Covalent Organic Frameworks: Design, Synthesis, and H

Chemical Reviews 120, 8814-8933 DOI: 10.1021/acs.chemrev.9b00550

Citation Report

#	Article	IF	CITATIONS
1	Porous Ladder Polymer Networks. CheM, 2020, 6, 2558-2590.	11.7	36
2	Fe ₃ O ₄ /Porphyrin Covalent Organic Framework Core–Shell Nanospheres as Interfacial Catalysts for Enzymatic Esterification. ACS Applied Nano Materials, 2020, 3, 10360-10368.	5.0	25
3	Covalent Organic Frameworks: An Amazing Chemistry Platform for Designing Polymers. CheM, 2020, 6, 2461-2483.	11.7	98
4	The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells. Energy Storage Materials, 2020, 33, 360-381.	18.0	47
5	Reticular Materials for Artificial Photoreduction of CO ₂ . Advanced Energy Materials, 2020, 10, 2002091.	19.5	92
6	Simple synthesis of magnetic porous organic cages for adsorption of triphenylmethane dyes in aquatic products. Microchemical Journal, 2020, 158, 105275.	4.5	8
7	Salicylideneaniline-Based Covalent Organic Frameworks: A New Family of Multistate Second-Order Nonlinear Optical Switches. Journal of Physical Chemistry C, 2020, 124, 24451-24459.	3.1	13
8	Design of higher valency in covalent organic frameworks. Science, 2020, 370, .	12.6	189
9	Design and Synthesis of Polyimide Covalent Organic Frameworks. Macromolecular Rapid Communications, 2020, 41, e2000402.	3.9	44
10	Hydrogen-Bonded Organic Frameworks: A Rising Class of Porous Molecular Materials. Accounts of Materials Research, 2020, 1, 77-87.	11.7	206
11	New Mechanistic Insights into the Formation of Imine-Linked Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 18637-18644.	13.7	87
12	Redox-triggered switching in three-dimensional covalent organic frameworks. Nature Communications, 2020, 11, 4919.	12.8	49
13	A controlling parameter of topological defects in two-dimensional covalent organic frameworks. Nanoscale, 2020, 12, 22107-22115.	5.6	8
14	Synthesis of Vinylene-Linked Covalent Organic Frameworks from Acetonitrile: Combining Cyclotrimerization and Aldol Condensation in One Pot. Journal of the American Chemical Society, 2020, 142, 14033-14038.	13.7	68
15	Extraction of Ibuprofen from Natural Waters Using a Covalent Organic Framework. Molecules, 2020, 25, 3132.	3.8	19
16	Cationic Covalent Organic Frameworks for Fabricating an Efficient Triboelectric Nanogenerator. , 2020, 2, 1691-1697.		42
17	Photocatalytic Molecular Oxygen Activation by Regulating Excitonic Effects in Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 20763-20771.	13.7	321
18	Transformation between 2D covalent organic frameworks with distinct pore hierarchy <i>via</i> exchange of building blocks with different symmetries. Chemical Communications, 2020, 56, 15418-15421	4.1	14

#	Article	IF	CITATIONS
19	Electrochemical Sensors Based on Covalent Organic Frameworks: A Critical Review. Frontiers in Chemistry, 2020, 8, 601044.	3.6	38
20	Diverse crystal size effects in covalent organic frameworks. Nature Communications, 2020, 11, 6128.	12.8	55
21	Adsorptive Separation of Aromatic Compounds from Alkanes by π–π Interactions in a Carbazole-Based Conjugated Microporous Polymer. ACS Applied Materials & Interfaces, 2020, 12, 56385-56392.	8.0	30
22	Pyrimidazole-Based Covalent Organic Frameworks: Integrating Functionality and Ultrastability via Isocyanide Chemistry. Journal of the American Chemical Society, 2020, 142, 20956-20961.	13.7	62
23	Mechanisms of Defect Correction by Reversible Chemistries in Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2020, 11, 9952-9956.	4.6	17
24	Covalent Organic Frameworks: Pore Design and Interface Engineering. Accounts of Chemical Research, 2020, 53, 1672-1685.	15.6	153
25	The Surface Chemistry of Metal Oxide Clusters: From Metal–Organic Frameworks to Minerals. ACS Central Science, 2020, 6, 1523-1533.	11.3	46
26	A Truxenoneâ€based Covalent Organic Framework as an Allâ€Solidâ€State Lithiumâ€Ion Battery Cathode with High Capacity. Angewandte Chemie, 2020, 132, 20565-20569.	2.0	5
27	Designed Synthesis of a <scp>Twoâ€Dimensional</scp> Covalent Organic Framework with <scp>Threeâ€Level</scp> Hierarchical Porosity ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1676-1680.	4.9	15
28	A simple and cost-effective synthesis of ionic porous organic polymers with excellent porosity for high iodine capture. Polymer, 2020, 204, 122796.	3.8	27
29	Porous organic polymer material supported palladium nanoparticles. Journal of Materials Chemistry A, 2020, 8, 17360-17391.	10.3	93
30	A Truxenoneâ€based Covalent Organic Framework as an Allâ€Solidâ€State Lithiumâ€Ion Battery Cathode with High Capacity. Angewandte Chemie - International Edition, 2020, 59, 20385-20389.	13.8	110
31	Light-emitting conjugated microporous polymers based on an excited-state intramolecular proton transfer strategy and selective switch-off sensing of anions. Materials Chemistry Frontiers, 2020, 4, 3040-3046.	5.9	22
32	Exploration of advanced porous organic polymers as a platform for biomimetic catalysis and molecular recognition. Chemical Communications, 2020, 56, 10631-10641.	4.1	29
33	Covalent organic frameworks: Polymer chemistry and functional design. Progress in Polymer Science, 2020, 108, 101288.	24.7	78
34	Internal catalysis for dynamic covalent chemistry applications and polymer science. Chemical Society Reviews, 2020, 49, 8425-8438.	38.1	128
35	Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies. Energies, 2020, 13, 5602.	3.1	19
36	Atoms and the void: modular construction of ordered porous solids. Nature Communications, 2020, 11, 4652.	12.8	17

#	Article	IF	CITATIONS
37	Toward a Deformable Two-Dimensional Covalent Organic Network with a Noncovalently Connected Skeleton. Chemistry of Materials, 2020, 32, 8139-8145.	6.7	4
38	Directâ€Space Structure Determination of Covalent Organic Frameworks from 3D Electron Diffraction Data. Angewandte Chemie - International Edition, 2020, 59, 22638-22644.	13.8	23
39	Structural features of proton-conducting metal organic and covalent organic frameworks. CrystEngComm, 2020, 22, 6425-6443.	2.6	23
40	Advances and challenges for experiment and theory for multi-electron multi-proton transfer at electrified solid–liquid interfaces. Physical Chemistry Chemical Physics, 2020, 22, 19401-19442.	2.8	38
41	Crystallinity and stability of covalent organic frameworks. Science China Chemistry, 2020, 63, 1367-1390.	8.2	95
42	3D Cage COFs: A Dynamic Three-Dimensional Covalent Organic Framework with High-Connectivity Organic Cage Nodes. Journal of the American Chemical Society, 2020, 142, 16842-16848.	13.7	174
43	High Throughput Methods in the Synthesis, Characterization, and Optimization of Porous Materials. Advanced Materials, 2020, 32, e2002780.	21.0	48
44	Heterogeneous Photocatalytic Organic Transformation Reactions Using Conjugated Polymers-Based Materials. ACS Catalysis, 2020, 10, 12256-12283.	11.2	161
45	Easily Constructed Imine-Bonded COFs for Iodine Capture at Ambient Temperature. ACS Omega, 2020, 5, 24262-24271.	3.5	32
46	Covalent-Organic-Framework-Based Composite Materials. CheM, 2020, 6, 3172-3202.	11.7	127
47	Graphitic carbon nitride nanotubes: a new material for emerging applications. RSC Advances, 2020, 10, 34059-34087.	3.6	35
48	Directâ€Space Structure Determination of Covalent Organic Frameworks from 3D Electron Diffraction Data. Angewandte Chemie, 2020, 132, 22827-22833.	2.0	2
49	Three-Dimensional Covalent Organic Frameworks: From Topology Design to Applications. Accounts of Chemical Research, 2020, 53, 2225-2234.	15.6	149
50	Regulating Photocatalysis by Spin-State Manipulation of Cobalt in Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 16723-16731.	13.7	333
51	Moleculeâ€Based Transistors: From Macroscale to Single Molecule Chemical Record, 2021, 21, 1284-1299.	5.8	19
52	Electronically Coupled 2D Polymer/MoS ₂ Heterostructures. Journal of the American Chemical Society, 2020, 142, 21131-21139.	13.7	25
53	Dynamic Transformation between Covalent Organic Frameworks and Discrete Organic Cages. Journal of the American Chemical Society, 2020, 142, 21279-21284.	13.7	54
54	Conjugated Covalent Organic Frameworks as Platinum Nanoparticle Supports for Catalyzing the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 9747-9752.	6.7	68

#	Article	IF	CITATIONS
55	Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. Chemical Society Reviews, 2020, 49, 8469-8500.	38.1	315
56	Highly C2/C1-Selective Covalent Organic Frameworks Substituted with Azo Groups. ACS Applied Materials & Interfaces, 2020, 12, 51517-51522.	8.0	20
57	Chemically Robust Covalent Organic Frameworks: Progress and Perspective. Matter, 2020, 3, 1507-1540.	10.0	94
58	Colloidal three-dimensional covalent organic frameworks and their application as porous liquids. Journal of Materials Chemistry A, 2020, 8, 23455-23462.	10.3	37
59	Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chemical Society Reviews, 2020, 49, 3565-3604.	38.1	617
60	Post-synthetic modification of imine linkages of a covalent organic framework for its catalysis application. RSC Advances, 2020, 10, 17396-17403.	3.6	37
61	Two-dimensional covalent organic frameworks with hierarchical porosity. Chemical Society Reviews, 2020, 49, 3920-3951.	38.1	302
62	New synthetic strategies toward covalent organic frameworks. Chemical Society Reviews, 2020, 49, 2852-2868.	38.1	394
63	A new 3D COF with excellent fluorescence response for water and good adsorption performance for polychlorinated biphenyls. Microchemical Journal, 2020, 157, 104912.	4.5	11
64	Designing CO ₂ reduction electrode materials by morphology and interface engineering. Energy and Environmental Science, 2020, 13, 2275-2309.	30.8	251
65	Covalent Organic Frameworks for Heterogeneous Catalysis: Principle, Current Status, and Challenges. ACS Central Science, 2020, 6, 869-879.	11.3	255
66	Simple and universal synthesis of sulfonated porous organic polymers with high proton conductivity. Materials Chemistry Frontiers, 2020, 4, 2339-2345.	5.9	24
67	Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chemical Society Reviews, 2020, 49, 2378-2407.	38.1	233
68	Synthesis of conjugated polymers <i>via</i> cyclopentannulation reaction: promising materials for iodine adsorption. Polymer Chemistry, 2020, 11, 3066-3074.	3.9	33
69	De Novo Access to SO ₃ H-Grafted Porous Organic Polymers (POPs@H): Synthesis of Diarylbenzopyrans/Naphthopyrans and Triazoles by Heterogeneous Catalytic Cyclocondensation and Cycloaddition Reactions. ACS Applied Polymer Materials, 2020, 2, 3084-3093.	4.4	9
70	Applications of Dynamic Covalent Chemistry Concept toward Tailored Covalent Organic Framework Nanomaterials: A Review. ACS Applied Nano Materials, 2020, 3, 6239-6269.	5.0	96
71	Expeditious synthesis of covalent organic frameworks: a review. Journal of Materials Chemistry A, 2020, 8, 16045-16060.	10.3	97
72	Tuning the electronic energy level of covalent organic frameworks for crafting high-rate Na-ion battery anode. Nanoscale Horizons, 2020, 5, 1264-1273.	8.0	53

#	Article	IF	CITATIONS
73	Metal-Assisted and Solvent-Mediated Synthesis of Two-Dimensional Triazine Structures on Gram Scale. Journal of the American Chemical Society, 2020, 142, 12976-12986.	13.7	21
74	Intramolecular Hydrogen Bonding-Based Topology Regulation of Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 13162-13169.	13.7	85
75	Two-Dimensional Carbon-Rich Conjugated Frameworks for Electrochemical Energy Applications. Journal of the American Chemical Society, 2020, 142, 12903-12915.	13.7	154
76	Enhanced Proton Conductivity of Imidazole-Doped Thiophene-Based Covalent Organic Frameworks via Subtle Hydrogen Bonding Modulation. ACS Applied Materials & Interfaces, 2020, 12, 22910-22916.	8.0	62
77	Transformation between 2D and 3D Covalent Organic Frameworks via Reversible [2 + 2] Cycloaddition. Journal of the American Chemical Society, 2020, 142, 8862-8870.	13.7	101
78	Sulfonated 2D Covalent Organic Frameworks for Efficient Proton Conduction. Chemistry - A European Journal, 2021, 27, 3817-3822.	3.3	30
79	Polymer photocatalysts for solar-to-chemical energy conversion. Nature Reviews Materials, 2021, 6, 168-190.	48.7	361
80	Crystal engineering of MOF@COF core-shell composites for ultra-sensitively electrochemical detection. Sensors and Actuators B: Chemical, 2021, 329, 129144.	7.8	94
81	Stable Dioxinâ€Linked Metallophthalocyanine Covalent Organic Frameworks (COFs) as Photoâ€Coupled Electrocatalysts for CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 4864-4871.	13.8	179
82	A Carboxylâ€Functionalized Covalent Organic Framework Synthesized in a Deep Eutectic Solvent for Dye Adsorption. Chemistry - A European Journal, 2021, 27, 2692-2698.	3.3	45
83	Insideâ€andâ€Out Semiconductor Engineering for CO ₂ Photoreduction: From Recent Advances to New Trends. Small Structures, 2021, 2, 2000061.	12.0	346
84	Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. Angewandte Chemie - International Edition, 2021, 60, 14222-14235.	13.8	22
85	Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. Angewandte Chemie, 2021, 133, 14342-14355.	2.0	3
86	Pressure-modulated synthesis of self-repairing covalent organic frameworks (COFs) for high-flux nanofiltration. Journal of Membrane Science, 2021, 618, 118727.	8.2	39
87	Stitching nanosheets of covalent organic frameworks to build aligned nanopores in nanofiltration membranes for precise ion separations. Journal of Membrane Science, 2021, 618, 118754.	8.2	50
88	Recent Progress in Porous Fused Aromatic Networks and Their Applications. Small Science, 2021, 1, 2000007.	9.9	14
89	An Imineâ€Linked Metal–Organic Framework as a Reactive Oxygen Species Generator. Angewandte Chemie - International Edition, 2021, 60, 2534-2540.	13.8	63
90	Copper-incorporated porous organic polymer as efficient and recyclable catalyst for azide-alkyne cycloaddition. Microporous and Mesoporous Materials, 2021, 310, 110671.	4.4	13

#	Article	IF	CITATIONS
91	Covalent organic framework-based materials for energy applications. Energy and Environmental Science, 2021, 14, 688-728.	30.8	209
92	Organobase modulated synthesis of high-quality β-ketoenamine-linked covalent organic frameworks. Chemical Communications, 2021, 57, 331-334.	4.1	47
93	Polymorphism of 2D Imine Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 5423-5429.	2.0	17
94	Fine tuning of supported covalent organic framework with molecular active sites loaded as efficient electrocatalyst for water oxidation. Chemical Engineering Journal, 2021, 415, 127850.	12.7	16
95	Computationally empowered design of emerging earth-abundant electrocatalysts towardÂelectron- /proton-transferring energy conversion. Current Opinion in Electrochemistry, 2021, 26, 100661.	4.8	5
96	Host-guest interaction-mediated nanointerface engineering for radioiodine capture. Nano Today, 2021, 36, 101034.	11.9	45
97	Fabrication of NanoCOF/Polyoxometallate Composites for Photocatalytic NADH Regeneration via Cascade Electron Relay. Solar Rrl, 2021, 5, .	5.8	17
98	Covalent organic framework based lithium-ion battery: Fundamental, design and characterization. EnergyChem, 2021, 3, 100048.	19.1	94
99	A novel N,S-rich COF and its derived hollow N,S-doped carbon@Pd nanorods for electrochemical detection of Hg2+ and paracetamol. Journal of Hazardous Materials, 2021, 409, 124528.	12.4	75
100	Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC - Trends in Analytical Chemistry, 2021, 134, 116126.	11.4	121
101	Porous flexible frameworks: origins of flexibility and applications. Materials Horizons, 2021, 8, 700-727.	12.2	48
102	Microporous framework membranes for precise molecule/ion separations. Chemical Society Reviews, 2021, 50, 986-1029.	38.1	191
103	Rational Construction of Borromean Linked Crystalline Organic Polymers. Angewandte Chemie, 2021, 133, 3011-3016.	2.0	3
104	Polymorphism of 2D Imine Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 5363-5369.	13.8	67
105	Triptycene-based three-dimensional covalent organic frameworks with stp topology of honeycomb structure. Materials Chemistry Frontiers, 2021, 5, 944-949.	5.9	26
106	Rational Construction of Borromean Linked Crystalline Organic Polymers. Angewandte Chemie - International Edition, 2021, 60, 2974-2979.	13.8	16
107	Organic Electrode Materials for Non-aqueous K-Ion Batteries. Transactions of Tianjin University, 2021, 27, 1-23.	6.4	19
108	Stable Dioxinâ€Linked Metallophthalocyanine Covalent Organic Frameworks (COFs) as Photoâ€Coupled Electrocatalysts for CO ₂ Reduction. Angewandte Chemie, 2021, 133, 4914-4921.	2.0	40

#	Article	IF	CITATIONS
109	Robust Supramolecular Nanoâ€Tunnels Built from Molecular Bricks**. Angewandte Chemie - International Edition, 2021, 60, 7148-7154.	13.8	28
110	Zwitterionic surface charge regulation in ionic covalent organic nanosheets: Synergistic adsorption of fluoroquinolone antibiotics. Chemical Engineering Journal, 2021, 417, 128034.	12.7	26
111	Immobilization of N and Si as center species toward microporous organic polymers for CO2 adsorption via dipole-quadrupole interaction. Polymer, 2021, 212, 123307.	3.8	9
112	Atomic Fe Dispersed Hierarchical Mesoporous Fe–N–C Nanostructures for an Efficient Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 74-81.	11.2	147
113	Scalable crystalline porous membranes: current state and perspectives. Chemical Society Reviews, 2021, 50, 1913-1944.	38.1	47
114	Dumbbell‣haped, Graft and Bottlebrush Polymers with All‣iloxane Nature: Synthetic Methodology, Thermal, and Rheological Behavior. Macromolecular Rapid Communications, 2021, 42, 2000645.	3.9	10
115	Robust Supramolecular Nanoâ€Tunnels Built from Molecular Bricks**. Angewandte Chemie, 2021, 133, 7224-7230.	2.0	4
116	A covalent organic framework as a photocatalyst for atom transfer radical polymerization under white light irradiation. Polymer Chemistry, 2021, 12, 183-188.	3.9	30
117	2D framework materials for energy applications. Chemical Science, 2021, 12, 1600-1619.	7.4	73
118	Conductance switching of a gold-covalent organic framework nanojunction via proton transfer. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 389, 127100.	2.1	2
119	An Imineâ€Linked Metal–Organic Framework as a Reactive Oxygen Species Generator. Angewandte Chemie, 2021, 133, 2564-2570.	2.0	8
120	Ultra-high capacity of graphene oxide conjugated covalent organic framework nanohybrid for U(VI) and Eu(III) adsorption removal. Journal of Molecular Liquids, 2021, 323, 114603.	4.9	30
121	Recent Progress of Porous Polymers for Lithium Metal Anodes Protection. Acta Chimica Sinica, 2021, 79, 378.	1.4	3
122	Pristine, metal ion and metal cluster modified conjugated triazine frameworks as electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 10146-10159.	10.3	23
123	Photoresponsive frameworks: energy transfer in the spotlight. Faraday Discussions, 2021, 231, 266-280.	3.2	11
124	Melamine-Based Porous Organic Polymers Supported Pd(II)-Catalyzed Addition of Arylboronic Acids to Aromatic Aldehydes. Catalysis Letters, 2021, 151, 2612-2621.	2.6	2
125	Probe metal binding mode of imine covalent organic frameworks: cycloiridation for (photo)catalytic hydrogen evolution from formate. Chemical Science, 2021, 12, 7930-7936.	7.4	14
126	Design strategies for improving the crystallinity of covalent organic frameworks and conjugated polymers: a review. Materials Horizons, 2022, 9, 121-146.	12.2	51

#	Article	IF	CITATIONS
127	Electrically conductive covalent organic frameworks: bridging the fields of organic metals and 2D materials. Journal of Materials Chemistry C, 2021, 9, 10668-10676.	5.5	38
128	Tuning the structural skeleton of a phenanthroline-based covalent organic framework for better electrochemical performance as a cathode material for Zn-ion batteries: a theoretical exploration. Physical Chemistry Chemical Physics, 2021, 23, 12644-12653.	2.8	19
129	Nanocomposite synthesis strategies based on the transformation of well-tailored metal–organic frameworks. Chemical Communications, 2021, 57, 6960-6974.	4.1	5
130	Tuning the physicochemical properties of reticular covalent organic frameworks (COFs) for biomedical applications. Journal of Materials Chemistry B, 2021, 9, 6116-6128.	5.8	23
131	Three-dimensional covalent organic framework membrane for efficient proton conduction. Journal of Materials Chemistry A, 2021, 9, 17720-17723.	10.3	32
132	Covalent Organic Frameworks for Energy Conversions: Current Status, Challenges, and Perspectives. CCS Chemistry, 2021, 3, 2003-2024.	7.8	65
133	"Thiol–ene―click synthesis of chiral covalent organic frameworks for gas chromatography. Journal of Materials Chemistry A, 2021, 9, 21151-21157.	10.3	35
134	Exfoliated covalent organic framework nanosheets. Journal of Materials Chemistry A, 2021, 9, 7336-7365.	10.3	53
135	Polymers in Lithiumâ€lon and Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003239.	19.5	160
136	Introducing reticular chemistry into agrochemistry. Chemical Society Reviews, 2021, 50, 1070-1110.	38.1	106
137	Review of Advances in Engineering Nanomaterial Adsorbents for Metal Removal and Recovery from Water: Synthesis and Microstructure Impacts. ACS ES&T Engineering, 2021, 1, 623-661.	7.6	61
138	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	38.1	170
139	sp ² carbon-conjugated covalent organic frameworks: synthesis, properties, and applications. Materials Chemistry Frontiers, 2021, 5, 2931-2949.	5.9	58
140	Metal–Organic Framework-Based Enzyme Biocomposites. Chemical Reviews, 2021, 121, 1077-1129.	47.7	372
141	Hierarchical confinement of PtZn alloy nanoparticles and single-dispersed Zn atoms on COF@MOF-derived carbon towards efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 13625-13630.	10.3	33
142	Highly active ultrafine Pd NPs confined in imine-linked COFs for nitrobenzene hydrogenation. Catalysis Science and Technology, 2021, 11, 3873-3879.	4.1	27
143	Understanding charge transport in wavy 2D covalent organic frameworks. Nanoscale, 2021, 13, 6829-6833.	5.6	14
144	Covalent Organic Frameworks as Electrode Materials for Rechargeable Batteries. Organic Materials, 2021, 03, 067-089.	2.0	4

#	Article	IF	CITATIONS
145	Rational incorporation of covalent organic framework/carbon nanotube (COF/CNT) composites for electrochemical aptasensing of ultra-trace atrazine. Journal of Materials Chemistry C, 0, , .	5.5	42
146	An ultrastable olefin-linked covalent organic framework for photocatalytic decarboxylative alkylations under highly acidic conditions. Catalysis Science and Technology, 2021, 11, 4272-4279.	4.1	32
147	Understanding the origin of serrated stacking motifs in planar two-dimensional covalent organic frameworks. Nanoscale, 2021, 13, 9339-9353.	5.6	9
148	Smart covalent organic frameworks: dual channel sensors for acids and bases. Chemical Communications, 2021, 57, 9418-9421.	4.1	20
149	An anthracene extended viologen-incorporated ionic porous organic polymer for efficient aerobic photocatalysis and antibacterial activity. Chemical Communications, 2021, 57, 3339-3342.	4.1	19
150	A lanthanide-functionalized covalent triazine framework as a physiological molecular thermometer. Journal of Materials Chemistry C, 2021, 9, 6436-6444.	5.5	12
151	Covalent triazine frameworks constructed <i>via</i> benzyl halide monomers showing high photocatalytic activity in biomass reforming. Chemical Communications, 2021, 57, 5147-5150.	4.1	21
152	The design and synthesis of heterogeneous catalysts for environmental applications. Dalton Transactions, 2021, 50, 4765-4771.	3.3	12
153	Macrocycle-derived hierarchical porous organic polymers: synthesis and applications. Chemical Society Reviews, 2021, 50, 11684-11714.	38.1	90
154	The effect of the position of cross-linkers on the structure and microenvironment of PPh ₃ moiety in porous organic polymers. Journal of Materials Chemistry A, 2021, 9, 9165-9174.	10.3	15
155	Deep eutectic solvents for the preparation and post-synthetic modification of metal- and covalent organic frameworks. CrystEngComm, 2021, 23, 5016-5032.	2.6	28
156	Porous framework-based hybrid materials for solar-to-chemical energy conversion: from powder photocatalysts to photoelectrodes. Inorganic Chemistry Frontiers, 2021, 8, 4107-4148.	6.0	18
157	Covalent Organic Frameworks for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2002090.	7.6	97
158	Tailored covalent organic frameworks for simultaneously capturing and converting CO ₂ into cyclic carbonates. Journal of Materials Chemistry A, 2021, 9, 20941-20956.	10.3	73
159	Conjugation- and Aggregation-Directed Design of Covalent Organic Frameworks as White-Light-Emitting Diodes. Journal of the American Chemical Society, 2021, 143, 1061-1068.	13.7	75
160	Schiff-base molecules and COFs as metal-free catalysts or silver supports for carboxylation of alkynes with CO ₂ . Green Chemistry, 2021, 23, 7620-7629.	9.0	30
161	Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. Research, 2021, 2021, 3750689.	5.7	45
162	Reticular design and crystal structure determination of covalent organic frameworks. Chemical Science, 2021, 12, 8632-8647.	7.4	41

#	Article	IF	CITATIONS
163	Homointerface covalent organic framework membranes for efficient desalination. Journal of Materials Chemistry A, 2021, 9, 23178-23187.	10.3	48
164	Highlights of the characterization techniques on inorganic, organic (COF) and hybrid (MOF) photocatalytic semiconductors. Catalysis Science and Technology, 2021, 11, 392-415.	4.1	50
165	A non-planar 2D covalent organic framework derived from a Z-shaped building unit. Chemical Communications, 2021, 57, 9236-9239.	4.1	4
166	A Crystalline Three-Dimensional Covalent Organic Framework with Flexible Building Blocks. Journal of the American Chemical Society, 2021, 143, 2123-2129.	13.7	105
167	Porous cross-linked polymer copper and iridium catalyzed the synthesis of quinoxalines and functionalized ketones under solvent-free conditions. Materials Chemistry Frontiers, 2021, 5, 7861-7872.	5.9	20
168	Application of Covalent Organic Framework Materials as Heterogeneous Ligands in Organic Synthesis. Chinese Journal of Organic Chemistry, 2021, 41, 3826.	1.3	21
169	Metal oxide integrated metal organic frameworks (MO@MOF): rational design, fabrication strategy, characterization and emerging photocatalytic applications. Inorganic Chemistry Frontiers, 2021, 8, 1619-1636.	6.0	81
170	Synchronous Construction of Hierarchical Porosity and Thiol Functionalization in COFs for Selective Extraction of Cationic Dyes in Water Samples. ACS Applied Materials & Interfaces, 2021, 13, 4352-4363.	8.0	36
171	Synergistic Antibacterial and Antiâ€Inflammatory Effects of a Drugâ€Loaded Selfâ€Standing Porphyrinâ€COF Membrane for Efficient Skin Wound Healing. Advanced Healthcare Materials, 2021, 10, e2001821.	7.6	59
172	Confinement-guided photophysics in MOFs, COFs, and cages. Chemical Society Reviews, 2021, 50, 4382-4410.	38.1	84
173	Acid-triggered interlayer sliding of two-dimensional copper(<scp>i</scp>)–organic frameworks: more metal sites for catalysis. Chemical Science, 2021, 12, 6280-6286.	7.4	53
174	Rational design of benzodifuran-functionalized donor–acceptor covalent organic frameworks for photocatalytic hydrogen evolution from water. Chemical Communications, 2021, 57, 4464-4467.	4.1	36
175	Design and application of covalent organic frameworks for ionic conduction. Polymer Chemistry, 2021, 12, 4874-4894.	3.9	27
176	A pillar[5]arene-based covalent organic framework with pre-encoded selective host–guest recognition. Chemical Science, 2021, 12, 13316-13320.	7.4	32
177	Water-stable hydrazone-linked porous organic cages. Chemical Science, 2021, 12, 13307-13315.	7.4	22
178	First-principles investigation of two-dimensional covalent–organic framework electrocatalysts for oxygen evolution/reduction and hydrogen evolution reactions. Sustainable Energy and Fuels, 2021, 5, 5615-5626.	4.9	13
179	Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chemical Society Reviews, 2021, 50, 120-242.	38.1	472
180	Constructing cationic covalent organic frameworks by a post-function process for an exceptional iodine capture <i>via</i> electrostatic interactions. Materials Chemistry Frontiers, 2021, 5, 5463-5470.	5.9	39

#	Article	IF	CITATIONS
181	Postsynthetic Modification of a Covalent Organic Framework Achieved via Strain-Promoted Cycloaddition. Journal of the American Chemical Society, 2021, 143, 649-656.	13.7	40
182	The chemistry of phosphines in constrained, well-defined microenvironments. Chemical Society Reviews, 2021, 50, 4411-4431.	38.1	27
183	Defective acidic 2D COF-based catalysts for boosting the performance of polyoxymethylene diethyl ether synthesis under mild conditions. Dalton Transactions, 2021, 50, 5139-5145.	3.3	2
184	Structure–property–function relationship of fluorescent conjugated microporous polymers. Materials Chemistry Frontiers, 2021, 5, 2506-2551.	5.9	34
185	Research Progress on the Synthesis of Covalent Organic Frameworks and Their Applications in Tumor Therapy. Acta Chimica Sinica, 2021, 79, 600.	1.4	8
186	Pt(II)-Decorated Covalent Organic Framework for Photocatalytic Difluoroalkylation and Oxidative Cyclization Reactions. ACS Applied Materials & amp; Interfaces, 2021, 13, 6349-6358.	8.0	27
187	Silica-Based Aerogels with Tunable Properties: The Highly Efficient BF ₃ -Catalyzed Preparation and Look inside Their Structure. Macromolecules, 2021, 54, 1961-1975.	4.8	10
188	Asymmetric Organocatalysis with Chiral Covalent Organic Frameworks. Organic Materials, 2021, 03, 245-253.	2.0	5
189	A review of covalent organic framework electrode materials for rechargeable metal-ion batteries. New Carbon Materials, 2021, 36, 1-18.	6.1	23
190	<i>C</i> _{3h} â€symmetric and <i>C</i> _s â€symmetric Triformyl Triindoloâ€Truxenes: Synthesis and Properties. Asian Journal of Organic Chemistry, 2021, 10, 660-667.	2.7	1
191	Editorial: Materials for Electroanalysis Based on Advanced Frameworks. Frontiers in Chemistry, 2021, 9, 638338.	3.6	2
192	A layered triazinyl-COF linked by â^'NHâ^' linkage and resulting N-doped microporous carbons: preparation, characterization and application for supercapacitance. Journal of Porous Materials, 2021, 28, 895-903.	2.6	11
193	A Ru-Complex Tethered to a N-Rich Covalent Triazine Framework for Tandem Aerobic Oxidation-Knoevenagel Condensation Reactions. Molecules, 2021, 26, 838.	3.8	6
194	Understanding the Ion Transport Behavior across Nanofluidic Membranes in Response to the Charge Variations. Advanced Functional Materials, 2021, 31, 2009970.	14.9	47
195	Amine-Linked Covalent Organic Frameworks as a Platform for Postsynthetic Structure Interconversion and Pore-Wall Modification. Journal of the American Chemical Society, 2021, 143, 3430-3438.	13.7	95
196	Three-Dimensional Triptycene-Based Covalent Organic Frameworks with ceq or acs Topology. Journal of the American Chemical Society, 2021, 143, 2654-2659.	13.7	94
197	Chemical Conversion and Locking of the Imine Linkage: Enhancing the Functionality of Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 14236-14250.	13.8	105
198	Ï€â€Interpenetrated 3D Covalent Organic Frameworks from Distorted Polycyclic Aromatic Hydrocarbons. Angewandte Chemie, 2021, 133, 10029-10034.	2.0	9

#	Article	IF	CITATIONS
199	Construction of Covalent Organic Frameworks with Crown Ether Struts. Angewandte Chemie, 2021, 133, 10047-10051.	2.0	5
200	Chemically stable porous crystalline macromolecule hydrazone-linked covalent organic framework for CO2 capture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126078.	4.7	13
201	Construction of Covalent Organic Frameworks with Crown Ether Struts. Angewandte Chemie - International Edition, 2021, 60, 9959-9963.	13.8	57
202	Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. Nature Communications, 2021, 12, 1354.	12.8	286
203	N-Heterocyclic Carbene Functionalized Covalent Organic Framework for Transesterification of Glycerol with Dialkyl Carbonates. Catalysts, 2021, 11, 423.	3.5	8
204	Progress in Molecular Nanoarchitectonics and Materials Nanoarchitectonics. Molecules, 2021, 26, 1621.	3.8	20
205	Recent advances of covalent organic frameworks and their application in sample preparation of biological analysis. TrAC - Trends in Analytical Chemistry, 2021, 136, 116182.	11.4	47
206	Macrocycles in Bioinspired Catalysis: From Molecules to Materials. Frontiers in Chemistry, 2021, 9, 635315.	3.6	8
207	Advances in Chiral Metal–Organic and Covalent Organic Frameworks for Asymmetric Catalysis. Small, 2021, 17, e2005686.	10.0	41
208	Ï€â€Interpenetrated 3D Covalent Organic Frameworks from Distorted Polycyclic Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2021, 60, 9941-9946.	13.8	65
209	Structural Engineering of Covalent Organic Frameworks for Rechargeable Batteries. Advanced Energy Materials, 2021, 11, 2003054.	19.5	61
210	Low Power, Low Temperature and Atmospheric Pressure Plasmaâ€Induced Polymerization: Facile Synthesis and Crystal Regulation of Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 9984-9989.	13.8	57
211	Covalent organic framework nanofluidic membrane as a platform for highly sensitive bionic thermosensation. Nature Communications, 2021, 12, 1844.	12.8	71
212	Covalent Organic Frameworks: Synthesis, Properties and Applications—An Overview. Polymers, 2021, 13, 970.	4.5	50
213	Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nature Communications, 2021, 12, 1982.	12.8	147
214	Controlling pairing of π-conjugated electrons in 2D covalent organic radical frameworks via in-plane strain. Nature Communications, 2021, 12, 1705.	12.8	18
215	Molecularâ€Rotorâ€Driven Advanced Porous Materials. Angewandte Chemie - International Edition, 2021, 60, 16279-16292.	13.8	35
216	Construction of Core–Shell MOFs@COF Hybrids as a Platform for the Removal of UO ₂ ²⁺ and Eu ³⁺ lons from Solution. ACS Applied Materials & Interfaces, 2021, 13, 13883-13895.	8.0	71

	Сітатіо	CITATION REPORT	
#	Article	IF	Citations
217	Molecularâ€Rotorâ€Driven Advanced Porous Materials. Angewandte Chemie, 2021, 133, 16415-16428.	2.0	10
218	Selection of Covalent Organic Framework Pore Functionalities for Differential Adsorption of Microcystin Toxin Analogues. ACS Applied Materials & Interfaces, 2021, 13, 15053-15063.	8.0	22
219	Low Power, Low Temperature and Atmospheric Pressure Plasmaâ€Induced Polymerization: Facile Synthesis and Crystal Regulation of Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 10072-10077.	2.0	8
220	Pioneering Iodine-125-Labeled Nanoscale Covalent Organic Frameworks for Brachytherapy. Bioconjugate Chemistry, 2021, 32, 755-762.	3.6	18
221	A fluorescent covalent triazine framework consisting of donor–acceptor structure for selective and sensitive sensing of Fe3+. European Polymer Journal, 2021, 147, 110297.	5.4	21
222	Quantitative Description of the Lateral Growth of Two-Dimensional Covalent Organic Frameworks Reveals Self-Templation Effects. , 2021, 3, 398-405.		6
223	In Situ-Doped Superacid in the Covalent Triazine Framework Membrane for Anhydrous Proton Conduction in a Wide Temperature Range from Subzero to Elevated Temperature. ACS Applied Materials & Interfaces, 2021, 13, 13604-13612.	8.0	21
224	Sparks from different worlds: Collaboration of MOFs and COFs. Coordination Chemistry Reviews, 2021, 430, 213735.	18.8	67
225	Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Research, 2021, 14, 3576-3584.	10.4	95
226	Marriage of 2D Covalent–Organic Framework and 3D Network as Stable Solarâ€Thermal Still for Efficient Solar Steam Generation. Small Methods, 2021, 5, e2100036.	8.6	38
227	Porphyrin-Based Covalent Organic Framework Thin Films as Cathodic Materials for "On–Off–On― Photoelectrochemical Sensing of Lead Ions. ACS Applied Materials & Interfaces, 2021, 13, 20397-20404.	8.0	89
228	Stabilizing Porosity in Organic Cages through Coordination Chemistry. Inorganic Chemistry, 2021, 60, 7044-7050.	4.0	9
229	Covalent organic framework supported Pd(II)â€catalyzed conjugate additions of arylboronic acids to α,βâ€unsaturated carboxylic acids. Applied Organometallic Chemistry, 2021, 35, e6263.	3.5	7
230	Macroscopic Ultralight Aerogel Monoliths of Imineâ€based Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 13969-13977.	13.8	73
231	Highly stable dioxin-linked metallophthalocyanine covalent organic frameworks. Chinese Chemical Letters, 2021, 32, 3799-3802.	9.0	17
232	Emergent behavior in nanoconfined molecular containers. CheM, 2021, 7, 919-947.	11.7	93
233	Catalyst-Enabled <i>In Situ</i> Linkage Reduction in Imine Covalent Organic Frameworks. ACS Applied Materials & amp; Interfaces, 2021, 13, 21740-21747.	8.0	12
234	Highly Efficient Preparation of Single-Layer Two-Dimensional Polymer Obtained from Single-Crystal to Single-Crystal Synthesis. Journal of the American Chemical Society, 2021, 143, 5636-5642.	13.7	41

