Listeriosis Outbreak in South Africa: A Comparative An Cases Worldwide

Microorganisms

8, 135

DOI: 10.3390/microorganisms8010135

Citation Report

#	Article	IF	CITATIONS
1	\hat{l}^2 -Phenylethylamine as a Natural Food Additive Shows Antimicrobial Activity against Listeria monocytogenes on Ready-to-Eat Foods. Foods, 2020, 9, 1363.	4.3	9
2	Effectiveness of Phage-Based Inhibition of Listeria monocytogenes in Food Products and Food Processing Environments. Microorganisms, 2020, 8, 1764.	3.6	41
3	Applications of Electrolyzed Water as a Sanitizer in the Food and Animal-By Products Industry. Processes, 2020, 8, 534.	2.8	20
4	Discrimination of bacteria using whole organism fingerprinting: the utility of modern physicochemical techniques for bacterial typing. Analyst, The, 2021, 146, 770-788.	3.5	33
5	Co-Occurrence of Listeria spp. and Spoilage Associated Microbiota During Meat Processing Due to Cross-Contamination Events. Frontiers in Microbiology, 2021, 12, 632935.	3.5	26
6	The surveillance and prediction of food contamination using intelligent systems: a bibliometric analysis. British Food Journal, 2022, 124, 1149-1169.	2.9	8
7	Comparación teórica entre técnicas fenotÃpicas y genotÃpicas utilizadas en la identificación de Listeria monocytogenes. Revista Facultad De Ciencias Básicas, 2021, 16, 7-19.	0.2	0
8	Comparison of recombinant and synthetic listeriolysin- O peptide- based indirect ELISA vis-Ã-vis cultural isolation for detection of listeriosis in caprine and ovine species. Journal of Microbiological Methods, 2021, 188, 106278.	1.6	2
9	Prevalence and characteristics of Listeria species from selected African countries. Tropical Diseases, Travel Medicine and Vaccines, 2021, 7, 26.	2.2	6
10	Bulbous Plants Drimia: "A Thin Line between Poisonous and Healing Compounds―with Biological Activities. Pharmaceutics, 2021, 13, 1385.	4.5	5
12	†Preventing the next pandemic' – A 2020 UNEP Frontiers Series Report on zoonotic diseases with reflections for South Africa. South African Journal of Science, 2020, 116, .	0.7	5
13	Clinical and Laboratory Characteristics of Patients infected by Listeria monocytogenes at a Tertiary Hospital in Hefei City, China. Infection and Drug Resistance, 2021, Volume 14, 4409-4419.	2.7	3
14	Ecology of <i>Listeria monocytogenes</i> and <i>Listeria</i> species in India: the occurrence, resistance to biocides, genomic landscape and biocontrol. Environmental Microbiology, 2022, 24, 2759-2780.	3.8	4
15	A systematic review of clean-label alternatives to synthetic additives in raw and processed meat with a special emphasis on high-pressure processing (2018–2021). Food Research International, 2021, 150, 110792.	6.2	28
16	Acacetin Alleviates <i>Listeria monocytogenes</i> Virulence Both <i>In Vitro</i> and <i>In Vivo</i> via the Inhibition of Listeriolysin O. Foodborne Pathogens and Disease, 2022, 19, 115-125.	1.8	4
17	Food safety: bacterial contamination. , 2021, , .		O
18	Genetic diversity of Listeria monocytogenes strains contaminating food and food producing environment as single based sample in Italy (retrospective study). International Journal of Food Microbiology, 2022, 366, 109562.	4.7	7
19	Probing antimicrobial resistance and sanitizer tolerance themes and their implications for the food industry through the <i>Listeria monocytogenes</i> lens. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 1777-1802.	11.7	15

#	Article	IF	CITATIONS
20	Listeriosis during pregnancy: a retrospective cohort study. BMC Pregnancy and Childbirth, 2022, 22, 261.	2.4	5
21	The Viable But Non-Culturable State of Listeria monocytogenes in the One-Health Continuum. Frontiers in Cellular and Infection Microbiology, 2022, 12, 849915.	3.9	7
22	Whole-Genome Sequencing Characterization of Virulence Profiles of Listeria monocytogenes Food and Human Isolates and In Vitro Adhesion/Invasion Assessment. Microorganisms, 2022, 10, 62.	3.6	17
23	Microbial and chemical hazard identification in infant food chains. , 2022, 2, 100010.		4
24	Evidence of Virulent Multi-Drug Resistant and Biofilm-Forming Listeria Species Isolated from Various Sources in South Africa. Pathogens, 2022, 11, 843.	2.8	6
25	Listeria monocytogenes post-outbreak management - When could a food production be considered under control again?. International Journal of Food Microbiology, 2022, 379, 109844.	4.7	6
26	Evaluation of surveillance system for post market activities on pre-packaged foods in Greater Accra Region, Ghana, 2021. Public Health in Practice, 2022, 4, 100292.	1.5	0
27	Investigating the presence and antibiotic susceptibilities of Escherichia coli O157 and Listeria monocytogenes in ruminant feces and feed in Balıkesir province. Ankara Universitesi Veteriner Fakultesi Dergisi, 2024, 71, 31-39.	1.0	0
28	Lifestyle of <i>Listeria monocytogenes</i> and food safety: Emerging listericidal technologies in the food industry. Critical Reviews in Food Science and Nutrition, 2024, 64, 1817-1835.	10.3	6
29	Foodborne zoonosis. , 2022, , .		0
30	A vigilant observation to pregnancy associated listeriosis in Africa: Systematic review and meta-analysis. PLOS Global Public Health, 2022, 2, e0001023.	1.6	1
31	Recent Advances in the Application of Bacteriophages against Common Foodborne Pathogens. Antibiotics, 2022, 11, 1536.	3.7	8
32	A review of potential antibacterial activities of nisin against Listeria monocytogenes: the combined use of nisin shows more advantages than single use. Food Research International, 2023, 164, 112363.	6.2	14
33	Duplex real-time PCR assay with high-resolution melt analysis for the detection and quantification of Listeria species and Listeria monocytogenes in meat products. Journal of Food Science and Technology, 2023, 60, 1541-1550.	2.8	1
34	Higher prevalence of ListeriosisÂin Indian subcontinent, a food related menace. International Journal of Pharmaceutical Chemistry and Analysis, 2023, 10, 1-2.	0.2	0
35	Prevention of surface colonization and anti-biofilm effect of selected phytochemicals against Listeria innocua strain. Colloids and Surfaces B: Biointerfaces, 2023, 228, 113391.	5.0	2
36	Food handlers' knowledge, attitudes and self-reported practices regarding safe food handling in charitable food assistance programmes in the eThekwini District, South Africa: cross-sectional study. BMJ Open, 2023, 13, e065357.	1.9	1
37	Listeria monocytogenes Strains Persisting in a Meat Processing Plant in Central Italy: Use of Whole Genome Sequencing and In Vitro Adhesion and Invasion Assays to Decipher Their Virulence Potential. Microorganisms, 2023, 11, 1659.	3.6	0

