Article	IF	CITATIONS
507	Diazo-coupled porous organic polymers as efficient catalysts for metal-free Henry and Knoevenagel reactions. Microporous and Mesoporous Materials, 2023, 355, 112561.	2.2	3
508	Donor-acceptor type conjugated porous polymers based on triphenylamine and benzothiadiazole units as ambipolar electrochromic materials. Polymer, 2023, 274, 125908.	1.8	6
509	Ultrastable two-dimensional fluorescent conjugated microporous polymers containing pyrene and fluorene units for metal ion sensing and energy storage. European Polymer Journal, 2023, 189, 111980.	2.6	30
510	The quinone-based conjugated microporous polymer as an effective electrode additive for activated graphene host material in lithium-sulfur batteries. Chemical Engineering Journal, 2023, 463, 142422.	6.6	8
511	Polarization-induced proton adsorption and charge separation in pyrene-based conjugated microporous polymers via substituent regulation for efficient photocatalytic hydrogen evolution. Journal of Catalysis, 2023, 421, 393-402.	3.1	6
512	Emerging tetrapyrrole porous organic polymers for chemosensing applications. Coordination Chemistry Reviews, 2023, 482, 215078.	9.5	8
513	Shape-Controlled synthesis of conjugated microporous polymer nanotubes and their implementation in continuous flow polymerization. Chemical Engineering Journal, 2023, 465, 142861.	6.6	8
514	Narrowing the bandgaps of thiazolo[5,4-d]thiazole-bridged conjugated microporous polymers to capture green light for selective oxidation of amines. Applied Catalysis B: Environmental, 2023, 330, 122585.	10.8	10
515	Porous coordination polymer synthesized from a polydentate 8-hydroxyquinoline ligand via interface reaction. Materials Letters, 2023, 341, 134234.	1.3	0
516	Tetraphenyl-p-phenylenediamine-based tunable conjugated microporous polymers: Adsorption and photodegradation of hazardous dyestuff in aqueous environments. Journal of Water Process Engineering, 2023, 53, 103675.	2.6	4
517	Pyrene―and Bipyridineâ€based Covalent Triazine Framework as Versatile Platform for Photocatalytic Solar Fuels Production**. ChemCatChem, 2023, 15, .	1.8	1
518	Acrylate-functionalized hyper-cross-linked polymers: Effect of the porogens in the polymerization on their porosity and adsorption from aqueous solution. Separation and Purification Technology, 2023, 311, 123380.	3.9	4
519	Carbazole-involved conjugated microporous polymer hollow spheres for selective photocatalytic oxidation of benzyl alcohol under visible-light irradiation. Journal of Colloid and Interface Science, 2023, 642, 648-657.	5.0	4
520	Toward high-performance dibenzo[g,p]chrysene-based conjugated polymer photocatalysts for photocatalytic hydrogen production through donor-acceptor-acceptor structure design. Chemical Engineering Journal, 2023, 459, 141553.	6.6	9
521	Hexagonal Carbon Nanoplates Decorated with Layer-Engineered MoS ₂ : High-Performance Cathode Materials for Zinc-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2023, 15, 7887-7898.	4.0	2
522	Conjugated Microporous Polymer Hybrid Microparticles for Enhanced Applicability in Silicaâ€Boosted Diclofenac Adsorption. Small Structures, 2023, 4, .	6.9	3
523	State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coordination Chemistry Reviews, 2023, 481, 215055.	9.5	9
524	Reaction Site Designation by Intramolecular Electric Field in Tröger'sâ€Baseâ€Derived Conjugated Microporous Polymer for Nearâ€Unity Selectivity of CO ₂ Photoconversion. Advanced Materials, 2023, 35, .	11.1	13

#	Article	IF	CITATIONS
525	Self-assembled, Porous and Molecularly Imprinted Supramolecular Structures in Sensing. , 2023, , 165-208.		0
526	Cationic Conjugated Microporous Polymers Coating for Dualâ€Modal Antimicrobial Inactivation with Selfâ€Sterilization and Reusability Functions. Advanced Functional Materials, 2023, 33, .	7.8	20
527	Evaluation of an Imine-Linked Polymer Organic Framework for Storage and Release of H2S and NO. Materials, 2023, 16 , 1655 .	1.3	3