#	Article	IF	CITATIONS
235	Rapid, Ambient Temperature Synthesis of Imine Covalent Organic Frameworks Catalyzed by Transition-Metal Nitrates. Chemistry of Materials, 2021, 33, 3394-3400.	6.7	26
236	Secondary growth of bi-layered covalent organic framework nanofilms with offset channels for desalination. Journal of Membrane Science, 2021, 624, 119122.	8.2	38
237	Two-Dimensional Covalent Organic Framework Solid Solutions. Journal of the American Chemical Society, 2021, 143, 7081-7087.	13.7	27
238	Polymer-Derived Nitrogen-Doped Carbon Nanosheet Cluster and Its Application for Water Purification. Macromol, 2021, 1, 84-93.	4.4	1
239	Synthesis of Side-Chain-Free Hydrazone-Linked Covalent Organic Frameworks through Supercritical Carbon Dioxide Activation. Organic Materials, 2021, 03, 277-282.	2.0	5
240	Synthesis of homogeneously distributed gold nanoparticles built-in metal free organic framework: Electrochemical detection of riboflavin in pharmaceutical and human fluids samples. Journal of Electroanalytical Chemistry, 2021, 887, 115143.	3.8	14
241	Covalent Organic Frameworks toward Diverse Photocatalytic Aerobic Oxidations. Chemistry - A European Journal, 2021, 27, 7738-7744.	3.3	22
242	Porous organic frameworks for carbon dioxide capture and storage. Journal of Environmental Chemical Engineering, 2021, 9, 105090.	6.7	23
243	Bifunctional Covalent Organic Frameworkâ€Derived Electrocatalysts with Modulated <i>p</i> â€Band Centers for Rechargeable Zn–Air Batteries. Advanced Functional Materials, 2021, 31, 2101727.	14.9	76
244	Structure–Assembly–Property Relationships of Simple Ditopic Hydrogen-Bonding-Capable Ï€-Conjugated Oligomers. Organic Materials, 2021, 03, 390-404.	2.0	2
245	Covalent Organic Frameworks: A Molecular Platform for Designer Polymeric Architectures and Functional Materials. Bulletin of the Chemical Society of Japan, 2021, 94, 1215-1231.	3.2	32
246	Macroscopic Ultralight Aerogel Monoliths of Imineâ€based Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 14088-14096.	2.0	5
247	Hybridization of Emerging Crystalline Porous Materials: Synthesis Dimensionality and Electrochemical Energy Storage Application. Advanced Energy Materials, 2022, 12, 2100321.	19.5	41
248	Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society, 2021, 143, 7104-7113.	13.7	198
249	Construction of Interlayer Conjugated Links in 2D Covalent Organic Frameworks via Topological Polymerization. Journal of the American Chemical Society, 2021, 143, 7897-7902.	13.7	58
250	Synthesis and Acid-Responsive Properties of a Highly Porous Vinylene-Linked Covalent Organic Framework. ACS Applied Materials & Interfaces, 2021, 13, 26431-26440.	8.0	43
251	Highly Stable Single Crystals of Threeâ€Ðimensional Porous Oligomer Frameworks Synthesized under Kinetic Conditions. Angewandte Chemie - International Edition, 2021, 60, 14664-14670.	13.8	30
252	Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coordination Chemistry Reviews, 2021, 434, 213792.	18.8	97

#	Article	IF	Citations
253	Surfaceâ€Mediated Construction of an Ultrathin Freeâ€Standing Covalent Organic Framework Membrane for Efficient Proton Conduction. Angewandte Chemie - International Edition, 2021, 60, 14875-14880.	13.8	115
254	Covalent organic frameworks as robust materials for mitigation of environmental pollutants. Chemosphere, 2021, 270, 129523.	8.2	92
255	The Exfoliation of Crystalline Covalent Triazine Frameworks by Glycerol Intercalation. Advanced Materials Interfaces, 2021, 8, 2100374.	3.7	6
256	An n-Type Benzobisthiadiazole-Based Covalent Organic Framework with Narrowed Bandgap and Enhanced Electroactivity. Chemistry of Materials, 2021, 33, 3566-3574.	6.7	21
257	Rapidly Adaptive Allâ€covalent Nanoparticle Surface Engineering. Chemistry - A European Journal, 2021, 27, 9948-9953.	3.3	8
258	Synthesis of Ionic Vinyleneâ€Linked Covalent Organic Frameworks through Quaternizationâ€Activated Knoevenagel Condensation. Angewandte Chemie, 2021, 133, 13726-13732.	2.0	14
259	Imparting Ion Selectivity to Covalent Organic Framework Membranes Using <i>de Novo</i> Assembly for Blue Energy Harvesting. Journal of the American Chemical Society, 2021, 143, 9415-9422.	13.7	82
260	Surfaceâ€Mediated Construction of an Ultrathin Freeâ€Standing Covalent Organic Framework Membrane for Efficient Proton Conduction. Angewandte Chemie, 2021, 133, 15001-15006.	2.0	20
261	Highly Stable Single Crystals of Threeâ€Dimensional Porous Oligomer Frameworks Synthesized under Kinetic Conditions. Angewandte Chemie, 2021, 133, 14785-14791.	2.0	7
262	Adsorption Performances of an Acid-stable 2D Covalent Organic Framework towards Palladium(II) in Simulated High-level Liquid Waste. Analytical Sciences, 2021, 37, 645-647.	1.6	7
263	Quasiparticle electronic structure of two-dimensional heterotriangulene-based covalent organic frameworks adsorbed on Au(111). Journal of Physics Condensed Matter, 2021, 33, 254004.	1.8	3
264	Superprotonic Conductivity of MOFs and Other Crystalline Platforms Beyond 10 ^{â^'1} S cm ^{â^'1} . Advanced Functional Materials, 2021, 31, 2101584.	14.9	93
265	Tuning the Topology of Three-Dimensional Covalent Organic Frameworks via Steric Control: From pts to Unprecedented ljh . Journal of the American Chemical Society, 2021, 143, 7279-7284.	13.7	84
266	Synthesis of Ionic Vinylene‣inked Covalent Organic Frameworks through Quaternizationâ€Activated Knoevenagel Condensation. Angewandte Chemie - International Edition, 2021, 60, 13614-13620.	13.8	87
267	Bio-inspired construction of ion conductive pathway in covalent organic framework membranes for efficient lithium extraction. Matter, 2021, 4, 2027-2038.	10.0	59
268	Ether-linked porphyrin covalent organic framework with broadband optical switch. IScience, 2021, 24, 102526.	4.1	21
269	HOFs under light: Relevance to photon-based science and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 47, 100418.	11.6	46
270	Biguanide-functionalized hierarchical porous covalent organic frameworks for efficient catalysis of condensation reactions. Molecular Catalysis, 2021, 509, 111663.	2.0	4

# 271	ARTICLE All sp2 carbon covalent organic frameworks. Trends in Chemistry, 2021, 3, 431-444.	IF 8.5	CITATIONS
272	Single-crystal structure of two-dimensional organic framework based on donor-acceptor interactions with charge-transfer effect. Science China Chemistry, 2021, 64, 1510-1514.	8.2	7
273	Recent progress in covalent organic frameworks as light-emitting materials. Materials Today Energy, 2021, 20, 100635.	4.7	77
274	Recyclable Catalysts for Alkyne Functionalization. Molecules, 2021, 26, 3525.	3.8	2
275	Unveiling Charge Dynamics in Acetylene-Bridged Donorâ^ï€â€"Acceptor Covalent Triazine Framework for Enhanced Photoredox Catalysis. ACS Catalysis, 2021, 11, 7429-7441.	11.2	75
276	In-situ electropolymerized bipolar organic cathode for stable and high-rate lithium-ion batteries. Science China Materials, 2021, 64, 2938-2948.	6.3	23
277	A Dual-Function Highly Crystalline Covalent Organic Framework for HCl Sensing and Visible-Light Heterogeneous Photocatalysis. Macromolecules, 2021, 54, 6595-6604.	4.8	34
278	Rational Modification of Two-Dimensional Donor–Acceptor Covalent Organic Frameworks for Enhanced Visible Light Photocatalytic Activity. ACS Applied Materials & Interfaces, 2021, 13, 27041-27048.	8.0	80
279	Catalyst†and Solventâ€Free Synthesis of a Chemically Stable Azaâ€Bridged Bis(phenanthroline) Macrocycleâ€Linked Covalent Organic Framework. Angewandte Chemie, 2021, 133, 17328-17334.	2.0	4
280	Prevailing conjugated porous polymers for electrochemical energy storage and conversion: Lithium-ion batteries, supercapacitors and water-splitting. Coordination Chemistry Reviews, 2021, 436, 213782.	18.8	52
281	Free Charge Carriers in Homo-Sorted π-Stacks of Donor–Acceptor Conjugates. Chemical Reviews, 2021, 121, 8234-8284.	47.7	64
282	Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications. Giant, 2021, 6, 100054.	5.1	142
283	Catalyst†and Solventâ€Free Synthesis of a Chemically Stable Azaâ€Bridged Bis(phenanthroline) Macrocycleâ€Linked Covalent Organic Framework. Angewandte Chemie - International Edition, 2021, 60, 17191-17197.	13.8	16
284	Hot Topics in Macromolecular Science. Macromol, 2021, 1, 173-176.	4.4	4
285	Donorâ€Acceptor Type Covalent Organic Frameworks. Chemistry - A European Journal, 2021, 27, 10781-10797.	3.3	90
286	Synthesis, Crystal Structure and Catalytic Performance of a novel Fiveâ€Coordinated Energetic Copper(II) Compound. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	1.2	Ο
287	Coupling Covalent Organic Frameworks and Carbon Nanotube Membranes to Design Easily Reusable Photocatalysts for Dye Degradation. Industrial & Engineering Chemistry Research, 2021, 60, 8687-8695.	3.7	14
288	A 3D Anionic Metal Covalent Organic Framework with soc Topology Built from an Octahedral Ti IV Complex for Photocatalytic Reactions. Angewandte Chemie, 2021, 133, 18025-18030.	2.0	8

ARTICLE IF CITATIONS Scalable Fabrication of Crystalline COF Membranes from Amorphous Polymeric Membranes. 289 13.8 81 Angewandte Chemie - International Edition, 2021, 60, 18051-18058. Transforming nature into the next generation of bio-based flexible devices: New avenues using deep 290 10.0 eutectic systems. Matter, 2021, 4, 2141-2162. Integration of metal-organic frameworks and covalent organic frameworks: Design, synthesis, and 291 10.0 158 applications. Matter, 2021, 4, 2230-2265. Host–Guest Assembly of H-Bonding Networks in Covalent Organic Frameworks for Ultrafast and Anhydrous Proton Transfer. ACS Applied Materials & amp; Interfaces, 2021, 13, 37172-37178. Editing Light Emission with Stable Crystalline Covalent Organic Frameworks via Wall Surface 293 2.0 0 Perturbation. Angewandte Chemie, 2021, 133, 19568-19576. Covalent organic framework stabilized CdS nanoparticles as efficient visible-light-driven 294 photocatalysts for selective oxidation of aromatic alcohols. Chinese Chemical Letters, 2021, 32, 2207-2211. High-Temperature Proton Conduction in Covalent Organic Frameworks Interconnected with 295 8.0 8 Nanochannels for Reverse Electrodialysis. ACS Applied Materials & amp; Interfaces, 2021, 13, 33437-33448. Substoichiometric 3D Covalent Organic Frameworks Based on Hexagonal Linkers. Journal of the American Chemical Society, 2021, 143, 10243-10249. 296 13.7 70 Ionic liquid-impregnated covalent organic framework/silk nanofibril composite membrane for 297 12.7 48 efficient proton conduction. Chemical Engineering Journal, 2021, 415, 129021. Covalent Organic Frameworks as Emerging Platforms for CO₂ Photoreduction. ACS 11.2 Catalysis, 2021, 11, 9809-9824. Editing Light Emission with Stable Crystalline Covalent Organic Frameworks via Wall Surface 299 13.8 60 Perturbation. Angewandte Chemie - International Edition, 2021, 60, 19419-19427. A 3D Anionic Metal Covalent Organic Framework with soc Topology Built from an Octahedral Ti^{IV} Complex for Photocatalytic Reactions. Angewandte Chemie - International Edition, 2021, 60, 17881-17886. 13.8 Photoactive Hybrid Materials based on Conjugated Porous Polymers and Inorganic Nanoparticles. 301 3.6 0 Advanced Photonics Research, 2021, 2, 2100060. Dendriteâ€Suppressing Polymer Materials for Safe Rechargeable Metal Battery Applications: From the Electroâ€Chemoâ€Mechanical Viewpoint of Macromolecular Design. Macromolecular Rapid Communications, 2021, 42, e2100279. Rational Design and Application of Covalent Organic Frameworks for Solar Fuel Production. 303 3.8 8 Molecules, 2021, 26, 4181. ¹⁵N Solid-State NMR as Bright Eyes to See the Isomerization of the Azo Bond: Revision of Tris (Î²-hydroxyl-azo)-benzene to Tris (Î²-keto-hydrazo)-cyclohexane in Porous Organic Polymers. Journal 304 of Physical Chemistry Letters, 2021, 12, 6767-6772. Porphyrin- and phthalocyanine-based porous organic polymers: From synthesis to application. 305 18.8 147 Coordination Chemistry Reviews, 2021, 439, 213875. Scalable Fabrication of Crystalline COF Membranes from Amorphous Polymeric Membranes. Angewandte Chemie, 2021, 133, 18199-18206.

#	Article	IF	CITATIONS
307	18.1% single palladium atom catalysts on mesoporous covalent organic framework for gas phase hydrogenation of ethylene. Cell Reports Physical Science, 2021, 2, 100495.	5.6	19
308	Facile fabrication of porous magnetic covalent organic frameworks as robust platform for multicomponent reaction. Applied Organometallic Chemistry, 2021, 35, e6373.	3.5	3
309	Syntheses and Crystal Structures of Three Pyrrole-2-Carboxylate with C3-Symmetry. Journal of Chemical Crystallography, 2022, 52, 105-112.	1.1	0
310	A β-cyclodextrin covalent organic framework used as a chiral stationary phase for chiral separation in gas chromatography. Chinese Chemical Letters, 2022, 33, 898-902.	9.0	45
311	Fused aromatic networks with the different spatial arrangement of structural units. Cell Reports Physical Science, 2021, 2, 100502.	5.6	3
312	Highly Crystalline Covalent Organic Frameworks Act as a Dual-Functional Fluorescent-Sensing Platform for Myricetin and Water, and Adsorbents for Myricetin. ACS Applied Materials & Interfaces, 2021, 13, 33449-33463.	8.0	39
313	Difunctional covalent organic framework hybrid material for synergistic adsorption and selective removal of fluoroquinolone antibiotics. Journal of Hazardous Materials, 2021, 413, 125302.	12.4	68
314	Goldâ€Doped Covalent Organic Framework Reveals Specific Serum Metabolic Fingerprints as Point of Crohn's Disease Diagnosis. Advanced Functional Materials, 2021, 31, 2105478.	14.9	34
315	Roadmap of Solid-State Lithium-Organic Batteries toward 500 Wh kg ^{–1} . ACS Energy Letters, 2021, 6, 3287-3306.	17.4	31
316	Structural and Morphological Engineering of Benzothiadiazole-Based Covalent Organic Frameworks for Visible Light-Driven Oxidative Coupling of Amines. ACS Applied Materials & Interfaces, 2021, 13, 39291-39303.	8.0	55
317	Heating-driven assembly of covalent organic framework nanosheets for gas separation. Journal of Membrane Science, 2021, 632, 119326.	8.2	30
318	Progress and Perspectives on Covalentâ€Organic Frameworks (COFs) and Composites for Various Energy Applications. Chemistry - A European Journal, 2021, 27, 13669-13698.	3.3	16
319	Removal of heavy metals by covalent organic frameworks (COFs): A review on its mechanism and adsorption properties. Journal of Environmental Chemical Engineering, 2021, 9, 105687.	6.7	114
320	Synthesis of Boroxine and Dioxaborole Covalent Organic Frameworks via Transesterification and Metathesis of Pinacol Boronates. Journal of the American Chemical Society, 2021, 143, 13274-13280.	13.7	17
321	Structure–Performance Relationships of Covalent Organic Framework Electrode Materials in Metal-Ion Batteries. Journal of Physical Chemistry Letters, 2021, 12, 8061-8071.	4.6	26
322	Covalent organic frameworks for fluorescent sensing: Recent developments and future challenges. Coordination Chemistry Reviews, 2021, 440, 213957.	18.8	111
323	Arylamine‣inked 2D Covalent Organic Frameworks for Efficient Pseudocapacitive Energy Storage. Angewandte Chemie, 2021, 133, 20922-20927.	2.0	13
324	Mechanochemical Construction 2D/2D Covalent Organic Nanosheets Heterojunctions Based on Substoichiometric Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 42035-42043.	8.0	28

#	Article	IF	CITATIONS
325	Preparation and Chiral Applications of Optically Active Polyamides. Macromolecular Rapid Communications, 2021, 42, e2100341.	3.9	12
326	Covalent Organic Framework Membranes for Efficient Chemicals Separation. Small Structures, 2021, 2, 2100061.	12.0	48
327	COF-based photocatalyst for energy and environment applications. Surfaces and Interfaces, 2021, 25, 101249.	3.0	14
328	Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries. ACS Nano, 2021, 15, 12741-12767.	14.6	71
329	Facile regulation of porous N-doped carbon-based catalysts from covalent organic frameworks nanospheres for highly-efficient oxygen reduction reaction. Carbon, 2021, 180, 92-100.	10.3	35
330	Construction of Core–Shell MOF@COF Hybrids with Controllable Morphology Adjustment of COF Shell as a Novel Platform for Photocatalytic Cascade Reactions. Advanced Science, 2021, 8, e2101884.	11.2	79
331	Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks. Advanced Science, 2021, 8, e2101883.	11.2	83
332	Covalent organic framework-based materials: Synthesis, modification, and application in environmental remediation. Coordination Chemistry Reviews, 2021, 441, 213989.	18.8	91
333	Arylamine‣inked 2D Covalent Organic Frameworks for Efficient Pseudocapacitive Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 20754-20759.	13.8	107
334	Regulating the Orientation of Hydrogen-Bonded Organic Framework Membranes Based on Substrate Modification. Crystal Growth and Design, 2021, 21, 5292-5299.	3.0	10
335	Patterning, Transfer, and Tensile Testing of Covalent Organic Framework Films with Nanoscale Thickness. Chemistry of Materials, 2021, 33, 6724-6730.	6.7	7
336	Recent advances on electrochemical methods in fabricating twoâ€dimensional organicâ€ligandâ€containing frameworks. SmartMat, 2021, 2, 299-325.	10.7	66
337	Advanced Adsorbent Mediated Extraction Techniques for the Separation of Antibiotics from Food, Biological, and Environmental Matrices. Separation and Purification Reviews, 0, , 1-35.	5.5	0
338	Prediction on the highâ€energy density covalent organic frameworks with diamond network. International Journal of Quantum Chemistry, 2021, 121, e26790.	2.0	0
339	Fully-ï€ conjugated covalent organic frameworks as catalyst for photo-induced atom transfer radical polymerization with ppm-level copper concentration under LED irradiation. European Polymer Journal, 2021, 157, 110670.	5.4	11
340	Visible Lightâ€Regulated Heterogeneous Catalytic PETâ€RAFT by High Crystallinity Covalent Organic Framework. Macromolecular Rapid Communications, 2021, 42, e2100384.	3.9	23
341	Performance-Based Screening of Porous Materials for Carbon Capture. Chemical Reviews, 2021, 121, 10666-10741.	47.7	115
342	Sheathed in-situ room-temperature growth covalent organic framework solid-phase microextraction fiber for detecting ultratrace polybrominated diphenyl ethers from environmental samples. Analytica Chimica Acta, 2021, 1176, 338772.	5.4	27

#	Article	IF	CITATIONS
343	A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. International Journal of Biological Macromolecules, 2021, 186, 1003-1166.	7.5	30
344	One-Step Electrochemical Growth of 2D/3D Zn(II)-MOF Hybrid Nanocomposites on an Electrode and Utilization of a PtNPs@2D MOF Nanocatalyst for Electrochemical Immunoassay. ACS Applied Materials & amp; Interfaces, 2021, 13, 46225-46232.	8.0	22
345	Hierarchically Ordered Macro–Microporous Polyoxometalate-Based Metal–Organic Framework Single Crystals. ACS Nano, 2021, 15, 16581-16588.	14.6	51
346	Various Stacking Patterns of Twoâ€Dimensional Molecular Assemblies in Hydrogenâ€Bonded Cocrystals: Insight into Competitive Intermolecular Interactions and Control of Stacking Patterns. Angewandte Chemie - International Edition, 2021, 60, 22839-22848.	13.8	13
347	Covalentâ€Organic Frameworks (COFs) as Proton Conductors. Advanced Energy Materials, 2021, 11, 2102300.	19.5	106
348	Impregnation of covalent organic framework into porous silica support for the recovery of palladium ions from simulated high-level liquid waste. Journal of Radioanalytical and Nuclear Chemistry, 2021, 330, 1065-1074.	1.5	3
349	Pyrimidineâ€Functionalized Covalent Organic Framework and its Cobalt Complex as an Efficient Electrocatalyst for Oxygen Evolution Reaction. ChemSusChem, 2021, 14, 4556-4562.	6.8	26
350	Direct pore engineering of 2D imine covalent organic frameworks via sub-stoichiometric synthesis. Science China Chemistry, 2022, 65, 190-196.	8.2	9
351	De Novo Fabrication of Large-Area and Self-Standing Covalent Organic Framework Films for Efficient Separation. ACS Applied Materials & Interfaces, 2021, 13, 44806-44813.	8.0	20
352	Twoâ€dimensional Covalent Organic Frameworks for Electrochromic Switching. Chemistry - an Asian Journal, 2021, 16, 3055-3067.	3.3	12
353	Decoration of Active Sites in Covalent–Organic Framework: An Effective Strategy of Building Efficient Photocatalysis for CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 13376-13384.	6.7	34
354	Structural engineering in pre-functionalized, imine-based covalent organic framework via anchoring active Ru(II)-complex for visible-light triggered and aerobic cross-coupling of α-amino esters with indoles. Applied Catalysis B: Environmental, 2021, 292, 120149.	20.2	30
355	1,6â€Anthrazolineâ€Linked Ï€â€Conjugated Macrocycles and Twoâ€Dimensional Polymer via Friedläder Synthesis. Angewandte Chemie, 2021, 133, 25527-25531.	2.0	0
356	The hydroxylic position mediated the luminescent properties based on 4-amino-4H-1,2,4-triazole: Syntheses, crystal structures and Hirshfeld analyses. Journal of Solid State Chemistry, 2021, 301, 122300.	2.9	10
357	Quantitative Coassembly for Precise Synthesis of Mesoporous Nanospheres with Pore Structureâ€Dependent Catalytic Performance. Advanced Materials, 2021, 33, e2103130.	21.0	13
358	Contribution of hydrogen bonding to liquid-phase adsorptive removal of hazardous organics with metal-organic framework-based materials. Chemical Engineering Journal, 2022, 430, 132596.	12.7	79
359	Ultrathin Covalent Organic Framework Membranes via a Multiâ€Interfacial Engineering Strategy for Gas Separation. Advanced Materials, 2022, 34, e2104946.	21.0	82
360	A Cubic 3D Covalent Organic Framework with nbo Topology. Journal of the American Chemical Society, 2021, 143, 15011-15016.	13.7	87

#	Article	IF	CITATIONS
361	Inhibition by Water during Heterogeneous BrÃ,nsted Acid Catalysis by Three-Dimensional Crystalline Organic Salts. Crystal Growth and Design, 2021, 21, 6364-6372.	3.0	3
362	1,6â€Anthrazolineâ€Linked ï€â€Conjugated Macrocycles and Twoâ€Dimensional Polymer via Friedläder Synthesis. Angewandte Chemie - International Edition, 2021, 60, 25323-25327.	13.8	8
363	Study on the efficiency of a covalent organic framework as adsorbent for the screening of pharmaceuticals in estuary waters. Chemosphere, 2021, 278, 130364.	8.2	9
364	3D Hydrazoneâ€Functionalized Covalent Organic Frameworks as pHâ€Triggered Rotary Switches. Small, 2021, 17, e2102630.	10.0	32
365	Two-dimensional triphenylamine-based polymers for ultrastable volatile memory with ultrahigh on/off ratio. Polymer, 2021, 230, 124076.	3.8	10
366	Synthesis and tailored properties of covalent organic framework thin films and heterostructures. Materials Today, 2021, 51, 427-448.	14.2	24
367	Covalent Organic Frameworks: New Materials Platform for Photocatalytic Degradation of Aqueous Pollutants. Materials, 2021, 14, 5600.	2.9	23
368	Van der Waals organic/inorganic heterostructures in the two-dimensional limit. CheM, 2021, 7, 2989-3026.	11.7	19
369	Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine apture Capacity. Angewandte Chemie - International Edition, 2021, 60, 22432-22440.	13.8	148
370	lonic Functionalization of Multivariate Covalent Organic Frameworks to Achieve an Exceptionally High Iodine apture Capacity. Angewandte Chemie, 2021, 133, 22606-22614.	2.0	9
371	Exceptional electron conduction in two-dimensional covalent organic frameworks. CheM, 2021, 7, 3309-3324.	11.7	41
372	Controllable Synthesis of COFsâ€Based Multicomponent Nanocomposites from Coreâ€Shell to Yolkâ€Shell and Hollowâ€Sphere Structure for Artificial Photosynthesis. Advanced Materials, 2021, 33, e2105002.	21.0	60
373	Shining Light on Porous Liquids: From Fundamentals to Syntheses, Applications and Future Challenges. Advanced Functional Materials, 2022, 32, 2104162.	14.9	40
374	Various Stacking Patterns of Twoâ€Dimensional Molecular Assemblies in Hydrogenâ€Bonded Cocrystals: Insight into Competitive Intermolecular Interactions and Control of Stacking Patterns. Angewandte Chemie, 2021, 133, 23021.	2.0	1
375	Simultaneous electrochemical determination of DNA nucleobases using AgNPs embedded covalent organic framework. Mikrochimica Acta, 2021, 188, 358.	5.0	14
376	Advances and challenges in metal ion separation from water. Trends in Chemistry, 2021, 3, 819-831.	8.5	14
377	One-pot synthesis of mesosilica/nano covalent organic polymer composites and their synergistic effect in photocatalysis. Chinese Journal of Catalysis, 2021, 42, 1821-1830.	14.0	15
378	A recyclable bipyridine-containing covalent organic framework-based QCM sensor for detection of Hg(II) ion in aqueous solution. Journal of Solid State Chemistry, 2021, 302, 122421.	2.9	19

#	Article	IF	CITATIONS
379	Amide-linked covalent organic frameworks as efficient heterogeneous photocatalysts in water. Chinese Journal of Catalysis, 2021, 42, 2010-2019.	14.0	45
380	Stabilized nanotube and nanofiber gel materials toward multifunctional adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127347.	4.7	6
381	Removal of HFPO-DA (GenX) from aqueous solutions: A mini-review. Chemical Engineering Journal, 2021, 424, 130266.	12.7	21
382	Large-pore covalent organic frameworks for ultra-fast tight ultrafiltration (TUF). Journal of Membrane Science, 2021, 637, 119635.	8.2	20
383	Highly efficient metal/solvent-free chemical fixation of CO2 at atmospheric pressure conditions using functionalized porous covalent organic frameworks. Journal of CO2 Utilization, 2021, 53, 101716.	6.8	26
384	Construction of spherical montmorillonite supported Cu-based catalyst doping with a covalent organic framework for 4-nitrophenol removal. Applied Clay Science, 2021, 214, 106278.	5.2	13
385	Facile synthesis of Ti4+-immobilized magnetic covalent organic frameworks for enhanced phosphopeptide enrichment. Talanta, 2021, 235, 122789.	5.5	16
386	Solvent-processable 0D covalent organic framework quantum dot engineered composite membranes for biogas upgrading. Journal of Membrane Science, 2021, 640, 119803.	8.2	17
387	Microporous and stable covalent organic framework for effective gas uptake. Materials Letters, 2021, 304, 130657.	2.6	13
388	Rational design of edges of covalent organic networks for catalyzing hydrogen peroxide production. Applied Catalysis B: Environmental, 2021, 298, 120605.	20.2	29
389	In-situ growth of COF on BiOBr 2D material with excellent visible-light-responsive activity for U(VI) photocatalytic reduction. Separation and Purification Technology, 2021, 279, 119627.	7.9	52
390	Hydroxy functionalized triptycene based covalent organic polymers for ultra-high radioactive iodine uptake. Chemical Engineering Journal, 2022, 427, 130950.	12.7	35
391	A novel aptamer RRS assay platform for ultratrace melamine based on COF-loaded Pd nanocluster catalytic amplification. Journal of Hazardous Materials, 2022, 423, 127263.	12.4	26
392	Adsorptive removal of indomethacin and diclofenac from water by polypyrrole doped-GO/COF-300 nanocomposites. Chemical Engineering Journal, 2022, 429, 132499.	12.7	39
393	Vapor-liquid interfacial polymerization of covalent organic framework membranes for efficient alcohol dehydration. Journal of Membrane Science, 2022, 641, 119905.	8.2	18
394	Ionic covalent organic frameworks for Non-Steroidal Anti-Inflammatory drugs (NSAIDs) removal from aqueous Solution: Adsorption performance and mechanism. Separation and Purification Technology, 2021, 278, 119238.	7.9	19
395	Three porous shapeable three-component hydrogen-bonded covalent-organic aerogels as backfill materials in a simulated permeable reactive barrier (PRB) for trapping levofloxacin. Journal of Hazardous Materials, 2022, 422, 126829.	12.4	11
396	Robust carbazole-based covalent triazine frameworks with defective ultramicropore structure for efficient ethane-selective ethane-ethylene separation. Chemical Engineering Journal, 2022, 427, 131726.	12.7	15

#	Article	IF	CITATIONS
397	Substituent engineering of covalent organic frameworks modulates the crystallinity and electrochemical reactivity. Journal of Energy Chemistry, 2022, 65, 490-496.	12.9	15
398	A 3D ultramicroporous porous organic frameworks for SO2 and aromatic sulfides capture with high capacity and selectivity. Chemical Engineering Journal, 2022, 429, 132480.	12.7	18
399	Flexible and freestanding heterostructures based on COF-derived N-doped porous carbon and two-dimensional MXene for all-solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2022, 428, 131040.	12.7	29
400	TEMPO-radical-bearing metal–organic frameworks and covalent organic frameworks for catalytic applications. Dalton Transactions, 2021, 50, 14081-14090.	3.3	8
401	Sulfur-modified porous covalent organic polymers as bifunctional materials for efficient fluorescence detection and fast removal of heavy metal ions. Materials Chemistry Frontiers, 2021, 5, 3428-3435.	5.9	12
402	Novel enzyme-functionalized covalent organic frameworks for the colorimetric sensing of glucose in body fluids and drinks. Materials Chemistry Frontiers, 2021, 5, 3859-3866.	5.9	33
403	Recent advances in covalent organic frameworks for cancer diagnosis and therapy. Biomaterials Science, 2021, 9, 5745-5761.	5.4	33
404	Acute ecotoxicity assessment of a covalent organic framework. Environmental Science: Nano, 2021, 8, 1680-1689.	4.3	2
405	Fluorinated Iron(<scp>ii</scp>) clathrochelate units in metalorganic based copolymers: improved porosity, iodine uptake, and dye adsorption properties. RSC Advances, 2021, 11, 14986-14995.	3.6	23
406	Dual-functional two-dimensional covalent organic frameworks for water sensing and harvesting. Materials Chemistry Frontiers, 2021, 5, 4193-4201.	5.9	41
407	Multifunctional Zn–Ln (Ln = Eu and Tb) heterometallic metal–organic frameworks with highly efficient I ₂ capture, dye adsorption, luminescence sensing and white-light emission. Dalton Transactions, 2021, 50, 11619-11630.	3.3	11
408	Emerging new-generation hybrids based on covalent organic frameworks for industrial applications. New Journal of Chemistry, 2021, 45, 7014-7046.	2.8	16
409	Extending photocatalysis to the visible and NIR: the molecular strategy. Nanoscale, 2021, 13, 9147-9159.	5.6	26
410	Recent advances in the electrocatalytic synthesis of 2,5-furandicarboxylic acid from 5-(hydroxymethyl)furfural. Journal of Materials Chemistry A, 2021, 9, 20164-20183.	10.3	62
411	Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture. Chemical Science, 2021, 12, 8452-8457.	7.4	87
412	Porphyrin and single atom featured reticular materials: recent advances and future perspective of solar-driven CO ₂ reduction. Green Chemistry, 2021, 23, 8332-8360.	9.0	37
413	Non-carbon-supported single-atom site catalysts for electrocatalysis. Energy and Environmental Science, 2021, 14, 2809-2858.	30.8	198
414	CO2 adsorption with covalent organic framework (COF). , 2021, , 53-86.		0

#	Article	IF	CITATIONS
415	Gas sorption of nano-porous supramolecules formed by multi-hydrogen bonded coordination capsules. Chemical Communications, 2021, 57, 2249-2252.	4.1	4
416	<i>></i> -Tetrazine-functionalized hyper-crosslinked polymers for efficient photocatalytic synthesis of benzimidazoles. Green Chemistry, 2021, 23, 1292-1299.	9.0	33
417	Mechanics of free-standing inorganic and molecular 2D materials. Nanoscale, 2021, 13, 1443-1484.	5.6	28
418	Stable hydrazone-linked chiral covalent organic frameworks: Synthesis, modiï¬cation, and chiral signal inversion from monomers. Chinese Chemical Letters, 2021, 32, 107-112.	9.0	15
419	Visible-light-driven photocatalytic CO ₂ reduction over ketoenamine-based covalent organic frameworks: role of the host functional groups. Catalysis Science and Technology, 2021, 11, 1717-1724.	4.1	46
420	Crystalline two-dimensional organic porous polymers (covalent organic frameworks) for photocatalysis. , 2021, , 505-521.		0
421	Recent progress in emerging metal and covalent organic frameworks for electrochemical and functional capacitors. Journal of Materials Chemistry A, 2021, 9, 8832-8869.	10.3	37
422	Mehr als nur ein Netzwerk: Strukturierung retikuläer Materialien im Nanoâ€, Meso―und Volumenbereich. Angewandte Chemie, 2020, 132, 22534-22556.	2.0	8
423	Chemical Conversion and Locking of the Imine Linkage: Enhancing the Functionality of Covalent Organic Frameworks. Angewandte Chemie, 2021, 133, 14356-14370.	2.0	22
424	Beyond Frameworks: Structuring Reticular Materials across Nanoâ€, Mesoâ€, and Bulk Regimes. Angewandte Chemie - International Edition, 2020, 59, 22350-22370.	13.8	60
425	Construction of a Sandwiched MOF@COF Composite as a Size-Selective Catalyst. Cell Reports Physical Science, 2020, 1, 100272.	5.6	21
426	Halogen-Bonded Organic Frameworks of Perfluoroiodo- and Perfluorodiiodobenzene with 2,2′,7,7′-Tetrapyridyl-9,9′-spirobifluorene. Crystal Growth and Design, 2021, 21, 1045-1054.	3.0	11
427	Transformation of One-Dimensional Linear Polymers into Two-Dimensional Covalent Organic Frameworks Through Sequential Reversible and Irreversible Chemistries. Chemistry of Materials, 2021, 33, 413-419.	6.7	25
428	Blue Phosphorus Growth on Different Noble Metal Surfaces: From a 2D Alloy Network to an Extended Monolayer. Journal of Physical Chemistry C, 2021, 125, 675-679.	3.1	13
429	Dehydrative Formation of Isosorbide from Sorbitol over Poly(ionic liquid)–Covalent Organic Framework Hybrids. ACS Applied Materials & Interfaces, 2021, 13, 552-562.	8.0	17
430	Confining perovskite quantum dots in the pores of a covalent-organic framework: quantum confinement- and passivation-enhanced light-harvesting and photocatalysis. Journal of Materials Chemistry A, 2021, 9, 24365-24373.	10.3	26
431	π–π conjugation promoted nanocatalysis for cancer therapy based on a covalent organic framework. Materials Horizons, 2021, 8, 3457-3467.	12.2	24
432	Synthesis of covalent organic frameworks using sustainable solvents and machine learning. Green Chemistry, 2021, 23, 8932-8939.	9.0	39

#	Article	IF	CITATIONS
433	Vinylene-bridged donor–acceptor type porous organic polymers for enhanced photocatalysis of amine oxidative coupling reactions under visible light. RSC Advances, 2021, 11, 33653-33660.	3.6	2
434	Theoretical insights into volatile iodine adsorption onto COF-DL229. Physical Chemistry Chemical Physics, 2021, 23, 25365-25373.	2.8	2
435	Chemically Stable Polyarylether-Based Metallophthalocyanine Frameworks with High Carrier Mobilities for Capacitive Energy Storage. Journal of the American Chemical Society, 2021, 143, 17701-17707.	13.7	42
436	Precisely design PPh3-based polymer by hybrid coupling of monomers for high efficient hydroformylation. Microporous and Mesoporous Materials, 2022, 329, 111508.	4.4	8
437	Luminescent Covalent Organic Frameworks for Biosensing and Bioimaging Applications. Small, 2022, 18, e2103516.	10.0	39
438	Oil–Water–Oil Triphase Synthesis of Ionic Covalent Organic Framework Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 27078-27085.	13.8	51
439	Rational Synthesis of Imine-Linked Fluorescent Covalent Organic Frameworks with Different p <i>K</i> _a for pH Sensing In Vitro and In Vivo. ACS Applied Materials & Interfaces, 2021, 13, 51351-51361.	8.0	30
440	Carbon Nanoarchitectonics for Energy and Related Applications. Journal of Carbon Research, 2021, 7, 73.	2.7	10
441	Accumulation of Sulfonic Acid Groups Anchored in Covalent Organic Frameworks as an Intrinsic Proton onducting Electrolyte. Macromolecular Rapid Communications, 2022, 43, e2100590.	3.9	17
442	2D Molecular Sheets of Hydrogenâ€Bonded Organic Frameworks for Ultrastable Sodiumâ€ion Storage. Advanced Materials, 2021, 33, e2106079.	21.0	55
443	Ni Nanoparticle-Immobilized Imine-Linked Microspherical Covalent Organic Polymer for Degradation Studies of Organic Dyes. ACS Applied Polymer Materials, 2021, 3, 5460-5469.	4.4	11
444	Recent advances and perspectives of metal/covalent-organic frameworks in metal-air batteries. Journal of Energy Chemistry, 2021, 63, 113-129.	12.9	25
445	Macrocycleâ€Based Porous Organic Polymers for Separation, Sensing, and Catalysis. Advanced Materials, 2022, 34, e2107401.	21.0	79
446	Ionic Covalent Organic Frameworks for Energy Devices. Advanced Materials, 2021, 33, e2105647.	21.0	64
447	Cobalt Coordinated Cyano Covalent-Organic Framework for High-Performance Potassium-Organic Batteries. ACS Applied Materials & Interfaces, 2021, 13, 48913-48922.	8.0	36
448	Platinum Single Atoms Anchored on a Covalent Organic Framework: Boosting Active Sites for Photocatalytic Hydrogen Evolution. ACS Catalysis, 2021, 11, 13266-13279.	11.2	149
449	Oil–Water–Oil Triphase Synthesis of Ionic Covalent Organic Framework Nanosheets. Angewandte Chemie, 2021, 133, 27284-27291.	2.0	7
450	Stable Bimetallic Polyphthalocyanine Covalent Organic Frameworks as Superior Electrocatalysts. Journal of the American Chemical Society, 2021, 143, 18052-18060.	13.7	127

