Chemical removal and selectivity reduction of nitrate fi iron/activated carbon micro-electrolysis

Chemosphere 248, 125986 DOI: 10.1016/j.chemosphere.2020.125986

Citation Report

#	Article	IF	CITATIONS
1	Zero-valent iron-based technologies for removal of heavy metal(loid)s and organic pollutants from the aquatic environment: Recent advances and perspectives. Journal of Cleaner Production, 2020, 277, 123478.	4.6	82
2	A way out of the alkaline bauxite residue: Synthesizing micro-electrolysis composite material towards the synergistic fenton degradation of high-concentration organic wastewater. Journal of Hazardous Materials, 2020, 400, 123210.	6.5	12
3	Denitrification using permeable reactive barriers with organic substrate or zero-valent iron fillers: controlling mechanisms, challenges, and future perspectives. Environmental Science and Pollution Research, 2021, 28, 21045-21064.	2.7	18
4	Reaction of activated carbon zerovalent iron with pentachlorophenol under anaerobic conditions. Journal of Cleaner Production, 2021, 297, 126748.	4.6	17
5	Carbon coating enhances single-electron oxygen reduction reaction on nZVI surface for oxidative degradation of nitrobenzene. Science of the Total Environment, 2021, 770, 144680.	3.9	22
6	Simultaneous removal of nitrate and diethyl phthalate using a novel sponge–based biocarrier combined modified walnut shell biochar with Fe3O4 in the immobilized bioreactor. Journal of Hazardous Materials, 2021, 414, 125578.	6.5	47
7	Groundwater Nitrate Bioremediation Simulation of In Situ Horizontal Well by Microbial Denitrification Using PHREEQC. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	5
8	A novel ball-milled aluminum-carbon composite for enhanced adsorption and degradation of hexabromocyclododecane. Chemosphere, 2021, 279, 130520.	4.2	15
9	Preparation of Co/Ti electrode by electro-deposition for aqueous nitrate reduction. Journal of Water Reuse and Desalination, 2021, 11, 660-672.	1.2	4
10	Iron-carbon microelectrolysis for wastewater remediation: Preparation, performance and interaction mechanisms. Chemosphere, 2021, 278, 130483.	4.2	43
11	Performance and mechanism of chelating resin (TP-207) supported Pd/Cu bimetallic nanoparticles in selective reduction of nitrate by using ZVI (zero valent iron) as reductant. Separation and Purification Technology, 2021, 272, 118974.	3.9	10
12	Increasing the electron selectivity of nanoscale zero-valent iron in environmental remediation: A review. Journal of Hazardous Materials, 2022, 421, 126709.	6.5	70
13	Facile synthesis of high iron content activated carbon-supported nanoscale zero-valent iron for enhanced Cr(VI) removal in aqueous solution. Chemosphere, 2022, 291, 132709.	4.2	10
14	A novel scheme for the utilization of Cu slag flotation tailings in preparing internal electrolysis materials to degrade printing and dyeing wastewater. Journal of Hazardous Materials, 2022, 424, 127537.	6.5	25
15	A critical review of existing mechanisms and strategies to enhance N2 selectivity in groundwater nitrate reduction. Water Research, 2022, 209, 117889.	5.3	31
16	Construction of the micro-electrolysis system by FeO and clay-carbon derived from oil refining for the removal of ozone disinfection by-products. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128224.	2.3	3
17	Enhancing nitrate removal efficiency of micro-sized zero-valent iron by chitosan gel balls encapsulating. Science of the Total Environment, 2022, 823, 153641.	3.9	12
18	Pretreatment of Rubber Additives Processing Wastewater by Aluminum–Carbon Micro-Electrolysis Process: Process Optimization and Mechanism Analysis. Water (Switzerland), 2022, 14, 582.	1.2	1