528	Visible-light photoredox catalysis with organic polymers. Chemical Physics Reviews, 2023, 4, .	2.6	3
529	An Ultrastable Tetrabenzonaphthalene-Linked conjugated microporous polymer functioning as a high-performance electrode for supercapacitors. Journal of the Taiwan Institute of Chemical Engineers, 2023, , 104750.	2.7	23
530	Preparation and characterization of glucose-based covalent organic polymer coated silica as stationary phase for high-performance liquid chromatography. Journal of Chromatography A, 2023, 1693, 463876.	1.8	1
531	Perylene Diimide-Containing Dynamic Hyper-crosslinked Ionic Porous Organic Polymers: Modulation of Assembly and Gas Storage. ACS Applied Polymer Materials, 2023, 5, 2097-2104.	2.0	4
532	Framing of Poly(arylene-ethynylene) around Carbon Nanotubes and Iodine Doping for the Electrochemical Detection of Dopamine. Biosensors, 2023, 13, 308.	2.3	6
533	Super-fast iodine capture by an ionic covalent organic network (iCON) from aqueous and vapor media. , 2023, 1, 511-522.		5
534	Carbazolic Conjugated Microporous Polymers for Photocatalytic Organic Transformations. Macromolecular Rapid Communications, 2023, 44, .	2.0	3
535	Quinoxaline-based conjugated microporous polymer-grafted graphene sensors for the sensitive detection of rifampicin. Microchemical Journal, 2023, 190, 108595.	2.3	4
536	Superhydrophilic Allâ€pHâ€Adaptable Redox Conjugated Porous Polymers as Universal and Ultrarobust Ion Hosts for Diverse Energy Storage with Chemical Selfâ€Chargeability. Advanced Functional Materials, 2023, 33, .	7.8	1
537	Spontaneous Chirality Induction in the Assembly of a Single Layer 2D Network with Switchable Pores. Angewandte Chemie, 2023, 135, .	1.6	0
538	Spontaneous Chirality Induction in the Assembly of a Single Layer 2D Network with Switchable Pores. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
539	Covalent organic frameworks (COFs): a promising CO ₂ capture candidate material. Polymer Chemistry, 2023, 14, 1293-1317.	1.9	6
540	Recent advances in ground-breaking conjugated microporous polymers-based materials, their synthesis, modification and potential applications. Materials Today, 2023, 64, 180-208.	8.3	37
541	Application and Research Progress of Covalent Organic Frameworks for Solid-State Electrolytes in Lithium Metal Batteries. Materials, 2023, 16, 2240.	1.3	3
542	Quinoid-Thiophene-Based Covalent Organic Polymers for High Iodine Uptake: When Rational Chemical Design Counterbalances the Low Surface Area and Pore Volume. ACS Applied Materials & Samp; Interfaces, 2023, 15, 15819-15831.	4.0	7

#	Article	IF	Citations
543	Construction of rigid amine-linked three-dimensional covalent organic frameworks for selectively capturing carbon dioxide. Chemical Communications, 2023, 59, 4911-4914.	2.2	4
544	Pillarareneâ€Based Supramolecular Polymers for Adsorption and Separation. Advanced Materials, 2024, 36, .	11.1	14
545	Trends in Research and Development for CO ₂ Capture and Sequestration. ACS Omega, 2023, 8, 11643-11664.	1.6	12
546	Conjugated microporous polyimide cathodes for sodium/lithium-ion batteries with ultra-long cycling performance. Chemical Engineering Journal, 2023, 464, 142658.	6.6	4
547	Ï€-Electron-Extended Triazine-Based Covalent Organic Framework as Photocatalyst for Organic Pollution Degradation and H2 Production from Water. Polymers, 2023, 15, 1685.	2.0	8
548	Quinone-based imide conjugated microporous polymer-reductive graphene oxide composite as an efficient electrode for hybrid supercapacitors. New Journal of Chemistry, 0, , .	1.4	0
549	Enhanced Lithium Storage Properties of High Sulfur Doped Hard Carbon Derived from Thiophene-Containing Conjugated Microporous Polymer. Electronic Materials Letters, 0, , .	1.0	0
550	Pore-engineered nanoarchitectonics for cancer therapy. NPG Asia Materials, 2023, 15, .	3.8	15