#	ARTICLE	IF	CITATIONS
38	Prevalence of Listeria monocytogenes in RTE Meat Products of Quevedo (Ecuador). Foods, 2023, 12, 2956.	4.3	0
39	Development of a novel visual assay for ultrasensitive detection of Listeria monocytogenes in milk and chicken meat harnessing helix loop-mediated isothermal amplification (HAMP). Food Control, 2024, 155, 110081.	5.5	2
40	Genomic Characterization of Listeria innocua Isolates Recovered from Cattle Farms, Beef Abattoirs, and Retail Outlets in Gauteng Province, South Africa. Pathogens, 2023, 12, 1062.	2.8	2
41	Environmental persistence of <i>Listeria monocytogenes</i> and its implications in dairy processing plants. Comprehensive Reviews in Food Science and Food Safety, 2023, 22, 4573-4599.	11.7	1
42	A South African Perspective on the Microbiological and Chemical Quality of Meat: Plausible Public Health Implications. Microorganisms, 2023, 11 , 2484.	3.6	1
43	The Socioeconomic Factors of Street Food Vending in Developing Countries and Its Implications for Public Health: A Systematic Review. Foods, 2023, 12, 3774.	4.3	2
44	Contamination of Plant Foods with Bacillus cereus in a Province and Analysis of Its Traceability. Microorganisms, 2023, 11, 2763.	3.6	0
45	Recent advances in multiplex aptasensor detection techniques for food-borne pathogens: A comprehensive review of novel approaches. Biosensors and Bioelectronics: X, 2024, 16, 100417.	1.7	0
46	Unravelling the impact of fat content on the microbial dynamics and spatial distribution of foodborne bacteria in tri-phasic viscoelastic 3D models. Scientific Reports, 2023, 13, .	3.3	0
47	Impact of High-Pressure Processing (HPP) on Listeria monocytogenes—An Overview of Challenges and Responses. Foods, 2024, 13, 14.	4.3	0
48	Genomic epidemiology of hypervirulent Listeria monocytogenes CC619: Population structure, phylodynamics and virulence. Microbiological Research, 2024, 280, 127591.	5.3	0
49	Positive and negative aspects of bacteriophages and their immense role in the food chain. Npj Science of Food, 2024, 8, .	5.5	2
50	Bacterial Pathogens in Food and Their Control by Bacteriophages. Advances in Environmental Engineering and Green Technologies Book Series, 2024, , 175-228.	0.4	0
51	Dairy farmers' knowledge about milk-borne zoonosis in the Eastern Cape province, South Africa. Italian Journal of Food Safety, 0, , .	0.8	0
52	Genomic characterization of Listeria monocytogenes and Listeria innocua isolated from milk and dairy samples in Ethiopia. BMC Genomic Data, 2024, 25, .	1.7	0
53	Airborne signals of Pseudomonas fluorescens modulate swimming motility and biofilm formation of Listeria monocytogenes in a contactless coculture system. Food Microbiology, 2024, 120, 104494.	4.2	0
54	Mobile guardians: Detection of food fraud with portable spectroscopy methods for enhanced food authenticity assurance. Vibrational Spectroscopy, 2024, 132, 103673.	2.2	0
55	Designing an Experimental Setup for Incorporating Data Provenance into Blockchain Smart Contracts in a Smart Manufacturing Environment. Advances in Science, Technology and Innovation, 2024, , 185-192.	0.4	0

#	Article	IF	CITATIONS
56	Investigation of the seasonal prevalence, phenotypic, and genotypic characteristics of <i>Listeria monocytogenes</i> in slaughterhouses in Burdur. Journal of Applied Microbiology, 2024, 135, .	3.1	0
57	Rapid Nucleic Acid Detection of Listeria monocytogenes Based on RAA-CRISPR Cas12a System. International Journal of Molecular Sciences, 2024, 25, 3477.	4.1	0