Gearbox Fault Diagnosis Using a Deep Learning Model

IEEE Transactions on Industrial Informatics 16, 6263-6271 DOI: 10.1109/tii.2020.2967822

Citation Report

#	Article	IF	CITATIONS
1	Early Warning of Critical Blockage in Coal Mills Based on Stacked Denoising Autoencoders. IEEE Access, 2020, 8, 176101-176111.	4.2	5
2	Intelligent Fault Diagnosis of Rotor-Bearing System Under Varying Working Conditions With Modified Transfer Convolutional Neural Network and Thermal Images. IEEE Transactions on Industrial Informatics, 2021, 17, 3488-3496.	11.3	251
3	Short-term predictions of multiple wind turbine power outputs based on deep neural networks with transfer learning. Energy, 2021, 217, 119356.	8.8	37
4	Sparse Representation Classification With Structured Dictionary Design Strategy for Rotating Machinery Fault Diagnosis. IEEE Access, 2021, 9, 10012-10024.	4.2	10
5	Mechatronics Equipment Performance Degradation Assessment Using Limited and Unlabeled Data. IEEE Transactions on Industrial Informatics, 2022, 18, 2374-2385.	11.3	15
6	Statistical Alignment-Based Metagated Recurrent Unit for Cross-Domain Machinery Degradation Trend Prognostics Using Limited Data. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	4.7	3
7	Deep Learning in Smart Grid Technology: A Review of Recent Advancements and Future Prospects. IEEE Access, 2021, 9, 54558-54578.	4.2	79
8	Alarms management by supervisory control and data acquisition system for wind turbines. Eksploatacja I Niezawodnosc, 2021, 23, 110-116.	2.0	17
9	Wind Turbine Gearbox Anomaly Detection Based on Adaptive Threshold and Twin Support Vector Machines. IEEE Transactions on Energy Conversion, 2021, 36, 3462-3469.	5.2	100
10	Intelligent Mechanical Fault Diagnosis Using Multisensor Fusion and Convolution Neural Network. IEEE Transactions on Industrial Informatics, 2022, 18, 3213-3223.	11.3	87
11	Task-Sequencing Meta Learning for Intelligent Few-Shot Fault Diagnosis With Limited Data. IEEE Transactions on Industrial Informatics, 2022, 18, 3894-3904.	11.3	50
12	Multi-source fidelity sparse representation via convex optimization for gearbox compound fault diagnosis. Journal of Sound and Vibration, 2021, 496, 115879.	3.9	50
13	Intelligent fault diagnosis of machines with small & imbalanced data: A state-of-the-art review and possible extensions. ISA Transactions, 2022, 119, 152-171.	5.7	214
14	Deep transfer learning with limited data for machinery fault diagnosis. Applied Soft Computing Journal, 2021, 103, 107150.	7.2	120
15	A Hybrid Gearbox Fault Diagnosis Method Based on GWO-VMD and DE-KELM. Applied Sciences (Switzerland), 2021, 11, 4996.	2.5	13
16	A novel deep autoencoder and hyperparametric adaptive learning for imbalance intelligent fault diagnosis of rotating machinery. Engineering Applications of Artificial Intelligence, 2021, 102, 104279.	8.1	42
17	Ensemble clustering-based fault diagnosis method incorporating traditional and deep representation features. Measurement Science and Technology, 2021, 32, 095110.	2.6	8
18	Gearbox Fault Diagnosis Based on Two-Class NMF Network Under Variable Working Conditions. Journal of Electrical Engineering and Technology, 0, , 1.	2.0	2

		CITATION REPORT		
#	ARTICLE	1120	IF	CITATIONS
20	A Machine Learning Approach for Gearbox System Fault Diagnosis. Entropy, 2021, 23,	1130.	2.2	6
21	Multi-scale and multi-pooling sparse filtering: A simple and effective representation lea for intelligent fault diagnosis. Neurocomputing, 2021, 451, 138-151.	rning method	5.9	6
22	Application of Reinforcement Learning Algorithm Model in Gas Path Fault Intelligent Di Turbine. Computational Intelligence and Neuroscience, 2021, 2021, 1-10.	agnosis of Gas	1.7	6
23	Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review. Ener 5967.	rgies, 2021, 14,	3.1	22