#	Article	IF	CITATIONS
451	Nearâ€Equilibrium Growth of Chemically Stable Covalent Organic Framework/Graphene Oxide Hybrid Materials for the Hydrogen Evolution Reaction. Angewandte Chemie, 2022, 134, .	2.0	3
452	An overview on covalent organic frameworks: synthetic reactions and miscellaneous applications. Materials Today Chemistry, 2021, 22, 100573.	3.5	10
453	Highly Processable Covalent Organic Framework Gel Electrolyte Enabled by Sideâ€Chain Engineering for Lithiumâ€lon Batteries. Angewandte Chemie, 2022, 134, .	2.0	5
454	Covalent Organic Framework (COF)â€Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. Small Methods, 2021, 5, e2100945.	8.6	36
455	Nearâ€Equilibrium Growth of Chemically Stable Covalent Organic Framework/Graphene Oxide Hybrid Materials for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
456	Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Liâ^'S Batteries. Angewandte Chemie, 2022, 134, .	2.0	12
457	Maximizing Electroactive Sites in a Threeâ€Dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	83
458	Triptycene-Based Porous Chalcogen-Bonded Organic Frameworks. Crystal Growth and Design, 2021, 21, 6497-6503.	3.0	11
459	High Fluorescence Porous Organic Cage for Sensing Divalent Palladium Ion and Encapsulating Fine Palladium Nanoparticles. Chinese Journal of Chemistry, 2022, 40, 385-391.	4.9	7
460	Covalent Organic Frameworks as Tunable Supports for HER, OER, and ORR Catalysts: A New Addition to Heterogeneous Electrocatalysts. Nanostructure Science and Technology, 2022, , 389-444.	0.1	0
461	Highly Processable Covalent Organic Framework Gel Electrolyte Enabled by Sideâ€Chain Engineering for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, e202110695.	13.8	44
462	Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Liâ^'S Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	52
463	Maximizing Electroactive Sites in a Threeâ€dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie, 0, , .	2.0	30
464	Palladium anchored on a covalent organic framework as a heterogeneous catalyst for phosphorylation of aryl bromides. Applied Organometallic Chemistry, 2022, 36, e6480.	3.5	12
465	Microfluidic technologies for nanoparticle formation. Lab on A Chip, 2022, 22, 512-529.	6.0	45
466	Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS) – a state-of-the-art review. Energy and Environmental Science, 2021, 14, 6122-6157.	30.8	98
467	Introduction to green processing for sustainable materials. , 2022, , 1-42.		2
468	Organic steep-slope nano-FETs: A rational design based on two-dimensional covalent-organic frameworks. Organic Electronics, 2022, 100, 106379.	2.6	1

#	Article	IF	CITATIONS
469	Interfacial synthesized covalent organic framework nanofiltration membranes for precisely ultrafast sieving. Chemical Engineering Journal, 2022, 430, 133024.	12.7	32
470	Silsesquioxane-based and triptycene-linked nanoporous polymers (STNPs) with a high surface area for CO2 uptake and efficient dye removal applications. Materials Advances, 2020, 1, 3406-3416.	5.4	11
471	Nanocrystalline Ag-ZK-5 zeolite for selective CH4/N2 separation. Separation and Purification Technology, 2022, 282, 120027.	7.9	10
472	Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO ₂ Valorization. Advanced Energy Materials, 2021, 11, 2102767.	19.5	35
473	Covalent organic framework-based porous materials for harmful gas purification. Chemosphere, 2022, 291, 132795.	8.2	17
474	Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks. Angewandte Chemie, 2022, 134, e202113926.	2.0	5
475	A 2-D microporous covalent organic framework for high-performance supercapacitor electrode. Materials Letters, 2022, 308, 131229.	2.6	11
476	Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks. Angewandte Chemie - International Edition, 2022, 61, e202113926.	13.8	54
477	Layered Copper-Metallated Covalent Organic Frameworks for Huisgen Reactions. ACS Applied Materials & Interfaces, 2021, 13, 54106-54112.	8.0	12
478	Reticular materials in sorbent-based extraction methods. , 2021, , 323-376.		1
479	Organic microporous crystals driven by pure C–Hâ<¯Ï€ interactions with vapor-induced crystal-to-crystal transformations. Materials Horizons, 2022, 9, 731-739.	12.2	14
480	Novel thiol-functionalized covalent organic framework-enabled ICP-MS measurement of ultra-trace metals in complex matrices. Journal of Analytical Atomic Spectrometry, 2022, 37, 157-164.	3.0	9
481	Engineering of flat bands and Dirac bands in two-dimensional covalent organic frameworks (COFs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics. Materials Horizons, 2022, 9, 88-98.	12.2	33
481 482	Engineering of flat bands and Dirac bands in two-dimensional covalent organic frameworks (COFs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics. Materials Horizons, 2022, 9, 88-98. Applications of covalent organic framework–based nanomaterials as superior adsorbents in wastewater treatment. , 2022, , 127-159.	12.2	33 0
481 482 483	Engineering of flat bands and Dirac bands in two-dimensional covalent organic frameworks (COFs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics. Materials Horizons, 2022, 9, 88-98. Applications of covalent organic framework–based nanomaterials as superior adsorbents in wastewater treatment., 2022, , 127-159. Covalent organic frameworks promoted single metal atom catalysis: Strategies and applications. Coordination Chemistry Reviews, 2022, 452, 214298.	12.2	33 0 132
481 482 483 484	Engineering of flat bands and Dirac bands in two-dimensional covalent organic frameworks (COFs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics. Materials Horizons, 2022, 9, 88-98.Applications of covalent organic framework–based nanomaterials as superior adsorbents in wastewater treatment., 2022, , 127-159.Covalent organic frameworks promoted single metal atom catalysis: Strategies and applications. Coordination Chemistry Reviews, 2022, 452, 214298.Recent advances in oxygen electrocatalysts based on tunable structural polymers. Materials Today Chemistry, 2022, 23, 100632.	12.2 18.8 3.5	33 0 132 24
481 482 483 483 484 485	Engineering of flat bands and Dirac bands in two-dimensional covalent organic frameworks (COFs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics. Materials Horizons, 2022, 9, 88-98. Applications of covalent organic frameworkâ€"based nanomaterials as superior adsorbents in wastewater treatment., 2022, , 127-159. Covalent organic frameworks promoted single metal atom catalysis: Strategies and applications. Coordination Chemistry Reviews, 2022, 452, 214298. Recent advances in oxygen electrocatalysts based on tunable structural polymers. Materials Today Covalently anchoring covalent organic framework on carbon nanotubes for highly efficient electrocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2022, 303, 120897.	12.2 18.8 3.5 20.2	 33 0 132 24 62

#	Article	IF	CITATIONS
487	Tailoring the Pore Surface of 3D Covalent Organic Frameworks via Postâ€ 5 ynthetic Click Chemistry. Angewandte Chemie, 2022, 134, .	2.0	11
488	Morphology controllable synthesis of heteroatoms-doped carbon materials for high-performance flexible supercapacitor. Dyes and Pigments, 2022, 199, 109968.	3.7	63
489	Proton-Conducting Hydrogen-Bonded Organic Frameworks. ACS Energy Letters, 2021, 6, 4431-4453.	17.4	92
490	Advanced Ordered Nanoporous Materials. Engineering Materials, 2022, , 259-317.	0.6	2
491	Metal-containing covalent organic framework: a new type of photo/electrocatalyst. Rare Metals, 2022, 41, 1160-1175.	7.1	16
492	Semimetallic square-octagon two-dimensional polymer with high mobility. Physical Review B, 2021, 104,	3.2	3
493	Manipulating Charge Density in Nanofluidic Membranes for Optimal Osmotic Energy Production Density. Advanced Functional Materials, 2022, 32, 2109210.	14.9	31
494	Oriented Twoâ€Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport. Angewandte Chemie, 2022, 134, .	2.0	10
495	COFs-based electrolyte accelerates the Na+ diffusion and restrains dendrite growth in quasi-solid-state organic batteries. Nano Energy, 2022, 92, 106756.	16.0	36
496	Bottom-Up Solid-State Molecular Assembly via Guest-Induced Intermolecular Interactions. Journal of the American Chemical Society, 2021, 143, 20395-20402.	13.7	47
497	Confined ionic liquids in covalent organic frameworks toward the rational design of high-safety lithium metal battery. Chemical Engineering Journal, 2022, 433, 133749.	12.7	7
498	Direct conversion of aromatic amides into crystalline covalent triazine frameworks by a condensation mechanism. Cell Reports Physical Science, 2021, 2, 100653.	5.6	4
499	Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chemical Reviews, 2022, 122, 1208-1272.	47.7	105
500	Recent Advances in Emerging Metal– and Covalent–Organic Frameworks for Enzyme Encapsulation. ACS Applied Materials & Interfaces, 2021, 13, 56752-56776.	8.0	67
501	Quantum Capacitance through Molecular Infiltration of 7,7,8,8-Tetracyanoquinodimethane in Metal–Organic Framework/Covalent Organic Framework Hybrids. ACS Nano, 2021, 15, 18580-18589.	14.6	30
502	A novel covalent organic framework with multiple adsorption sites for removal of Hg2+ and sensitive detection of nitrofural. Journal of Industrial and Engineering Chemistry, 2022, 106, 374-381.	5.8	17
503	Facile and Site-Selective Synthesis of an Amine-Functionalized Covalent Organic Framework. ACS Macro Letters, 2021, 10, 1590-1596.	4.8	32
504	Molybdenum Atom-Mediated Salphen-Based Covalent Organic Framework as a Promising Electrocatalyst for the Nitrogen Reduction Reaction: A First-Principles Study. Journal of Physical Chemistry C, 2021, 125, 26061-26072.	3.1	34

# 505	ARTICLE Electroactive covalent organic frameworks: a new choice for organic electronics. Trends in Chemistry, 2022, 4, 60-75.	IF 8.5	Citations 39
506	Oriented Twoâ€Ðimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport. Angewandte Chemie - International Edition, 2022, 61, .	13.8	50
507	Controlled nâ€Doping of Naphthaleneâ€Diimideâ€Based 2D Polymers. Advanced Materials, 2022, 34, e2101932.	21.0	13
508	Challenges and Recent Advances in Enzyme-Mediated Wastewater Remediation—A Review. Nanomaterials, 2021, 11, 3124.	4.1	28
509	Designing Two-Dimensional Versatile Room-Temperature Ferromagnets via Assembling Large-Scale Magnetic Quantum Dots. Nano Letters, 2021, 21, 9816-9823.	9.1	11
510	A Facile Approach to Sulfurâ€Rich Covalent Organic Frameworks for Selective Recovery of Trace Gold. Macromolecular Materials and Engineering, 2022, 307, .	3.6	7
511	Intrareticular charge transfer regulated electrochemiluminescence of donor–acceptor covalent organic frameworks. Nature Communications, 2021, 12, 6808.	12.8	81
512	Tailoring the Pore Surface of 3D Covalent Organic Frameworks via Postâ€Synthetic Click Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	44
513	Revealing the impact of small pores on oxygen reduction on carbon electrocatalysts: A journey through recent findings. Carbon, 2022, 188, 289-304.	10.3	24
514	Masking covalent organic frameworks (COFs) with loose polyamide networks for precise nanofiltration. Separation and Purification Technology, 2022, 283, 120233.	7.9	17
515	Two-Dimensional Polymers and Polymerizations. Chemical Reviews, 2022, 122, 442-564.	47.7	128
516	A review of nano-confined composite membranes fabricated inside the porous support. , 2021, 1, 100005.		10
517	2D Salphen-based heteropore covalent organic frameworks for highly efficient electrocatalytic water oxidation. Chemical Communications, 2021, 57, 13162-13165.	4.1	12
518	Porphyrin-based donor–acceptor COFs as efficient and reusable photocatalysts for PET-RAFT polymerization under broad spectrum excitation. Chemical Science, 2021, 12, 16092-16099.	7.4	50
519	Emerging Covalent Organic Framework and Linear Polymer (COF–LP) Composites: Synthetic Approaches and Applications. RSC Smart Materials, 2021, , 344-374.	0.1	1
520	Advanced microporous membranes for H2/CH4 separation: Challenges and perspectives. , 2021, 1, 100011.		16
521	Covalent organic frameworks as multifunctional materials for chemical detection. Chemical Society Reviews, 2021, 50, 13498-13558.	38.1	114
522	Solvothermal depolymerization and recrystallization of imine-linked two-dimensional covalent organic frameworks. Chemical Science, 2021, 12, 16014-16022.	7.4	14

#	ARTICLE	IF	Citations
523	Covalent Organic Frameworks. RSC Smart Materials, 2021, , 226-343.	0.1	0
524	Metal Nanoparticles@Covalent Organic Framework@Enzymes: A Universal Platform for Fabricating a Metal–Enzyme Integrated Nanocatalyst. ACS Applied Materials & Interfaces, 2022, 14, 2881-2892.	8.0	44
525	Covalent Triazine Frameworks with Palladium Nanoclusters as Highly Efficient Heterogeneous Catalysts for Styrene Oxidation. ACS Applied Polymer Materials, 2022, 4, 1047-1054.	4.4	6
526	Efficient Extraction and Determination of Carbamate Pesticides in Vegetables Based on a Covalent Organic Frameworks with Acylamide Sites. Journal of Chromatography A, 2022, 1664, 462799.	3.7	17
527	A sp2-carbon-linked covalent organic framework containing tetraphenylethene units used as yellow phosphors in white light-emitting diodes. Polymer, 2022, 241, 124474.	3.8	12
528	Metal-organic and covalent organic frameworks for the remediation of aqueous dye solutions: Adsorptive, catalytic and extractive processes. Coordination Chemistry Reviews, 2022, 454, 214332.	18.8	48
529	Charged nanochannels endow COF membrane with weakly concentration-dependent methanol permeability. Journal of Membrane Science, 2022, 645, 120186.	8.2	10
530	Highly crystalline covalent organic frameworks for ratiometric fluorescent sensing of trace water in honey and N2 gas. Sensors and Actuators B: Chemical, 2022, 355, 131323.	7.8	15
531	The integration of Triazine-based porous organic polymer with bio-waste poplar catkin as water-floatable photocatalyst. Applied Surface Science, 2022, 581, 152409.	6.1	12
532	Rational design and preparation of covalent organic frameworks and their functional mechanism analysis for lithium-ion and lithium sulfur/selenium cells. Energy Storage Materials, 2022, 46, 29-67.	18.0	12
533	Emerging new-generation covalent organic frameworks composites as green catalysts: design, synthesis and solar to fuel production. Chemical Engineering Journal, 2022, 433, 134594.	12.7	16
534	Olefin-linked covalent organic framework nanotubes based on triazine for selective oxidation of sulfides with O2 powered by blue light. Applied Catalysis B: Environmental, 2022, 305, 121027.	20.2	40
535	Ionic Covalent Organic Framework: What Does the Unique Ionic Site Bring to Us?. Chemical Research in Chinese Universities, 2022, 38, 296-309.	2.6	4
536	2D Conjugated Covalent Organic Frameworks: Defined Synthesis and Tailor-Made Functions. Accounts of Chemical Research, 2022, 55, 795-808.	15.6	91
537	Porphyrinâ€Based COF 2D Materials: Variable Modification of Sensing Performances by Postâ€Metallization. Angewandte Chemie, 0, , .	2.0	13
538	An ultra-dynamic anion-cluster-based organic framework. CheM, 2022, 8, 253-267.	11.7	17
539	Controllable encapsulation of silver nanoparticles by porous pyridine-based covalent organic frameworks for efficient CO ₂ conversion using propargylic amines. Green Chemistry, 2022, 24, 930-940.	9.0	19
540	Atomic Co–N ₄ and Co nanoparticles confined in COF@ZIF-67 derived core–shell carbon frameworks: bifunctional non-precious metal catalysts toward the ORR and HER. Journal of Materials Chemistry A, 2021, 10, 228-233.	10.3	61

#	Article	IF	CITATIONS
541	Post-synthetic modifications in porous organic polymers for biomedical and related applications. Chemical Society Reviews, 2022, 51, 43-56.	38.1	68
542	Following the light: 3D-printed COF@poly(2-hydroxyethyl methacrylate) dual emissive composite with response to polarity and acidity. Journal of Materials Chemistry A, 2022, 10, 4634-4643.	10.3	15
543	Fully π-conjugated, diyne-linked covalent organic frameworks formed <i>via</i> alkyne–alkyne cross-coupling reaction. Materials Chemistry Frontiers, 2022, 6, 466-472.	5.9	4
544	Pyrenetetraone-based covalent organic framework as an effective electrocatalyst for oxygen reduction reaction. Nano Research, 2022, 15, 3907-3912.	10.4	14
545	Covalent Organic Frameworks(COFs) for Sequestration of 99TCO4â^'. Chemical Research in Chinese Universities, 2022, 38, 290-295.	2.6	8
546	2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Opticalâ€Electricalâ€Magnetic Functionalities. Advanced Materials, 2022, 34, e2102290.	21.0	96
547	Band-like Transport of Charge Carriers in Oriented Two-Dimensional Conjugated Covalent Organic Frameworks. Chemistry of Materials, 2022, 34, 736-745.	6.7	30
548	A covalent organic framework as a photocatalyst for window ledge cross-dehydrogenative coupling reactions. Chemical Communications, 2022, 58, 1530-1533.	4.1	22
549	Norbornane-based covalent organic frameworks for gas separation. Nanoscale, 2022, 14, 2475-2481.	5.6	24
550	Recent Advances of Covalent Organic Frameworks for Chiral Separation. Chemical Research in Chinese Universities, 2022, 38, 350-355.	2.6	2
551	Metal–Organic Network-Forming Glasses. Chemical Reviews, 2022, 122, 4163-4203.	47.7	121
553	A simple and efficient method for preparing covalent organic framework aerogels with ultra-light and super-elastic. Microporous and Mesoporous Materials, 2022, 331, 111623.	4.4	11
554	Using sound to synthesize covalent organic frameworks in water. , 2022, 1, 87-95.		92
555	Dynamic covalent chemistry constrained diphenylethenes: control over reactivity and luminescence both in solution and in the solid state. Organic Chemistry Frontiers, 0, , .	4.5	2
556	Facile construction of fully sp2-carbon conjugated two-dimensional covalent organic frameworks containing benzobisthiazole units. Nature Communications, 2022, 13, 100.	12.8	107
557	Supramolecular Reinforcement of a Large-Pore 2D Covalent Organic Framework. Journal of the American Chemical Society, 2022, 144, 2468-2473.	13.7	24
558	Construction of Tetrathiafulvalene-based Covalent Organic Frameworks for Superior Iodine Capture. Chemical Research in Chinese Universities, 2022, 38, 409-414.	2.6	8
559	Divergent Properties in Structural Isomers of Triphenylamine-Based Covalent Organic Frameworks. Chemistry of Materials, 2022, 34, 529-536.	6.7	28

#	Article	IF	CITATIONS
560	A facile and scalable synthetic method for covalent organic nanosheets: ultrasonic polycondensation and photocatalytic degradation of organic pollutants. Chemical Science, 2022, 13, 1009-1015.	7.4	22
561	Copper(II) ions-immobilized virus-like hollow covalent organic frameworks for highly efficient capture and sensitive analysis of amyloid beta-peptide 1–42 by MALDI-MS. Chinese Chemical Letters, 2022, 33, 5174-5179.	9.0	14
562	Threeâ€Ðimensional Triptyceneâ€Functionalized Covalent Organic Frameworks with hea Net for Hydrogen Adsorption. Angewandte Chemie - International Edition, 2022, 61, .	13.8	61
563	Surface chemistry of metal–organic polyhedra. Chemical Communications, 2022, 58, 2443-2454.	4.1	20
564	Porphyrinâ€Based COF 2D Materials: Variable Modification of Sensing Performances by Postâ€Metallization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	63
565	Introduction to Photothermal Nanomaterials. RSC Nanoscience and Nanotechnology, 2022, , 1-32.	0.2	10
566	Tying Covalent Organic Frameworks through Alkene Metathesis and Supported Platinum as Efficient Catalysts for Hydrosilylation. Nanomaterials, 2022, 12, 499.	4.1	1
567	Porous composite membrane based on organic substrate for molecular sieving: Current status, opportunities and challenges. , 2022, 2, 100027.		13
568	Morphology Engineering for Covalent Organic Frameworks (COFs) by Surfactant Mediation and Acid Adjustment. Chinese Journal of Polymer Science (English Edition), 2022, 40, 338-344.	3.8	4
569	Entanglement of Square Nets in Covalent Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 1539-1544.	13.7	26
570	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² â€Carbon Covalent Organic Framework Semiconductors. Angewandte Chemie - International Edition, 2022, 61, .	13.8	38
571	Emerging porous organic polymers for biomedical applications. Chemical Society Reviews, 2022, 51, 1377-1414.	38.1	103
572	Moduleâ€Patterned Polymerization towards Crystalline 2D sp ² â€Carbon Covalent Organic Framework Semiconductors. Angewandte Chemie, 2022, 134, .	2.0	7
573	Threeâ€Ðimensional Triptyceneâ€Functionalized Covalent Organic Frameworks with hea Net for Hydrogen Adsorption. Angewandte Chemie, 0, , .	2.0	12
574	Enhanced Biological Imaging via Aggregation-Induced Emission Active Porous Organic Cages. ACS Nano, 2022, 16, 2355-2368.	14.6	21
575	Porphyrin covalent organic framework for photocatalytic synthesis of tetrahydroquinolines. Chinese Chemical Letters, 2022, 33, 4559-4562.	9.0	24
576	Sulfonic acid functionalized covalent organic frameworks as efficient catalyst for the one-pot tandem reactions. Molecular Catalysis, 2022, 519, 112139.	2.0	5
577	Electrically conductive 2D covalent organic frameworks. Trends in Chemistry, 2022, 4, 128-141.	8.5	25

#	Article	IF	CITATIONS
578	Covalent organic frameworks based on electroactive naphthalenediimide as active electrocatalysts toward oxygen reduction reaction. Applied Materials Today, 2022, 26, 101384.	4.3	13
579	Functionalized polyarylether-based COFs for rapid and selective extraction of uranium from aqueous solution. Chemical Engineering Journal, 2022, 434, 134623.	12.7	46
580	Persistent radical cation sp2 carbon-covalent organic framework for photocatalytic oxidative organic transformations. Applied Catalysis B: Environmental, 2022, 306, 121110.	20.2	48
581	A fully-conjugated covalent organic framework-derived carbon supporting ultra-close single atom sites for ORR. Applied Catalysis B: Environmental, 2022, 307, 121147.	20.2	42
582	A novel 2D porous C ₃ N ₂ framework as a promising anode material with ultra-high specific capacity for lithium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 6551-6559.	10.3	22
583	Effective carbon dioxide uptake in a tailored covalent organic framework with pore size and active atom regulation. New Journal of Chemistry, 2022, 46, 4555-4557.	2.8	3
584	Synthesis of Covalent Boroxine Frameworks by Polycondensation of Tetrahydroxydiboron. Heterocycles, 2022, 104, 979.	0.7	1
585	A carbonyl-rich covalent organic framework as a high-performance cathode material for aqueous rechargeable zinc-ion batteries. Chemical Science, 2022, 13, 2385-2390.	7.4	66
586	Bimetallic docked covalent organic frameworks with high catalytic performance towards coupling/oxidation cascade reactions. RSC Advances, 2022, 12, 4874-4882.	3.6	10
587	Porous organic polymers for light-driven organic transformations. Chemical Society Reviews, 2022, 51, 2444-2490.	38.1	145
588	The bulky Pd-PEPPSI-embedded conjugated microporous polymer-catalyzed Suzuki–Miyaura cross-coupling of aryl chlorides and arylboronic acids. Polymer Chemistry, 2022, 13, 1547-1558.	3.9	8
589	Photoresponsive Covalent Organic Frameworks with Diarylethene Switch for Tunable Singlet Oxygen Generation. Chemistry of Materials, 2022, 34, 1956-1964.	6.7	35
590	Piperazine-Linked Covalent Organic Frameworks with High Electrical Conductivity. Journal of the American Chemical Society, 2022, 144, 2873-2878.	13.7	106
591	Structural design and determination of 3D covalent organic frameworks. Trends in Chemistry, 2022, 4, 437-450.	8.5	51
592	Fluorescent determination of cysteine and homocysteine via adjustable synthesis of flower-shaped covalent organic frameworks. Sensors and Actuators B: Chemical, 2022, 359, 131555.	7.8	19
593	Efficient separation between trivalent americium and lanthanides enabled by a phenanthroline-based polymeric organic framework. Chinese Chemical Letters, 2022, 33, 3429-3434.	9.0	18
594	Fast proton-selective transport through covalent organic frameworks in aqueous phase. Journal of Membrane Science, 2022, 648, 120361.	8.2	6
595	Cooperation between covalent organic frameworks (COFs) and metal organic frameworks (MOFs): application of COFs-MOFs hybrids. Advanced Composites and Hybrid Materials, 2022, 5, 1595-1611.	21.1	42

#	Article	IF	Citations
596	Grafting Hollow Covalent Organic Framework Nanoparticles with Thermal-Responsive Polymers for the Controlled Release of Preservatives. ACS Applied Materials & amp; Interfaces, 2022, 14, 22982-22988.	8.0	9
597	Phosphine Oxide Porous Organic Polymers Incorporating Cobalt(II) Ions: Synthesis, Characterization, and Investigation of H ₂ Production. ACS Omega, 2022, 7, 6104-6112.	3.5	8
598	HOFs Built from Hexatopic Carboxylic Acids: Structure, Porosity, Stability, and Photophysics. International Journal of Molecular Sciences, 2022, 23, 1929.	4.1	10
599	A Robust Hydrogen-Bonded Organic Framework with 7-Fold Interpenetration Nets and High Permanent Microporosity. Crystal Growth and Design, 2022, 22, 1817-1823.	3.0	15
600	Triangular Topological 2D Covalent Organic Frameworks Constructed via Symmetric or Asymmetric "Twoâ€inâ€One―Type Monomers. Advanced Science, 2022, 9, e2105517.	11.2	12
601	The recent research progress and application of nanoparticles and ions supporting by covalent organic frameworks. Microporous and Mesoporous Materials, 2022, 335, 111701.	4.4	10
602	Multifunctional covalent organic frameworks for photocatalytic oxidative hydroxylation of arylboronic acids and fluorescence sensing for Cu2+. Microporous and Mesoporous Materials, 2022, 333, 111737.	4.4	18
603	Dual Rate-Modulation Approach for the Preparation of Crystalline Covalent Triazine Frameworks Displaying Efficient Sodium Storage. ACS Macro Letters, 2022, 11, 60-65.	4.8	12
604	Key Factors Affecting the Development of Oxidative Desulfurization of Liquid Fuels: A Critical Review. Energy & Fuels, 2022, 36, 98-132.	5.1	27
605	Novel 2D Porous C ₃ N ₂ Framework as Promising Anode Materials with Ultra-High Specific Capacity for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
606	An amino-type halogen-bonded organic framework for the selective adsorption of aliphatic acid vapors: insight into the competitive interactions of halogen bonds and hydrogen bonds. Journal of Materials Chemistry A, 2022, 10, 10586-10592.	10.3	14
607	An Effective Strategy to Enhance Dimensional-Mechanical Stability of Phosphoric Acid Doped Polybenzimidazole Membranes by Introducing in Situ Grown Covalent Organic Frameworks. SSRN Electronic Journal, 0, , .	0.4	0
608	Porous organic polymers as a platform for sensing applications. Chemical Society Reviews, 2022, 51, 2031-2080.	38.1	140
609	Ï€-Conjugated redox-active two-dimensional polymers as organic cathode materials. Chemical Science, 2022, 13, 3533-3538.	7.4	9
610	Hydrogen-bonded organic frameworks: design, applications, and prospects. Materials Advances, 2022, 3, 3680-3708.	5.4	64
611	Preparation of magnetic covalent triazine frameworks by ball milling for efficient removal of PFOS and PFOA substitutes from water. Environmental Science: Nano, 2022, 9, 1466-1475.	4.3	12
612	Highly efficient Markovnikov hydroaminocarbonylation of alkenes and alkynes catalyzed by a "soluble―heterogeneous Pd catalyst. Green Chemistry, 2022, 24, 4463-4469.	9.0	9
613	Covalent Organic Frameworks (COFs) as Catalysts: An Overview. , 2022, , 267-283.		1

#	Article	IF	CITATIONS
615	COF-43 based voltammetric sensor for Ag(<scp>i</scp>) determination: optimization of experimental conditions by Box–Behnken design. Analytical Methods, 2022, , .	2.7	1
616	Covalent organic frameworks for solid-state electrolytes of lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 7497-7516.	10.3	28
617	A Highly Photosensitive Covalent Organic Framework with Pyrene Skeleton as Metal-Free Catalyst for Arylboronic Acid Hydroxylation. SSRN Electronic Journal, 0, , .	0.4	0
618	High-density sulfonic acid-grafted covalent organic frameworks with efficient anhydrous proton conduction. Journal of Materials Chemistry A, 2022, 10, 6499-6507.	10.3	27
619	A nanostructured covalent organic framework with readily accessible triphenylstibine moieties for high-performance supercapacitors. Chemical Communications, 2022, 58, 3649-3652.	4.1	10
620	Highly hydrophilic covalent organic frameworks as efficient and reusable photocatalysts for oxidative coupling of amines in aqueous solution. Catalysis Science and Technology, 2022, 12, 2837-2845.	4.1	16
622	Recent Advances in Medicinal Chemistry of Ampicillin: Derivatives, Metal Complexes, and Sensing Approaches. SSRN Electronic Journal, 0, , .	0.4	0
623	Progress in synthesis of highly crystalline covalent organic frameworks and their crystallinity enhancement strategies. Chinese Chemical Letters, 2022, 33, 2856-2866.	9.0	27
624	Recent Advances of Covalent Organic Frameworks in Chemical Sensing. Chemical Research in Chinese Universities, 2022, 38, 339-349.	2.6	19
625	Nonplanar Rhombus and Kagome 2D Covalent Organic Frameworks from Distorted Aromatics for Electrical Conduction. Journal of the American Chemical Society, 2022, 144, 5042-5050.	13.7	54
626	Constructing Advanced Aqueous Zincâ€ion Batteries with 2D Carbonâ€Rich Materials. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	4
627	βâ€Ketoenamineâ€ŀinked covalent organic framework absorbent for online microâ€solid phase extraction of trace levels bisphenols in plastic samples. Journal of Separation Science, 2022, 45, 1493-1501.	2.5	4
628	Recent advances in single-crystalline two-dimensional polymers: Synthesis, characterization and challenges. Chinese Chemical Letters, 2022, 33, 4989-5000.	9.0	9
629	Structure–performance correlation guided applications of covalent organic frameworks. Materials Today, 2022, 53, 106-133.	14.2	76
630	Hydrogen-Bonded Framework of a Cobalt(II) Complex Showing Superior Stability and Field-Induced Slow Magnetic Relaxation. Inorganic Chemistry, 2022, 61, 3754-3762.	4.0	29
631	Construction of Stable Donor–Acceptor Type Covalent Organic Frameworks as Functional Platform for Effective Perovskite Solar Cell Enhancement. Advanced Functional Materials, 2022, 32, .	14.9	46
632	Thermally rearranged covalent organic framework with flame-retardancy as a high safety Li-ion solid electrolyte. EScience, 2022, 2, 311-318.	41.6	41
633	Design and Synthesis of a Zeolitic Organic Framework. Angewandte Chemie, 0, , .	2.0	0
#	Article	IF	CITATIONS
-----	---	------	-----------
634	Design and Synthesis of a Zeolitic Organic Framework**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
635	A General Strategy for Kilogramâ€Scale Preparation of Highly Crystalâ€Iine Covalent Triazine Frameworks. Angewandte Chemie - International Edition, 2022, 61, e202203327.	13.8	29
636	Bottom-Up Synthesis of 8-Connected Three-Dimensional Covalent Organic Frameworks for Highly Efficient Ethylene/Ethane Separation. Journal of the American Chemical Society, 2022, 144, 5643-5652.	13.7	131
637	Configurational Selectivity Study of Two-dimensional Covalent Organic Frameworks Isomers Containing D2h and C2 Building Blocks. Chemical Research in Chinese Universities, 2022, 38, 639-642.	2.6	3
638	Metalâ€Corroleâ€Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	54
639	Highly Crystalline Flower-Like Covalent-Organic Frameworks Enable Highly Stable Zinc Metal Anodes. ACS Applied Energy Materials, 2022, 5, 3715-3723.	5.1	29
640	3D Covalent Organic Frameworks with Interpenetrated pcb Topology Based on 8-Connected Cubic Nodes. Journal of the American Chemical Society, 2022, 144, 5728-5733.	13.7	66
641	Synthesis of Chiral Covalent Organic Frameworks via Asymmetric Organocatalysis for Heterogeneous Asymmetric Catalysis. Angewandte Chemie - International Edition, 2022, 61, e202115044.	13.8	24
642	Combination of Knoevenagel Polycondensation and Waterâ€Assisted Dynamic Michaelâ€Additionâ€Elimination for the Synthesis of Vinyleneâ€Linked 2D Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
643	Covalent Organic Frameworks with Record Pore Apertures. Journal of the American Chemical Society, 2022, 144, 5145-5154.	13.7	85
644	Growing single crystals of two-dimensional covalent organic frameworks enabled by intermediate tracing study. Nature Communications, 2022, 13, 1370.	12.8	60
645	A General Strategy for Kilogramâ€Scale Preparation of Highly Crystalline Covalent Triazine Frameworks. Angewandte Chemie, 2022, 134, .	2.0	1
646	Cyclophane-based two-dimensional polymer formed by an interfacial click reaction. Cell Reports Physical Science, 2022, 3, 100806.	5.6	3
647	Rational design of imineâ€linked threeâ€dimensional mesoporous covalent organic frameworks with bor topology. SusMat, 2022, 2, 197-205.	14.9	12
648	Ultrafine Pt Nanoparticles Supported on Ultrathin Nanobowlâ€shaped Nâ€doped Carbon for Remarkable Oxygen Reduction Reaction. ChemElectroChem, 0, , .	3.4	2
649	Largeâ€Area Covalent Organic Polymers Membrane via Sol–Gel Approach for Harvesting the Salinity Gradient Energy. Small, 2022, 18, e2107600.	10.0	13
650	129Xe: A Wide-Ranging NMR Probe for Multiscale Structures. Applied Sciences (Switzerland), 2022, 12, 3152.	2.5	8
651	Microstructure Manipulation of Covalent Organic Frameworks (COFs)-based Membrane for Efficient Separations. Chemical Research in Chinese Universities, 2022, 38, 325-338.	2.6	10

# 652	ARTICLE Functionalization of Covalent Organic Frameworks with DNA via Covalent Modification and the Application to Exosomes Detection. Analytical Chemistry, 2022, 94, 5055-5061.	IF 6.5	CITATIONS
653	Acridineâ€Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic Câ^'N Cross oupling. Angewandte Chemie, 2022, 134, .	2.0	6
654	Combination of Knoevenagel Polycondensation and Waterâ€Assisted Dynamic Michaelâ€Additionâ€Elimination for the Synthesis of Vinylene‣inked 2D Covalent Organic Frameworks. Angewandte Chemie, 2022, 134, .	2.0	4
655	Luminescent Conjugated Microporous Polymers for Selective Sensing and Ultrafast Detection of Picric Acid. ACS Applied Polymer Materials, 2022, 4, 2648-2655.	4.4	26
656	Synthesis of Chiral Covalent Organic Frameworks via Asymmetric Organocatalysis for Heterogeneous Asymmetric Catalysis. Angewandte Chemie, 2022, 134, .	2.0	5
657	Acridineâ€Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic Câ^'N Cross oupling. Angewandte Chemie - International Edition, 2022, 61, .	13.8	77
658	Imine-linked porous aromatic frameworks based on spirobifluorene building blocks for CO2 separation. Microporous and Mesoporous Materials, 2022, 334, 111779.	4.4	15
659	Chaotropic Effect as an Assembly Motif to Construct Supramolecular Cyclodextrin–Polyoxometalate-Based Frameworks. Journal of the American Chemical Society, 2022, 144, 4469-4477.	13.7	38
660	Metal orroleâ€Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie, 2022, 134, .	2.0	9
661	Recent advances on the nanoporous catalysts for the generation of renewable fuels. Journal of Materials Research and Technology, 2022, 17, 3277-3336.	5.8	16
662	Isoreticular Series of Two-Dimensional Covalent Organic Frameworks with the kgd Topology and Controllable Micropores. Journal of the American Chemical Society, 2022, 144, 6475-6482.	13.7	41
663	Multiple yet switchable hydrogen-bonded organic frameworks with white-light emission. Nature Communications, 2022, 13, 1882.	12.8	61
664	Surface Modification of 2D Photocatalysts for Solar Energy Conversion. Advanced Materials, 2022, 34, e2200180.	21.0	184
665	The promotion effect of π-π interactions in Pd NPs catalysed selective hydrogenation. Nature Communications, 2022, 13, 1770.	12.8	45
666	Tuning the porosity of ionic covalent triazine frameworks using auxiliary monomers for highly efficient CO2 and I2 capture. Journal of Polymer Research, 2022, 29, 1.	2.4	1
667	Fabrication of a Covalent Organic Framework-Based Heterojunction via Coupling with ZnAgInS Nanosphere with High Photocatalytic Activity. Langmuir, 2022, 38, 4680-4691.	3.5	13
668	Amorphous-to-Crystalline Transformation: General Synthesis of Hollow Structured Covalent Organic Frameworks with High Crystallinity. Journal of the American Chemical Society, 2022, 144, 6583-6593.	13.7	77
669	Vanishing Electronic Band Gap in Two-Dimensional Hydrogen-Bonded Organic Frameworks. Chemistry of Materials, 2022, 34, 3461-3467.	6.7	6