551	Construction of conjugated scaffolds driven by mechanochemistry towards energy storage applications. Green Chemical Engineering, 2024, 5, 155-172.	3.3	0
552	Solid Polymer Electrolyte Based on an Ionically Conducting Unique Organic Polymer Framework for All-Solid-State Lithium Batteries. ACS Applied Energy Materials, 2023, 6, 4390-4403.	2.5	4
553	An Imine-Based Porous 3D Covalent Organic Polymer as a New Sorbent for the Solid-Phase Extraction of Amphenicols from Water Sample. Molecules, 2023, 28, 3301.	1.7	1
554	Melamine-functionalized aromatic carbonyl-based polymer with high surface area for efficient CO2 capture. Separation and Purification Technology, 2023, 317, 123828.	3.9	4
559	Enhanced photocatalytic hydrogen production of microporous organic polymers by incorporation of afterglow phosphorescent materials. Journal of Materials Chemistry A, 2023, 11, 12719-12725.	5.2	2
563	Recent advances in the heterogeneous photochemical synthesis of C–N bonds. Green Chemistry, 0, , .	4.6	2
576	Metal-Organic Frameworks: A Toolbox for Multifunctional Pulmonary Applications. , 2023, , 369-398.		1
577	A croconic acid-derived narrow band gap conjugated microporous polymer. Chemical Communications, 0, , .	2.2	0
591	To which sites were thiols added? Insight into the thiol–yne click-based post-synthetic modification of conjugated microporous polymers. Polymer Chemistry, 2023, 14, 2958-2963.	1.9	2
606	Mechanochemical Construction of Benzimidazole-Bridged Conjugated Porous Polymer Toward Versatile Photocatalysis. ACS Sustainable Chemistry and Engineering, 2023, 11, 10225-10232.	3.2	2

#	Article	IF	CITATIONS
614	Porous organic polymers (POPs) for environmental remediation. Materials Horizons, 2023, 10, 4083-4138.	6.4	13
616	Electropolymerized organic thin films: synthesis, characterization, and application. , 2023, , 338-371.		O
621	A Critical Insight into Porous Organic Polymers (POPs) and its Perspectives for Next-Generation Chemi-resistive Exhaled Breath Sensing: A State-of-the-Art Review. Journal of Materials Chemistry A, 0, , .	5.2	1
622	Porous organic cages for gas separations. Materials Chemistry Frontiers, 2023, 7, 5247-5262.	3.2	5
627	Porous organic polymers as a promising platform for efficient capture of heavy metal pollutants in wastewater. Polymer Chemistry, 2023, 14, 4000-4032.	1.9	5
631	Conjugated Porous Polymers and Hybrids. , 2023, , 126-154.		0
632	Structural Characterization of Porous Organic Materials. , 2023, , 287-334.		0
633	Making the connections: Physical and electric interactions in biohybrid photosynthetic systems. Energy and Environmental Science, 0, , .	15.6	0
654	Molecular dynamics of polymeric adsorbents. , 2024, , 433-460.		0
668	Polymeric adsorbents for removal of hazardous dyes. , 2024, , 297-350.		0
675	Organic polymer facilitated CO ₂ photoreduction: a minireview. Polymer Chemistry, 0, , .	1.9	0
681	Metal-free photocatalysts for solar-driven water disinfection: recent progress and challenges. Catalysis Science and Technology, 0, , .	2.1	1
687	Microporous organic nanoparticles bearing tri-Zn macrocycles: Heterogeneous catalysts for the conversion of biomass-derived furan esters to polymer platforms. Journal of Materials Chemistry A, O,	5.2	0
689	Hierarchical 2D honeycomb-like network from barium-seamed nanocapsules. Chemical Communications, 0, , .	2.2	0
692	Heterogenization of molecular catalysts within porous solids: the case of Ni-catalyzed ethylene oligomerization from zeolites to metal–organic frameworks. Chemical Society Reviews, 2023, 52, 8059-8076.	18.7	1
717	Rich oxygen atom-decorated conjugated microporous polymers for carbon dioxide capture. New Journal of Chemistry, 2023, 47, 21600-21603.	1.4	0
732	Amorphous porous organic polymers containing main group elements. Communications Chemistry, 2023, 6, .	2.0	1
749	Adsorption process of antibiotics by novel adsorbents. , 2024, , 301-367.		0

Article IF Citations