24	Joint discriminative and shared dictionary learning with dictionary extension strategy for fault classification. Measurement: Journal of the International Measurement Confedera 110017.	or bearing Ition, 2021, 186,	5.0	12
25	A review of wind speed and wind power forecasting with deep neural networks. Applied 304, 117766.	d Energy, 2021,	10.1	319
26	Adaptive Broad Learning System for High-Efficiency Fault Diagnosis of Rotating Machir Transactions on Instrumentation and Measurement, 2021, 70, 1-11.	iery. IEEE	4.7	14
27	Fault Diagnosis of a Rotor-Bearing System Under Variable Rotating Speeds Using Two- Transfer and Infrared Thermal Images. IEEE Transactions on Instrumentation and Measu 70, 1-11.	Stage Parameter urement, 2021,	4.7	33
28	Adaptive Knowledge Transfer by Continual Weighted Updating of Filter Kernels for Few Diagnosis of Machines. IEEE Transactions on Industrial Electronics, 2022, 69, 1968-197	√-Shot Fault 76.	7.9	42
29	Deep Learning Method for Fault Detection of Wind Turbine Converter. Applied Science 2021, 11, 1280.	rs (Switzerland),	2.5	49
30	Multiscale Symbolic Diversity Entropy: A Novel Measurement Approach for Time-Series Application in Fault Diagnosis of Planetary Gearboxes. IEEE Transactions on Industrial I 2022, 18, 1121-1131.	Analysis and Its nformatics,	11.3	30
31	Construction of a Sensitive and Speed Invariant Gearbox Fault Diagnosis Model Using Utilizing Adaptive Noise Control and a Stacked Sparse Autoencoder-Based Deep Neura Sensors, 2021, 21, 18.	an Incorporated I Network.	3.8	19
32	Conditional GAN and 2-D CNN for Bearing Fault Diagnosis With Small Samples. IEEE Tr Instrumentation and Measurement, 2021, 70, 1-12.	ansactions on	4.7	50
33	Group-Sparsity Learning Approach for Bearing Fault Diagnosis. IEEE Transactions on Inc Informatics, 2022, 18, 4566-4576.	dustrial	11.3	13
34	Automated defect detection and classification for fiber-optic coil based on wavelet tranself-adaptive GA-SVM. Applied Optics, 2021, 60, 10140.	nsform and	1.8	4
35	Towards Intelligent Fault Diagnosis under Small Sample Condition via A Signals Augme Semi-supervised Learning Framework. , 2020, , .	nted		0
36	Fault diagnosis for small samples based on attention mechanism. Measurement: Journa International Measurement Confederation, 2022, 187, 110242.	al of the	5.0	67
37	Sparse Representation Convolutional Autoencoder for Feature Learning of Vibration Si Applications in Machinery Fault Diagnosis. IEEE Transactions on Industrial Electronics, 2 13565-13575.	gnals and its 2022, 69,	7.9	20

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
38	Analyzing a Decade of Wind Turbine Accident News with Topic Modeling. Sustainability, 2021, 13, 12757.	3.2	10
39	Toward Small Sample Challenge in Intelligent Fault Diagnosis: Attention-Weighted Multidepth Feature Fusion Net With Signals Augmentation. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-13.	4.7	9
40	CLFormer: A Lightweight Transformer Based on Convolutional Embedding and Linear Self-Attention With Strong Robustness for Bearing Fault Diagnosis Under Limited Sample Conditions. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	4.7	28
41	Wind Turbine Power Curve Monitoring Based on Environmental and Operational Data. IEEE Transactions on Industrial Informatics, 2022, 18, 5209-5218.	11.3	9
42	Deep residual networks-based intelligent fault diagnosis method of planetary gearboxes in cloud environments. Simulation Modelling Practice and Theory, 2022, 116, 102469.	3.8	17
43	Deep Learning-Based Explainable Fault Diagnosis Model With an Individually Grouped 1-D Convolution for Three-Axis Vibration Signals. IEEE Transactions on Industrial Informatics, 2022, 18, 8807-8817.	11.3	16
44	Prior Knowledge-Augmented Self-Supervised Feature Learning for Few-Shot Intelligent Fault Diagnosis of Machines. IEEE Transactions on Industrial Electronics, 2022, 69, 10573-10584.	7.9	36