#	Article	IF	CITATIONS
670	Hollow covalent organic framework-sheltering CRISPR/Cas12a as an in-vivo nanosensor for ATP imaging. Biosensors and Bioelectronics, 2022, 209, 114239.	10.1	28
671	High porosity cyclotriphosphazene-based hyper-crosslinked polymers as efficient cationic dye MB adsorbents. Polymer, 2022, 247, 124787.	3.8	11
672	Self-exfoliated covalent organic framework nano-mesh enabled regular charge distribution for highly stable lithium metal battery. Energy Storage Materials, 2022, 47, 376-385.	18.0	32
673	Ultrathin and high-performance covalent organic frameworks composite membranes generated by oligomer triggered interfacial polymerization. Journal of Membrane Science, 2022, 650, 120431.	8.2	22
674	Continuous photocatalysis via Z-scheme based nanocatalyst system for environmental remediation of pharmaceutically active compound: Modification, reaction site, defect engineering and challenges on the nanocatalyst. Journal of Molecular Liquids, 2022, 353, 118745.	4.9	12
675	Assembly of anthracene-based donor-acceptor conjugated organic polymers for efficient photocatalytic aqueous Cr(VI) reduction and organic pollution degradation under visible light. Journal of Solid State Chemistry, 2022, 310, 123004.	2.9	6
676	A highly photosensitive covalent organic framework with pyrene skeleton as metal-free catalyst for arylboronic acid hydroxylation. Journal of Solid State Chemistry, 2022, 310, 123047.	2.9	5
677	Functionalized covalent triazine frameworks as promising platforms for environmental remediation: A review. , 2022, 2, 100012.		12
678	2D nanosheets seeding layer modulated covalent organic framework membranes for efficient desalination. Desalination, 2022, 532, 115753.	8.2	26
679	Lignin-inspired porous polymer networks as high-performance adsorbents for the efficient removal of malachite green dye. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128760.	4.7	14
680	A stable covalent organic framework cathode enables ultra-long cycle life for alkali and multivalent metal rechargeable batteries. Energy Storage Materials, 2022, 48, 439-446.	18.0	42
681	Spatial confinement and ion exchange synergetic strategy for highly selective removal of metal ions from the spinning solution containing ionic liquids. Chemical Engineering Journal, 2022, 437, 135425.	12.7	12
682	A novel fluorescent sensor based on a magnetic covalent organic framework-supported, carbon dot-embedded molecularly imprinted composite for the specific optosensing of bisphenol A in foods. Sensors and Actuators B: Chemical, 2022, 361, 131729.	7.8	20
683	2D covalent organic frameworks for photosynthesis of α-trifluoromethylated ketones from aromatic alkenes. Applied Catalysis B: Environmental, 2022, 310, 121335.	20.2	41
684	Pyrene-Based Fluorescent Porous Organic Polymers for Recognition and Detection of Pesticides. Molecules, 2022, 27, 126.	3.8	11
685	A Nitrogen, Sulfur co-Doped Porphyrin-based Covalent Organic Framework as an Efficient Catalyst for Oxygen Reduction. Chemical Research in Chinese Universities, 2022, 38, 167-172.	2.6	11
686	Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications. Nano Research, 2022, 15, 3514-3532.	10.4	46
687	N-Rich 2D Heptazine Covalent Organic Frameworks as Efficient Metal-Free Photocatalysts. ACS Catalysis, 2022, 12, 616-623.	11.2	65

#	Article	IF	CITATIONS
688	2D and 3D Covalent Organic Frameworks: Cutting-Edge Applications in Biomedical Sciences. ACS Applied Bio Materials, 2022, 5, 40-58.	4.6	28
689	Recent Applications of Molecular Structures at Silicon Anode Interfaces. Electrochem, 2021, 2, 664-676.	3.3	0
690	Tailored pore size and microporosity of covalent organic framework (COF) membranes for improved molecular separation. , 2021, 1, 100008.		6
691	Recent Developments on Using Nanomaterials to Combat Candida albicans. Frontiers in Chemistry, 2021, 9, 813973.	3.6	14
692	A Nanographeneâ€Based Twoâ€Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angewandte Chemie - International Edition, 2022, 61, .	13.8	38
693	Preparation of Recyclable and Versatile Porous Poly(aryl thioether)s by Reversible Pd-Catalyzed C–S/C–S Metathesis. Journal of the American Chemical Society, 2021, 143, 21331-21339.	13.7	19
694	Predesigned Covalent Organic Frameworks as Effective Platforms for Pd(II) Coordination Enabling Crossâ€Coupling Reactions under Sustainable Conditions. Advanced Sustainable Systems, 2022, 6, .	5.3	11
695	Manipulating Pore Topology and Functionality to Promote Fluorocarbon-Based Adsorption Cooling. Accounts of Chemical Research, 2022, 55, 649-659.	15.6	9
696	A Nanographeneâ€Based Twoâ€Đimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angewandte Chemie, 2022, 134, .	2.0	2
697	Characteristic Synthesis of a Covalent Organic Framework and Its Application in Multifunctional Tumor Therapy. ACS Applied Bio Materials, 2022, 5, 59-81.	4.6	19
698	A cobalt covalent organic framework: a dual-functional atomic-level catalyst for visible-light-driven C–H annulation of amides with alkynes. Journal of Materials Chemistry A, 2022, 10, 11514-11523.	10.3	17
699	Bipolar fluorinated covalent triazine framework cathode with high lithium storage and long cycling capability. RSC Advances, 2022, 12, 11484-11491.	3.6	10
700	Covalent organic framework membrane on electrospun polyvinylidene fluoride substrate with a hydrophilic intermediate layer. Journal of Colloid and Interface Science, 2022, 622, 11-20.	9.4	11
701	Visible-Light-Driven Production of Solar Fuels Catalyzed by Nanosized Porphyrin-Based Metal–Organic Frameworks and Covalent–Organic Frameworks: A Review. ACS Applied Nano Materials, 2022, 5, 6055-6082.	5.0	25
702	Covalent Organic Framework for Rechargeable Batteries: Mechanisms and Properties of Ionic Conduction. Advanced Energy Materials, 2022, 12, .	19.5	72
703	A 2D perchlorinated sp2-carbon framework. Cell Reports Physical Science, 2022, 3, 100858.	5.6	2
704	Search for New Anode Materials for High Performance Li-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 20326-20348.	8.0	40
705	Covalent Organic Frameworks for Chemical and Biological Sensing. Molecules, 2022, 27, 2586.	3.8	22

#	Article	IF	CITATIONS
706	Toward azo-linked covalent organic frameworks by developing linkage chemistry via linker exchange. Nature Communications, 2022, 13, 2180.	12.8	53
707	Crystalline Covalent Triazine Frameworks with Fibrous Morphology via a Lowâ€Temperature Polycondensation of Planar Monomer. Small, 2022, 18, e2200984.	10.0	9
708	Dipole-dipole interactions of sulfone groups as a tool for self-assembly of a 2D Covalent Organic Framework derived from a non-linear diboronic acid. Microporous and Mesoporous Materials, 2022, 337, 111914.	4.4	2
709	Quinacridone based 2D covalent organic frameworks as efficient photocatalysts for aerobic oxidative Povarov reaction. Applied Catalysis B: Environmental, 2022, 312, 121406.	20.2	14
710	An olefinâ€based, Fluorescent Covalent Organic Framework for Selective Sensing of Aromatic Amines. Chemistry - an Asian Journal, 2022, , .	3.3	3
711	A review on the adsorption mechanism of different organic contaminants by covalent organic framework (COF) from the aquatic environment. Environmental Science and Pollution Research, 2022, 29, 32566-32593.	5.3	36
712	A Microporous Hydrogen-Bonded Organic Framework for Efficient Xe/Kr Separation. ACS Applied Materials & Interfaces, 2022, 14, 19623-19628.	8.0	44
713	Advancing osmotic power generation by covalent organic framework monolayer. Nature Nanotechnology, 2022, 17, 622-628.	31.5	113
716	A visible light/heat responsive covalent organic framework for highly efficient and switchable proton conductivity. Chemical Science, 2022, 13, 5964-5972.	7.4	18
717	Redox-active Polymeric Materials. RSC Green Chemistry, 2022, , 249-273.	0.1	0
718	Microscopic Insight into Anion Conduction in Covalent-Organic Framework Membranes: A Molecular Simulation Study. SSRN Electronic Journal, 0, , .	0.4	0
719	Molecular engineering of covalent triazine frameworks for highly enhanced photocatalytic aerobic oxidation of sulfides. Journal of Materials Chemistry A, 2022, 10, 12489-12496.	10.3	35
720	Ionic Porous Organic Polymer (Ipop) Based on Twisted Bimesityl Scaffold: Green and Efficient Heterogeneous Catalytic Synthesis OfÂl'-Arylthioketones and Biscoumarins. SSRN Electronic Journal, 0, ,	0.4	0
721	Open Tubular Column Immobilized with Covalent Organic Frameworks for Rapid Separation of Small Molecular Compounds by Capillary Electrochromatography. Processes, 2022, 10, 843.	2.8	4
722	Review on covalent organic frameworks and derivatives for electrochemical and photocatalytic CO2 reduction. Catalysis Today, 2023, 409, 103-118.	4.4	17
723	Ultrastable and Highâ€Rate 2D Siloxene Anode Enabled by Covalent Organic Framework Engineering for Advanced Lithiumâ€Ion Batteries. Small Methods, 2022, 6, e2200306.	8.6	18
724	Metallosalphen-Based 2D Covalent Organic Frameworks with an Unprecedented tju Topology via K-Shaped Two-in-One Monomers. Chemistry of Materials, 2022, 34, 5888-5895.	6.7	18
725	Construction of Donor–Acceptor Heteroporous Covalent Organic Frameworks as Photoregulated Oxidase-like Nanozymes for Sensing Signal Amplification. ACS Applied Materials & Interfaces, 2022, 14, 21750-21757.	8.0	28

#	Article	IF	CITATIONS
726	2D Covalent Organic Frameworks as Photocatalysts for Solar Energy Utilization. Macromolecular Rapid Communications, 2022, 43, e2200108.	3.9	17
727	Porous Dithiine-Linked Covalent Organic Framework as a Dynamic Platform for Covalent Polysulfide Anchoring in Lithium–Sulfur Battery Cathodes. Journal of the American Chemical Society, 2022, 144, 9101-9112.	13.7	71
728	Surfactantâ€Modulated a Highly Sensitive Fluorescent Probe of Fully Conjugated Covalent Organic Nanosheets for Detecting Copper Ions in Aqueous Solution. Small, 2022, 18, e2200388.	10.0	18
729	Constructing ambivalent imidazopyridinium-linked covalent organic frameworks. , 2022, 1, 382-392.		38
730	Porous Organic Salts: Diversifying Void Structures and Environments. Angewandte Chemie, 2022, 134, .	2.0	3
731	In-situ self-templating synthesis of 3D hierarchical porous carbons from oxygen-bridged porous organic polymers for high-performance supercapacitors. Nano Research, 2022, 15, 7759-7768.	10.4	25
732	Modulated Synthesis of Self‣tanding Covalent Organic Framework Films. Chemistry - A European Journal, 2022, , .	3.3	2
733	Nickel Glyoximate Based Metal–Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, .	13.8	54
734	Nickel Glyoximate Based Metal–Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	2.0	14
735	Porous Organic Salts: Diversifying Void Structures and Environments. Angewandte Chemie - International Edition, 2022, 61, e202202597.	13.8	12
736	Molecular-Level Control over Ionic Conduction and Ionic Current Direction by Designing Macrocycle-Based Ionomers. Jacs Au, 2022, 2, 1144-1159.	7.9	4
737	Linkages take charge. , 2022, 1, 341-343.		5
738	Constructing chemical stable 4-carboxyl-quinoline linked covalent organic frameworks via Doebner reaction for nanofiltration. Nature Communications, 2022, 13, 2615.	12.8	42
739	Post-modification of covalent organic framework for gas chromatographic separation of isomers. Journal of Chromatography A, 2022, 1673, 463085.	3.7	9
740	Reticular framework materials in miniaturized and emerging formats in analytical chemistry. Journal of Chromatography A, 2022, 1673, 463092.	3.7	3
741	Separation of ethyltoluene isomers by nonporous adaptive crystals of perethylated and perbromoethylated pillararenes. Materials Today Chemistry, 2022, 24, 100919.	3.5	11
742	An effective strategy to enhance dimensional-mechanical stability of phosphoric acid doped polybenzimidazole membranes by introducing in situ grown covalent organic frameworks. Journal of Membrane Science, 2022, 655, 120603.	8.2	24
743	Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis. Coordination Chemistry Reviews, 2022, 464, 214563.	18.8	72

#	Article	IF	CITATIONS
744	Tailoring delicate pore environment of 2D Covalent organic frameworks for selective palladium recovery. Chemical Engineering Journal, 2022, 446, 136823.	12.7	33
745	A stack-guiding unit constructed 2D COF with improved charge carrier transport and versatile photocatalytic functions. Chemical Engineering Journal, 2022, 445, 136713.	12.7	18
746	Covalent organic frameworks as crystalline sponges for enzyme extraction and production from natural biosystems. Chemical Engineering Journal, 2022, 444, 136624.	12.7	5
747	Palladium nanocrystals-embedded covalent organic framework as an efficient catalyst for Heck cross-coupling reaction. Microporous and Mesoporous Materials, 2022, 339, 111961.	4.4	10
748	A directly linked COF-like conjugated microporous polymer based on naphthalene diimides for high performance supercapacitors. Chemical Communications, 2022, 58, 6809-6812.	4.1	18
749	Zirconium Metal–Organic Cages: Synthesis and Applications. Accounts of Chemical Research, 2022, 55, 1546-1560.	15.6	48
750	Dibenzylidene- <i>s</i> -indacenetetraone Linked <i>n</i> -Type Semiconducting Covalent Organic Framework via Aldol Condensation. , 2022, 4, 1154-1159.		4
751	Atomically dispersed metal catalysts confined by covalent organic frameworks and their derivatives for electrochemical energy conversion and storage. Coordination Chemistry Reviews, 2022, 466, 214592.	18.8	16
752	Porous textile composites (PTCs) for the removal and the decomposition of chemical warfare agents (CWAs) – A review. Coordination Chemistry Reviews, 2022, 467, 214598.	18.8	17
753	Structural and Electronic Modulations of Imidazolium Covalent Organic Framework-Derived Electrocatalysts for Oxygen Redox Reactions in Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2022, 14, 24404-24414.	8.0	12
754	Porous organic polymers in solar cells. Chemical Society Reviews, 2022, 51, 4465-4483.	38.1	21
755	Post-oxidation of a fully conjugated benzotrithiophene-based COF for photocatalytic detoxification of a sulfur mustard simulant. Journal of Materials Chemistry A, 2022, 10, 13325-13332.	10.3	18
756	Robust and emissive covalent organic frameworks formed <i>via</i> intramolecular hydrogen bond interaction. CrystEngComm, 2022, 24, 4496-4499.	2.6	1
757	Enhanced photocatalytic H ₂ evolution over covalent organic frameworks through an assembled NiS cocatalyst. RSC Advances, 2022, 12, 14932-14938.	3.6	4
758	Laser-induced Synthesis of Ultrafine Gold Nanoparticles in Covalent Organic Frameworks. Chemical Research in Chinese Universities, 2022, 38, 468-471.	2.6	2
759	Pore Engineering for Covalent Organic Framework Membranes. Chemical Research in Chinese Universities, 2022, 38, 364-372.	2.6	3
760	Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs. Chemical Research in Chinese Universities, 2022, 38, 382-395.	2.6	8
761	Soluble Two-Dimensional Donor–Acceptor Aza-Fused Aromatic Frameworks and their Electrochromism between the Visible and Near-Infrared Regions. Chemistry of Materials, 2022, 34, 4896-4909.	6.7	5

#	Article	IF	CITATIONS
762	Construction of a Hollow Spherical Covalent Organic Framework with Olefin and Imine Dual Linkages Based on Orthogonal Reactions. Chemistry of Materials, 2022, 34, 5249-5257.	6.7	20
763	Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework. Nature Communications, 2022, 13, .	12.8	101
764	Exploration of supramolecular and theoretical aspects of two new Cu(II) complexes: On the importance of lone pair··Ĩ€(chelate ring) and π··ÂĨ€(chelate ring) interactions. Journal of Molecular Structure, 2022, 1265, 133358.	3.6	5
765	Molecular engineering regulation redoxâ€dualâ€activeâ€center covalent organic frameworksâ€based anode for highâ€performance Li storage. EcoMat, 2022, 4, .	11.9	24
766	Visible light-triggered PET-RAFT polymerization by heterogeneous 2D porphyrin-based COF photocatalyst under aqueous condition. European Polymer Journal, 2022, 173, 111306.	5.4	15
767	Interface engineering for modulating catalytic selectivity of covalent organic frameworks for oxygen reduction. Materials Today Chemistry, 2022, 24, 100936.	3.5	3
768	Fabrication of cellulose derivative coated spherical covalent organic frameworks as chiral stationary phases for high-performance liquid chromatographic enantioseparation. Journal of Chromatography A, 2022, 1675, 463155.	3.7	11
769	One-step fabrication of nitrogen-rich linear porous organic polymer-based micron-sized sphere for selective enrichment of glycopeptides. Analytica Chimica Acta, 2022, 1215, 339988.	5.4	4
770	An azine-linked 2D porphyrinic covalent organic framework for red light photocatalytic oxidative coupling of amines. Materials Today Chemistry, 2022, 25, 100953.	3.5	2
771	Cobalt(III) corrole-tethered semiconducting graphdiyne film for efficient electrocatalysis of oxygen reduction reaction. Materials Today Chemistry, 2022, 25, 100932.	3.5	2
772	An In-Situ Strategy to Construct Uracil-Conjugated Covalent Organic Frameworks with Tunable Fluorescence/Recognition Characteristics for Sensitive and Selective Mercury(Ii) Detection. SSRN Electronic Journal, 0, , .	0.4	1
773	A Photo- and Redox Actives Mesoporous 3d Covalent Organic Framework Enables Highly Efficient Metal-Free Photoredox Catalysis. SSRN Electronic Journal, 0, , .	0.4	0
774	Boosting exciton dissociation by regulating dielectric constant in covalent organic framework for photocatalysis. Chem Catalysis, 2022, 2, 1734-1747.	6.1	33
775	Covalent Organic Frameworks with Irreversible Linkages via Reductive Cyclization of Imines. Journal of the American Chemical Society, 2022, 144, 9827-9835.	13.7	39
776	Recent Advances in Porphyrin-Based Systems for Electrochemical Oxygen Evolution Reaction. International Journal of Molecular Sciences, 2022, 23, 6036.	4.1	19
777	Mesoporous Polyimideâ€linked Covalent Organic Framework with Multiple Redoxâ€active Sites for Highâ€Performance Cathodic Li Storage. Angewandte Chemie, 0, , .	2.0	3
778	Adsorptive removal of Ag/Au quantum dots onto covalent organic frameworks@magnetic zeolite@arabic gum hydrogel and their catalytic microwave-Fenton oxidative degradation of Rifampicin antibiotic. Journal of Colloid and Interface Science, 2022, 624, 602-618.	9.4	16
779	Guest-induced amorphous-to-crystalline transformation enables sorting of haloalkane isomers with near-perfect selectivity. Science Advances, 2022, 8, .	10.3	29

#	Article	IF	CITATIONS
780	Covalent Organic Framework Nanoplates Enable Solution-Processed Crystalline Nanofilms for Photoelectrochemical Hydrogen Evolution. Journal of the American Chemical Society, 2022, 144, 10291-10300.	13.7	33
781	2D Covalent Organic Frameworks Toward Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2022, 15, .	6.8	35
782	Modulating the Band Structure of Metal Coordinated Salen COFs and an In Situ Constructed Charge Transfer Heterostructure for Electrocatalysis Hydrogen Evolution. Advanced Science, 2022, 9, .	11.2	23
783	A new peptide-mediated COF nanocatalytic amplification SERS quantitative assay for ultratrace Cu2+. Journal of Industrial and Engineering Chemistry, 2022, 113, 196-205.	5.8	15
784	Porphyrinic covalent organic framework designed by molecular engineering as heterogeneous photocatalyst for aerobic mediated RAFT polymerization. Materials Today Chemistry, 2022, 25, 100959.	3.5	9
785	Recent advances in medicinal chemistry of ampicillin: Derivatives, metal complexes, and sensing approaches. TrAC - Trends in Analytical Chemistry, 2022, 155, 116691.	11.4	11
786	Excited-state intramolecular proton transfer-based covalent organic framework for fluorescence anion sensing. New Journal of Chemistry, 2022, 46, 14122-14126.	2.8	5
787	A study of contemporary progress relating to COF materials for CO ₂ capture and fixation reactions. Materials Advances, 2022, 3, 5575-5597.	5.4	18
788	Triphenylamine-containing imine-linked porous organic network for luminescent detection and adsorption of Cr(<scp>vi</scp>) in water. Dalton Transactions, 2022, 51, 10351-10356.	3.3	3
789	Band gap opening from displacive instabilities in layered covalent-organic frameworks. Journal of Materials Chemistry A, 2022, 10, 13500-13507.	10.3	7
790	Covalent organic frameworks and multicomponent reactions: an endearing give-and-take relationship. Organic Chemistry Frontiers, 0, , .	4.5	12
791	Recent development of the fluorescence-based detection of volatile organic compounds: a mechanistic overview. Journal of Materials Chemistry C, 2022, 10, 10224-10254.	5.5	23
792	Direct synthesis of triphenylamine-based ordered mesoporous polymers for metal-free photocatalytic aerobic oxidation. Journal of Materials Chemistry A, 2022, 10, 13978-13986.	10.3	9
793	Single-atom site catalysts based on high specific surface area supports. Physical Chemistry Chemical Physics, 2022, 24, 17417-17438.	2.8	11
794	Design of a D3h-symmetry prismatic tris-(ferrocene-1,1ʹ-diyl) molecular cage bearing boronate ester linkages. Dalton Transactions, 0, , .	3.3	1
795	Detachable all-carbon-linked 3D covalent organic framework films for semiconductor/COF heterojunctions by continuous flow synthesis. CheM, 2022, 8, 2217-2227.	11.7	25
796	Rapid room temperature synthesis of a new 2D AIE-chromophore COFs at room temperature and highly selective naked eye sensing of Fe3+ ions. Journal of Porous Materials, 2022, 29, 1531-1538.	2.6	3
797	Development of covalent-organic frameworks derived hierarchical porous hollow carbon spheres based LiOH composites for thermochemical heat storage. Journal of Energy Chemistry, 2022, 73, 301-310.	12.9	4

#	Article	IF	CITATIONS
798	A luminescent covalent organic framework with recognition traps for nitro-pesticides detection, pH sensing and metal ions identification. Dyes and Pigments, 2022, 205, 110507.	3.7	5
799	Visualizing the Entire Range of Noncovalent Interactions in Nanocrystalline Hybrid Materials Using 3D Electron Diffraction. Journal of the American Chemical Society, 2022, 144, 10817-10824.	13.7	8
800	Evolving Trends for Câ^'C Bond Formation Using Functionalized Covalent Organic Frameworks as Heterogeneous Catalysts. ChemistrySelect, 2022, 7, .	1.5	6
801	Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations. Nature Communications, 2022, 13, .	12.8	28
802	Synthesis of an Acidochromic and Nitroaromatic Responsive Hydrazoneâ€Linked Pillararene Framework by a Macrocycleâ€Toâ€Framework Strategy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
803	Construction of Hydrazone-Linked Macrocycle-Enriched Covalent Organic Frameworks for Highly Efficient Photocatalysis. Chemistry of Materials, 2022, 34, 5726-5739.	6.7	33
804	Synthesis of an Acidochromic and Nitroaromatic Responsive Hydrazoneâ€Linked Pillararene Framework by a Macrocycleâ€Toâ€Framework Strategy. Angewandte Chemie, 2022, 134, .	2.0	1
805	BIAN-Based Porous Organic Polymer as a High-Performance Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 6903-6912.	5.1	9
806	Formulation of Poly(ionic liquids)@COF Nanotrap for Efficient Perrhenate Sequestration from Alkaline Nuclear Waste. Chemistry of Materials, 2022, 34, 5452-5460.	6.7	24
807	Excellent Crystallinity and Stability Covalent–Organic Frameworks with High Emission and Anions Sensing. Macromolecular Rapid Communications, 2022, 43, .	3.9	11
808	Potential Difference-Modulated Synthesis of Self-Standing Covalent Organic Framework Membranes at Liquid/Liquid Interfaces. Journal of the American Chemical Society, 2022, 144, 11778-11787.	13.7	19
809	Design Rules of Hydrogen-Bonded Organic Frameworks with High Chemical and Thermal Stabilities. Journal of the American Chemical Society, 2022, 144, 10663-10687.	13.7	174
810	Electrochemical Proton Storage: From Fundamental Understanding to Materials to Devices. Nano-Micro Letters, 2022, 14, .	27.0	24
811	Electrochemical (Bio)Sensors Based on Covalent Organic Frameworks (COFs). Sensors, 2022, 22, 4758.	3.8	21
812	Bimodal Treatment of Hepatocellular Carcinoma by Targeted Minimally Interventional Photodynamic/Chemotherapy Using Glyco-Covalent-Organic Frameworks-Guided Porphyrin/Sorafenib. Acta Biomaterialia, 2022, 148, 206-217.	8.3	9
813	Hydrazine-Hydrazide-Linked Covalent Organic Frameworks for Water Harvesting. ACS Central Science, 2022, 8, 926-932.	11.3	59
814	Microscopic insight into anion conduction in covalentâ^'organic framework membranes: A molecular simulation study. Journal of Membrane Science, 2022, , 120754.	8.2	9
815	Mesoporous Polyimide‣inked Covalent Organic Framework with Multiple Redoxâ€Active Sites for Highâ€Performance Cathodic Li Storage. Angewandte Chemie - International Edition, 2022, 61, .	13.8	79

#	Article	IF	CITATIONS
816	From a Dense Structure to Open Frameworks: The Structural Plethora of Alkali Metal Iron Fluorophosphates. Inorganic Chemistry, 0, , .	4.0	2
817	High-surface β-Ketoenamine linked covalent organic framework driving broad-spectrum solid phase microextraction on multi-polar aromatic esters. Analytica Chimica Acta, 2022, 1220, 340040.	5.4	8
818	Integrating benzofuran and heteroradialene into donor-acceptor covalent organic frameworks for photocatalytic construction of multi-substituted olefins. Applied Catalysis B: Environmental, 2022, 316, 121630.	20.2	20
819	Postsynthetically modified hydrophobic covalent organic frameworks for enhanced oil/water and CH4/C2H2 separation. Chemical Engineering Journal, 2022, 448, 137687.	12.7	9
820	The Selective Synthesis of Di- and Cyclosiloxanes Bearing Several Hidden P-Tolyl-Functionalities. SSRN Electronic Journal, 0, , .	0.4	0
821	Ambient synthesis of metal–covalent organic frameworks with Fe-iminopyridine linkages. Chemical Communications, 2022, 58, 8830-8833.	4.1	5
823	An overview of the advances in porous and hybrid materials research for air pollution mitigation. , 2022, , 17-63.		0
824	Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chemical Society Reviews, 2022, 51, 6307-6416.	38.1	109
825	Three-dimensional microporous and mesoporous covalent organic frameworks based on cubic building units. Chemical Science, 2022, 13, 9305-9309.	7.4	15
826	Thiol-decorated covalent organic frameworks as multifunctional materials for high-performance supercapacitors and heterogeneous catalysis. Journal of Materials Chemistry A, 2022, 10, 16685-16696.	10.3	23
827	Recent Advances in the Application of Covalent Organic Frameworks in Extraction: A Review. Critical Reviews in Analytical Chemistry, 0, , 1-34.	3.5	20
828	Landscaping Covalent Organic Framework Nanomorphologies. Journal of the American Chemical Society, 2022, 144, 11482-11498.	13.7	108
829	Maneuvering Applications of Covalent Organic Frameworks via Frameworkâ€Morphology Modulation. Advanced Materials, 2022, 34, .	21.0	39
830	Selective Detection of Nucleotides in Infant Formula Using an N-Rich Covalent Triazine Porous Polymer. Nanomaterials, 2022, 12, 2213.	4.1	3
831	Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem, 2022, 4, 100078.	19.1	232
832	Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes. Journal of the American Chemical Society, 2022, 144, 12400-12409.	13.7	62
833	CoN ₅ Sites Constructed by Anchoring Co Porphyrins on Vinyleneâ€Linked Covalent Organic Frameworks for Electroreduction of Carbon Dioxide. Small, 2022, 18, .	10.0	23
834	High-Purity, High-Yield Synthesis of Covalent Organic Framework Nanosheets for Fast and Selective Molecular Separation. Chemistry of Materials, 2022, 34, 6345-6354.	6.7	5

#	Article	IF	CITATIONS
835	Phosphotungstic acid-supported melamine–terephthalaldehyde covalent organic framework as a novel and reusable nanostructured catalyst in three-component synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives. Research on Chemical Intermediates, 2022, 48, 3851-3865.	2.7	1
836	Photocatalytic CO2 Conversion Using Metal-Containing Coordination Polymers and Networks: Recent Developments in Material Design and Mechanistic Details. Polymers, 2022, 14, 2778.	4.5	4

B37 Dynamic Auâ€"C I_f -Bonds Leading to an Efficient Synthesis of [<i>n</i>]Cycloparaphenylenes (<i>n</i> =) Tj ETQq0.0 rgBT/Overlock

838	Advanced porous organic polymer membranes: Design, fabrication, and energy-saving applications. EnergyChem, 2022, 4, 100079.	19.1	21
839	COFâ€based single Li ⁺ solid electrolyte accelerates the ion diffusion and restrains dendrite growth in quasiâ€solidâ€state organic batteries. , 2023, 5, .		24
840	Photo-tailored heterocrystalline covalent organic framework membranes for organics separation. Nature Communications, 2022, 13, .	12.8	35
841	Covalent Organic Frameworks: Chemistry of Pore Interface and Wall Surface Perturbation and Impact on Functions. Accounts of Materials Research, 2022, 3, 879-893.	11.7	29
842	Atomic-resolution structures from polycrystalline covalent organic frameworks with enhanced cryo-cRED. Nature Communications, 2022, 13, .	12.8	10
843	Synthesis of Hexa-Aminated Trinaphtho[3.3.3]propellane and Its Porous Polymer Solids with Alkane Adsorption Properties. Bulletin of the Chemical Society of Japan, 2022, 95, 1296-1302.	3.2	4
844	Ionic porous organic polymer (IPOP) based on twisted biphenyl Scaffold: Green and efficient heterogeneous catalytic synthesis of β-Arylthioketones and biscoumarins. Journal of Catalysis, 2022, 413, 769-778.	6.2	8
845	Hollow Covalent Organic Framework with "Shell onfined―Environment for the Effective Removal of Anionic Per―and Polyfluoroalkyl Substances. Advanced Functional Materials, 2022, 32, .	14.9	18
846	2D conjugated polymers: exploiting topological properties for the rational design of metal-free photocatalysts. Trends in Chemistry, 2022, 4, 792-806.	8.5	13
847	Pore space partition of metal-organic frameworks for gas storage and separation. EnergyChem, 2022, 4, 100080.	19.1	35
848	Superhydrophobic Phosphonium Modified Robust 3D Covalent Organic Framework for Preferential Trapping of Charge Dispersed Oxoanionic Pollutants. Advanced Functional Materials, 2022, 32, .	14.9	27
849	Porous aromatic frameworks containing binaphthyl-dihydroazepine units (cBAPAFs) as catalytic supports for asymmetric reactions. Journal of Catalysis, 2022, 413, 434-442.	6.2	6
850	Benzotrithiophene-based covalent organic frameworks for real-time visual onsite assays of enrofloxacin. Biosensors and Bioelectronics, 2022, 214, 114527.	10.1	24
851	Coupling reactions induced by ionic palladium species deposited onto porous support materials. Coordination Chemistry Reviews, 2022, 470, 214696.	18.8	11
852	Targeted construction of a three-dimensional metal covalent organic framework with spn topology for photocatalytic hydrogen peroxide production. Chemical Engineering Journal, 2022, 449, 137802.	12.7	33

ARTICLE IF CITATIONS Dynamic covalent chemistry concept towardÂpreparing crystalline covalent organic frameworks for 853 3.5 1 dual-mode acidochromic responses. Materials Today Chemistry, 2022, 26, 101027. ZIF-8/covalent organic framework for enhanced CO2 photocatalytic reduction in gas-solid system. 854 12.7 Chemical Engineering Journal, 2022, 450, 138040. Recent progress on covalent organic framework materials as CO2 reduction electrocatalysts. 855 3.6 6 Frontiers in Chemistry, 0, 10, . Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): Recent advances in synthesis and analytical applications of MOF/COF composites. TrAC - Trends in Analytical 856 11.4 54 Chemistry, 2022, 157, 116741. Cuâ€Based Organicâ€Inorganic Composite Materials for Electrochemical CO₂Reduction. 857 3.3 12 Chemistry - an Asian Journal, 2022, 17, . Bimetal-anchored covalent organic frameworks derivatives for efficient alkaline electrolyte oxygen evolution. Journal of Alloys and Compounds, 2022, 924, 166442. 5.5 Advances in the Structural Strategies of the Self-Assembly of Photoresponsive Supramolecular 859 4.1 4 Systems. International Journal of Molecular Sciences, 2022, 23, 7998. A photo- and redox actives mesoporous 3D covalent organic framework enables highly efficient 860 6.2 metal-free photoredox catalysis. Journal of Catalysis, 2022, 413, 692-702. Photoinduced oxygen-catalyzed RAFT polymerization using heterogeneous bionic enzymes. Polymer 861 3.9 2 Chemistry, 2022, 13, 4776-4781. Absorbing Stress via Molecular Crumple Zones: Strain Engineering Flexibility Into the Rigid UiO-66 0.4 Material. SSRN Electronic Journal, 0, , . Solvent-Triggered Fast and Visible Switching between Cage- and Channel-Type Hydrogen-Bonded 863 8.0 13 Organic Frameworks. ACS Applied Materials & amp; Interfaces, 2022, 14, 36071-36078. Mechanism for Topology Selection of Isomeric Two-Dimensional Covalent Organic Frameworks. 864 4.6 Journal of Physical Chemistry Letters, 2022, 13, 7087-7093. Ratiometric Fluorescent pH Sensor Based on a Tunable Multivariate Covalent Organic Framework. 865 6.5 17 Analytical Chemistry, 2022, 94, 11062-11069. Simultaneously Suppressing Charge Recombination and Decomposition of Perovskite Solar Cells by 19.5 23 Conjugated Cóvalent Organic Frameworks. Advanced Energy Materials, 2022, 12, . 867 Porous and permutable peptide frameworks. Nature Chemistry, 2022, 14, 852-854. 13.6 7 Fluorine-Induced Electric Field Gradient in 3D Porous Aromatic Frameworks for Highly Efficient Capture of Xe and F-Gases. ACS Applied Materials & amp; Interfaces, 2022, 14, 35126-35137. Reimplementing Guest Shape Sorting of Nonporous Adaptive Crystals via Substituentâ€Sizeâ€Dependent 869 2.0 0 Solidâ€Vapor Postsynthetic Modification. Angewandte Chemie, Ó, , . Synergetic Pt Atoms and Nanoparticles Anchored in Standing Carbonâ€Derived from Covalent Organic 870 Frameworks for Catalyzing ORR. Advanced Materials Interfaces, 0, , 2201263.

ARTICLE IF CITATIONS A covalent organic framework nanosheet-based electrochemical aptasensor with sensitive detection 871 5.4 21 performance. Analytica Chimica Acta, 2022, 1223, 340204. Nonâ€Fluorinated and Robust Superhydrophobic Modification on Covalent Organic Framework for 872 13.8 Crudeâ€Oilâ€inâ€Water Emulsion Separation. Angewandte Chemie - International Edition, 2022, 61, . Bottomâ€Up Interfacial Design of Covalent Organic Frameworks for Highly Efficient and Selective 873 21.0 29 Electrocatalysis of CO₂. Advanced Materials, 2022, 34, . Azo-Branched Covalent Organic Framework Thin Films as Active Separators for Superior 874 14.6 Sodium–Sulfur Batteries. ACS Nano, 2022, 16, 14178-14187. Recent advances in organic electrosynthesis using heterogeneous catalysts modified electrodes. 875 9.0 13 Chinese Chemical Letters, 2023, 34, 107735. Efficient Adsorption of Acetylene over CO₂ in Bioinspired Covalent Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 14992-14996. 13.7 Influence of the Building Unit on Covalent Organic Frameworks in Mediating Photoâ€induced 877 Energyâ€Transfer Reversible Complexationâ€Mediated Radical Polymerization (PETâ€RCMP). Angewandte 2.0 2 Chemie, 2022, 134, . Missingâ€linker Defects in Covalent Organic Framework Membranes for Efficient CO2 Separation. 2.0 Angewandte Chemie, 0, , . "Activated Borane―– A Porous Borane Cluster Network as an Effective Adsorbent for Removing 879 3.3 5 Organic Pollutants. Chemistry - A European Journal, 0, , . HiGee strategy towards largeâ€scale synthesis of soluble covalent organic frameworks. AICHE Journal, 3.6 2023, 69, . Polyamide Covalent Organic Framework Membranes for Molecular Sieving. ACS Applied Materials 881 8.0 16 & Interfaces, 2022, 14, 37019-37027. Selective Gas Adsorption on Molecular Solids of a Hydrogen-bonding [3.3.3] Propellane. Chemistry 1.3 Letters, 2022, 51, 975-977. Study on Ammonia Content and Distribution in the Microenvironment Based on Covalent Organic 883 6.5 4 Framework Nanochannels. Analytical Chemistry, 2022, 94, 11224-11229. Nonâ \in Fluorinated and Robust Superhydrophobic Modification on Covalent Organic Framework for Crudeâ \in Oilâ \in inâ \in Water Emulsion Separation. Angewandte Chemie, 0, , . 884 Progress in Hybridization of Covalent Organic Frameworks and Metal–Organic Frameworks. Small, 885 10.0 41 2022, 18, . A post-synthetic modification strategy for the synthesis of pyrene-fused azaacene covalent organic frameworks. Microporous and Mesoporous Materials, 2022, 343, 112162. 4.4 Reimplementing Guest Shape Sorting of Nonporous Adaptive Crystals via Substituentâ€Sizeâ€Dependent 887 13.8 9 Solidâ€Vapor Postsynthetic Modification. Angewandte Chemie - International Edition, 2022, 61, . Continuous flow synthesis for detachable 3D covalent organic framework films. Matter, 2022, 5, 888 2535-2537.

