Critical Role of Lipid Scramblase TMEM16F in Phosphat Plasma Membrane after Pore Formation

Cell Reports 30, 1129-1140.e5 DOI: 10.1016/j.celrep.2019.12.066

Citation Report

#	Article	IF	CITATIONS
1	Phosphatidylserine exposure in living cells. Critical Reviews in Biochemistry and Molecular Biology, 2020, 55, 166-178.	2.3	46
2	Host Lipid Rafts as the Gates for Listeria monocytogenes Infection: A Mini-Review. Frontiers in Immunology, 2020, 11, 1666.	2.2	10
3	Impact of Bacterial Toxins in the Lungs. Toxins, 2020, 12, 223.	1.5	21
4	Roles of Ion Fluxes, Metabolism, and Redox Balance in Cancer Therapy. Antioxidants and Redox Signaling, 2021, 34, 1108-1127.	2.5	4
5	Plasma membrane lipid scrambling causing phosphatidylserine exposure negatively regulates NK cell activation. Cellular and Molecular Immunology, 2021, 18, 686-697.	4.8	6
6	Ca2+ Sensitivity of Anoctamin 6/TMEM16F Is Regulated by the Putative Ca2+-Binding Reservoir at the N-Terminal Domain. Molecules and Cells, 2021, 44, 88-100.	1.0	5
7	Sealing holes in cellular membranes. EMBO Journal, 2021, 40, e106922.	3.5	75
10	Poreâ€forming toxins of foodborne pathogens. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2265-2285.	5.9	10
11	Matrix Vesicles: Role in Bone Mineralization and Potential Use as Therapeutics. Pharmaceuticals, 2021, 14, 289.	1.7	44
12	TMEM16F mediates bystander TCR-CD3 membrane dissociation at the immunological synapse and potentiates T cell activation. Science Signaling, 2021, 14, .	1.6	6
13	The Groovy TMEM16 Family: Molecular Mechanisms of Lipid Scrambling and Ion Conduction. Journal of Molecular Biology, 2021, 433, 166941.	2.0	56
14	Techniques for studying membrane pores. Current Opinion in Structural Biology, 2021, 69, 108-116.	2.6	4
15	Pore-Forming Toxins During Bacterial Infection: Molecular Mechanisms and Potential Therapeutic Targets. Drug Design, Development and Therapy, 2021, Volume 15, 3773-3781.	2.0	7
16	Exposure of a specific pleioform of multifunctional glyceraldehyde 3-phosphate dehydrogenase initiates CD14-dependent clearance of apoptotic cells. Cell Death and Disease, 2021, 12, 892.	2.7	3
17	ANO5 ensures trafficking of annexins in wounded myofibers. Journal of Cell Biology, 2021, 220, .	2.3	28
18	Flagging fusion: Phosphatidylserine signaling in cell–cell fusion. Journal of Biological Chemistry, 2021, 296, 100411.	1.6	54
21	Susceptibility of primary human airway epithelial cells to <i>Bordetella pertussis</i> adenylate cyclase toxin in two- and three-dimensional culture conditions. Innate Immunity, 2021, 27, 89-98.	1.1	6
22	Phosphatidylserine inside out: a possible underlying mechanism in the inflammation and coagulation abnormalities of COVID-19. Cell Communication and Signaling, 2020, 18, 190.	2.7	29

#	Article	IF	CITATIONS
23	Anoctamin 5 Knockout Mouse Model Recapitulates LGMD2L Muscle Pathology and Offers Insight Into in vivo Functional Deficits. Journal of Neuromuscular Diseases, 2021, 8, S243-S255.	1.1	5
24	Proteomic analysis of necroptotic extracellular vesicles. Cell Death and Disease, 2021, 12, 1059.	2.7	25
25	Gating and Regulatory Mechanisms of TMEM16 Ion Channels and Scramblases. Frontiers in Physiology, 2021, 12, 787773.	1.3	13
26	Virus interactions with the actin cytoskeleton—what we know and do not know about SARS-CoV-2. Archives of Virology, 2022, 167, 737-749.	0.9	17
27	Scramblases as Regulators of Proteolytic ADAM Function. Membranes, 2022, 12, 185.	1.4	8
29	Application of engineered extracellular vesicles for targeted tumor therapy. Journal of Biomedical Science, 2022, 29, 14.	2.6	29
30	Ca2+-activated sphingomyelin scrambling and turnover mediate ESCRT-independent lysosomal repair. Nature Communications, 2022, 13, 1875.	5.8	35
31	Clathrin-mediated trafficking of phospholipid flippases is required for local plasma membrane/cell wall damage repair in budding yeast. Biochemical and Biophysical Research Communications, 2022, 606, 156-162.	1.0	0
32	TMEM16F mediated phosphatidylserine exposure and microparticle release on erythrocyte contribute to hypercoagulable state in hyperuricemia. Blood Cells, Molecules, and Diseases, 2022, 96, 102666.	0.6	4
33	Extracellular Vesicles: Recent Insights Into the Interaction Between Host and Pathogenic Bacteria. Frontiers in Immunology, 0, 13, .	2.2	9
34	Recruitment of tetraspanin TSP-15 to epidermal wounds promotes plasma membrane repair in C.Âelegans. Developmental Cell, 2022, 57, 1630-1642.e4.	3.1	9
35	Cellular and molecular mechanisms underlying plasma membrane functionality and integrity. Journal of Cell Science, 2022, 135, .	1.2	3
36	Regulation of membrane homeostasis by TMC1 mechanoelectrical transduction channels is essential for hearing. Science Advances, 2022, 8, .	4.7	11
38	Scramblases and virus infection. BioEssays, 2022, 44, .	1.2	1
39	Spatiotemporal control of necroptotic cell death and plasma membrane recruitment using engineered MLKL domains. Cell Death Discovery, 2022, 8, .	2.0	3
40	Anoctamins and Calcium Signalling: An Obstacle to EGFR Targeted Therapy in Glioblastoma?. Cancers, 2022, 14, 5932.	1.7	0
41	Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines, 2023, 11, 408.	2.1	14
42	Membrane damage and repair: a thin line between life and death. Biological Chemistry, 2023, 404, 467-490.	1.2	10

CITATION REPORT

#	Article	IF	CITATIONS
44	Lipid scrambling in immunology: why it is important. , 0, , .		0
46	Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nature Reviews Molecular Cell Biology, 2023, 24, 576-596.	16.1	31

CITATION REPORT