45	Application of recurrent neural network to mechanical fault diagnosis: a review. Journal of Mechanical Science and Technology, 2022, 36, 527-542.	1.5	51
46	Machine learning on small size samples: A synthetic knowledge synthesis. Science Progress, 2022, 105, 003685042110297.	1.9	77
47	Constructing Condition Monitoring Model of Wind Turbine Blades. Mathematics, 2022, 10, 972.	2.2	6
48	An enhanced domain-adversarial neural networks for intelligent cross-domain fault diagnosis of rotating machinery. Nonlinear Dynamics, 2022, 108, 2385.	5.2	12
49	Task-incremental broad learning system for multi-component intelligent fault diagnosis of machinery. Knowledge-Based Systems, 2022, 246, 108730.	7.1	13
50	Brake uneven wear of high-speed train intelligent monitoring using an ensemble model based on multi-sensor feature fusion and deep learning. Engineering Failure Analysis, 2022, 137, 106219.	4.0	17
51	An Assessment on Condition Monitoring of Automobile Gearbox through NaÃ ⁻ ve Bayes Approach using Statistical Features. , 2022, , .		0
52	A novel hybrid model integrating residual structure and bi-directional long short-term memory network for tool wear monitoring. International Journal of Advanced Manufacturing Technology, 2022, 120, 6707-6722.	3.0	10
53	Fault Diagnosis for Limited Annotation Signals and Strong Noise Based on Interpretable Attention Mechanism. IEEE Sensors Journal, 2022, 22, 11865-11880.	4.7	16
54	A novel sub-label learning mechanism for enhanced cross-domain fault diagnosis of rotating machinery. Reliability Engineering and System Safety, 2022, 225, 108589.	8.9	15
55	Broad auto-encoder for machinery intelligent fault diagnosis with incremental fault samples and fault modes. Mechanical Systems and Signal Processing, 2022, 178, 109353.	8.0	11

#	Article	IF	CITATIONS
56	Fault Diagnosis Method of Planetary Gearbox Based on Compressed Sensing and Transfer Learning. Electronics (Switzerland), 2022, 11, 1708.	3.1	4
57	Proportion-Extracting Chirplet Transform for Nonstationary Signal Analysis of Rotating Machinery. IEEE Transactions on Industrial Informatics, 2023, 19, 2674-2683.	11.3	6
59	A dynamic-model-based fault diagnosis method for a wind turbine planetary gearbox using a deep learning network. Protection and Control of Modern Power Systems, 2022, 7, .	7.5	13
60	An adaptive anti-noise gear fault diagnosis method based on attention residual prototypical network under limited samples. Applied Soft Computing Journal, 2022, 125, 109120.	7.2	11
61	Few-shot bearing fault diagnosis based on meta-learning with discriminant space optimization. Measurement Science and Technology, 2022, 33, 115024.	2.6	8
62	Deep Transfer Learning-Based Fault Diagnosis Using Wavelet Transform for Limited Data. Applied Sciences (Switzerland), 2022, 12, 7450.	2.5	5
63	Rolling mill health states diagnosing method based on multi-sensor information fusion and improved DBNs under limited datasets. ISA Transactions, 2023, 134, 529-547.	5.7	7
64	A survey of transfer learning for machinery diagnostics and prognostics. Artificial Intelligence Review, 2023, 56, 2871-2922.	15.7	32
65	A Highly Sensitive Triboelectric Vibration Sensor for Machinery Condition Monitoring. Advanced Energy Materials, 2022, 12, .	19.5	30
66	A dynamic threshold method for wind turbine fault detection based on spatial-temporal neural neural network. Journal of Renewable and Sustainable Energy, 2022, 14, .	2.0	2
67	Acoustic Resonance Testing of Small Data on Sintered Cogwheels. Sensors, 2022, 22, 5814.	3.8	2
68	Fault Diagnosis of Power Plant Condenser With the Optimized Deep Forest Algorithm. IEEE Access, 2022, 10, 75986-75997.	4.2	1
