CITATION REPORT List of articles citing

DOI: 10.1021/acs.est.9b05990 Environmental Science & Samp; Technology, 2020, 54, 2360-23

Source: https://exaly.com/paper-pdf/77391324/citation-report.pdf

Version: 2024-04-24

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
19	Effect of filter extraction solvents on the measurement of the oxidative potential of airborne PM. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 29551-29563	5.1	6
18	The influence of chemical composition, aerosol acidity, and metal dissolution on the oxidative potential of fine particulate matter and redox potential of the lung lining fluid. <i>Environment International</i> , 2021 , 148, 106343	12.9	15
17	Chemical composition and oxidative potential of atmospheric particles heavily impacted by residential wood burning in the alpine region of northern Italy. <i>Atmospheric Environment</i> , 2021 , 253, 118360	5.3	7
16	Metal enriched quasi-ultrafine particles from stainless steel gas metal arc welding induced genetic and epigenetic alterations in BEAS-2B cells <i>NanoImpact</i> , 2021 , 23, 100346	5.6	О
15	Aqueous-phase reactive species formed by fine particulate matter from remote forests and polluted urban air. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 10439-10455	6.8	3
14	Assessing the oxidative potential of PAHs in ambient PM using the DTT consumption assay. <i>Environmental Pollution</i> , 2021 , 285, 117411	9.3	1
13	Oxidant-induced epithelial alarmin pathway mediates lung inflammation and functional decline following ultrafine carbon and ozone inhalation co-exposure. <i>Redox Biology</i> , 2021 , 46, 102092	11.3	3
12	Hydroxyl Radical Production by Air Pollutants in Epithelial Lining Fluid Governed by Interconversion and Scavenging of Reactive Oxygen Species. <i>Environmental Science & Environmental Science & Envir</i>	14079	4
11	A Novel Pm Sampling and Cell Exposure Strategy Based on Agar Membrane for Cytotoxicity Study. SSRN Electronic Journal,	1	
10	A novel particulate matter sampling and cell exposure strategy based on agar membrane for cytotoxicity study <i>Chemosphere</i> , 2022 , 134473	8.4	1
9	A New Method for the Assessment of the Oxidative Potential of Both Water-Soluble and Insoluble PM. <i>Atmosphere</i> , 2022 , 13, 349	2.7	1
8	Synergistic and Antagonistic Effects of Aerosol Components on Its Oxidative Potential as Predictor of Particle Toxicity <i>Toxics</i> , 2022 , 10,	4.7	O
7	Seasonal and Spatial Variations of PM10 and PM2.5 Oxidative Potential in Five Urban and Rural Sites across Lombardia Region, Italy. <i>International Journal of Environmental Research and Public Health</i> , 2022 , 19, 7778	4.6	1
6	Oxidative stress response in pulmonary cells exposed to different fractions of PM2.5-0.3 from urban, traffic and industrial sites. 2023 , 216, 114572		O
5	The Impact of COVID-19 Lockdown Strategies on Oxidative Properties of Ambient PM10 in the Metropolitan Area of Milan, Italy. 2022 , 9, 145		1
4	Seasonal variation of driving factors of ambient PM2.5 oxidative potential in Shenzhen, China. 2023 , 862, 160771		0
3	ROS-Generating Hyaluronic Acid-Modified Zirconium Dioxide-Acetylacetonate Nanoparticles as a Theranostic Platform for the Treatment of Osteosarcoma. 2023 , 13, 54		O

CITATION REPORT

Inter-comparison of oxidative potential metrics for airborne particles identifies differences between acellular chemical assays. **2022**, 13, 101596

О

Seasonal and Spatial Variations of the Oxidative Properties of Ambient PM2.5 in the Po Valley, Italy, before and during COVID-19 Lockdown Restrictions. **2023**, 20, 1797

C