#	Article	IF	CITATIONS
889	Exciton Diffusion and Annihilation in an sp ² Carbon-Conjugated Covalent Organic Framework. Journal of the American Chemical Society, 2022, 144, 16423-16432.	13.7	25
890	Metal–organic frameworks and covalent organic frameworks as disruptive membrane materials for energy-efficient gas separation. Nature Nanotechnology, 2022, 17, 911-923.	31.5	156
891	Missingâ€linker Defects in Covalent Organic Framework Membranes for Efficient CO ₂ Separation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	47
892	Design, synthesis, crystal structure and DFT analysis of 1-(1,2,2-triphenylvinyl)-1H-indoles with aggregation-induced emission property. Journal of Molecular Structure, 2023, 1271, 134022.	3.6	0
893	Photocatalytic Hydrogen Production on a sp ² â€Carbonâ€Linked Covalent Organic Framework. Angewandte Chemie, 2022, 134, .	2.0	17
894	Photocatalytic Hydrogen Production on a sp ² â€Carbonâ€Linked Covalent Organic Framework. Angewandte Chemie - International Edition, 2022, 61, .	13.8	76
895	Active learning boosted computational discovery of covalent–organic frameworks for ultrahigh <scp>CH₄</scp> storage. AICHE Journal, 2022, 68, .	3.6	8
896	Synthesis of Covalent Organic Frameworks (COFs)-Nanocellulose Composite and Its Thermal Degradation Studied by TGA/FTIR. Polymers, 2022, 14, 3158.	4.5	8
897	Influence of the Building Unit on Covalent Organic Frameworks in Mediating Photoâ€induced Energyâ€Transfer Reversible Complexationâ€Mediated Radical Polymerization (PETâ€RCMP). Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
899	A critical review of covalent organic frameworks-based sorbents in extraction methods. Analytica Chimica Acta, 2022, 1224, 340207.	5.4	50
900	Metalâ ``free catalysis of the reductive amination of aldehydes using a phosphoniumâ ``doped porous aromatic framework. Molecular Catalysis, 2022, 530, 112600.	2.0	3
901	Thiazolo[5,4-d]thiazole-based covalent organic framework microspheres for blue light photocatalytic selective oxidation of amines with O2. Chinese Journal of Catalysis, 2022, 43, 2395-2404.	14.0	27
902	An AIEgen-based hydrazone-linked covalent organic polymer for solid-state fluorescent materials. Dyes and Pigments, 2022, 206, 110636.	3.7	3
903	Supramolecular porous frameworks of two Ni(II) coordination polymers with varying structures, porosities, and magnetic properties. Polyhedron, 2022, 225, 116078.	2.2	11
904	Pore creation nanoarchitectonics from non-porous metal-organic framework to porous carbon for adsorptive elimination of sulfanilamide and chloroxylenol from aqueous solution. Journal of Hazardous Materials, 2022, 439, 129659.	12.4	4
905	Achieving enhanced microwave absorption performance based on metal/covalent organic frameworks-derived heterostructures. Composites Part B: Engineering, 2022, 245, 110199.	12.0	23
906	Recent progress in the construction and applications of metal-organic frameworks and covalent-organic frameworks-based nanozymes. Coordination Chemistry Reviews, 2022, 471, 214760.	18.8	29
907	Boosting the permeation of ultrafiltration membranes by covalent organic frameworks nanofillers: Nanofibers doing better than nanoparticles. Journal of Membrane Science, 2022, 661, 120944.	8.2	10

#	Article	IF	Citations
908	The selective synthesis of di- and cyclosiloxanes bearing several hidden p-tolyl-functionalities. Journal of Organometallic Chemistry, 2022, 978, 122482.	1.8	0
909	CoN2O2 sites in carbon nanosheets by template-pyrolysis of COFs for CO2RR. Chemical Engineering Journal, 2022, 450, 138427.	12.7	14
910	Pyrazine and crown ethers: functional covalent organic polymers for (solar-assisted) high capacity and rate performance lithium-organic battery. Materials Today Chemistry, 2022, 26, 101082.	3.5	3
911	Controlling dynamics in extended molecular frameworks. Nature Reviews Chemistry, 2022, 6, 705-725.	30.2	24
912	Facile, Direct, De Novo Synthesis of an Alkyl Phosphoric Acidâ€Decorated Covalent Organic Framework. Macromolecular Rapid Communications, 2023, 44, .	3.9	7
913	Molecular design of covalentâ``organic framework membranes for Li+/Mg2+ separation: Significant charge effect. Journal of Membrane Science, 2022, 662, 120976.	8.2	12
914	Recent advances in developing mixed matrix membranes based on covalent organic frameworks. Separation and Purification Technology, 2022, 301, 122004.	7.9	13
915	Ionic covalent organic frameworks triggered efficient synergy: Li+ de-solvation and the formation of LiF-rich interphase. Journal of Power Sources, 2022, 548, 232001.	7.8	3
916	Nanocomposite membranes for organic solvent nanofiltration: Recent advances, challenges, and prospects. Chemosphere, 2022, 308, 136329.	8.2	22
917	Accurate detection of organophosphorus pesticides based on covalent organic framework nanofiber with a turn-on strategy. Sensors and Actuators B: Chemical, 2022, 372, 132608.	7.8	9
918	Fluorescent benzothiazole-based covalent-organic frameworks with intramolecular dual "lock―for ratiometric detection of fenthion. Materials Today Chemistry, 2022, 26, 101178.	3.5	3
919	A one-dimensional covalent organic framework film for near-infrared electrochromism. Chemical Engineering Journal, 2023, 451, 139082.	12.7	16
920	Facile synthesis of Cu2+-immobilized magnetic covalent organic frameworks for highly efficient enrichment and sensitive determination of five phthalate monoesters from mouse plasma with HPLC-MS/MS. Talanta, 2023, 253, 123923.	5.5	5
921	IR, UV-Visible, NMR Spectra and Aromaticity of the Covalent Organic Tetraoxa[8]Circulene Frameworks. SSRN Electronic Journal, 0, , .	0.4	0
922	Introduction to chemistry of metal-organic frameworks. , 2022, , 1-16.		0
923	The order–disorder conundrum: a trade-off between crystalline and amorphous porous organic polymers for task-specific applications. Journal of Materials Chemistry A, 2022, 10, 17077-17121.	10.3	32
924	Intrareticular electron coupling pathway driven electrochemiluminescence in hydrogen-bonded organic frameworks. Journal of Materials Chemistry C, 2022, 10, 14488-14495.	5.5	11
925	Controlled growth of organic 2D layered material thin films <i>via</i> interfacial methods. Chemical Communications, 2022, 58, 12384-12398.	4.1	7

#	Article	IF	CITATIONS
926	One-pot two-step synthesis of micro- and mesoporous organic fibrils for efficient pseudocapacitors. Journal of Materials Chemistry A, 2022, 10, 17511-17519.	10.3	5
927	Porous carbon nanoarchitectonics for the environment: detection and adsorption. CrystEngComm, 2022, 24, 6804-6824.	2.6	17
928	Efficient electrocatalytic carbon dioxide reduction with tetraphenylethylene- and porphyrin-based covalent organic frameworks. Catalysis Science and Technology, 0, , .	4.1	5
929	Thermodynamic, kinetic, and mechanistic studies of the thermal guanidine metathesis reaction. Organic and Biomolecular Chemistry, 2022, 20, 5861-5868.	2.8	2
930	Chemical conversion of metal–organic frameworks into hemi-covalent organic frameworks. Inorganic Chemistry Frontiers, 2022, 9, 4776-4784.	6.0	4
931	Novel quadrilateral-pore 2D-COFs as visible-light driven catalysts evaluated by the descriptor of integrated p _{<i>z</i>).}	5.6	5
932	2D/2D S-scheme heterojunction with a covalent organic framework and g-C3N4 nanosheets for highly efficient photocatalytic H2 evolution. Chinese Journal of Catalysis, 2022, 43, 2592-2605.	14.0	59
933	Synthesis of stack plate covalent organic framework nanotubes using a self-assembled acid as a soft template. Chemical Communications, 2022, 58, 9148-9151.	4.1	7
934	Facile Synthesis of Cu2+-Immobilized Magnetic Covalent Organic Frameworks for Highly Efficient Enrichment of Phthalate Monoesters from Complex Biological Samples. SSRN Electronic Journal, 0, , .	0.4	0
935	A metal–covalent organic framework catalyst with pincer coordination units for boosting transfer hydrogenation of quinolines with ammonia borane. Journal of Materials Chemistry A, 2022, 10, 18602-18608.	10.3	3
936	Pore engineering in covalent organic framework membrane for gas separation. , 2022, 2, 100037.		5
937	Multi-sulfonated functionalized hydrophilic covalent organic framework for highly efficient dye removal from real samples. New Journal of Chemistry, 2022, 46, 17016-17025.	2.8	2
938	Modulating electronic structure of triazine-based covalent organic frameworks for photocatalytic organic transformations. Journal of Materials Chemistry A, 2022, 10, 17624-17632.	10.3	21
939	Chiral copper(<scp>i</scp>)–organic frameworks for dye degradation and the enantioselective recognition of amino acids. Inorganic Chemistry Frontiers, 2022, 9, 4907-4912.	6.0	15
940	Understanding fragility and engineering activation stability in two-dimensional covalent organic frameworks. Chemical Science, 2022, 13, 9655-9667.	7.4	15
941	Rational modification of hydroxy-functionalized covalent organic frameworks for enhanced photocatalytic hydrogen peroxide evolution. Journal of Colloid and Interface Science, 2023, 629, 750-762.	9.4	19
942	Impact of Pore Flexibility in Imine-Linked Covalent Organic Frameworks on Benzene and Cyclohexane Adsorption. ACS Applied Materials & Interfaces, 2022, 14, 40890-40901.	8.0	11
943	Humidity-Independent Artificial Olfactory Array Enabled by Hydrophobic Core–Shell Dye/MOFs@COFs Composites for Plant Disease Diagnosis. ACS Nano, 2022, 16, 14297-14307	14.6	24

#	Article	IF	CITATIONS
944	Basic Concepts and Activation Modes in Visible-Light-Photocatalyzed Organic Synthesis. Synthesis, 2023, 55, 164-192.	2.3	7
945	Determination of water in organic solvents and raw food products by fluorescence quenching of a crystalline vinyl-functionalized COF. Mikrochimica Acta, 2022, 189, .	5.0	14
946	Immobilization of Ionic Liquid on a Covalent Organic Framework for Effectively Catalyzing Cycloaddition of CO2 to Epoxides. Molecules, 2022, 27, 6204.	3.8	6
947	Covalent Organic Frameworks with Tailored Functionalities for Modulating Surface Potentials in Triboelectric Nanogenerators. Angewandte Chemie, 2022, 134, .	2.0	1
948	Hierarchical Assembly of a Micro―and Macroporous Hydrogenâ€Bonded Organic Framework with Tailored Singleâ€Crystal Size. Angewandte Chemie, 2022, 134, .	2.0	5
949	Hierarchical Assembly of a Micro―and Macroporous Hydrogenâ€Bonded Organic Framework with Tailored Singleâ€Crystal Size. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
950	Fluorescent Quinoline-Based Supramolecular Gel for Selective and Ratiometric Sensing Zinc Ion with Multi-Modes. Gels, 2022, 8, 605.	4.5	3
951	Covalent Organic Frameworks with Tailored Functionalities for Modulating Surface Potentials in Triboelectric Nanogenerators. Angewandte Chemie - International Edition, 2022, 61, .	13.8	23
952	Covalent Organic Frameworks (COFs): A Necessary Choice For Drug Delivery. ChemistrySelect, 2022, 7,	1.5	7
953	Cyanurate-Linked Covalent Organic Frameworks Enabled by Dynamic Nucleophilic Aromatic Substitution. Journal of the American Chemical Society, 2022, 144, 17737-17742.	13.7	19
954	Development of Crystalline Covalent Triazine Frameworks to Enable <i>In Situ</i> Preparation of Single-Atom Ni–N ₃ –C for Efficient Electrochemical CO ₂ Reduction. , 2022, 4, 2143-2150.		8
955	IR, UV-visible, NMR spectra and aromaticity of the covalent organic tetraoxa[8]circulene frameworks. Computational and Theoretical Chemistry, 2022, 1217, 113900.	2.5	0
956	Nickel-modified triphenylamine-based conjugated porous polymers as precatalyst for ethylene oligomerization. Inorganica Chimica Acta, 2023, 544, 121228.	2.4	2
957	A Porous Polyaromatic Solid for Vapor Adsorption of Xylene with High Efficiency, Selectivity, and Reusability. Chemistry - A European Journal, 2022, 28, .	3.3	4
958	Single Atom Catalysts with Outâ€ofâ€Plane Coordination Structure on Conjugated Covalent Organic Frameworks. Small, 2022, 18, .	10.0	15
959	MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nature Protocols, 2022, 17, 2990-3027.	12.0	128
960	The Photoactive Hydrazone-Linked Covalent Organic Frameworks for Photocyclization Approach to Phenanthridine Derivatives. Catalysis Letters, 0, , .	2.6	0
961	Interfacial Synthesis of 2D COF Thin Films. , 0, , .		0

#	Article	IF	CITATIONS
962	Fast Hydroxide Conduction via Hydrogen-Bonding Network Confined in Benzimidazolium-Functionalized Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 43861-43867.	8.0	3
963	COF-based electrochromic materials and devices. Journal of Semiconductors, 2022, 43, 090202.	3.7	0
964	Conjugated Three-Dimensional High-Connected Covalent Organic Frameworks for Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2022, 144, 17209-17218.	13.7	60
965	Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction. Chemical Research in Chinese Universities, 0, , .	2.6	1
966	Interfacial Polymerization of Self-Standing Covalent Organic Framework Membranes at Alkane/Ionic Liquid Interfaces for Dye Separation. ACS Applied Polymer Materials, 2022, 4, 7528-7536.	4.4	9
967	Histostar-Functionalized Covalent Organic Framework for Electrochemical Detection of Exosomes. Biosensors, 2022, 12, 704.	4.7	6
968	Photoredox Catalysis by Covalent Organic Frameworks. , 0, , .		1
969	Construction of Halogen-Bonded Organic Frameworks (XOFs) as Novel Efficient Iodinating Agents. ACS Applied Materials & Interfaces, 2022, 14, 43621-43627.	8.0	10
970	2,4,6â€Trimethylpyridineâ€Derived Vinyleneâ€Linked Covalent Organic Frameworks for Confined Catalytic Esterification. Angewandte Chemie - International Edition, 2022, 61, .	13.8	33
971	A Honeycombâ€Like Porous Crystalline Heteroâ€Electrocatalyst for Efficient Electrocatalytic CO ₂ Reduction. Advanced Materials, 2022, 34, .	21.0	40
972	Synthesis of Vinylene‣inked Thiopyryliumâ€, Pyryliumâ€, and Pyridiniumâ€Based Covalent Organic Frameworks by Acid atalyzed Aldol Condensation. Chemistry - A European Journal, 2023, 29, .	3.3	8
973	Ionothermal Synthesis of Fully Conjugated Covalent Organic Frameworks for Highâ€Capacity and Ultrastable Potassiumâ€lon Batteries. Advanced Materials, 2022, 34, .	21.0	31
974	Site-selective synthesis of an amine-functionalized β-ketoenamine-linked covalent organic framework for improved detection and removal of Cu2+ ion from water. Journal of Solid State Chemistry, 2022, 316, 123644.	2.9	15
975	Molecular engineering of interplanar spacing via ï€-conjugated phenothiazine linkages for high-power 2D covalent organic framework batteries. CheM, 2023, 9, 117-129.	11.7	13
976	Ultrathin Cageâ€based Covalent Organic Framework Nanosheets as Precursor for Pyrolysisâ€Free Oxygen Evolution Reaction Electrocatalyst. ChemNanoMat, 2022, 8, .	2.8	4
977	Energyâ€Efficient Iodine Uptake by a Molecular Hostâ∢Guest Crystal. Angewandte Chemie, 2022, 134, .	2.0	Ο
978	Realizing Allâ€Climate Liâ€5 Batteries by Using a Porous Subâ€Nano Aromatic Framework. Angewandte Chemie, 2022, 134, .	2.0	2
979	Understanding a Single-Li-Ion COF Conductor for Being Dendrite Free in a Li-Organic Battery. Research, 2022, 2022, .	5.7	4

#	Article	IF	CITATIONS
980	Energyâ€Efficient Iodine Uptake by a Molecular Hostâ‹Guest Crystal. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
981	2,4,6â€Trimethylpyridineâ€Derived Vinyleneâ€Linked Covalent Organic Frameworks for Confined Catalytic Esterification. Angewandte Chemie, 2022, 134, .	2.0	0
982	Realizing Allâ€Climate Liâ€6 Batteries by Using a Porous Subâ€Nano Aromatic Framework. Angewandte Chemie - International Edition, 2022, 61, .	13.8	36
983	Covalent organic framework membranes prepared via mixed linker modulated assembly for hydrogen peroxide enrichment. Journal of Membrane Science, 2022, 663, 121043.	8.2	1
984	Growing COFs <i>in situ</i> on CdS nanorods as core–shell heterojunctions to improve the charge separation efficiency. Sustainable Energy and Fuels, 2022, 6, 5089-5099.	4.9	4
985	Construction of hydrophilic covalent organic frameworks and their fast and efficient adsorption of cationic dyes from aqueous solution. New Journal of Chemistry, 2022, 46, 22185-22194.	2.8	2
986	Photosynthesis of hydrogen peroxide in water: a promising on-site strategy for water remediation. Environmental Science: Water Research and Technology, 2022, 8, 2819-2842.	2.4	2
987	Infinite building blocks for directed self-assembly of a supramolecular polyoxometalate–cyclodextrin framework for multifunctional oxidative catalysis. Inorganic Chemistry Frontiers, 2022, 9, 6534-6543.	6.0	7
988	Boosting the photocatalytic performance via isomeric configuration design in covalent organic frameworks. Chemical Communications, 0, , .	4.1	5
989	Integrating multifunctional catalytic sites in COF@ZIF-67 derived carbon for the HER and ORR. Chemical Communications, 2022, 58, 13214-13217.	4.1	10
990	Understanding the geometric and basicity effects of organic polymer modifiers on Ru/TiO ₂ catalysts for CO ₂ hydrogenation to hydrocarbons. Catalysis Science and Technology, 2022, 12, 6363-6369.	4.1	1
991	Synthesis of A Series of Porous Aromatic Frameworks by Mechanical ball milling. New Journal of Chemistry, 0, , .	2.8	2
992	Bandgap engineering of covalent organic frameworks for boosting photocatalytic hydrogen evolution from water. Journal of Materials Chemistry A, 2022, 10, 24620-24627.	10.3	14
993	Tuning the lattice parameters and porosity of 2D imine covalent organic frameworks by chemically integrating 4-aminobenzaldehyde as a bifunctional linker. Chemical Communications, 0, , .	4.1	1
994	A vinyl-decorated covalent organic framework for ferroptotic cancer therapy <i>via</i> visible-light-triggered cysteine depletion. Journal of Materials Chemistry B, 2022, 10, 8894-8909.	5.8	10
995	Synthesis of highly crystalline imine-linked covalent organic frameworks <i>via</i> controlling monomer feeding rates in an open system. Chemical Communications, 2022, 58, 12313-12316.	4.1	1
996	Covalent organic frameworks constructed step by step using a [(C ₃ + C ₂) + C ₂] strategy toward fluorescence detection of Fe ³⁺ . Chemical Communications, 2022, 58, 12240-12243.	4.1	6
997	Band Structure Engineering of 2D Heterotriangulene Polymers by Incorporating Acetylenic Linkages for Photocatalytic Hydrogen Production. Journal of Physical Chemistry C, 2022, 126, 17836-17843.	3.1	6

#	Article	IF	Citations
998	Thienothiophene and Triphenylbenzene Based Electroactive Conjugated Porous Polymer for Oxygen Reduction Reaction (ORR). ACS Applied Energy Materials, 2022, 5, 13284-13292.	5.1	15
999	Single-Crystalline Imine-Linked Two-Dimensional Covalent Organic Frameworks Separate Benzene and Cyclohexane Efficiently. Journal of the American Chemical Society, 2022, 144, 19813-19824.	13.7	54
1000	Machine Learning in the Development of Adsorbents for Clean Energy Application and Greenhouse Gas Capture. Advanced Science, 2022, 9, .	11.2	8
1001	Single-Crystalline Hydrogen-Bonded Crosslinked Organic Frameworks and Their Dynamic Guest Sorption. Accounts of Materials Research, 2022, 3, 1186-1200.	11.7	9
1002	Synthesis of a Highly Crystalline Amide‣inked Covalent Organic Framework. Chinese Journal of Chemistry, 2023, 41, 405-410.	4.9	2
1003	Betaâ€cyclodextrin covalent organic framework coated silica composite as chiral stationary phase for highâ€performance liquid chromatographic separation. Separation Science Plus, 2022, 5, 671-681.	0.6	1
1004	Topology control of three-dimensional covalent organic frameworks by adjusting steric hindrance effect. Science China Chemistry, 2022, 65, 2177-2181.	8.2	9
1005	Enhanced CO ₂ Photoreduction through Spontaneous Charge Separation in Endâ€Capping Assembly of Heterostructured Covalentâ€Organic Frameworks. Angewandte Chemie - International Edition, 2022, 61, .	13.8	51
1006	Stability and formation process of hydrogen-bonded organic porous thin films: A molecular dynamics study. AIP Advances, 2022, 12, 105109.	1.3	0
1007	Photoactive Covalent Organic Frameworks for Catalyzing Organic Reactions. ChemPlusChem, 2022, 87, .	2.8	8
1008	Three-Dimensional Covalent Organic Framework with scu-c Topology for Drug Delivery. ACS Applied Materials & Interfaces, 2022, 14, 48045-48051.	8.0	27
1009	Fabricating Industryâ€Compatible Olefinâ€Linked COF Resins for Oxoanion Pollutant Scavenging. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
1010	Conductive Covalent Organic Frameworks Meet Micro-Electrical Energy Storage: Mechanism, Synthesis and Applications—A Review. Crystals, 2022, 12, 1405.	2.2	4
1011	Iron Oxyhydroxide-Covalent Organic Framework Nanocomposite for Efficient As(III) Removal in Water. ACS Applied Materials & Interfaces, 2022, 14, 50163-50170.	8.0	7
1012	Crystallinity of Imide-Linked Two-Dimensional Polymers Depends on the Nucleophilicity of Triamine Building Blocks. , 2022, 4, 2282-2288.		5
1013	Design principles based on intramolecular interactions for hydroxyl-functionalized covalent organic frameworks. Cell Reports Physical Science, 2022, 3, 101114.	5.6	7
1014	A Highly Stable <i>Ortho</i> â€Ketoenamine Covalent Organic Framework with Balanced Hydrophilic and Hydrophobic Sites for Atmospheric Water Harvesting. ChemSusChem, 2022, 15, .	6.8	18
1015	Annealed Covalent Organic Framework Thin Films for Exceptional Absorption of Ultrabroad Lowâ€Frequency Electromagnetic Waves. Small, 2022, 18, .	10.0	7

#	Article	IF	CITATIONS
1016	Metal–Organic Frameworks Meet Molecularly Imprinted Polymers: Insights and Prospects for Sensor Applications. ACS Applied Materials & Interfaces, 2022, 14, 49399-49424.	8.0	38
1017	Covalent Organic Frameworks with Ionic Liquid-Moieties (ILCOFs): Structures, Synthesis, and CO2 Conversion. Nanomaterials, 2022, 12, 3615.	4.1	7
1018	Advanced Covalent Organic Frameworks for Multiâ€Valent Metal Ion Batteries. Chemistry - A European Journal, 2023, 29, .	3.3	6
1019	One-Pot Synthesis of Deep Eutectic Solvents Containing Three-Dimensional Polymeric Materials with Excellent Catalytic Activity in the Knoevenagel Condensation Reaction. ACS Applied Polymer Materials, 2022, 4, 8092-8097.	4.4	1
1020	Covalent Organic Frameworks Based Inorganic/Organic Composite Materials for Photocatalytic Applications. ChemNanoMat, 2023, 9, .	2.8	4
1021	Enhanced CO ₂ Photoreduction through Spontaneous Charge Separation in Endâ€Capping Assembly of Heterostructured Covalentâ€Organic Frameworks. Angewandte Chemie, 2022, 134, .	2.0	3
1022	Charge Transport Across Dynamic Covalent Chemical Bridges. Nano Letters, 2022, 22, 8331-8338.	9.1	5
1024	FabricatingÂIndustryâ€compatible Olefin‣inked COF Resins for Oxoanion Pollutant Scavenging. Angewandte Chemie, 0, , .	2.0	0
1025	Solventâ€Free Synthesis of C=N Linked Twoâ€Dimensional Covalent Organic Frameworks. Macromolecular Rapid Communications, 2023, 44, .	3.9	5
1027	Ionic COF Composite Membranes for Selective Perfluoroalkyl Substances Separation. Macromolecular Rapid Communications, 2023, 44, .	3.9	4
1028	Open-channel metal particle superlattices. Nature, 2022, 611, 695-701.	27.8	26
1029	High-performance carbon-capturing lignocellulosic hydrochar with post-synthesis addition of spent mushroom substrate. Biomass Conversion and Biorefinery, 0, , .	4.6	Ο
1030	Industry-compatible covalent organic frameworks for green chemical engineering. Science China Chemistry, 2022, 65, 2144-2162.	8.2	10
1031	Scalable Mechanochemical Synthesis of <i>β</i> â€Ketoenamineâ€ŀinked Covalent Organic Frameworks for Methane Storage. Chemistry - an Asian Journal, 2022, 17, .	3.3	8
1032	Tunable Interlayer Shifting in Two-Dimensional Covalent Organic Frameworks Triggered by CO ₂ Sorption. Journal of the American Chemical Society, 2022, 144, 20363-20371.	13.7	33
1033	Advances in the Electrocatalytic Hydrogen Evolution Reaction by Metal Nanoclustersâ€based Materials. Small, 2022, 18, .	10.0	85
1034	Conductive and Ultrastable Covalent Organic Framework/Carbon Hybrid as an Ideal Electrocatalytic Platform. Journal of the American Chemical Society, 2022, 144, 19973-19980.	13.7	32
1035	Three-dimensional covalent organic framework with tty topology for enhanced photocatalytic hydrogen peroxide production. Chemical Engineering Journal, 2023, 454, 140121.	12.7	35

#	Article	IF	CITATIONS
1036	Construction of Atomic Metalâ€N ₂ Sites by Interlayers of Covalent Organic Frameworks for Electrochemical H ₂ O ₂ Synthesis. Small, 2022, 18, .	10.0	17
1037	Liquid interfacial nanoarchitectonics: Molecular machines, organic semiconductors, nanocarbons, stem cells, and others. Current Opinion in Colloid and Interface Science, 2023, 63, 101656.	7.4	10
1038	Bithiophene-based COFs for silver ions detection and removal. Microporous and Mesoporous Materials, 2022, 346, 112289.	4.4	9
1039	Advanced electrochemical energy storage and conversion on graphdiyne interface. , 2022, 1, e9120036.		24
1040	Chemical engineering and the sustainable oil palm biomass industry—Recent advances and perspectives for the future. Chemical Engineering Research and Design, 2022, 188, 729-735.	5.6	3
1041	A novel study on COF-based semi-solid electrolyte for spinel LiNi0.5Mn1.5O4 targeting transition metals migration. Scripta Materialia, 2023, 223, 115101.	5.2	3
1042	Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coordination Chemistry Reviews, 2023, 475, 214889.	18.8	97
1043	A phenazine-conjugated microporous polymer-based quartz crystal microbalance for sensitive detection of formaldehyde vapors at room temperature: an experiment and density functional theory study. Journal of Materials Chemistry A, 2023, 11, 764-774.	10.3	13
1044	Arylation of indole at C2 catalyzed by palygorskite grafted covalent organic frameworks supported palladium catalyst. Applied Clay Science, 2023, 231, 106754.	5.2	4
1045	Rational Construction of Electrically Conductive Covalent Organic Frameworks through Encapsulating Fullerene via Donor–Acceptor Interaction. Macromolecular Rapid Communications, 2023, 44, .	3.9	2
1046	A bioinspired ionic diode membrane based on sub-2Ânm covalent organic framework channels for ultrahigh osmotic energy generation. Nano Energy, 2023, 105, 108007.	16.0	33
1047	Advances of Carbon Materials for Dual-Carbon Lithium-Ion Capacitors: A Review. Nanomaterials, 2022, 12, 3954.	4.1	3
1048	Piperazine-Linked Metalphthalocyanine Frameworks for Highly Efficient Visible-Light-Driven H ₂ O ₂ Photosynthesis. Journal of the American Chemical Society, 2022, 144, 21328-21336.	13.7	109
1049	Imineâ€linked covalent organic frameworks coordinated with nickel for ethylene oligomerization. Journal of Applied Polymer Science, 0, , .	2.6	0
1050	lmine and imine-derived linkages in two-dimensional covalent organic frameworks. Nature Reviews Chemistry, 2022, 6, 881-898.	30.2	79
1051	Zn (II) Porphyrin Built-in D–A Covalent Organic Framework for Efficient Photocatalytic H2 Evolution. Polymers, 2022, 14, 4893.	4.5	9
1052	Linker Engineering of 2D Imine Covalent Organic Frameworks for the Heterogeneous Palladium-Catalyzed Suzuki Coupling Reaction. ACS Applied Materials & Interfaces, 2022, 14, 50923-50931.	8.0	8
1053	A Superhydrophobic Trifluoromethyl ontaining Covalent Organic Framework Membrane for Efficient Oil/Water Separation. Macromolecular Rapid Communications, 2023, 44, .	3.9	8

#	Article	IF	CITATIONS
1054	Preparation of spherical silica hydroxylâ€functionalized covalent organic polymer composites for mixedâ€mode liquid chromatography. Journal of Separation Science, 2023, 46, .	2.5	0
1055	Interactions Balancing Competition and Cooperation between Covalent–Organic Framework Additives and PEC Base Oil toward Advanced Lubrication. ACS Applied Materials & Interfaces, 2022, 14, 51476-51486.	8.0	5
1056	The missing link between zeolites and polyoxometalates. Science Advances, 2022, 8, .	10.3	1
1057	3D macro/mesoporous highly reproducible amino-functionalized covalent organic framework nanospheres for fat-rich foodstuffs pretreatment in nontargeted analysis. Chemical Engineering Journal, 2023, 454, 140319.	12.7	4
1058	Templated Synthesis of 2D Polyimide Covalent Organic Framework for Rechargeable Sodiumâ€lon Batteries. Macromolecular Rapid Communications, 2023, 44, .	3.9	12
1059	Cu-α-diimine Compounds Encapsulated in Porous Materials as Catalysts for Electrophilic Amination of Aromatic C–H Bonds. ACS Applied Materials & Interfaces, 2022, 14, 51867-51880.	8.0	1
1060	Solventâ€mediated singleâ€crystalâ€toâ€singleâ€crystal transformation of metal–organic cage selfâ€assembly Bulletin of the Korean Chemical Society, 2023, 44, 55-59.	· 1.9	7
1061	On-surface synthesis of disilabenzene-bridged covalent organic frameworks. Nature Chemistry, 2023, 15, 136-142.	13.6	15
1062	Dual-sided symmetric crystalline orientation of covalent organic framework membranes for unidirectional anhydrous proton conduction. Science China Chemistry, 2022, 65, 2548-2557.	8.2	9
1063	Amorphous Porous Polyurethanes as Macromolecular Ligands for Palladium Catalysts. Chemistry Letters, 2023, 52, 5-9.	1.3	0
1064	Semi-heterogeneous asymmetric organocatalysis: Covalent immobilization of BINOL-derived chiral phosphoric acid (TRIP) to polystyrene brush grafted on SiO2 nanoparticles. Journal of Catalysis, 2022, 416, 139-148.	6.2	8
1065	MXene-based phase change materials for solar thermal energy storage. Energy Conversion and Management, 2022, 273, 116432.	9.2	51
1066	A Highly Crystalline Single Layer 2D Polymer for Low Variability and Excellent Scalability Molecular Memristors. Advanced Materials, 2023, 35, .	21.0	13
1067	Phonon-Limited Electron Transport in a Highly Conductive Two-Dimensional Covalent Organic Framework: A Computational Study. Journal of Physical Chemistry C, 2022, 126, 20127-20134.	3.1	1
1068	Heterogenization of Salen Metal Molecular Catalysts in Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2023, 62, .	13.8	23
1069	Facile Solution-Refluxing Synthesis and Photocatalytic Dye Degradation of a Dynamic Covalent Organic Framework. Molecules, 2022, 27, 8002.	3.8	8
1070	Comprehensive Review for an Efficient Charge Transfer in Single Atomic Site Catalyst/Organic Polymers toward Photocatalytic CO ₂ Reduction. Advanced Materials Interfaces, 2023, 10, .	3.7	8
1071	Controlled drug release and drug delivery applications from mesoporous nanoparticles. , 2023, , 405-435.		1

#	Article	IF	CITATIONS
1072	Universal one-pot strategy for fabricating supported chiral organocatalysts via direct covalent immobilization upon hollow mesoporous polystyrene nanospheres. Applied Catalysis A: General, 2023, 649, 118976.	4.3	5
1073	Heterogenization of Salen Metal Molecular Catalysts in Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angewandte Chemie, 0, , .	2.0	0
1074	Basic Alkylamine Functionalized PAFâ€1 Hybrid Membrane with High Compatibility for Superior CO ₂ Separation from Flue Gas. Advanced Functional Materials, 2023, 33, .	14.9	8
1075	Application of Covalent Organic Framework-Based Electrochemical Biosensors in Biological Sample Detection. Acta Chimica Sinica, 2022, 80, 1524.	1.4	4
1076	Adsorption of sulfur into an alkynyl-based covalent organic framework for mercury removal. RSC Advances, 2022, 12, 35445-35451.	3.6	3
1077	Enhancing the stability of poly(ionic liquids)@MOFs@COFs <i>via</i> core–shell protection strategy for ⁹⁹ TcO ₄ ^{â^'} sequestration. Inorganic Chemistry Frontiers, 2023, 10, 952-958.	6.0	6
1078	Molecular insights into multi-channel detection of nitrophenol explosives and acids in covalent organic frameworks with diverse hydrazone moieties. Microporous and Mesoporous Materials, 2023, 348, 112408.	4.4	6
1079	Exploring visible light for carbon–nitrogen and carbon–oxygen bond formation <i>via</i> nickel catalysis. Organic Chemistry Frontiers, 2023, 10, 548-569.	4.5	15
1080	Rational design of a phenothiazine-based donor–acceptor covalent organic framework for enhanced photocatalytic oxidative coupling of amines and cyclization of thioamides. Journal of Materials Chemistry A, 2023, 11, 1208-1215.	10.3	30
1081	Covalent organic framework-immobilized wood membrane for efficient, durable, and high-flux nanofiltration. Journal of Cleaner Production, 2023, 384, 135595.	9.3	10
1082	Marine chitin upcycling with immobilized chitinolytic enzymes: current state and prospects. Green Chemistry, 2023, 25, 467-489.	9.0	5
1083	Dative Bâ†N bonds based crystalline organic framework with permanent porosity for acetylene storage and separation. Chemical Science, 2023, 14, 533-539.	7.4	13
1084	Synthesis of crystallinity covalent organic framework and its ratiometric fluorescent detection of trace water. Microporous and Mesoporous Materials, 2023, 348, 112401.	4.4	4
1085	De novo synthesis of enzyme-embedded covalent organic frameworks (COFs) using deep eutectic solvent: Pushing the COF limits. Chemical Engineering Journal, 2023, 456, 141058.	12.7	20
1086	Exploration of metal organic frameworks and covalent organic frameworks for energy-related applications. Coordination Chemistry Reviews, 2023, 477, 214968.	18.8	77
1087	Connecting the dots for fundamental understanding of structure–photophysics–property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chemical Science, 2023, 14, 1040-1064.	7.4	2
1088	Covalent organic frameworks constructed from flexible building blocks: high porosity, crystallinity, and iodine uptake. CrystEngComm, 2023, 25, 525-529.	2.6	5
1089	Recovery of silver and gold quantum dots from wastewater via coagulative adsorption onto CoFe2O4 based magnetic covalent-organic framework to generate efficient nanocatalysts for degradation of doxorubicin drug. Journal of Water Process Engineering, 2023, 51, 103409.	5.6	5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1090	Continuous flow synthesis of disordered covalent organic framework for ultra-high remova industrial pollutants in flow. Separation and Purification Technology, 2023, 307, 122739.	al of	7.9	9
1091	Rational design, structure properties, and synthesis strategies of dual-pore covalent organ frameworks (COFs) for potent applications: A review. Environmental Research, 2023, 218,	ic 114982.	7.5	13
1092	Tetraphenylethylene and porphyrin-based covalent organic framework with square lattice effective photocatalytic hydrogen evolution. Applied Surface Science, 2023, 613, 155966.	for	6.1	8
1093	Synergistically interactive P–Co–N bonding states in cobalt phosphide-decorated cova frameworks for enhanced photocatalytic hydrogen evolution. Nanoscale, 2022, 14, 18209	alent organic -18216.	5.6	1
1094	Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Orga Frameworks. Acta Chimica Sinica, 2022, 80, 1494.	nic	1.4	5
1095	Understanding solar fuel photocatalysis using covalent organic frameworks. Photochemist 403-427.	try, 2022, ,	0.2	0
1096	The literature of heterocyclic chemistry, Part XX, 2020. Advances in Heterocyclic Chemistr 201-274.	y, 2023, ,	1.7	1
1097	WS ₂ -Based Nanomaterials for Visible-Light Photocatalytic Degradation of Or Pollutants. ACS Symposium Series, 0, , 185-205.	ganic	0.5	0
1098	Interactive Nanomaterials for Energy Storage and Conversion. ACS Symposium Series, 0, ,	27-81.	0.5	0
1099	Efficient Design Paradigm for Harvesting Solar Energy: Dynamic Tunability of Heating/Cool Using Advanced Nanotechnology. ACS Symposium Series, 0, , 233-261.	ing Mode	0.5	2
1100	Green Synthesis of Robust Imine-Linked Two-Dimensional Covalent Organic Frameworks ir Supercritical Carbon Dioxide. Chemistry of Materials, 2022, 34, 10584-10593.	١	6.7	5
1101	Effect of Alcohol Tail Length on Aggregate Behavior of Alcohol and AOT at the Water-scCO ₂ Interface: MD Simulation Study. ACS Symposium Series, 0, , 26	3-288.	0.5	0
1103	Enabling Solution Processable COFs through Suppression of Precipitation during Solvothe Synthesis. ACS Nano, 2022, 16, 20964-20974.	rmal	14.6	20
1104	In Situ Deformation Topology of COFs with Shortened Channels and High Redox Propertie Batteries. Advanced Functional Materials, 2023, 33, .	s for Li–S	14.9	4
1106	Green Electrocatalytical Synthesis of Ammonia Using Solid Oxide Electrolysis Cells. ACS Sy Series, 0, , 155-184.	mposium	0.5	0
1107	Atomic Layer Deposition Synthesis of Iron, Cobalt, and Nickel Chalcogenides for Electroca Applications. ACS Symposium Series, 0, , 117-135.	talysis	0.5	0
1108	BINOL-Containing Chiral Porous Polymers as Platforms for Enantiorecognition. ACS Applie & amp; Interfaces, 2022, 14, 53936-53946.	d Materials	8.0	5
1109	Calix[n]arene-Based Coordination Cage and Its Application to Electrocatalysis. ACS Sympo 0, , 137-154.	osium Series,	0.5	0