69	Fault Diagnosis of Wheeled Robot Based on Prior Knowledge and Spatial-Temporal Difference Graph Convolutional Network. IEEE Transactions on Industrial Informatics, 2023, 19, 7055-7065.	11.3	3
70	Deep Negative Correlation Multisource Domains Adaptation Network for Machinery Fault Diagnosis Under Different Working Conditions. IEEE/ASME Transactions on Mechatronics, 2022, 27, 5914-5925.	5.8	8
71	An Instance and Feature-Based Hybrid Transfer Model for Fault Diagnosis of Rotating Machinery With Different Speeds. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	4.7	1
72	Gearbox fault diagnosis using improved feature representation and multitask learning. Frontiers in Energy Research, 0, 10, .	2.3	1
73	Bearing Fault Diagnosis With Frequency Sparsity Learning. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	4.7	2
74	Improved Symbiotic Organism Search with Deep Learning for Industrial Fault燚iagnosis. Computers, Materials and Continua, 2023, 74, 3763-3780.	1.9	0

#	Article	IF	CITATIONS
75	Deep Multiadversarial Conditional Domain Adaptation Networks for Fault Diagnostics of Industrial Equipment. IEEE Transactions on Industrial Informatics, 2023, 19, 8841-8851.	11.3	2
76	Wasserstein Generative Adversarial Networks with Meta Learning for Fault Diagnosis of Few-shot Bearing. , 2022, , .		0
77	Enhanced Dictionary Design-based Sparse Classification Scheme Towards Machinery Intelligent Diagnostics. , 2022, , .		0
78	LSTMED: An uneven dynamic process monitoring method based on LSTM and Autoencoder neural network. Neural Networks, 2023, 158, 30-41.	5.9	22
79	Highly Accurate Gear Fault Diagnosis Based on Support Vector Machine. Journal of Vibration Engineering and Technologies, 0, , .	2.2	7
80	A Novel Unsupervised Clustering and Domain Adaptation Framework for Rotating Machinery Fault Diagnosis. IEEE Transactions on Industrial Informatics, 2023, 19, 9404-9412.	11.3	2
81	A review of the application of deep learning in intelligent fault diagnosis of rotating machinery. Measurement: Journal of the International Measurement Confederation, 2023, 206, 112346.	5.0	74
82	A Novel Deep Offline-to-Online Transfer Learning Framework for Pipeline Leakage Detection With Small Samples. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-13.	4.7	6
83	An Adaptive Multihop Branch Ensemble-Based Graph Adaptation Framework With Edge-Cloud Orchestration for Condition Monitoring. IEEE Transactions on Industrial Informatics, 2023, 19, 10102-10113.	11.3	1
84	Gearbox fault diagnosis: A higher order moments approach. Measurement: Journal of the International Measurement Confederation, 2023, 210, 112489.	5.0	11
85	Dual-Threshold Attention-Guided GAN and Limited Infrared Thermal Images for Rotating Machinery Fault Diagnosis Under Speed Fluctuation. IEEE Transactions on Industrial Informatics, 2023, 19, 9933-9942.	11.3	61
86	Mel Spectrogram-based advanced deep temporal clustering model with unsupervised data for fault diagnosis. Expert Systems With Applications, 2023, 217, 119551.	7.6	9
87	Joint learning system based on semi–pseudo–label reliability assessment for weak–fault diagnosis with few labels. Mechanical Systems and Signal Processing, 2023, 189, 110089.	8.0	12
88	Integrated Damage Location Diagnosis of Frame Structure Based on Convolutional Neural Network with Inception Module. Sensors, 2023, 23, 418.	3.8	3
89	Domain Discrepancy-Guided Contrastive Feature Learning for Few-Shot Industrial Fault Diagnosis Under Variable Working Conditions. IEEE Transactions on Industrial Informatics, 2023, 19, 10277-10287.	11.3	7
90	A Mask Self-Supervised Learning-Based Transformer for Bearing Fault Diagnosis With Limited Labeled Samples. IEEE Sensors Journal, 2023, 23, 10359-10369.	4.7	6
91	Fault diagnosis of gearbox based on adaptive wavelet de-noising and convolution neural network. Advances in Mechanical Engineering, 2023, 15, 168781322311571.	1.6	3