#	Article	IF	CITATIONS
19	Iron-Activated Carbon Systems to Enhance Aboriginal Aerobic Denitrifying Bacterial Consortium for Improved Treatment of Micro-Polluted Reservoir Water: Performances, Mechanisms, and Implications. Environmental Science & Technology, 2022, 56, 3407-3418.	4.6	56
20	Enhanced nitrate removal and nitrogen-selective conversion mechanism of a combined sponge iron/biochar/manganese sand system. Chemical Engineering Research and Design, 2022, 181, 343-353.	2.7	2
21	Efficient degradation of anthracene in soil by carbon-coated nZVI activated persulfate. Journal of Hazardous Materials, 2022, 431, 128581.	6.5	40
22	Nanoscale Zero-Valent Iron Confined in Anion Exchange Resins to Enhance Selective Adsorption of Phosphate from Wastewater. ACS ES&T Engineering, 2022, 2, 1454-1464.	3.7	15
23	Enhanced selective nitrate-to-nitrogen reduction by aerosol-assisted iron–carbon composites: Insights into the key factors. Chemosphere, 2022, 303, 134819.	4.2	3
24	Use of sponge iron as an indirect electron donor to provide ferrous iron for nitrate-dependent ferrous oxidation processes: Denitrification performance and mechanism. Bioresource Technology, 2022, 357, 127318.	4.8	14
25	Remediation of low C/N wastewater by iron–carbon micro-electrolysis coupled with biological denitrification: Performance, mechanisms, and application. Journal of Water Process Engineering, 2022, 48, 102899.	2.6	9
26	Cr(<scp>VI</scp>) removal from groundwater by calcium alginate coating microscale zeroâ€valent iron and activated carbon: Batch and column tests. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
27	Rapid and effective nitrate reduction over wide pH range using CuxO-CNT with the presence of KBH4: The role of in situ produced hydrogen and zero-valent copper. Separation and Purification Technology, 2022, 298, 121628.	3.9	2
28	Fabrication of high-performance multifunctional Fe-doped La2ZnTiO6 double perovskite/activated carbon nanocomposite for efficient photocatalytic degradation of dyes, nitrate and carbon dioxide pollutants. Materials Today Chemistry, 2022, 26, 101034.	1.7	3
29	Construction of Zeolite/Fe2ZnTiO6/graphene oxide multifunctional nanocomposite with high efficiency for photocatalytic removal of inorganic pollutants under visible irradiation. Journal of Physics and Chemistry of Solids, 2022, 171, 110997.	1.9	9
30	Fe(III)EDTA and Fe(II)EDTA-NO reduction by supported (nano)ZVI in Fe(II)EDTA complexation denitrification technology: Performance, kinetics, and pathway. Journal of Environmental Chemical Engineering, 2022, 10, 108547.	3.3	6
31	Ironâ \in Based Nanocatalysts for Electrochemical Nitrate Reduction. Small Methods, 2022, 6, .	4.6	48
32	Green preparation of nano-zero-valent iron-copper bimetals for nitrate removal: Characterization, reduction reaction pathway, and mechanisms. Advanced Powder Technology, 2022, 33, 103807.	2.0	8
33	Adsorption removal of nitrate by a novel magnetic zeolite adsorbent (zeolite/γ-Fe2O3Ânanocomposite) in solution. Nanotechnology for Environmental Engineering, 0, , .	2.0	0
34	Autotrophic denitrification using Fe(II) as an electron donor: A novel prospective denitrification process. Science of the Total Environment, 2022, , 159721.	3.9	1
35	The origin of highly efficient and selective activated carbon supported bimetallic Fe@Cu composite for Fe(II)EDTA-NO reduction in Fe(II)EDTA complexation denitrification process. Fuel, 2023, 333, 126561.	3.4	2
36	Iron mediated autotrophic denitrification for low C/N ratio wastewater: A review. Environmental Research, 2023, 216, 114687.	3.7	8

	CITATION	CITATION REPORT		
#	Article	IF	CITATIONS	
37	Preparation of highly efficient and eco-friendly alumina magnetic hybrid nanosorbent from red mud: Excellent adsorption capacity towards nitrate. Journal of Molecular Liquids, 2022, 368, 120751.	2.3	12	
38	Synthesis of Micro-Electrolysis Composite Materials from Blast Furnace Dust and Application into Organic Pollutant Degradation. Nanomaterials, 2022, 12, 4275.	1.9	1	
39	Simultaneous removal of typical antibiotics and nitrogen by SWIS assisted by iron carbon micro-electrolysis. Chemical Engineering Research and Design, 2023, 192, 289-298.	2.7	3	