#	Article	IF	CITATIONS
1112	Inner-pore reduction nucleation of palladium nanoparticles in highly conductive wurster-type covalent organic frameworks for efficient oxygen reduction electrocatalysis. Journal of Energy Chemistry, 2023, 77, 543-552.	12.9	15
1113	Two-Dimensional Metal Phosphorus Trichalcogenide Nanostructure for Sustainable Energy Conversion. ACS Symposium Series, 0, , 1-25.	0.5	3
1115	Solar-Driven Photothermocatalytic Dry Reforming of Methane for Syngas Production. ACS Symposium Series, 0, , 207-232.	0.5	0
1116	Organic-Carbon Composites for Next Generation Capacitive Electrodes. ACS Symposium Series, 0, , 83-115.	0.5	0
1117	Designing Thiopheneâ€Enriched Fully Conjugated 3D Covalent Organic Framework as Metalâ€Free Oxygen Reduction Catalyst for Hydrogen Fuel Cells. Angewandte Chemie - International Edition, 2023, 62, .	13.8	20
1118	Effect of solvent and acid on the morphology of the β-ketoenamine-linked covalent organic frameworks (COFs). Materials Today: Proceedings, 2023, 78, 885-890.	1.8	2
1119	Amino-Functionalized Ionic-Liquid-Grafted Covalent Organic Frameworks for High-Efficiency CO ₂ Capture and Conversion. ACS Applied Materials & Interfaces, 2022, 14, 55674-55685.	8.0	27
1120	Distributed Liâ€lon Flux Enabled by Sulfonated Covalent Organic Frameworks for Highâ€Performance Lithium Metal Anodes. Macromolecular Rapid Communications, 2023, 44, .	3.9	1
1121	Benzotrithiopheneâ€based Covalent Organic Framework Photocatalysts with Controlled Conjugation of Building Blocks for Charge Stabilization. Angewandte Chemie, 2023, 135, .	2.0	1
1122	Pore Geometry and Surface Engineering of Covalent Organic Frameworks for Anhydrous Proton Conduction. Angewandte Chemie, 0, , .	2.0	0
1123	H2 physisorption in fluorinated MOF-74: The role of fluorine from the perspective of electronic structure calculations. International Journal of Hydrogen Energy, 2023, 48, 8997-9007.	7.1	4
1124	Isomeric Oligo(Phenylenevinylene)â€Based Covalent Organic Frameworks with Different Orientation of Imine Bonds and Distinct Photocatalytic Activities. Angewandte Chemie, 2023, 135, .	2.0	2
1125	Benzotrithiopheneâ€based Covalent Organic Framework Photocatalysts with Controlled Conjugation of Building Blocks for Charge Stabilization. Angewandte Chemie - International Edition, 2023, 62, .	13.8	28
1126	Recent Advances in Stimuliâ€Responsive Smart Membranes for Nanofiltration. Advanced Functional Materials, 2023, 33, .	14.9	24
1127	Pore Geometry and Surface Engineering of Covalent Organic Frameworks for Anhydrous Proton Conduction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	16
1128	Isomeric Oligo(Phenylenevinylene)â€Based Covalent Organic Frameworks with Different Orientation of Imine Bonds and Distinct Photocatalytic Activities. Angewandte Chemie - International Edition, 2023, 62, .	13.8	28
1129	Designing Thiopheneâ€Enriched Fully Conjugated 3D Covalent Organic Framework as Metalâ€Free Oxygen Reduction Catalyst for Hydrogen Fuel Cells. Angewandte Chemie, 2023, 135, .	2.0	2
1130	Covalent Triazine Frameworks (CTFs): Synthesis, Crystallization, and Photocatalytic Water Splitting. Chemistry - A European Journal, 2023, 29, .	3.3	11

#	Article	IF	CITATIONS
1131	Structural Properties Covalent Organic Frameworks (COFs): From Dynamic Covalent Bonds to their Applications. ChemistrySelect, 2022, 7, .	1.5	8
1132	Synthesis of a magnetic covalent organic framework for extraction and separation of ultraviolet filters in beverage samples. Food Chemistry, 2023, 410, 135323.	8.2	8
1133	Designing Nanofluidic Diode from a Hybridâ€Bilayer Covalent Organic Framework: Molecular Simulation Investigation. Small, 0, , 2206382.	10.0	1
1134	Highly Crystalline Polyimide Covalent Organic Framework as Dual-Active-Center Cathode for High-Performance Lithium-Ion Batteries. Journal of the American Chemical Society, 2022, 144, 23534-23542.	13.7	35
1135	Photocatalysis of Covalent Organic Frameworks. , 0, , .		1
1136	Roomâ€Temperature Preparation of Covalent Organic Framework Membrane for Nanofiltration. Macromolecular Rapid Communications, 2023, 44, .	3.9	3
1137	Unveiling the Multiple Tumorâ€Targeted Impairments of Covalentâ€Organic Frameworkâ€Switched Photothermal Shielding Nanoparticles. Advanced Functional Materials, 2023, 33, .	14.9	9
1138	Emissive Substoichiometric Covalent Organic Frameworks for Water Sensing and Harvesting. Macromolecular Rapid Communications, 2023, 44, .	3.9	5
1139	Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework. Nature Communications, 2022, 13, .	12.8	33
1140	Anion Binding as a Strategy for the Synthesis of Porous Salts. Chemistry of Materials, 2022, 34, 10823-10831.	6.7	3
1141	βâ€Ketoenamineâ€Linked Covalent Organic Framework with Co Intercalation: Improved Lithiumâ€Storage Properties and Mechanism for Highâ€Performance Lithiumâ€Organic Batteries. Batteries and Supercaps, 2023, 6, .	4.7	39
1142	Covalent organic frameworks. Nature Reviews Methods Primers, 2023, 3, .	21.2	99
1143	In-situ polarization of covalent organic frameworks in seawater enables enhanced photocatalytic hydrogen evolution under visible-light irradiation. Nano Research, 2023, 16, 6251-6259.	10.4	9
1144	Interface-confined synthesis of a nonplanar redox-active covalent organic framework film for synaptic memristors. Nanoscale, 2023, 15, 2726-2733.	5.6	8
1145	Engineered Two-Dimensional Nanostructures as SERS Substrates for Biomolecule Sensing: A Review. Biosensors, 2023, 13, 102.	4.7	10
1146	Designed fabrication of active tumor targeting covalent organic framework nanotherapeutics via a simple post-synthetic strategy. Nano Research, 2023, 16, 7085-7094.	10.4	6
1147	Beyond Microporosity in Porous Organic Molecular Materials (POMMs). Angewandte Chemie, 0, , .	2.0	1
1148	Ion Selective Membranes. , 2023, , 308-322.		0

#	Article	IF	Citations
1149	Rational design of cooperative chelating sites on covalent organic frameworks for highly selective uranium extraction from seawater. Cell Reports Physical Science, 2023, 4, 101220.	5.6	11
1150	Construction of Covalent Organic Frameworks via Multicomponent Reactions. Journal of the American Chemical Society, 2023, 145, 1475-1496.	13.7	42
1151	Application of fully conjugated covalent organic frameworks in photocatalytic carbon dioxide reduction performance. Dalton Transactions, 2023, 52, 1761-1767.	3.3	6
1152	A self-standing three-dimensional covalent organic framework film. Nature Communications, 2023, 14,	12.8	19
1153	Precise fabrication of ternary ordered covalent organic frameworks for photocatalysis. Science China Chemistry, 2023, 66, 436-442.	8.2	6
1154	One-pot cascade construction of nonsubstituted quinoline-bridged covalent organic frameworks. Chemical Science, 2023, 14, 1543-1550.	7.4	14
1155	Nanogel Catalysts for the Hydrolysis of Underivatized Disaccharides Identified by a Fast Screening Assay. ACS Catalysis, 2023, 13, 1614-1620.	11.2	3
1156	Beyond Microporosity in Porous Organic Molecular Materials (POMMs). Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
1157	Covalent Pyrimidine Frameworks via a Tandem Polycondensation Method for Photocatalytic Hydrogen Production and Proton Conduction. Small, 2023, 19, .	10.0	7
1158	Targeted Synthesis of Isomeric Naphthaleneâ€Based 2D Kagome Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	13.8	12
1159	Progress on 2D–2D heterostructured hybrid materials for efficient electrocatalysis. Energy Advances, 2023, 2, 280-292.	3.3	1
1160	Enhanced Energy Transfer in A ï€â€Conjugated Covalent Organic Framework Facilitates Excitedâ€State Nickel Catalysis. Angewandte Chemie, 2023, 135, .	2.0	4
1161	Multiple Impact-Resistant 2D Covalent Organic Framework. Nano Letters, 2023, 23, 1416-1423.	9.1	7
1162	Hydrogen Bonding Regulated Flexibility and Disorder in Hydrazone-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 1359-1366.	13.7	35
1163	Highly catalytic nanoenzyme of covalent organic framework loaded starch- surface-enhanced Raman scattering/absorption bi-mode peptide as biosensor for ultratrace determination of cadmium. Frontiers in Nutrition, 0, 9, .	3.7	4
1164	Enhanced Energy Transfer in A Ï€â€Conjugated Covalent Organic Framework Facilitates Excitedâ€State Nickel Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	23
1165	Targeted Synthesis of Isomeric Naphthaleneâ€Based 2D Kagome Covalent Organic Frameworks. Angewandte Chemie, 2023, 135, .	2.0	1
1166	Ultramicroporous Covalent Organic Framework Nanosheets with Functionality Pair for Membrane C ₂ H ₂ /C ₂ H ₄ Separation. Angewandte Chemie, 2023, 135,	2.0	1

#	Article	IF	Citations
1167	Phenanthroimidazole-Based Covalent Organic Frameworks with Enhanced Activity for the Photocatalytic Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2023, 6, 1126-1133.	5.1	5
1168	Covalent organic frameworks with imine proton acceptors for efficient photocatalytic H2 production. Chinese Chemical Letters, 2023, 34, 108148.	9.0	9
1169	2D/3D covalent organic frameworks based on cobalt corroles for CO binding. Materials Today Chemistry, 2023, 28, 101357.	3.5	3
1170	Encapsulating covalent organic frameworks (COFs) in cellulose aerogels for efficient iodine uptake. Separation and Purification Technology, 2023, 309, 123108.	7.9	13
1171	COF-C4N Nanosheets with uniformly anchored single metal sites for electrocatalytic OER: From theoretical screening to target synthesis. Applied Catalysis B: Environmental, 2023, 325, 122366.	20.2	22
1172	Controlled Iodine Phase Transfer of Covalent Organic Framework Membranes for Instant but Sustained Disinfection. Langmuir, 2023, 39, 597-609.	3.5	1
1173	Janus Dione-Based Conjugated Covalent Organic Frameworks with High Conductivity as Superior Cathode Materials. Journal of the American Chemical Society, 2023, 145, 1022-1030.	13.7	42
1174	Post-synthetic Fully π-Conjugated Three-Dimensional Covalent Organic Frameworks for High-Performance Lithium Storage. ACS Applied Materials & Interfaces, 2023, 15, 830-837.	8.0	12
1175	From Single Crystal to Single Atom Catalysts: Structural Factors Influencing the Performance of Metal Catalysts for CO ₂ Electroreduction. ACS Catalysis, 2023, 13, 948-973.	11.2	33
1176	Recent Trends in the Design, Synthesis and Biomedical Applications of Covalent Organic Frameworks. Polymers, 2023, 15, 139.	4.5	6
1177	Synthesis of C3h-symmetric benzotripyrrole derivatives as monomers for organic frameworks. Chemistry of Heterocyclic Compounds, 2022, 58, 764-768.	1.2	0
1178	Nitrogen Abundant Polyimide Covalent Organic Frameworks as Nanotraps toward Uranium Sequestration. , 2023, 1, 813-821.		8
1179	Immobilization of Platinum Nanoparticles on Covalent Organic Frameworkâ€Đerived Carbon for Oxygen Reduction Catalysis. Small Structures, 2023, 4, .	12.0	9
1180	Integrating Bifunctionality and Chemical Stability in Covalent Organic Frameworks via One-Pot Multicomponent Reactions for Solar-Driven H ₂ O ₂ Production. Journal of the American Chemical Society, 2023, 145, 2975-2984.	13.7	71
1181	Converting an amorphous covalent organic polymer to a crystalline covalent organic framework mediated by a repairing agent. Chemical Communications, 2023, 59, 2461-2464.	4.1	4
1182	Ultraâ€Fast Preparation of Largeâ€Area Graphdiyneâ€Based Membranes via Alkynylated Surfaceâ€Modification for Nanofiltration. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5
1183	Guanidine-Based Covalent Organic Frameworks: Cooperation between Cores and Linkers for Chromic Sensing and Efficient CO ₂ Conversion. ACS Applied Materials & Interfaces, 2023, 15, 6902-6911.	8.0	2
1185	Ultramicroporous Covalent Organic Framework Nanosheets with Functionality Pair for Membrane C ₂ H ₂ /C ₂ H ₄ Separation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9

#	Article	IF	CITATIONS
1186	Carbon–Carbon Linked Organic Frameworks: An Explicit Summary and Analysis. Macromolecular Rapid Communications, 2023, 44, .	3.9	3
1187	Donor–Acceptor Covalent Organic Frameworks Films with Ultralow Band Gaps to Enhanced Third-Order Nonlinear Optical Properties. , 2023, 5, 694-703.		10
1188	Integrated interfacial design of covalent organic framework photocatalysts to promote hydrogen evolution from water. Nature Communications, 2023, 14, .	12.8	31
1189	Covalent Organic Frameworks: Recent Progress in Biomedical Applications. ACS Nano, 2023, 17, 1879-1905.	14.6	71
1190	Origins of Offset-Stacking in Porous Frameworks. Journal of Physical Chemistry C, 2023, 127, 2675-2686.	3.1	4
1191	Ultraâ€schnelle Präaration großflähiger Graphdiinâ€basierter Membranen mittels Alkinâ€Oberflähenmodifizierung. Angewandte Chemie, 2023, 135, .	2.0	1
1192	Charge and mass transport mechanisms in two-dimensional covalent organic frameworks (2D COFs) for electrochemical energy storage devices. Energy and Environmental Science, 2023, 16, 889-951.	30.8	29
1193	Ultrathin Hollow Co/N/C Spheres from Hyperâ€Crosslinked Polymers by a New Universal Strategy with Boosted ORR Efficiency. Small, 2023, 19, .	10.0	3
1194	Self-Templated Synthesis of Triphenylene-Based Uniform Hollow Spherical Two-Dimensional Covalent Organic Frameworks for Drug Delivery. Chemistry of Materials, 2023, 35, 1395-1403.	6.7	16
1195	Densityâ€Controlled Metal Nanocluster with Modulated Surface for pHâ€Universal and Robust Water Splitting. Advanced Functional Materials, 2023, 33, .	14.9	11
1196	Rigidâ€Flexible Hybrid Porous Molecular Crystals with Guestâ€Induced Reversible Crystallinity. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
1197	Rigidâ€Flexible Hybrid Porous Molecular Crystals with Guestâ€Induced Reversible Crystallinity. Angewandte Chemie, 0, , .	2.0	0
1198	Application of 2D MXene in Organic Electrode Materials for Rechargeable Batteries: Recent Progress and Perspectives. Advanced Functional Materials, 2023, 33, .	14.9	13
1199	Possibilities and Limitations in Monomer Combinations for Ternary Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 3008-3015.	13.7	6
1200	Role of Intralayer Hydrogen Bonding in the Fast Crystallization of the Hydrazone-Linked Nanoporous Covalent Organic Framework for Catalytic Suzuki–Miyaura Cross-Coupling Reactions. ACS Applied Nano Materials, 2023, 6, 1714-1723.	5.0	5
1201	Palladium nanoparticles-confined pore-engineered urethane-linked thiol-functionalized covalent organic frameworks: a high-performance catalyst for the Suzuki Miyaura cross-coupling reaction. Dalton Transactions, 2023, 52, 2518-2532.	3.3	3
1202	Sulfonated covalent organic framework packed Nafion membrane with high proton conductivity for H ₂ /O ₂ fuel cell applications. Journal of Materials Chemistry A, 2023, 11, 3446-3453.	10.3	10
1203	Covalent Organic Framework Based Lithium–Sulfur Batteries: Materials, Interfaces, and Solidâ€State Electrolytes. Advanced Energy Materials, 2023, 13, .	19.5	71

#	Article	IF	Citations
1204	2D Covalent Organic Frameworks Based on Heteroacene Units. Small, 2023, 19, .	10.0	11
1205	Understanding the electronic pi-system of 2D covalent organic frameworks with Wannier functions. Scientific Reports, 2023, 13, .	3.3	4
1206	Ordered Macro–Microporous Single Crystals of Covalent Organic Frameworks with Efficient Sorption of Iodine. Journal of the American Chemical Society, 2023, 145, 2544-2552.	13.7	44
1207	Integrated Micro Space Electrostatic Field in Aqueous Znâ€lon Battery: Scalable Electrospray Fabrication of Porous Crystalline Anode Coating. Angewandte Chemie, 2023, 135, .	2.0	2
1208	Exploring multifunctional applications of a luminescent covalent triazine polymer in acid vapour sensing, CO ₂ capture, dye removal, and turn-off fluorescence sensing of dichromate ions. Materials Chemistry Frontiers, 2023, 7, 1831-1840.	5.9	3
1209	Phenediamine bridging phthalocyanine-based covalent organic framework polymers used as anode materials for lithium-ion batteries. Physical Chemistry Chemical Physics, 2023, 25, 8050-8063.	2.8	3
1210	Covalent organic frameworks with triazine units for iodine capture <i>via</i> weak molecular interactions. New Journal of Chemistry, 2023, 47, 7642-7647.	2.8	2
1211	One-step synthesis of magnetic covalent organic framework composite for the adsorption of marine toxin okadaic acid. CrystEngComm, 2023, 25, 2456-2462.	2.6	0
1212	Microkinetic insights into the role of catalyst and water activity on the nucleation, growth, and dissolution during COF-5 synthesis. Nanoscale, 2023, 15, 9329-9338.	5.6	2
1213	Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. Nanomaterials, 2023, 13, 855.	4.1	5
1214	Storage and diffusion of CO2 in covalent organic frameworks—A neural network-based molecular dynamics simulation approach. Frontiers in Chemistry, 0, 11, .	3.6	3
1215	Structural Regulation of Thiophene-Based Two-Dimensional Covalent Organic Frameworks toward Highly Efficient Photocatalytic Hydrogen Generation. ACS Applied Materials & Interfaces, 2023, 15, 16794-16800.	8.0	20
1216	An in-situ strategy to construct uracil-conjugated covalent organic frameworks with tunable fluorescence/recognition characteristics for sensitive and selective Mercury(II) detection. Analytica Chimica Acta, 2023, 1252, 341056.	5.4	2
1217	Survey of Recent Advances in Molecular Fluorophores, Unconjugated Polymers, and Emerging Functional Materials Designed for Electrofluorochromic Use. Molecules, 2023, 28, 3225.	3.8	1
1218	Evolution of BODIPY as triplet photosensitizers from homogeneous to heterogeneous: The strategies of functionalization to various forms and their recent applications. Coordination Chemistry Reviews, 2023, 482, 215074.	18.8	27
1219	Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coordination Chemistry Reviews, 2023, 483, 215097.	18.8	61
1220	A review on covalent organic frameworks as adsorbents for organic pollutants. Journal of Cleaner Production, 2023, 400, 136737.	9.3	28
1221	Ultrastable two-dimensional fluorescent conjugated microporous polymers containing pyrene and fluorene units for metal ion sensing and energy storage. European Polymer Journal, 2023, 189, 111980.	5.4	30

#	Article	IF	CITATIONS
1222	Recent advance and applications of covalent organic frameworks based on magnetic solid-phase extraction technology for food safety analysis. TrAC - Trends in Analytical Chemistry, 2023, 162, 117054.	11.4	13
1223	A robust sp2 carbon-conjugated COF for efficient iodine uptake. Separation and Purification Technology, 2023, 312, 123401.	7.9	14
1224	Emerging tetrapyrrole porous organic polymers for chemosensing applications. Coordination Chemistry Reviews, 2023, 482, 215078.	18.8	8
1225	Enhanced hydrophilicity and promoted charge transfer in covalent triazine frameworks/sepiolite complexed via hydrogen bonding for visible-light driven degradation of antibiotics. Applied Clay Science, 2023, 238, 106921.	5.2	3
1226	Imine-linked covalent organic frameworks with controllable morphology. Materials Chemistry and Physics, 2023, 301, 127645.	4.0	3
1227	Covalent organic framework membrane with sub-nano pores for efficient desalination. Journal of Membrane Science, 2023, 675, 121551.	8.2	7
1228	A robust and ultra-high-surface hydrogen-bonded organic framework promoting high-efficiency solid phase microextraction of multiple persistent organic pollutants from beverage and tea. Food Chemistry, 2023, 415, 135790.	8.2	6
1229	A critical review on current urea removal technologies from water: An approach for pollution prevention and resource recovery. Separation and Purification Technology, 2023, 314, 123652.	7.9	10
1230	Catalytic C(sp)-H carboxylation with CO2. Coordination Chemistry Reviews, 2023, 486, 215138.	18.8	4
1231	Barbituric acid derived covalent organic framework and its CNT composite as high-performance adsorbents for organic dye removal. Journal of Environmental Chemical Engineering, 2023, 11, 109890.	6.7	13
1232	Thiadiazole functionalized covalent organic frameworks as oil-based lubricant additives for anti-friction and anti-wear. Tribology International, 2023, 183, 108393.	5.9	14
1233	Green and Fast Strategies for Energyâ€Efficient Preparation of the Covalent Organic Framework TpPaâ€1. Chemistry - A European Journal, 2023, 29, .	3.3	4
1234	Design of confined catalysts and applications in environmental catalysis: Original perspectives and further prospects. Journal of Cleaner Production, 2023, 390, 136125.	9.3	6
1235	Integrated Micro Space Electrostatic Field in Aqueous Znâ€Ion Battery: Scalable Electrospray Fabrication of Porous Crystalline Anode Coating. Angewandte Chemie - International Edition, 2023, 62,	13.8	38
1236	Insights into the CO ₂ Capture Capacity of Covalent Organic Frameworks. ChemPhysChem, 2023, 24, .	2.1	2
1237	Monitoring the Solution Persistence of Porous Coordination Cages with Diffusion NMR Spectroscopy and Cryogenic Transmission Electron Microscopy. Journal of Physical Chemistry C, 2023, 127, 2379-2386.	3.1	3
1238	Pore surface engineering of covalent organic frameworks by simultaneously appending amine group and tailoring pore size for efficient adsorption of diclofenac sodium. Chemical Engineering Journal, 2023, 459, 141561.	12.7	11
1239	Covalent Organic Frameworks: The Risingâ€Star Platforms for the Design of CO ₂ Separation Membranes. Small, 2023, 19, .	10.0	21

#	Article	IF	Citations
1240	Nanomaterials for Molecular Detection and Analysis of Extracellular Vesicles. Nanomaterials, 2023, 13, 524.	4.1	2
1241	Weakly Hydrophilic Imine-Linked Covalent Benzene–Acetylene Frameworks for Photocatalytic H ₂ O ₂ Production in the Two-Phase System. ACS Applied Materials & Interfaces, 2023, 15, 8066-8075.	8.0	19
1242	Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. , 2023, 2, e9120052.		30
1243	Fascinating isomeric covalent organic frameworks. Nanoscale, 2023, 15, 4762-4771.	5.6	8
1244	Improving water transport through <scp>subâ€nanometer</scp> channels by alternating <scp>hydrophilic–hydrophobic</scp> patterns. AICHE Journal, 2023, 69, .	3.6	3
1245	Importance of Precursor Adaptability in the Assembly of Molecular Organic Cages. Journal of Organic Chemistry, 2023, 88, 2113-2121.	3.2	2
1246	Covalent Organic Frameworks for Capacitive Energy Storage: Recent Progress and Technological Challenges. Advanced Materials Technologies, 2023, 8, .	5.8	7
1247	Piperazine-linked metal covalent organic framework-coated fibers for efficient electro-enhanced solid-phase microextraction of chlorophenols. Journal of Chromatography A, 2023, 1692, 463847.	3.7	4
1248	A Fluorinated Covalent Organic Framework with Accelerated Oxygen Transfer Nanochannels for Highâ€Performance Zinc–Air Batteries. Advanced Materials, 2023, 35, .	21.0	14
1249	Chiral covalent organic framework incorporated organic polymer monolithic capillary column for enantioseparations. Journal of Separation Science, 2023, 46, .	2.5	3
1250	Advancing ionomer design to boost interfacial and thin-film proton conductivity via styrene-calix[4]arene-based ionomers. Cell Reports Physical Science, 2023, 4, 101282.	5.6	0
1251	A fully π-conjugated triazine-based 2D covalent organic framework used as metal-free yellow phosphors in white light-emitting diodes. European Polymer Journal, 2023, 187, 111887.	5.4	4
1252	Covalent organic frameworks as electrode materials for rechargeable metalâ€ion batteries. , 2023, 2, 231-259.		14
1253	Environmental impact analysis of surface printing and 3D inkjet printing applications using an imine based covalent organic framework: A life cycle assessment study. Journal of Cleaner Production, 2023, 395, 136381.	9.3	4
1254	Nature-Inspired Pyrylium Cation-Based Vinylene-Linked Two-Dimensional Covalent Organic Framework for Efficient Sunlight-Driven Water Purification. Chemistry of Materials, 2023, 35, 1594-1600.	6.7	10
1255	Hierarchically Macro–Microporous Covalent Organic Frameworks for Efficient Proton Conduction. Advanced Functional Materials, 2023, 33, .	14.9	19
1256	Recognition of "Oxygen-/Water-Fueled―PET-RAFT Protocol Matched to Covalent Organic Frameworks. ACS Catalysis, 2023, 13, 2948-2956.	11.2	8
1257	Designed Synthesis of Three-Dimensional Covalent Organic Frameworks: A Mini Review. Polymers, 2023, 15, 887.	4.5	5

#	Article	IF	CITATIONS
1258	Rich nitrogen atoms in an azine covalent organic framework for gas uptake. New Journal of Chemistry, 2023, 47, 5160-5163.	2.8	3
1259	Porous Organic Frameworks Constructed by the Synergetic Effect of Covalent Bonds and Hydrogen Bonds for the Selective Identification and Detection of Explosives. ACS Applied Materials & Interfaces, 2023, 15, 9970-9977.	8.0	10
1260	Advanced porous adsorbents for radionuclides elimination. EnergyChem, 2023, 5, 100101.	19.1	84
1261	Construction of Covalent Organic Framework Capsule-Based Nanoreactor for Sensitive Glucose Detection. ACS Applied Materials & Interfaces, 2023, 15, 10158-10165.	8.0	15
1262	Self-assembled, Porous and Molecularly Imprinted Supramolecular Structures in Sensing. , 2023, , 165-208.		0
1263	Inverse Gas Chromatography Demonstrates the Crystallinity-Dependent Physicochemical Properties of Two-Dimensional Covalent Organic Framework Stationary Phases. Chemistry of Materials, 2023, 35, 1691-1701.	6.7	13
1264	Temperature-Dependent Preparation of Hydrogen-Bond Organic Frameworks: Ultrathin and Stable Nanosheets for Fluorescent Sensing toward Uranyl. Crystal Growth and Design, 2023, 23, 1840-1847.	3.0	4
1265	Visible-light photoredox catalysis with organic polymers. Chemical Physics Reviews, 2023, 4, .	5.7	3
1266	Waterâ€Induced Singleâ€Crystal to Singleâ€Crystal Transformation of Ionic Hydrogenâ€Bonded Organic Frameworks with Enhanced Proton Conductivity. Chemistry - A European Journal, 2023, 29, .	3.3	3
1267	Tetrazole-functionalized benzoquinoline-linked covalent organic frameworks with efficient performance for electrocatalytic H ₂ O ₂ production and Li–S batteries. Materials Chemistry Frontiers, 2023, 7, 1650-1658.	5.9	12
1268	Insertion of CO ₂ in metal ion-doped two-dimensional covalent organic frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	5
1269	Interfacial engineering of perfluoroalkyl functionalized covalent organic framework achieved ultra-long cycled and dendrite-free lithium anodes. Nano Research, 2023, 16, 9289-9298.	10.4	7
1270	Room temperature in-situ preparation of hydrazine-linked covalent organic frameworks coated capillaries for separation and determination of polycyclic aromatic hydrocarbons. Frontiers of Chemical Science and Engineering, 0, , .	4.4	1
1271	二维sp2碳å±ä»·æœ‰æœºæ¡†æž¶åŠé«~æ•^å‰å,¬åŒ–å^¶æ°¢. Science China Materials, 2023, 66, 2283-2	269.	13
1272	Construction of Covalent Organic Frameworks via a Visible-Light-Activated Photocatalytic Multicomponent Reaction. Journal of the American Chemical Society, 2023, 145, 4951-4956.	13.7	37
1273	Rationally Designed Ionic Covalent Organic Networks (iCONs) with Efficient Antimicrobial Activities. ACS Macro Letters, 2023, 12, 376-381.	4.8	5
1274	Nanopolyhybrids: Materials, Engineering Designs, and Advances in Thermal Management. Small Methods, 2023, 7, .	8.6	7
1275	Hierarchical Microtubular Covalent Organic Frameworks Achieved by COFâ€toâ€COF Transformation. Angewandte Chemie, 2023, 135, .	2.0	2

#	Article	IF	CITATIONS
1276	Hierarchical Microtubular Covalent Organic Frameworks Achieved by COFâ€ŧo OF Transformation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	14
1277	Facile and large-scale synthesis of trifluoromethyl-grafted covalent organic framework for efficient microextraction and ultrasensitive determination of benzoylurea insecticides. Chemical Engineering Journal, 2023, 462, 142220.	12.7	10
1278	Covalent Organic Frameworks: From Structures to Applications. Polymers, 2023, 15, 1279.	4.5	16
1279	Engineering Single Cu Sites into Covalent Organic Framework for Selective Photocatalytic CO ₂ Reduction. Small, 2023, 19, .	10.0	20
1280	An iodide-containing covalent organic framework for enhanced radiotherapy. Chemical Science, 2023, 14, 3642-3651.	7.4	8
1281	Designed sulfonate-based covalent organic frameworks with dual functions of recognition and encapsulation. Journal of Materials Chemistry A, 2023, 11, 7539-7544.	10.3	5
1282	Construction of Multiform Hollow‣tructured Covalent Organic Frameworks via a Facile and Universal Strategy for Enhanced Sonodynamic Cancer Therapy. Angewandte Chemie, 2023, 135, .	2.0	2
1283	C ₃ N ₂ : the missing part of highly stable porous graphitic carbon nitride semiconductors. Nanoscale Horizons, 2023, 8, 662-673.	8.0	5
1284	Construction of Multiform Hollow‣tructured Covalent Organic Frameworks via a Facile and Universal Strategy for Enhanced Sonodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2023, 62, .	13.8	13
1285	Porphyrin-Based Covalent Organic Frameworks Anchoring Au Single Atoms for Photocatalytic Nitrogen Fixation. Journal of the American Chemical Society, 2023, 145, 6057-6066.	13.7	63
1286	Periodic Mesoporous Organosilica Nanomaterials with Unconventional Structures and Properties. Chemistry - A European Journal, 2023, 29, .	3.3	4
1287	Covalent Organic Frameworks for Atmospheric Water Harvesting. Advanced Materials, 2023, 35, .	21.0	18
1288	Postâ€Nickelation of a Crystalline Trinuclear Copper Organic Framework for Synergistic Photocatalytic Carbon Dioxide Conversion. Angewandte Chemie - International Edition, 2023, 62, .	13.8	16
1289	Postâ€Nickelation of a Crystalline Trinuclear Copper Organic Framework for Synergistic Photocatalytic Carbon Dioxide Conversion. Angewandte Chemie, 2023, 135, .	2.0	0
1290	General Strategy for Incorporation of Functional Group Handles into Covalent Organic Frameworks via the Ugi Reaction. Journal of the American Chemical Society, 2023, 145, 6230-6239.	13.7	18
1291	Reticular Chemistryâ€Enabled Sonodynamic Activity of Covalent Organic Frameworks for Nanodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2023, 62, .	13.8	16
1292	Reticular Chemistryâ€Enabled Sonodynamic Activity of Covalent Organic Frameworks for Nanodynamic Cancer Therapy. Angewandte Chemie, 2023, 135, .	2.0	4
1293	Covalent Organic Frameworks with Molecular Electronic Modulation as Metalâ€Free Electrocatalysts for Efficient Hydrogen Peroxide Production. Small Structures, 2023, 4, .	12.0	7
#	Article	IF	CITATIONS
------	---	------	-----------
1295	Covalent Organic Framework as a Metal-Free Photocatalyst for Dye Degradation and Radioactive Iodine Adsorption. Langmuir, 2023, 39, 4071-4081.	3.5	13
1296	Bottom-Up Synthesis of Covalent Organic Frameworks with Quasi-Three-Dimensional Integrated Architecture via Interlayer Cross-Linking. Journal of the American Chemical Society, 2023, 145, 6507-6515.	13.7	14
1297	Application and Research Progress of Covalent Organic Frameworks for Solid-State Electrolytes in Lithium Metal Batteries. Materials, 2023, 16, 2240.	2.9	3
1298	2D β-ketoenamine-linked triazine covalent organic framework photocatalysis for selective oxidation of sulfides. Sustainable Energy and Fuels, 2023, 7, 1963-1973.	4.9	5
1299	Recent advances in covalent organic frameworks (COFs) for wound healing and antimicrobial applications. RSC Advances, 2023, 13, 8136-8152.	3.6	11
1300	Absorbing stress via molecular crumple zones: Strain engineering flexibility into the rigid UiO-66 material. Matter, 2023, 6, 1435-1462.	10.0	2
1301	Van der Waals force modulation towards liquid processable covalent organic frameworks. , 2023, 1, 100008.		2
1302	Coordination directed metal covalent organic frameworks. Materials Chemistry Frontiers, 2023, 7, 2995-3010.	5.9	11
1303	Three-Component Donorâ^'π–Acceptor Covalent–Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 0, , .	13.7	12
1304	Research Progress on Synthesis and Application of MOF/COF Composites. Material Sciences, 2023, 13, 103-110.	0.0	1
1306	Facile Microwave-Assisted Synthesis of 2D Imine-Linked Covalent Organic Frameworks for Exceptional Iodine Capture. , 2023, 1, 233-240.		11
1307	ReDD-COFFEE: a ready-to-use database of covalent organic framework structures and accurate force fields to enable high-throughput screenings. Journal of Materials Chemistry A, 2023, 11, 7468-7487.	10.3	7
1308	Cu@CTF as an efficient heterogeneous catalyst in click reaction between azide and alkyne towards disubstituted triazoles. Journal of Molecular Structure, 2023, 1284, 135350.	3.6	4
1309	Ultrathin ionic COF Membrane via Polyelectrolyteâ€Mediated Assembly for Efficient CO ₂ Separation. Advanced Functional Materials, 2023, 33, .	14.9	21
1310	Smart Solvent-Responsive Covalent Organic Framework Membranes with Self-regulating Pore Size. ACS Applied Polymer Materials, 2023, 5, 3043-3054.	4.4	6
1311	Quantum Chemistry Insight into the Multifaceted Structural Properties of Two-Dimensional Covalent Organic Frameworks. Chemistry of Materials, 2023, 35, 2820-2826.	6.7	1
1312	Construction of rigid amine-linked three-dimensional covalent organic frameworks for selectively capturing carbon dioxide. Chemical Communications, 2023, 59, 4911-4914.	4.1	4
1313	Hydrogen-bonded organic framework for red light-mediated photocatalysis. Nano Research, 2023, 16, 8809-8816.	10.4	5