92	Intelligent Fault Diagnosis With Noisy Labels via Semisupervised Learning on Industrial Time Series. IEEE Transactions on Industrial Informatics, 2023, 19, 7724-7732.	11.3	6

#	Article	IF	CITATIONS
93	You can get smaller: A lightweight self-activation convolution unit modified by transformer for fault diagnosis. Advanced Engineering Informatics, 2023, 55, 101890.	8.0	21
94	A Novel Clustering Based on Consensus Knowledge for Cross-Domain Fault Diagnoses. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-10.	4.7	1
95	ConvNeXt-CNN Based Intelligent Fault Diagnosis Method for Rotating Equipment. , 2022, , .		0
96	Fault Diagnosis of Bearings and Gears Based on LiteNet With Feature Aggregation. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-9.	4.7	4
97	Fault Diagnosis for Power Converters Based on Incremental Learning. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-13.	4.7	3
98	Convolutional Neural Network-Based Transformer Fault Diagnosis Using Vibration Signals. Sensors, 2023, 23, 4781.	3.8	4
99	Dual generative adversarial networks combining conditional assistance and feature enhancement for imbalanced fault diagnosis. Structural Health Monitoring, 0, , 147592172311652.	7.5	0
100	<scp>Dataâ€driven</scp> fault diagnosis approaches for industrial equipment: A review. Expert Systems, 2024, 41, .	4.5	6
101	Small sample fault diagnosis for wind turbine gearbox based on lightweight multiscale convolutional neural network. Measurement Science and Technology, 2023, 34, 095111.	2.6	3
102	Prior knowledge-based self-supervised learning for intelligent bearing fault diagnosis with few fault samples. Measurement Science and Technology, 2023, 34, 105104.	2.6	2
103	Gearbox Fault Diagnosis Based on Multi-Sensor Deep Spatiotemporal Feature Representation. Mathematics, 2023, 11, 2679.	2.2	3
104	Fault Diagnosis of Rotating Machinery: A Highly Efficient and Lightweight Framework Based on a Temporal Convolutional Network and Broad Learning System. Sensors, 2023, 23, 5642.	3.8	0
105	Automatic Optimization of One-Dimensional CNN Architecture for Fault Diagnosis of a Hydraulic Piston Pump Using Genetic Algorithm. IEEE Access, 2023, 11, 68462-68472.	4.2	3
106	Machinery Probabilistic Few-Shot Prognostics Considering Prediction Uncertainty. IEEE/ASME Transactions on Mechatronics, 2024, 29, 106-118.	5.8	2
107	Sparse Bayesian Learning Approach for Compound Bearing Fault Diagnosis. IEEE Transactions on Industrial Informatics, 2024, 20, 1562-1574.	11.3	1
108	Multiscale Deep Attention Reinforcement Learning for Imbalanced Fault Diagnosis of Gearbox Under Multi-Working Conditions. , 2023, , .		1
109	Image deep learning in fault diagnosis of mechanical equipment. Journal of Intelligent Manufacturing, 0, , .	7.3	2
110	Semisupervised Subdomain Adaptation Graph Convolutional Network for Fault Transfer Diagnosis of Rotating Machinery Under Time-Varying Speeds. IEEE/ASME Transactions on Mechatronics, 2024, 29, 730-741.	5.8	10

#	Article	IF	CITATIONS
111	Convolutional neural network framework for wind turbine electromechanical fault detection. Wind Energy, 0, , .	4.2	1
112	Domain adaptive networks with limited data for rotating machinery fault diagnosis: a case of study of gears. Measurement Science and Technology, 0, , .	2.6	1
113	A review on deep learning in planetary gearbox health state recognition: methods, applications, and dataset publication. Measurement Science and Technology, 2024, 35, 012002.	2.6	9
114	Helical Gearbox Fault Diagnosis Using Adaptive Artificial Neural Network and Adaptive Coyote Optimization. , 2023, , .		0
115	Feature-level consistency regularized Semi-supervised scheme with data augmentation for intelligent fault diagnosis under small samples. Mechanical Systems and Signal Processing, 2023, 203, 110747.	8.0	2
116	Research on Gearbox Fault Diagnosis Based on Improved ResNet Network. , 2023, , .		0
117	Discriminative subspace embedded dynamic geometrical and statistical alignment based on pseudo-label correction for cross-domain bearing fault diagnosis. Measurement Science and Technology, 2024, 35, 015001.	2.6	0
118	Sparse Sample Train Axle Bearing Fault Diagnosis: A Semi-Supervised Model Based on Prior Knowledge Embedding. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-11.	4.7	0
119	Intelligent Fault Diagnosis of Robotic Strain Wave Gear Reducer Using Area-Metric-Based Sampling. Mathematics, 2023, 11, 4081.	2.2	1
120	Interpret what a Convolutional Neural Network learns for fault detection and diagnosis in process systems. Journal of Process Control, 2023, 131, 103086.	3.3	1
121	Attribute fusion transfer for zero-shot fault diagnosis. Advanced Engineering Informatics, 2023, 58, 102204.	8.0	0
122	Model-Agnostic Meta-Learning for Fault Diagnosis of Industrial Robots. , 2023, , .		0
123	A Viewpoint Adaptation Ensemble Contrastive Learning framework for vessel type recognition with limited data. Expert Systems With Applications, 2024, 238, 122191.	7.6	1
124	Few-shot remaining useful life prediction based on meta-learning with deep sparse kernel network. Information Sciences, 2024, 653, 119795.	6.9	1
125	Refined Equivalent Modeling Method for Mixed Wind Farms Based on Small Sample Data. Energies, 2023, 16, 7191.	3.1	0
126	A Lightweight Gear Fault Diagnosis Method Based on Attention Mechanism and Multilayer Fusion Network. IEEE Transactions on Instrumentation and Measurement, 2024, 73, 1-11.	4.7	1
127	A novel vibro-acoustic fault diagnosis approach of planetary gearbox using intrinsic wavelet integrated GE-EfficientNet. Measurement Science and Technology, 2024, 35, 025131.	2.6	0
128	Triboelectric nanogenerator-embedded intelligent bearing with rolling ball defect diagnosis via signal decomposition and automated machine learning. Nano Energy, 2024, 119, 109072.	16.0	0

#	Article	IF	CITATIONS
130	Intelligent Fault Diagnosis of Marine Diesel Engines Based on Efficient Channel Attention-Improved Convolutional Neural Networks. Processes, 2023, 11, 3360.	2.8	0
131	Multiscale Deep Attention Q Network: A New Deep Reinforcement Learning Method for Imbalanced Fault Diagnosis in Gearboxes. IEEE Transactions on Instrumentation and Measurement, 2024, 73, 1-12.	4.7	0
132	Extremely Low-Speed Bearing Fault Diagnosis Based on Raw Signal Fusion and DE-1D-CNN Network. Journal of Vibration Engineering and Technologies, 0, , .	2.2	0
133	Small Sample Gear Fault Diagnosis Method Based on Transfer Learning. Open Journal of Applied Sciences, 2023, 13, 2461-2479.	0.4	0
134	A workload identification method of industrial robot combining dynamic model and convolutional neural network. Engineering Research Express, 2024, 6, 015047.	1.6	0
135	A bearing fault diagnosis method with an improved residual Unet diffusion model under extreme data imbalance. Measurement Science and Technology, 2024, 35, 046113.	2.6	0
136	Gear fault diagnosis based on complex network theory and error-correcting output codes: Multi class support vector machine. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 0, , .	1.0	0
137	Multiscale Kernal Based Convolutional Neural Networks for Gear Fault Diagnosis Under Variable Operation Conditions. , 2023, , .		0
138	Deep Morphological Shrinkage Convolutional Autoencoder-Based Feature Learning of Vibration Signals for Gearbox Fault Diagnosis. IEEE Transactions on Instrumentation and Measurement, 2024, 73, 1-12.	4.7	0
139	Novel cloud-AIoT fault diagnosis for industrial diesel generators based hybrid deep learning CNN-BGRU algorithm. Internet of Things (Netherlands), 2024, 26, 101164.	7.7	Ο