#	Article	IF	CITATIONS
1314	Twoâ€dimensional Supramolecular Polymers Based on Selectively Recognized Aromatic Cationâ€i€ and Donorâ€Acceptor Motifs for Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
1315	Twoâ€dimensional Supramolecular Polymers Based on Selectively Recognized Aromatic Cationâ€ï€ and Donorâ€Acceptor Motifs for Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2023, 135, .	2.0	1
1316	The introduction of a base component to porous organic salts and their CO ₂ storage capability. CrystEngComm, 2023, 25, 2321-2325.	2.6	2
1317	Nano-Sized Channels Resulting from the Packing of Discrete 3d–4f Metal Complexes in Crystals. Crystal Growth and Design, 0, , .	3.0	0
1318	Stable Immobilization of Nickel Ions on Covalent Organic Frameworks for Panchromatic Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2023, 135, .	2.0	3
1319	Stable Immobilization of Nickel Ions on Covalent Organic Frameworks for Panchromatic Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2023, 62, .	13.8	23
1320	Synthesis of Poreâ€Wallâ€Modified Stable COF/TiO ₂ Heterostructures via Siteâ€Specific Nucleation for an Enhanced Photoreduction of Carbon Dioxide. Advanced Science, 2023, 10, .	11.2	9
1321	Recent Developments in the Design and Fabrication of Electrochemical Biosensors Using Functional Materials and Molecules. Biosensors, 2023, 13, 424.	4.7	15
1322	One-Pot synthesis of flavones catalyzed by an Au-mediated covalent organic framework. Journal of Colloid and Interface Science, 2023, 642, 283-291.	9.4	2
1323	A "one-step―approach to the highly efficient synthesis of lactide through the confinement catalysis of covalent organic frameworks. Green Chemistry, 2023, 25, 3103-3110.	9.0	5
1324	Donor–Acceptor Covalent–Organic Frameworks Based on Phthalimide as an Electron-Deficient Unit for Efficient Visible-Light Catalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2023, 15, 20310-20316.	8.0	6
1325	A sulfonate-functionalized covalent organic framework for record-high adsorption and effective separation of organic dyes. Chemical Engineering Journal, 2023, 464, 142706.	12.7	30
1327	Review on Healthcare Biosensing Nanomaterials. ACS Applied Nano Materials, 2023, 6, 5042-5074.	5.0	22
1328	Carbazolyleneâ€Ethynylene Macrocycle based Conductive Covalent Organic Frameworks. Angewandte Chemie, 0, , .	2.0	0
1329	Carbazolyleneâ€Ethynylene Macrocycle based Conductive Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	13.8	7
1330	Recent developments in open tubular liquid chromatography and electrochromatography from 2019–2021. TrAC - Trends in Analytical Chemistry, 2023, 164, 117045.	11.4	4
1331	Interface chemistry of conductive crystalline porous thin films. Trends in Chemistry, 2023, 5, 588-604.	8.5	3
1332	Oriented Covalent Organic Framework Film Synthesis from Azomethine Compounds. Advanced Materials Interfaces, 2023, 10, .	3.7	1

#	Article	IF	CITATIONS
1333	Electrostatic Design of the Nanoscale Internal Surfaces of Porous Covalent Organic Frameworks. Nano Letters, 0, , .	9.1	0
1334	Review and Perspectives of β-Keto-enamine-Based Covalent Organic Framework for Photocatalytic Hydrogen Evolution. Energy & Fuels, 2023, 37, 6323-6347.	5.1	14
1335	Integrating Tetrathiafulvalene and Nickelâ€Bis(dithiolene) Units into Donorâ€Acceptor Covalent Organic Frameworks for Stable and Efficient Photothermal Conversion. Chemistry - A European Journal, 2023, 29, .	3.3	4
1336	Pore-in-Pore Engineering in a Covalent Organic Framework Membrane for Gas Separation. ACS Nano, 2023, 17, 7584-7594.	14.6	17
1337	Selective oxidation of amines powered with green light and oxygen over an anthraquinone covalent organic framework. Journal of Colloid and Interface Science, 2023, 643, 340-349.	9.4	5
1338	Smart superwetting COF membrane for controllable oil/water separation. Separation and Purification Technology, 2023, 317, 123825.	7.9	20
1339	Covalent organic framework atropisomers with multiple gas-triggered structural flexibilities. Nature Materials, 2023, 22, 636-643.	27.5	46
1340	Growth of single-crystal imine-linked covalent organic frameworks using amphiphilic amino-acid derivatives in water. Nature Chemistry, 2023, 15, 841-847.	13.6	37
1341	Efficient and stable perovskite solar cells by build-in π-columns and ionic interfaces in covalent organic frameworks. Nano Research, 2023, 16, 9387-9397.	10.4	2
1342	Preliminary exploration of the dye/salt separation performance of 2D and 3D covalent organic frameworks/nylon 6 membranes prepared by layer-by-layer strategy. Chemical Engineering Research and Design, 2023, , .	5.6	0
1343	Separation of C18 Fatty Acid Esters and Fatty Acids Derived from Vegetable Oils Using Nanometer-Sized Covalent Organic Frameworks Incorporated in Polyepoxy Membranes. ACS Applied Nano Materials, 2023, 6, 6715-6725.	5.0	1
1344	An Ionâ€Channelâ€Restructured Zwitterionic Covalent Organic Framework Solid Electrolyte for Allâ€Solidâ€State Lithiumâ€Metal Batteries. Advanced Materials, 2023, 35, .	21.0	17
1345	A Brickâ€Wall Topological 2D Covalent Organic Framework Constructed from an Hâ€Shaped "Twoâ€inâ€One Monomer. Chemistry - A European Journal, 2023, 29, .	― 3.3	0
1346	The Role of Superadsorbent Polymers on Covalent Organic Frameworksâ€Based Solid Electrolytes: Investigation of the Ionic Conductivity and Relaxation. Advanced Materials Interfaces, 2023, 10, .	3.7	2
1347	Covalent organic frameworks in heterogeneous catalysis: recent advances and future perspective. Materials Chemistry Frontiers, 2023, 7, 3298-3331.	5.9	16
1348	Organic flux synthesis of covalent organic frameworks. CheM, 2023, 9, 2178-2193.	11.7	13
1349	Investigating the function and design of molecular materials through terahertz vibrational spectroscopy. Nature Reviews Chemistry, 2023, 7, 480-495.	30.2	10
1350	Porphyrin-Based Covalent Organic Frameworks: Design, Synthesis, Photoelectric Conversion Mechanism, and Applications. Biomimetics, 2023, 8, 171.	3.3	4

# 1351	ARTICLE Synthesis of size-controllable urchin-like covalent organic frameworks for adsorption of nitrophenols. Microporous and Mesoporous Materials, 2023, 357, 112624.	IF 4.4	CITATIONS 5
1352	Boosting hydrogen peroxide production via establishment and reconstruction of singleâ€metal sites in covalent organic frameworks. SusMat, 2023, 3, 379-389.	14.9	7
1353	Postmodification of an Amine-Functionalized Covalent Organic Framework for Enantioselective Adsorption of Tyrosine. ACS Applied Materials & Interfaces, 2023, 15, 24836-24845.	8.0	7
1354	Modulating the Interlayer Stacking of Covalent Organic Frameworks for Efficient Acetylene Separation. Small, 2023, 19, .	10.0	9
1355	Synthesis and characterization of azodianiline covalent organic frameworks intended for energy storage. Journal of Molecular Structure, 2023, 1286, 135647.	3.6	2
1356	Covalent Organic Frameworks for Energy Conversion in Photocatalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	41
1357	Metal- and Carbon-Based Nano-frameworks as Catalysts for Supercapacitance and Fuel Industry. , 2023, , 2081-2109.		0
1358	Synergistic effect of double Schottky potential well and oxygen vacancy for enhanced plasmonic photocatalytic U(VI) reduction. Journal of Hazardous Materials, 2023, 455, 131581.	12.4	5
1359	Magnetic Covalent Organic Framework Composites for Wastewater Remediation. Small, 2023, 19, .	10.0	25
1360	On Water Growth of Continuous Thin Films of <scp>Twoâ€Dimensional</scp> Covalent Organic Frameworks with Large <scp>Singleâ€Crystal</scp> Domains. Chinese Journal of Chemistry, 2023, 41, 2425-2431.	4.9	0
1361	Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis. Nanoscale, 2023, 15, 9242-9255.	5.6	12
1362	Supercritical CO ₂ Directionalâ€Assisted Synthesis of Lowâ€Dimensional Materials for Functional Applications. Small, 2023, 19, .	10.0	4
1363	Covalent Organic Frameworks for Energy Conversion in Photocatalysis. Angewandte Chemie, 2023, 135, .	2.0	1
1364	Covalent organic framework: A state-of-the-art review of electrochemical sensing applications. Talanta, 2023, 260, 124613.	5.5	14
1365	Gold nanocluster-confined covalent organic frameworks as bifunctional probes for electrochemiluminescence and colorimetric dual-response sensing of Pb2+. Journal of Hazardous Materials, 2023, 457, 131558.	12.4	16
1366	Dual Microenvironment Modulation of Pd Nanoparticles in Covalent Organic Frameworks for Semihydrogenation of Alkynes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
1367	Synthesis of sp ² Carbonâ€Conjugated Covalent Organic Framework Thinâ€Films via Copperâ€Surfaceâ€Mediated Knoevenagel Polycondensation. Small, 2023, 19, .	10.0	7
1368	Nanoarchitectonics of Hollow Covalent Organic Frameworks: Synthesis and Applications. ACS Nano, 2023, 17, 8918-8934.	14.6	28

#	Article	IF	Citations
1369	Synthesis and <i>In Situ</i> Monitoring of Mechanochemical Preparation of Highly Proton Conductive Hydrogen-Bonded Metal Phosphonates. ACS Omega, 2023, 8, 16687-16693.	3.5	3
1370	Multifunctionalized Covalent Organic Frameworks for Broad-Spectrum Extraction and Ultrasensitive Analysis of Per- and Polyfluoroalkyl Substances. Analytical Chemistry, 2023, 95, 7770-7778.	6.5	8
1371	Ionic Dye Based Covalent Organic Frameworks for Photothermal Water Evaporation. Advanced Functional Materials, 2023, 33, .	14.9	7
1372	Crystallization of Dimensional Isomers in Covalent Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 11276-11281.	13.7	25
1373	Recent advances on covalent organic frameworks (COFs) as photocatalysts: different strategies for enhancing hydrogen generation. Chemical Communications, 2023, 59, 7302-7320.	4.1	10
1374	A Thiazoleâ€linked Covalent Organic Framework for Lithiumâ€Sulphur Batteries. Angewandte Chemie - International Edition, 2023, 62, .	13.8	21
1375	A Thiazoleâ€ l inked Covalent Organic Framework for Lithiumâ€ S ulphur Batteries. Angewandte Chemie, 2023, 135, .	2.0	0
1376	Topochemical polymerization of hydrogen-bonded organic framework for supporting ultrafine palladium nanoparticles. Science China Chemistry, 0, , .	8.2	0
1377	Z-scheme heterojunction of chemically integrated COF-366-Co/UiO-66-NH2 MOFs nanocomposites for selective production of CO via CO2 solar-drive photoreduction. Catalysis Today, 2023, 421, 114218.	4.4	3
1378	Photochemical Synthesis of Covalent Organic Frameworks. ChemCatChem, 2023, 15, .	3.7	1
1379	Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis. Nature Communications, 2023, 14, .	12.8	53
1380	Lanthanide Functionalized Covalent Organic Frameworks Hybrid Materials for Luminescence Responsive Chemical Sensing. Chemistry - A European Journal, 2023, 29, .	3.3	2
1381	Electrochemical/colorimetric dual-mode sensing strategy for cardiac troponin I detection based on zirconium nitride functionalized covalent organic frameworks. Sensors and Actuators B: Chemical, 2023, 391, 134026.	7.8	4
1382	Enzyme-immobilized spherical covalent organic frameworks as nanoreactors for heterogeneous biocatalysis. CrystEngComm, 2023, 25, 3604-3608.	2.6	0
1384	Imineâ€Linked Porous Organic Polymer Gel and Immobilization of Copper(II): Easy Synthesis and Excellent Catalyst for Huisgen [3+2] Cycloaddition Reactions. ChemistrySelect, 2023, 8, .	1.5	0
1385	Beyond Solvothermal: Alternative Synthetic Methods for Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10
1386	Beyond Solvothermal: Alternative Synthetic Methods for Covalent Organic Frameworks. Angewandte Chemie, 2023, 135, .	2.0	0
1387	Synthesis of Siloxane Derivatives of Phenylboronic Acids of Different Structures. Journal of Organic Chemistry, 0, , .	3.2	0

#	Article	IF	CITATIONS
1388	Alkynyl Boosted Highâ€Performance Lithium Storage and Mechanism in Covalent Phenanthroline Framework. Angewandte Chemie - International Edition, 2023, 62, .	13.8	28
1389	Alkynyl Boosted Highâ€Performance Lithium Storage and Mechanism in Covalent Phenanthroline Framework. Angewandte Chemie, 2023, 135, .	2.0	2
1390	Monodisperse covalent organic nanosheets by in-situ oxidation method for efficient ion/molecule separation. Journal of Membrane Science, 2023, 683, 121783.	8.2	0
1391	Outstanding Humidity Chemiresistors Based on Imine-Linked Covalent Organic Framework Films for Human Respiration Monitoring. Nano-Micro Letters, 2023, 15, .	27.0	15
1392	Structure determination of a low-crystallinity covalent organic framework by three-dimensional electron diffraction. Communications Chemistry, 2023, 6, .	4.5	2
1393	Covalent organic frameworks (COFs) core@shell nanohybrids: Novel nanomaterial support towards environmental sustainability applications. Environmental Research, 2023, 232, 116353.	7.5	2
1394	A porous metal-organic cage liquid for sustainable CO2 conversion reactions. Nature Communications, 2023, 14, .	12.8	19
1395	Harnessing Self-Repairing and Crystallization Processes for Effective Enzyme Encapsulation in Covalent Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 13469-13475.	13.7	17
1396	Aminalâ€Linked Covalent Organic Frameworks with hxlâ€a and Quasiâ€hcb Topologies for Efficient C ₂ H ₆ /C ₂ H ₄ Separation. Small, 2023, 19, .	10.0	4
1397	Pore partition in two-dimensional covalent organic frameworks. Nature Communications, 2023, 14, .	12.8	23
1398	Siteâ€5elective Synthesis and Concurrent Immobilization of Imineâ€Based Covalent Organic Frameworks on Electrodes Using an Electrogenerated Acid. Angewandte Chemie, 0, , .	2.0	0
1399	Design and Synthesis of Porous Organic Polymers: Promising Catalysts for Lignocellulose Conversion to 5-Hydroxymethylfurfural and Derivates. Polymers, 2023, 15, 2630.	4.5	0
1400	Porous Organic Polymersâ€Based Singleâ€Atom Catalysts for Sustainable Energyâ€Related Electrocatalysis. Advanced Energy Materials, 2023, 13, .	19.5	17
1401	Siteâ€Selective Synthesis and Concurrent Immobilization of Imineâ€Based Covalent Organic Frameworks on Electrodes Using an Electrogenerated Acid. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
1402	Covalent Organic Frameworks (COFs) for heterogeneous catalysis: Recent trends in design and synthesis with structure-activity relationship. Materials Today, 2023, 67, 229-255.	14.2	13
1403	Hazardous nitroaromatic explosives detection by emerging porous solid sensors. Coordination Chemistry Reviews, 2023, 492, 215279.	18.8	4
1404	Polypyrene Porous Organic Framework for Efficiently Capturing Electron Specialty Gases. ACS Applied Materials & amp; Interfaces, 2023, 15, 29468-29477.	8.0	4
1405	State of the art and prospectives of heterogeneous photocatalysts based on metal–organic frameworks (MOFs): design, modification strategies, and their applications and mechanisms in photodegradation, water splitting, and CO ₂ reduction. Catalysis Science and Technology, 2023. 13. 4285-4347.	4.1	5

#	Article	IF	CITATIONS
1406	Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. Journal of the American Chemical Society, 2023, 145, 13494-13513.	13.7	22
1407	Nitrogen-Rich Porous Organic Polymers from an Irreversible Amine–Epoxy Reaction for Pd Nanocatalyst Carrier. Molecules, 2023, 28, 4731.	3.8	1
1408	Facile fabrication of hydrophobic covalent organic framework decorated melamine sponge for efficient separation of immiscible oil-water mixture and water-in-oil emulsion. Journal of Environmental Chemical Engineering, 2023, 11, 110337.	6.7	4
1411	Dynamic polyiodide anions formation in cationic covalent organic framework for efficient iodine capture. Chemical Engineering Journal, 2023, 470, 144211.	12.7	1
1412	New Andersonâ€Based Polyoxometalate Covalent Organic Frameworks as Electrodes for Energy Storage Boosted Through Ketoâ€Enol Tautomerization. Angewandte Chemie, 0, , .	2.0	0
1413	Metal-Organic Frameworks: A Toolbox for Multifunctional Pulmonary Applications. , 2023, , 369-398.		1
1414	Strategic design of covalent organic frameworks (COFs) for photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2023, 11, 14489-14538.	10.3	13
1415	New Andersonâ€Based Polyoxometalate Covalent Organic Frameworks as Electrodes for Energy Storage Boosted Through Ketoâ€Enol Tautomerization. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
1416	Amorphous tetrazine–triazine-functionalized covalent organic framework for adsorption and removal of dyes. New Journal of Chemistry, 2023, 47, 13676-13686.	2.8	4
1417	Nanoporous Fluorinated Covalent Organic Framework for Efficient C ₂ H ₂ /CO ₂ Separation with High C ₂ H ₂ Uptake. ACS Applied Nano Materials, 2023, 6, 12124-12131.	5.0	4
1418	Covalent organic frameworks embedding single cadmium sites for efficient carboxylative cyclization of CO ₂ with propargylic amines. Green Chemistry, 2023, 25, 5557-5565.	9.0	3
1419	Construction of a new 2D coral-like covalent organic framework as Cul nanoparticles carrier for the preparation of diverse triazoles. Arabian Journal of Chemistry, 2023, 16, 105090.	4.9	2
1420	Emerging conjugated polymers for heterogeneous photocatalytic chemical transformation. Chemical Communications, 2023, 59, 9167-9181.	4.1	3
1421	Palladium-Nanoparticle-Decorated Covalent Organic Framework Nanosheets for Effective Hydrogen Gas Sensors. ACS Applied Nano Materials, 2023, 6, 10960-10966.	5.0	7
1422	Beyond the Status Quo: Density Functional Tight Binding and Neural Network Potentials as a Versatile Simulation Strategy to Characterize Host–Guest Interactions in Metal- and Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2023, 14, 6018-6027.	4.6	3
1423	Green Synthesis of Biomassâ€Based Fluorescent Carbon Dots for the detection and adsorption of Fe (III). ChemistrySelect, 2023, 8, .	1.5	1
1424	Covalent organic frameworks as promising materials: Review on synthetic strategies, topology and application towards supercapacitors. Journal of Energy Storage, 2023, 71, 108006.	8.1	5
1425	BiOBr/COF S-scheme photocatalyst for H2O2 production via concerted two-electron pathway. Journal of Materials Science and Technology, 2023, 166, 241-249.	10.7	12

#	Article	IF	CITATIONS
1427	Quasi-Three-Dimensional Cyclotriphosphazene-Based Covalent Organic Framework Nanosheet for Efficient Oxygen Reduction. Nano-Micro Letters, 2023, 15, .	27.0	12
1428	Enabling Ultrahigh Surface Area of Covalentlyâ€linked Organic Framework for Boosted CO ₂ Capture: An Air Liquid Interfacial Plasma as Postâ€furnishing Protocol. Chemistry - A European Journal, 2023, 29, .	3.3	1
1429	Ligand regulation strategy of COF-based photocatalyst for ROS-mediated RAFT polymerization. Polymer Chemistry, 2023, 14, 2291-2298.	3.9	0
1430	Catalytic Linkage Engineering of Covalent Organic Frameworks for the Oxygen Reduction Reaction. Angewandte Chemie, 2023, 135, .	2.0	4
1431	Sulfonic acid functionalized covalent organic frameworks for lithium-sulfur battery separator and oxygen evolution electrocatalyst. Journal of Colloid and Interface Science, 2023, 645, 146-153.	9.4	6
1432	Catalytic Linkage Engineering of Covalent Organic Frameworks for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10
1433	Benzimidazole-based covalent organic framework embedding single-atom Pt sites for visible-light-driven photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2023, 48, 137-149.	14.0	12
1434	Dual Microenvironment Modulation of Pd Nanoparticles in Covalent Organic Frameworks for Semihydrogenation of Alkynes. Angewandte Chemie, 2023, 135, .	2.0	2
1435	Porosity as a Design Element for Developing Catalytic Molecular Materials for Electrochemical and Photochemical Carbon Dioxide Reduction. Advanced Materials, 2023, 35, .	21.0	4
1436	Rational design of covalent organic frameworks with high capacity and stability as a lithium-ion battery cathode. Chemical Communications, 2023, 59, 6853-6856.	4.1	3
1437	Synthesis of tetrahydrobenzo[a]xanthenâ€11â€ones using a highâ€performance catalyst based on Fe ₃ O ₄ /MCMâ€41/covalent organic polymer decorated with gold nanoparticles. Applied Organometallic Chemistry, 2023, 37, .	3.5	0
1438	Molecular design of covalent organic frameworks for seawater desalination: A state-of-the-art review. CheM, 2023, 9, 1413-1451.	11.7	14
1439	Self-assembly of three-component bolaform giant surfactants with branched architectures. Giant, 2023, 15, 100165.	5.1	3
1440	Nanoarchitectonics of magnetic covalent organic framework with sulfonic acid tags for catalytic preparation of triazolo quinazolinones and 4H-pyrimidobenzothiazoles. Journal of Solid State Chemistry, 2023, 324, 124119.	2.9	3
1441	Impact of the Crystallinity of Covalent Organic Frameworks on Photocatalytic Hydrogen Evolution. Crystal Growth and Design, 2023, 23, 4701-4719.	3.0	7
1442	è§å‰ä٫‰ç»´å±ä»∙有机框架的ç"究进展. Chinese Science Bulletin, 2023, , .	0.7	0
1443	Construction of covalent organic frameworks from nanospheres for Cu ²⁺ detection. CrystEngComm, 2023, 25, 3598-3603.	2.6	0
1444	Unveiling the multifaceted properties of a 3d covalent-organic framework: Pressure-induced phase transition, negative linear compressibility and auxeticity. Computational Materials Science, 2023, 227, 112275.	3.0	2

#	Article	IF	CITATIONS
1445	Metal-free 3D donor–acceptor COF with low exciton binding for solar fuel production based on CO ₂ reduction. Journal of Materials Chemistry A, 2023, 11, 13615-13622.	10.3	6
1446	Polymer Semiconductors: Synthesis, Processing, and Applications. Chemical Reviews, 2023, 123, 7421-7497.	47.7	65
1447	Construction of dense H-bond acceptors in the channels of covalent organic frameworks for proton conduction. Journal of Materials Chemistry A, 2023, 11, 13965-13970.	10.3	8
1449	Natural Ellagic Acid-Derived Nanoporous Organic Polymers for CO ₂ and Organic Dye Adsorption. ACS Applied Nano Materials, 2023, 6, 12330-12337.	5.0	3
1450	Covalent Triazine Framework Films through In‣itu Growth for Photocatalytic Hydrogen Evolution. ChemSusChem, 2023, 16, .	6.8	0
1451	Atomistic design of two-dimensional covalent organic frameworks with high thermoelectric performance. Journal of Materials Chemistry A, 2023, 11, 15821-15832.	10.3	0
1452	A benzimidazole-linked bimetallic phthalocyanine–porphyrin covalent organic framework synergistically promotes CO ₂ electroreduction. Journal of Materials Chemistry A, 2023, 11, 15732-15738.	10.3	7
1453	Recent advances in covalent organic polymersâ€based thin films as memory devices. Journal of Polymer Science, 0, , .	3.8	9
1454	Photocatalytic applications and modification methods of two-dimensional nanomaterials: a review. Tungsten, 2024, 6, 77-113.	4.8	8
1455	Covalent organic framework-derived fluorine, nitrogen dual-doped carbon as metal-free bifunctional oxygen electrocatalysts. Journal of Colloid and Interface Science, 2023, 650, 275-283.	9.4	7
1456	Enhanced visible light-driven CO2 reduction activity induced by Z-scheme heterojunction photocatalyst C60/TpPa (COF). Applied Catalysis A: General, 2023, 663, 119320.	4.3	0
1458	Covalent triazine frameworks for advanced energy storage: challenges and new opportunities. Energy and Environmental Science, 2023, 16, 3181-3213.	30.8	17
1459	Hydrogen-bonded nickel(II)-organosulfonate framework: Thermal expansion behavior, proton conduction, and magnetic properties. Journal of Molecular Structure, 2023, 1292, 136131.	3.6	4
1461	Research progress of the combination of COFs materials with food safety detection. Food Chemistry, 2023, 429, 136801.	8.2	5
1462	Minute and Large-Scale Synthesis of Covalent-Organic Frameworks in Water at Room Temperature by a Two-Step Dissolution–Precipitation Method. Chemistry of Materials, 2023, 35, 5648-5656.	6.7	3
1463	Metal organic framework MOF-808-based solid-state electrolytes for lithium-ion batteries. New Journal of Chemistry, 0, , .	2.8	2
1464	Construction of Crystalline Nitrone-Linked Covalent Organic Frameworks Via Kröhnke Oxidation. Journal of the American Chemical Society, 2023, 145, 15465-15472.	13.7	29
1465	Fabrication of zwitterionic magnetic microporous organic network for efficient extraction of fluoroquinolone antibiotics from meat samples. Food Chemistry, 2023, 429, 136808.	8.2	4

#	Article	IF	Citations
1466	Confining Ti-oxo clusters in covalent organic framework micropores for photocatalytic reduction of the dominant uranium species in seawater. CheM, 2023, 9, 3172-3184.	11.7	25
1467	Adjusting the Stacking Model of Two-Dimensional Covalent Organic Frameworks for Volatile Acid Sensing via Spatial Effects. ACS Applied Materials & Interfaces, 2023, 15, 35350-35357.	8.0	2
1468	EDOT-Decorated Covalent Organic Polymers as Versatile Metal-Free Photocatalysts for Organic Transformations. ACS Catalysis, 2023, 13, 9845-9856.	11.2	7
1469	A novel difunctional COF-loaded peptide Au nanocluster probe and its application to molecular spectral determination of trace Cd2+. Microchemical Journal, 2023, 193, 109067.	4.5	0
1470	Three dimensional cyclic trinuclear units based metal–covalent organic frameworks for electrochemical CO ₂ RR. Chemical Communications, 2023, 59, 9615-9617.	4.1	3
1471	A Porous Crystalline Nitrone‣inked Covalent Organic Framework**. Angewandte Chemie, 2023, 135, .	2.0	1
1472	A Porous Crystalline Nitrone‣inked Covalent Organic Framework**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
1473	Layered porous molecular crystals via interdigitation-directed assembly. Cell Reports Physical Science, 2023, , 101508.	5.6	0
1474	Metalation of functionalized benzoquinoline-linked COFs for electrocatalytic oxygen reduction and lithium-sulfur batteries. Journal of Colloid and Interface Science, 2023, 650, 1466-1475.	9.4	4
1475	A π-conjugated covalent organic framework enables interlocked nickel/photoredox catalysis for light-harvesting cross-coupling reactions. Chemical Science, 2023, 14, 8624-8634.	7.4	15
1476	Heterogeneous Ice Nucleation in Model Crystalline Porous Organic Polymers: Influence of Pore Size on Immersion Freezing. Journal of Physical Chemistry A, 2023, 127, 6300-6308.	2.5	4
1477	Enhancing the Iodine Adsorption Capacity of Pyreneâ€Based Covalent Organic Frameworks by Regulating the Pore Environment. Macromolecular Rapid Communications, 2023, 44, .	3.9	2
1478	Design, Synthesis and Characterization of Palladiumâ€Functionalized Covalent Organic Framework and Its Application as Heterogeneous Catalysis for Câ^'H Arylation of Azoles. Chemistry - A European Journal, 2023, 29, .	3.3	3
1479	BODIPY doping of covalent organic frameworks-based nanomaterials: A novel strategy towards biomedical applications. Dyes and Pigments, 2023, 219, 111561.	3.7	1
1480	Hexatopic Vertex-Directed Approach to Vinylene-Linked Covalent Organic Frameworks with Heteroporous Topologies. Journal of the American Chemical Society, 2023, 145, 16704-16710.	13.7	7
1481	Zwitterionic and Hydrophilic Vinylene-Linked Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2023, 15, 37845-37854.	8.0	3
1482	Olefinâ€Linked Covalent Organic Frameworks with Electronegative Channels as Cationic Highways for Sustainable Lithium Metal Battery Anodes. Angewandte Chemie, 2023, 135, .	2.0	1
1483	Control of Intermolecular Interactions toward the Production of Free-Standing Interfacial Polydopamine Films. ACS Applied Materials & amp; Interfaces, 2023, 15, 36922-36935.	8.0	3

#	Article	IF	CITATIONS
1484	Olefin‣inked Covalent Organic Frameworks with Electronegative Channels as Cationic Highways for Sustainable Lithium Metal Battery Anodes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
1485	Selfâ€&haping Monolithic Reticular Materials: Ingredients for Success. Advanced Functional Materials, 0, , .	14.9	0
1486	Gradually Tuning the Flexibility of Twoâ€Dimensional Covalent Organic Frameworks via Stepwise Structural Transformation and Their Flexibilityâ€Dependent Properties. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
1487	A cobalt(II) hydrogen-bonded organic framework exhibiting uniaxial negative thermal expansion and field-induced slow magnetic relaxation. Polyhedron, 2023, 243, 116567.	2.2	2
1488	Gradually Tuning the Flexibility of Twoâ€Dimensional Covalent Organic Frameworks via Stepwise Structural Transformation and Their Flexibilityâ€Dependent Properties. Angewandte Chemie, 0, , .	2.0	0
1489	Fully Conjugated Covalent Organic Frameworks: Synthesis, Structures and Applications ^{â€} . Chinese Journal of Chemistry, 2023, 41, 3447-3472.	4.9	1
1490	Framework-Enhanced Electrochemiluminescence in Biosensing. Chemosensors, 2023, 11, 422.	3.6	2
1491	Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities. Membranes, 2023, 13, 696.	3.0	5
1492	Nanohybrid SERS substrates intended for food supply chain safety. Coordination Chemistry Reviews, 2023, 494, 215349.	18.8	6
1493	A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2023, , 108865.	9.0	7
1494	Crystalline covalent triazine frameworks manipulated by aliphatic amine modulator. Science China Chemistry, 2023, 66, 2676-2682.	8.2	1
1495	CO2 capture materials: a review of current trends and future challenges. Materials Today Sustainability, 2023, 24, 100483.	4.1	18
1496	Porous organic polymers as a promising platform for efficient capture of heavy metal pollutants in wastewater. Polymer Chemistry, 2023, 14, 4000-4032.	3.9	5
1497	Research Progress of Porphyrin-Based Covalent Organic Frameworks in Photocatalysis ^{â~} . Acta Chimica Sinica, 2023, 81, 784.	1.4	1
1498	Nanoconfinement Approaches to Two-Dimensional Polymeric Materials. Macromolecules, 2023, 56, 6177-6188.	4.8	0
1500	Engineering hollow covalent organic framework particle through <scp>selfâ€ŧemplated</scp> crystallization. Journal of Polymer Science, 0, , .	3.8	0
1501	Integrated CO ₂ capture and electrochemical upgradation: the underpinning mechanism and techno-chemical analysis. Chemical Society Reviews, 2023, 52, 5744-5802.	38.1	4
1502	Contemporary Strategies for Immobilizing Metallophthalocyanines for Electrochemical Transformations of Carbon Dioxide. Molecules, 2023, 28, 5878.	3.8	1

#	Article	IF	CITATIONS
1503	<i>In situ</i> growth of a cobalt porphyrin-based covalent organic framework on multi-walled carbon nanotubes for ultrasensitive real-time monitoring of living cell-released nitric oxide. Analyst, The, 2023, 148, 4219-4226.	3.5	1
1504	Synthesis of a pyridine-based covalent organic framework as an efficient adsorbent for rhodamine B removal. RSC Advances, 2023, 13, 23682-23689.	3.6	0
1505	Thermal Conductivity of Covalent-Organic Frameworks. ACS Nano, 2023, 17, 15222-15230.	14.6	7
1507	Evolution of covalent organic frameworks: From design to real-world applications. Coordination Chemistry Reviews, 2023, 495, 215342.	18.8	5
1508	Green and Rapid Synthesis of Acridine-Functionalized Covalent Organic Polymers for Photocatalysis by Combining Sonochemistry and Ion Induction. Langmuir, 2023, 39, 11731-11740.	3.5	1
1509	Doubleâ€Walled Covalent Organic Frameworks with High Stability. Chemistry - A European Journal, 0, , .	3.3	0
1510	Construction of Catalytic Fe ₂ N ₅ P Sites in Covalent Organic Framework-Derived Carbon for Catalyzing the Oxygen Reduction Reaction. ACS Catalysis, 2023, 13, 11127-11135.	11.2	6
1511	Structural Characterization of Porous Organic Materials. , 2023, , 287-334.		0
1512	A Data-Driven Search of Two-Dimensional Covalent Organic Frameworks for Visible-Light-Driven Overall Water Splitting. Journal of Physical Chemistry Letters, 2023, 14, 7421-7432.	4.6	4
1513	Crystal structure of [<i>N</i> (<i>E</i>), <i>N</i> ′(<i>E</i>)]- <i>N</i> , <i>N</i> ′-(1,4-phenylenedimethylidyne)bis-3,5-bis(propar C ₂₆ H ₃₆ N ₆ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2023, 238, 973-976.	n-2-yl)-1 <i> 0.3</i>	H ₃ /i>-pyrazo
1514	Application of Covalent Organic Frameworks in Sulfurâ€Based Battery Separators. Small Science, 2023, 3, .	9.9	2
1515	Layered 3D Covalent Organic Framework Films Based on Carbon–Carbon Bonds. Journal of the American Chemical Society, 2023, 145, 18668-18675.	13.7	2
1516	Metal-free reusable hollow-spherical triazine microporous organic polymer supported quinolines synthesis <i>via</i> hydrogen evolution. Green Chemistry, 2023, 25, 7642-7652.	9.0	3
1517	Three-Dimensional Porous Tetrakis Methane and Silane as a High-Capacity Anode Material for Monovalent and Divalent Metal Ion Batteries. Journal of Physical Chemistry C, 2023, 127, 16802-16810.	3.1	1
1518	A Fluorescent Three-Dimensional Covalent Organic Framework Formed by the Entanglement of Two-Dimensional Sheets. Journal of the American Chemical Society, 2023, 145, 18737-18741.	13.7	10
1519	Photoreduction of low concentrations of CO2 into methane in self-assembled palladium/porous organic cages nanocomposites. Chemical Engineering Journal, 2023, 474, 145431.	12.7	0
1520	Dioxin-Linked Covalent Organic Framework-Supported Palladium Complex for Rapid Room-Temperature Suzuki–Miyaura Coupling Reaction. Crystals, 2023, 13, 1268.	2.2	1
1521	Removal of radionuclide 99Tc from aqueous solution by various adsorbents: A review. Journal of Environmental Radioactivity, 2023, 270, 107267.	1.7	9

#	Article	IF	CITATIONS
1522	Linkages Make a Difference in the Photoluminescence of Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
1523	Cyclodextrin Incorporation into Covalent Organic Frameworks Enables Extensive Liquid and Gas Chromatographic Enantioseparations. Journal of the American Chemical Society, 2023, 145, 18956-18967.	13.7	11
1524	Linkages Make a Difference in the Photoluminescence of Covalent Organic Frameworks. Angewandte Chemie, 0, , .	2.0	0
1525	Phenothiazine-linked covalent triazine frameworks for enhanced photocatalytic aerobic oxidation reactions. Microporous and Mesoporous Materials, 2023, 362, 112767.	4.4	1
1526	Recent advancement of surface modification techniques of 2-D nanomaterials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 297, 116817.	3.5	4
1527	Indispensable gutter layers in thin-film composite membranes for carbon capture. Green Energy and Environment, 2023, , .	8.7	1
1528	Luminescence enhancement by deuterium. Journal of Labelled Compounds and Radiopharmaceuticals, 2023, 66, 372-383.	1.0	0
1529	Multifunctional porous organic polymers as an ideal platform for gas uptake, metal ion sensing, and cell image. Polymer Chemistry, 0, , .	3.9	0
1530	Controlling the Crystallisation and Hydration State of Crystalline Porous Organic Salts. Chemistry - A European Journal, 2023, 29, .	3.3	1
1531	Nanoporous Crystalline Materials for the Recognition and Applications of Nucleic Acids. Advanced Materials, 0, , .	21.0	2
1532	Design and Synthesis of a Polyketone Building Block with Vinyl Groups─9,10-Diethyl-9,10-ethenoanthracene-2,3,6,7(9 <i>H</i> ,10 <i>H</i>)-tetraone─and a Preliminary Photoelectrical Property Study of Its Azaacene Derivatives. ACS Omega, 0, , .	3.5	0
1533	Two-dimensional MXenes for flexible energy storage devices. Energy and Environmental Science, 2023, 16, 4191-4250.	30.8	12
1534	Water splitting catalysts using non-metal covalent organic frameworks: A review. International Journal of Hydrogen Energy, 2024, 51, 376-398.	7.1	1
1535	Green and Facile Preparation of Covalent Organic Frameworks Based on Reaction Medium for Advanced Applications. Chemistry - A European Journal, 2023, 29, .	3.3	2
1536	Building Porous Ni(Salen)â€Based Catalysts from Waste Styrofoam via Autocatalytic Coupling Chemistry for Heterogeneous Oxidation with Molecular Oxygen. Macromolecular Rapid Communications, 2023, 44, .	3.9	0
1537	Liquid–Liquid Interfacial Nanoarchitectonics. Small, 0, , .	10.0	4
1538	Narrowâ€Pore Engineering of Vinyleneâ€Linked Covalent Organic Frameworks with Weak Interactionâ€Triggered Multiple Responses. Angewandte Chemie - International Edition, 2023, 62,	13.8	2
1539	Narrowâ€Pore Engineering of Vinyleneâ€Linked Covalent Organic Frameworks with Weak Interactionâ€Triggered Multiâ€Responses. Angewandte Chemie, 0, , .	2.0	0

#	Article	IF	Citations
1540	Frameworks (COFs): Transition Metal Intercalation in Bilayers. Physica Scripta, 0, , .	2.5	0
1541	Construction of Ce-MOF@COF hybrid nanostructure with controllable thickness for the electrochemical sensitive detection of metol. Journal of Electroanalytical Chemistry, 2023, , 117756.	3.8	1
1542	Construction of Covalent Organic Frameworks with Partly Condensed Networks for Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2023, 6, 9427-9433.	5.1	2
1543	Construction of Amide-Linked Covalent Organic Frameworks by <i>N</i> -Heterocyclic Carbene-Mediated Selective Oxidation for Photocatalytic Dehalogenation. Chemistry of Materials, 2023, 35, 7154-7163.	6.7	5
1544	Direct glyphosate soil monitoring at the triazine-based covalent organic framework with the the theoretical study of sensing principle. Chemosphere, 2023, 341, 139930.	8.2	3
1545	Construction of Multiple-Component Covalent Organic Frameworks by an <i>In</i> - <i>Situ</i> Approach for Boosting Palladium Recovery from Strong Acid. , 0, , 2665-2672.		2
1546	Nitrogen-Rich Triphenylamine-based Porous Organic Polyaminal for The Adsorption/Separation of C1-C3 Light Hydrocarbons and Efficient Iodine Capture. New Journal of Chemistry, 0, , .	2.8	0
1547	Synthesis of ruthenium-based metallo-covalent organic frameworks for efficient photocatalytic ring opening of α-ketoepoxides under visible light. Journal of Catalysis, 2023, 427, 115112.	6.2	1
1548	Selfâ€Accelerating Effect in a Covalent–Organic Framework with Imidazole Groups Boosts Electroreduction of CO2 to CO. Angewandte Chemie, 0, , .	2.0	0
1549	Recent advances in fluorescence-based chemosensing of organoarsenic feed additives using luminescence MOFs, COFs, HOFs, and QDs. Chemical Communications, 2023, 59, 11456-11468.	4.1	1
1550	Covalent Organic Frameworkâ€based Solid‣tate Electrolytes, Electrode Materials, and Separators for Lithiumâ€ion Batteries. ChemSusChem, 2024, 17, .	6.8	0
1551	Ligating Catalytically Active Peptides onto Microporous Polymers: A General Route Toward Specificallyâ€Functional High Surface Area Platforms. ChemSusChem, 2024, 17, .	6.8	1
1552	Donor–acceptor-based two-dimensional polymer as a supercapacitor electrode with long cycling stability. New Journal of Chemistry, 2023, 47, 18049-18054.	2.8	0
1553	Covalent Organic Framework-Based Electrolytes for Lithium Solid-State Batteries—Recent Progress. Batteries, 2023, 9, 469.	4.5	2
1554	Recent Advances in Bimetallic Nanoporous Gold Electrodes for Electrochemical Sensing. Nanomaterials, 2023, 13, 2515.	4.1	0
1555	Application progress of covalent organic frameworks (COFs) materials in the detection of food contaminants. Food Control, 2024, 155, 110072.	5.5	0
1556	Highly crystalline and robust covalent organic framework membranes for predictable solvent transport and molecular separation. Journal of Materials Chemistry A, 2023, 11, 19374-19383.	10.3	1
1557	Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metalâ€lon Batteries. Small Methods, 2023, 7, .	8.6	3

#	Article	IF	CITATIONS
1558	Review of covalent organic frameworks for single-site photocatalysis and electrocatalysis. Chinese Journal of Catalysis, 2023, 50, 45-82.	14.0	7
1559	The photocatalytic H2O2 production by metal-free photocatalysts under visible-light irradiation. Applied Catalysis B: Environmental, 2024, 341, 123271.	20.2	9
1560	Covalent connections between metal–organic frameworks and polymers including covalent organic frameworks. Chemical Society Reviews, 2023, 52, 6379-6416.	38.1	7
1561	Porous crystalline materials for memories and neuromorphic computing systems. Chemical Society Reviews, 2023, 52, 7071-7136.	38.1	14
1562	The synergy between a benzoselenadiazole covalent organic framework and TEMPO for selective photocatalytic aerobic oxidation of organic sulfides. Journal of Materials Chemistry A, 2023, 11, 18115-18125.	10.3	7
1563	Metal-free covalent organic frameworks containing precise heteroatoms for electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 2023, 11, 18349-18355.	10.3	5
1564	Constructing single atom sites on bipyridine covalent organic frameworks for selective electrochemical production of H ₂ O ₂ . Chemical Communications, 2023, 59, 10424-10427.	4.1	6
1565	Reticular chemistry within three-dimensional covalent organic frameworks for multiple applications. Journal of Materials Chemistry A, 2023, 11, 20368-20382.	10.3	2
1566	Phenothiazine-based donor–acceptor covalent–organic frameworks with keto–enol irreversible tautomerism as a promising third-order nonlinear optics material. Journal of Materials Chemistry C, 2023, 11, 13897-13904.	5.5	2
1567	Hydroxyl covalent organic frameworks integrated on functionalized graphene for enhanced electrochemical energy storage. Polymer Chemistry, 2023, 14, 4636-4642.	3.9	0
1568	Post-synthetic modifications of covalent organic frameworks (COFs) for diverse applications. Chemical Communications, 2023, 59, 11631-11647.	4.1	5
1569	Vinylene-Linked Emissive Covalent Organic Frameworks for White-Light-Emitting Diodes. Polymers, 2023, 15, 3704.	4.5	1
1570	Assessing CO ₂ Adsorption Behavior onto Free-Standing, Flexible Organic Framework-PVDF Composite Membrane: An Empirical Modeling and Validation of an Experimental Data Set. ACS Omega, 2023, 8, 36065-36075.	3.5	0
1571	Anthraquinone-based porous organic polymers: From synthesis to applications in electrochemical energy conversion and storage. Arabian Journal of Chemistry, 2023, 16, 105263.	4.9	0
1572	Linkage conversions in single-crystalline covalent organic frameworks. Nature Chemistry, 2024, 16, 114-121.	13.6	12
1573	A review from material functionalization to process feasibility on advanced mixed matrix membranes for gas separations. Chemical Engineering Journal, 2023, 475, 146075.	12.7	4
1574	Preparation, characterization of iron-based single-atom catalysts and its application for photocatalytic degradation of contaminants in water. Journal of Environmental Chemical Engineering, 2023, 11, 110681.	6.7	1
1575	Reticular Chemistry for Optical Sensing of Anions. International Journal of Molecular Sciences, 2023, 24, 13045.	4.1	0

	CITATION	Report	
#	Article	IF	CITATIONS
1576	Advances in membrane-based chiral separation. Coordination Chemistry Reviews, 2023, 495, 215392.	18.8	4
1577	Synthesis of covalent organic framework materials and their application in the field of sensing. Nano Research, 2024, 17, 162-195.	10.4	1
1578	A simple and efficient process for the synthesis of 2D carbon nitrides and related materials. Scientific Reports, 2023, 13, .	3.3	0
1579	Fabrication of high-crystallinity covalent organic framework and its nylon based membrane: Application in the enrichment and interception of dyes. Journal of Environmental Chemical Engineering, 2023, 11, 110989.	6.7	0
1580	Covalent Organic Frameworks for Neuromorphic Devices. Journal of Physical Chemistry Letters, 2023, 14, 7173-7192.	4.6	8
1581	Hexaazatriphenyleneâ€Based Twoâ€Dimensional Conductive Covalent Organic Framework with Anisotropic Charge Transfer. Angewandte Chemie, 2023, 135, .	2.0	0
1582	Hexaazatriphenyleneâ€Based Twoâ€Dimensional Conductive Covalent Organic Framework with Anisotropic Charge Transfer. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
1583	Construction of Crystalline Porous Frameworks (COF/MOF) with Multiâ€components or by Multiâ€reactions. ChemNanoMat, 0, , .	2.8	0
1584	Recent developments in porous metal chalcogenides for environmental remediation and sustainable energy. EcoMat, 2023, 5, .	11.9	0
1585	Deposition of Silver Nanostructures on Covalent Organic Frameworks for Photocatalytic Degradation of Sulfur Mustard Simulants. ACS Applied Nano Materials, 2023, 6, 17083-17091.	5.0	3
1586	Linkage engineering in covalent organic frameworks as metal-free oxygen reduction electrocatalysts for hydrogen peroxide production. Applied Catalysis B: Environmental, 2024, 340, 123216.	20.2	10
1587	Function‣ed Design of Covalentâ€Organicâ€Framework Membranes for Precise Ion Separation. Chemistry A European Journal, 0, , .	3.3	0
1588	Improving the Bioactivity and Stability of Embedded Enzymes by Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2023, 15, 43580-43590.	8.0	3
1589	Photocatalytic synthesis of small-molecule drugs by porous framework materials. Chinese Chemical Letters, 2024, 35, 109065.	9.0	1
1590	Mechanochemical Transition from a Hydrogen-Bonded Organic Framework to Covalent Organic Frameworks. , 2023, 5, 2534-2541.		3
1591	Synthesis and Properties of Phenolic Resin Polymers Based on Pillar[5]arene. Chinese Journal of Organic Chemistry, 2023, 43, 2808.	1.3	0
1592	Unveiling the Flexible–Robust Feature of a Porous Organic Cage Crystal for Acetylene Separation. , 2023, 5, 2754-2759.		0
1593	Functional COFs for Electrochemical Sensing: From Design Principles to Analytical Applications. ChemistrySelect, 2023, 8, .	1.5	2

#	Article	IF	CITATIONS
1594	Ionic Porous Organic Polymers Synthesized Using Solvothermal and Mechanochemical Methods as Solid Electrolytes for Lithium Metal Batteries. Industrial & Engineering Chemistry Research, 2023, 62, 15790-15797.	3.7	0
1595	Computational Insights of Dimensional Organic Materials. , 2023, , 382-473.		2
1596	Liquid–Liquid Phase Separation of Aqueous Ionic Liquids in Covalent Organic Frameworks for Thermal Switchable Proton Conductivity. Journal of Physical Chemistry Letters, 2023, 14, 8165-8174.	4.6	0
1597	Oriented ionic covalent organic framework membranes for efficient organic solvent nanofiltration. Journal of Membrane Science, 2023, 688, 122120.	8.2	5
1598	Adsorption Behavior of a Ternary Covalent Organic Polymer Anchored with SO3H for Ciprofloxacin. Molecules, 2023, 28, 6941.	3.8	0
1599	Bioinspired Heterogeneous Construction of Lignocelluloseâ€Reinforced COF Membranes for Efficient Proton Conduction. Small, 2024, 20, .	10.0	2
1600	2D Covalent Organic Frameworks. , 2023, , 155-212.		0
1601	Gas Sensors with Two-Dimensional rGO@COF Composite Materials for Fast NO ₂ Detection under Room Temperature. ACS Applied Materials & Interfaces, 2023, 15, 44119-44126.	8.0	4
1602	Short Fluoroalkanes Suppress a Thermally-Induced Phase Transition in a Layered Organic Crystal. Crystals, 2023, 13, 1425.	2.2	0
1603	Advances in COFs for energy storage devices: Harnessing the potential of covalent organic framework materials. Energy Storage Materials, 2023, 63, 103014.	18.0	4
1604	COF and MOF Hybrids: Advanced Materials for Wastewater Treatment. Advanced Functional Materials, 0, , .	14.9	8
1605	Photocatalytic H2O2 production from water and air using porous organic polymers. Journal of Colloid and Interface Science, 2023, 652, 1784-1792.	9.4	4
1606	Single Ru Sites on Covalent Organic Frameworkâ€Coated Carbon Nanotubes for Highly Efficient Electrocatalytic Hydrogen Evolution. Small, 2024, 20, .	10.0	3
1607	Creating Order in Ultrastable Phosphonate Metal–Organic Frameworks via Isolable Hydrogen-Bonded Intermediates. Journal of the American Chemical Society, 2023, 145, 21263-21272.	13.7	3
1608	Synthesis and Additive Manufacturing of Hydrazone‣inked Covalent Organic Framework Aerogels. Chemistry - A European Journal, 2023, 29, .	3.3	0
1609	Emerging porous solids and sonochemistry. CrystEngComm, 0, , .	2.6	0
1610	Newly design and synthesis of Ni–Ir–Ru-doped mesoporous silica open-frameworks for admirable electrochemical water-oxidation application. International Journal of Hydrogen Energy, 2024, 51, 733-747.	7.1	2
1611	Multifunctional covalent-organic frameworks (COFs)-2D MXenes composites for diverse applications. Journal of Energy Storage, 2023, 73, 109299.	8.1	7

#	Article	IF	CITATIONS
1612	Solarâ€ŧoâ€H ₂ O ₂ Catalyzed by Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	13.8	17
1613	Solarâ€ŧoâ€H ₂ O ₂ Catalyzed by Covalent Organic Frameworks. Angewandte Chemie, 2023, 135, .	2.0	1
1614	Nanoporous BODIPY-Based Cationic Porous Organic Polymer Composites as Photocontrolled NO-Releasing Platforms for Wound Healing and Antimicrobial Applications. ACS Applied Nano Materials, 2023, 6, 16716-16729.	5.0	1
1615	Cobaloximeâ€Integrated Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution Coupled with Alcohol Oxidation. Angewandte Chemie, 2023, 135, .	2.0	0
1616	Cobaloximeâ€Integrated Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution Coupled with Alcohol Oxidation. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
1617	Microenvironment effect of covalent organic frameworks on chemical catalysis. EnergyChem, 2023, 5, 100107.	19.1	1
1618	Pyrene-based covalent organic polymers with nano carbonaceous composites for efficient supercapacitive energy storage. Journal of Materials Chemistry A, 2023, 11, 22868-22883.	10.3	2
1619	Relative Local Electron Density Tuning in Metalâ€Covalent Organic Frameworks for Boosting CO ₂ Photoreduction. Angewandte Chemie, 2023, 135, .	2.0	0
1620	Relative Local Electron Density Tuning in Metalâ€Covalent Organic Frameworks for Boosting CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
1621	Covalent Organic Framework-based Hybrid Materials and Their Applications. , 2023, , 335-381.		0
1622	Selfâ€Accelerating Effect in a Covalent–Organic Framework with Imidazole Groups Boosts Electroreduction of CO ₂ to CO. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5
1623	Scalable Synthesis and Electrocatalytic Performance of Highly Fluorinated Covalent Organic Frameworks for Oxygen Reduction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
1624	Boronâ€Nitrogen Lewis Pairs in the Assembly of Supramolecular Macrocycles, Molecular Cages, Polymers, and 3D Materials. Angewandte Chemie - International Edition, 2024, 63, .	13.8	3
1625	Superstructureâ€induced Hierarchical Assemblies for Nanoconfined Photocatalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
1626	Synthesis of a covalent organic framework with hetero-environmental pores and its medicine co-delivery application. Nature Communications, 2023, 14, .	12.8	1
1628	Facile synthesis of a new covalent organic nanosheet (CON-KEY1) based on polyamide links as an effective heterogeneous catalyst in C–C cross coupling reactions. RSC Advances, 2023, 13, 28686-28702.	3.6	0
1629	Photoelectric responsive ionic channel for sustainable energy harvesting. Nature Communications, 2023, 14, .	12.8	0
1630	Disulfideâ€Bridged Dynamic Covalent Triazine Polymer Thin Films by Interface Polymerization: High Refractive Index with Excellent Optical Transparency. Advanced Functional Materials, 0, , .	14.9	1

#	Article	IF	CITATIONS
1631	Progress in Porous Organic Polymer for Chemical Fixation of Carnbon Dioxide. Chinese Journal of Organic Chemistry, 2023, 43, 2699.	1.3	0
1632	Fe-phthalocyanine derived highly conjugated 2D covalent organic framework as superior electrocatalyst for oxygen reduction reaction. , 2023, 18, .		2
1633	Magnetoresistance in Organic Spin Valves Based on Acidâ€Exfoliated 2D Covalent Organic Frameworks Thin Films. Angewandte Chemie, 2023, 135, .	2.0	0
1634	2D Covalent Organic Frameworks with Kagome Lattice: Synthesis and Applications. Chemistry - A European Journal, 2023, 29, .	3.3	2
1635	Magnetoresistance in Organic Spin Valves Based on Acidâ€Exfoliated 2D Covalent Organic Frameworks Thin Films. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
1636	Smart pH-Responsive Covalent Organic Framework Membrane for Charge-Driven Molecular Sieving. Chemistry of Materials, 2023, 35, 7847-7858.	6.7	1
1637	Boosting Photocatalytic Hydrogen Evolution Through Local Charge Polarization in Chemically Bonded Singleâ€Molecule Junctions Between Ketone Molecules and Covalent Organic Frameworks. Advanced Functional Materials, 2023, 33, .	14.9	8
1638	Removal of typical PFAS from water by covalent organic frameworks with different pore sizes. Journal of Hazardous Materials, 2023, 460, 132522.	12.4	1
1639	Engineering active sites in two dimensional covalent organic frameworks boosts the capture of iodine. Separation and Purification Technology, 2024, 328, 125054.	7.9	2
1640	Tailored LMO@COF composite electrodes for direct electrochemical lithium extraction from high-temperature brines. Chemical Engineering Journal, 2023, 474, 145975.	12.7	6
1641	Carboxyl-functionalized covalent organic frameworks for the efficient adsorption of foodborne heterocyclic aromatic amines. Chemical Engineering Journal, 2023, 475, 146044.	12.7	2
1642	Twoâ€Dimensional Covalent Organic Frameworks as Tailorâ€Made Scaffolds for Water Harvesting. Chemistry - A European Journal, 2023, 29, .	3.3	0
1643	Recent advances in semiconductor heterojunctions: a detailed review of the fundamentals of photocatalysis, charge transfer mechanism and materials. , 2024, 1, 43-69.		3
1644	Poly(ionic liquid)s threaded into covalent organic framework for synergistic capture of polybrominated diphenyl ethers. Journal of Hazardous Materials, 2024, 461, 132657.	12.4	0
1645	Covalent organic frameworks confining ultra-dense hydrated hydrogen-bond networks for efficient intrinsic proton conduction. Materials Chemistry Frontiers, 0, , .	5.9	0
1646	Nanoporous 3D Covalent Organic Frameworks with pts Topology as Anticancer Drug Nanocarriers. ACS Applied Nano Materials, 2023, 6, 19210-19217.	5.0	3
1647	Tuning the electrochemical performance of covalent organic framework cathodes for Li- and Mg-based batteries: the influence of electrolyte and binder. Journal of Materials Chemistry A, 2023, 11, 21553-21560.	10.3	2
1648	Growth and Local Structures of Single Crystalline Flakes of Three-Dimensional Covalent Organic Frameworks in Water. Journal of the American Chemical Society, 2023, 145, 22079-22085.	13.7	0

#	Article	IF	CITATIONS
1649	Spatial, well-defined metal-corrole-based covalent organic polymers for remarkably enhanced multipurpose electrocatalysis and high-performance zinc–air batteries. Catalysis Science and Technology, 0, , .	4.1	0
1650	Single-Crystal Three-Dimensional Covalent Organic Framework Constructed from 6-Connected Triangular Prism Node. Journal of the American Chemical Society, 2023, 145, 22329-22334.	13.7	7
1651	Designing and Molding Covalent Organic Frameworks for Separation Applications. Accounts of Materials Research, 2023, 4, 953-967.	11.7	2
1652	Superstructureâ€Induced Hierarchical Assemblies for Nanoconfined Photocatalysis. Angewandte Chemie, 2023, 135, .	2.0	0
1653	Noncovalent interaction guided selectivity of haloaromatic isomers in a flexible porous coordination polymer. Chemical Science, 0, , .	7.4	0
1654	Charge Density Modulation of Pyrene-Related Small Molecules by Nitrogen Heteroatoms Precisely Regulates Photocatalytic Generation of Hydrogen. ACS Nano, 2023, 17, 20570-20579.	14.6	1
1655	Hybrid Two-Dimensional Porous Materials. Chemistry of Materials, 0, , .	6.7	0
1656	Design, Synthesis, and Ultrafast Carrier Dynamics of Core-Substituted Naphthalene Diimide-Based Covalent Organic Frameworks. Nano Letters, 2023, 23, 9266-9271.	9.1	0
1657	Boronâ€Nitrogen Lewis Pairs in the Assembly of Supramolecular Macrocycles, Molecular Cages, Polymers, and 3D Materials. Angewandte Chemie, 0, , .	2.0	0
1658	Proton conduction of an ionic HOF with multiple water molecules and application as a membrane filler in direct methanol fuel cells. Journal of Materials Chemistry C, O, , .	5.5	0
1659	Modulated Connection Modes of Redox Units in Molecular Junction Covalent Organic Frameworks for Artificial Photosynthetic Overall Reaction. Journal of the American Chemical Society, 2023, 145, 23167-23175.	13.7	6
1660	Fully Conjugated 2D sp ² Carbonâ€Linked Covalent Organic Frameworks for Photocatalytic Overall Water Splitting. Advanced Materials, 2024, 36, .	21.0	4
1661	Metalâ€free Covalent organic frameworks for Oxygen Reduction Reaction. Chemistry - A European Journal, 0, , .	3.3	0
1662	Recent advancements of covalent organic frameworks (COFs) as proton conductors under anhydrous conditions for fuel cell applications. RSC Advances, 2023, 13, 30401-30419.	3.6	0
1663	Chemical Sensors Based on Covalent Organic Frameworks. Chemistry - A European Journal, 2024, 30, .	3.3	0
1664	Active Site Engineering in Reticular Covalent Organic Frameworks for Photocatalytic CO ₂ Reduction. Advanced Functional Materials, 0, , .	14.9	2
1666	A tetraaldehyde-derived porous organic cage and covalent organic frameworks. Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2023, , 109201.	9.0	0
1667	Structural Modulation of Nitrogen-Rich Covalent Organic Frameworks for Iodine Capture. Langmuir, 2023, 39, 16069-16078.	3.5	4

#	Article	IF	Citations
1668	Scalable Synthesis and Electrocatalytic Performance of Highly Fluorinated Covalent Organic Frameworks for Oxygen Reduction. Angewandte Chemie, 2023, 135, .	2.0	1
1669	Removal of polymethyl methacrylate nanoplastics and silver nanoparticles by a novel ferrofluid-COF-aminated natural cotton-based hydrogel nanosorbent. Journal of Industrial and Engineering Chemistry, 2024, 131, 265-279.	5.8	0
1670	Schiff–base nanoarchitectonics of covalent organic framework for regulation of photocatalytic hydrogen evolution: Exploration of prime factors in structural isomers. International Journal of Hydrogen Energy, 2024, 51, 857-864.	7.1	0
1672	Solutions Are the Problem: Ordered Two-Dimensional Covalent Organic Framework Films by Chemical Vapor Deposition. ACS Nano, 2023, 17, 21411-21419.	14.6	4
1673	A copper-based MOF/COF hybrid as an innovative fiber coating for SPME sampling of polycyclic aromatic hydrocarbons from environmental matrices. Talanta Open, 2023, , 100262.	3.7	0
1674	Unexpected structural complexity of d-block metallosupramolecular architectures within the benzimidazole-phenoxo ligand scaffold for crystal engineering aspects. Scientific Reports, 2023, 13, .	3.3	0
1675	A nitrogen-rich two dimensional covalent organic framework with multiple carbonyls as a highly efficient anchoring material for lithium–sulfur batteries. Physical Chemistry Chemical Physics, 2023, 25, 30536-30542.	2.8	2
1676	Photostimulated Covalent Linkage Transformation Isomerizing Covalent Organic Frameworks for Improved Photocatalytic Performances. Small, 0, , .	10.0	0
1677	Synthesis of Uniformly Covered Fe-MOF@COF Heterostructures for Boosting Photo-Fenton Catalysis. Journal of Inorganic and Organometallic Polymers and Materials, 0, , .	3.7	0
1678	Photocatalytic CO2 reduction to syngas using metallosalen covalent organic frameworks. Nature Communications, 2023, 14, .	12.8	6
1680	Morphology regulation of isomeric covalent organic frameworks for high selective light scattering detection of lead. Journal of Colloid and Interface Science, 2024, 655, 953-962.	9.4	1
1681	Postsynthetic amine modification of porous organic polymers for <scp>CO₂</scp> capture and separation. Journal of Polymer Science, 0, , .	3.8	0
1682	Single-crystal polymers (SCPs): from 1D to 3D architectures. Chemical Society Reviews, 2023, 52, 8165-8193.	38.1	2
1683	Emerging trends in membrane-based wastewater treatment: electrospun nanofibers and reticular porous adsorbents as key components. Environmental Science: Water Research and Technology, 0, , .	2.4	0
1684	Covalent organic frameworks: Pioneering remediation solutions for organic pollutants. Chemosphere, 2024, 346, 140655.	8.2	0
1685	Amidoxime-functionalized hollow 2D-COFs for uranium separation. Separation and Purification Technology, 2024, 331, 125620.	7.9	2
1686	Phenanthrolineâ€Decorated Covalent Organic Framework for Catalytic Synthesis of 2â€Aminobenzothiazoles in Water. ChemPlusChem, 0, , .	2.8	0
1687	Recent progress in self-repairing coatings for corrosion protection on magnesium alloys and perspective of porous solids as novel carrier and barrier. Journal of Magnesium and Alloys, 2023, 11, 3585-3608.	11.9	2

#	Article	IF	CITATIONS
1688	Isoreticular Chemistry and Applications of Supramolecularly Assembled Copper–Adenine Porous Materials. Inorganic Chemistry, 2023, 62, 18496-18509.	4.0	1
1689	Inorganicâ€Organic Nanoarchitectonics: MXene/Covalent Organic Framework Heterostructure for Superior Microextraction. Small, 0, , .	10.0	2
1690	Engineering covalent/metal-organic frameworks with single atoms toward artificial photocatalytic nitrogen fixation. Chem Catalysis, 2023, 3, 100795.	6.1	0
1691	Nitrogen-doped carbon dots@COFBTH-TT composite for high-performance lithium ions battery anode. Ionics, 2024, 30, 95-103.	2.4	2
1692	Polymer semiconductors: A unique platform for photocatalytic hydrogen peroxide production. Materials Today, 2023, 71, 152-173.	14.2	1
1693	Brominated metal phthalocyanine-based covalent organic framework for enhanced selective photocatalytic reduction of CO2. Journal of Colloid and Interface Science, 2024, 655, 1-11.	9.4	2
1694	Imine-linked polymer derived N-Doped microporous carbons in PEO-based mixed matrix membranes for enhanced CO2/N2 separation: A comparative study. Journal of Membrane Science, 2024, 690, 122203.	8.2	2
1695	Morphology control of conjugated microporous polymer networks for visibleâ€lightâ€driven oxidative coupling of amines. Journal of Polymer Science, 2024, 62, 409-418.	3.8	0
1696	Anthraquinone-Based Silicate Covalent Organic Frameworks as Solid Electrolyte Interphase for High-Performance Lithium–Metal Batteries. Journal of the American Chemical Society, 0, , .	13.7	0
1697	Recent advances in the utilization of covalent organic frameworks (COFs) as electrode materials for supercapacitors. Chemical Science, 2023, 14, 13601-13628.	7.4	3
1698	铜ã€é"和锆ä,‰ç§é‡'属有机框架的微è§,结构ä,ŽæŠ—èŒæ€§èƒ½. Journal of Central South	University	, 2023, 30, 3
1699	Molecular engineering of donor–acceptor sp ² -carbon-linked covalent organic frameworks for enhancing photocatalytic hydrogen production. Polymer Chemistry, 2023, 14, 5133-5139.	3.9	1
1700	Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
1701	Mixed-Linkage Donor–Acceptor Covalent Organic Framework as a Turn-On Fluorescent Sensor for Aliphatic Amines. Analytical Chemistry, 2023, 95, 17400-17406.	6.5	2
1702	Manipulation of interfacial charge dynamics for metal–organic frameworks toward advanced photocatalytic applications. Nanoscale Advances, 2024, 6, 1039-1058.	4.6	1
1703	Benzotrithiopheneâ€Based Covalent Organic Frameworks: Synthesis and Application to Perovskite Solar Cells. Solar Rrl, 0, , .	5.8	0
1704	Expanding the horizons of covalent organic frameworks: sub-stoichiometric synthesis as an emerging toolkit for functional COFs. Journal of Materials Chemistry A, 2023, 11, 26340-26370.	10.3	0
1705	Covalent organic framework membrane for efficient removal of emerging trace organic contaminants from water. , 2023, 1, 1059-1067.		2

ARTICLE

1706 å « ç¾§åŸ⁰å	±ä»∙有æœ⁰骨架的å•̂æˆåŠå.	¶åœ¨é'Œå,¬åŒ−é,»ä½è‹"基 åŒ−åé	é⁰º"ä,的应甓. Science China Materials, 20	23, 66, 4
-------------------------	----------------------	------------------------------	--	-----------

1707	Photocatalytic hydrogen production by donor–i̇́€â€"acceptor type covalent triazine frameworks involving different i̇€ bridges. New Journal of Chemistry, 2023, 47, 21049-21054.	2.8	0
1708	A Phosphineâ€Amineâ€Linked Covalent Organic Framework with Staggered Stacking Structure for Lithiumâ€Ion Conduction. Angewandte Chemie, 2023, 135, .	2.0	0
1709	A Phosphineâ€Amineâ€Linked Covalent Organic Framework with Staggered Stacking Structure for Lithiumâ€Ion Conduction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
1710	Construction of microporous covalent organic frameworks for high gas uptake capacities. New Journal of Chemistry, 2023, 47, 21485-21489.	2.8	0
1711	å∙有é«~æ•^化å¦å₅⁄e™"ã€å¢žå¼ºçš"è½½zæµåå^†ç¦»åпЗå‰è蚀 èf½åŠ›çš"CdS/COFæ,壳结æž	"¢63¢±3æ£	Ė' ợ "¨äºŽå…?
1712	Covalent Organic Frameworks: Opportunities for Rational Materials Design in Cancer Therapy. Angewandte Chemie, 2024, 136, .	2.0	0
1713	Novel Catalysis Systems for the Synthesis of Covalent Organic Frameworks. ChemistrySelect, 2023, 8, .	1.5	0
1714	Recent Advances in and Applications of Electrochemical Sensors Based on Covalent Organic Frameworks for Food Safety Analysis. Foods, 2023, 12, 4274.	4.3	0
1715	Advances of Electrochemical and Electrochemiluminescent Sensors Based on Covalent Organic Frameworks. Nano-Micro Letters, 2024, 16, .	27.0	2
1716	Interface molecular wires induce electron transfer from COFs to Pt for enhanced photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2023, 11, 26052-26062.	10.3	3
1717	<i>In Situ</i> Encapsulation of Cytochrome c within Covalent Organic Frames Using Deep Eutectic Solvents under Ambient Conditions. ACS Applied Materials & amp; Interfaces, 2023, 15, 53871-53880.	8.0	0
1718	Covalent organic frameworks/carbon nanotubes composite with cobalt(II) pyrimidine sites for bifunctional oxygen electrocatalysis. Nano Materials Science, 2023, , .	8.8	1
1719	Twoâ€Dimensional βâ€Ketoenamineâ€Linked Covalent Organic Frameworks for Visible Light Photocatalysis. ChemCatChem, 2023, 15, .	3.7	1
1720	C2-phenyl-substituted benzimidazolium-based covalent organic framework as efficient catalyst for CO2 conversion without solvents, metals, and cocatalysts. Science China Chemistry, 2024, 67, 551-557.	8.2	0
1721	Construction and ReO4â ^{~'} adsorption of ionic covalent organic frameworks by solvothermal synthesis based on Zincke reaction. Separation and Purification Technology, 2024, 333, 125895.	7.9	1
1722	Perylenediimide-Incorporated Covalent Triazine Framework: A Highly Conductive Carbon Support for Copper Single-Atom Catalysts in Electrocatalytic CO ₂ Conversion. Energy & amp; Fuels, 2023, 37, 19113-19123.	5.1	0
1723	Porphyrin–anthracene covalent organic frameworks for sustainable photosterilization. Journal of Materials Chemistry B, 2023, 11, 11094-11102.	5.8	1

#	Article	IF	Citations
1724	A Highly fluorescent vinylene-linked covalent organic framework for chemical sensing of pH and NH3 gas with wide dynamic range. Sensors and Actuators B: Chemical, 2024, 402, 135070.	7.8	1
1725	Phosphidation treatment of surfactant-tuned iron polyphthalocyanine grown in situ on nickel foam: An efficient bifunctional catalyst for overall water splitting. International Journal of Hydrogen Energy, 2024, 55, 153-163.	7.1	0
1726	Covalent Trapping of Cyclic-Polysulfides in Perfluorinated Vinylene-Linked Frameworks for Designing Lithium-Organosulfide Batteries. ACS Energy Letters, 2023, 8, 5098-5106.	17.4	2
1727	Rich oxygen atom-decorated conjugated microporous polymers for carbon dioxide capture. New Journal of Chemistry, 2023, 47, 21600-21603.	2.8	0
1728	Porphyrin organic framework microsphere modified separator to enhance the cycling performance of Mg-S batteries. Materials Letters, 2024, 357, 135628.	2.6	1
1729	Suppressing Shuttle Effect with a Size-Selective Covalent Organic Framework Based Bilayer Membrane. ACS Energy Letters, 2023, 8, 5032-5040.	17.4	2
1730	Enhancing Structure–Property Relationships in Porous Materials through Transfer Learning and Cross-Material Few-Shot Learning. ACS Applied Materials & Interfaces, 2023, 15, 56375-56385.	8.0	1
1731	Chemical conversion of imine- into quinoline-linked covalent organic frameworks for photocatalytic oxidation. Journal of Colloid and Interface Science, 2024, 655, 709-716.	9.4	1
1732	Low band gap semiconducting covalent organic framework films with enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2023, 12, 247-255.	10.3	0
1733	Covalent Organic Frameworks (COFs): Characteristics and Applications for Lithium-Ion Batteries (LIBs) and Sodium Ion Batteries (SIBs). International Journal of Thermofluids, 2024, 21, 100531.	7.8	0
1734	3D Covalent Organic Frameworks from Design, Synthesis to Applications in Optoelectronics. Small, 0,	10.0	2
1735	Crystalline, Porous Helicene Covalent Organic Frameworks. Angewandte Chemie, 2024, 136, .	2.0	0
1736	Crystalline, Porous Helicene Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1737	An anthraquinone-based covalent organic framework for highly reversible aqueous zinc-ion battery cathodes. Journal of Materials Chemistry A, 2023, 11, 26221-26229.	10.3	1
1738	Effect of ESIPT-Induced Photoisomerization of Keto–Enamine Linkages on the Photocatalytic Hydrogen Evolution Performance of Covalent Organic Frameworks. Jacs Au, 0, , .	7.9	0
1739	Guest molecule-directed conversion of covalent organic framework into carbon with synergistic high content N dopants and defects for efficient oxygen reduction. Chemical Engineering Journal, 2023, 478, 147424.	12.7	1
1740	Enantiomorphic kagome bands in a two-dimensional covalent organic framework with non-trivial magnetic and topological properties. Physical Chemistry Chemical Physics, 2024, 26, 2066-2072.	2.8	0
1741	Dynamic Imine Exchange Reactions for Facile Synthesis of Imine-Linked Covalent Organic Frameworks. Chemistry of Materials, 2023, 35, 10070-10077.	6.7	0

#	Article	IF	CITATIONS
1742	Volatile guest molecule mediated strategy to convert covalent organic framework into nitrogen, sulfur-doped carbon as metal-free oxygen reduction electrocatalysts. Journal of Colloid and Interface Science, 2024, 657, 114-123.	9.4	0
1743	Covalent organic frameworks decorated by rare earth ions. Coordination Chemistry Reviews, 2024, 501, 215577.	18.8	0
1744	Retention of Intrinsic Photophysical Properties of Porphyrin Building Blocks in 3D Organic Frameworks through Magic Angle Alignment. ACS Applied Materials & Interfaces, 0, , .	8.0	0
1745	Multi-Binding Sites United in Covalent-Organic Frameworks (MSUCOF) for H ₂ Storage and Delivery at Room Temperature. Energy & Fuels, 2024, 38, 4711-4720.	5.1	0
1747	Organic electrodes based on redox-active covalent organic frameworks for lithium batteries. Chemical Communications, 2023, 60, 138-149.	4.1	1
1748	Turning on Singlet Oxygen Generation by Outerâ€Sphere Microenvironment Modulation in Porphyrinic Covalent Organic Frameworks for Photocatalytic Oxidation. Angewandte Chemie - International Edition, 2024, 63, .	13.8	3
1749	Turning on Singlet Oxygen Generation by Outer‧phere Microenvironment Modulation in Porphyrinic Covalent Organic Frameworks for Photocatalytic Oxidation. Angewandte Chemie, 2024, 136, .	2.0	0
1750	Hierarchically Porous Covalent Organic Frameworks: Synthesis Methods and Applications. Chemistry - A European Journal, 0, , .	3.3	0
1751	Precise and ultra-wide molecular sieving capability with size-dependent COF layers for fast organic solvent nanofiltration. Journal of Membrane Science, 2024, 692, 122321.	8.2	0
1752	On-Surface Synthesis of Multiple Cu Atom-Bridged Organometallic Oligomers. ACS Nano, 2023, 17, 24355-24362.	14.6	0
1753	Selective and asymmetric ion transport in covalent organic framework-based two-dimensional nanofluidic devices. International Journal of Smart and Nano Materials, 2024, 15, 186-197.	4.2	0
1755	Covalent Organic Frameworks Enable Sustainable Solar to Hydrogen Peroxide. Advanced Functional Materials, 2024, 34, .	14.9	2
1756	Photoinduced radical Formation in Hydrogen-bonded Organic Frameworks. Chemical Communications, 0, , .	4.1	0
1757	Recent Advances of Covalent Organic Frameworks as Water Splitting Electrocatalysts. Organic Materials, 0, , .	2.0	0
1758	A Review on Covalent Organic Frameworks as Artificial Interface Layers for Li and Zn Metal Anodes in Rechargeable Batteries. Advanced Science, 2024, 11, .	11.2	4
1759	Pore segmentation and shielding: a dual strategy to prepare sub-nanometer covalent-organic-framework based membranes for selective metal ion sieving. Fundamental Research, 2023, , .	3.3	0
1760	Hydrogen-bonding and π-π interaction promoted solution-processable covalent organic frameworks. Nature Communications, 2023, 14, .	12.8	1
1762	Emerging potentials of Feâ€based nanomaterials for chiral sensing and imaging. Medicinal Research Reviews, 0, , .	10.5	0

#	Article	IF	CITATIONS
1763	Covalent Organic Frameworks: Reversible 3D Coalesce via Interlocked Skeleton–Pore Actions and Impacts on ݀ Electronic Structures. Journal of the American Chemical Society, 2023, 145, 26383-26392.	13.7	0
1764	Recent advances in analytical sensing detection of heavy metal ions based on covalent organic frameworks nanocomposites. TrAC - Trends in Analytical Chemistry, 2024, 171, 117488.	11.4	1
1766	Highly luminescent olefin-linked covalent organic frameworks. Chemical Communications, 2024, 60, 320-323.	4.1	0
1767	Poreâ€Engineered Hydrogenâ€Bonded Supramolecular Fluorosensor for Ultrasensitive Determination of Copper Ions. Small, 0, , .	10.0	Ο
1768	Halogen Regulation in Vinylene-Linked Covalent Organic Frameworks for Efficient Photocatalytic C–H Thiolation of Quinone Derivatives. , 0, , 212-221.		0
1769	Exploring factors influencing circular economy adoption and firm-level practices in the agribusiness sector: an exploratory study of Indian firms. Environment, Development and Sustainability, 0, , .	5.0	0
1770	Edge-engineering of donor-acceptor sp2-carbon-conjugated covalent organic frameworks for high-performance photocatalysts. Materials Today Energy, 2024, 40, 101477.	4.7	2
1771	Block Copolymer Derived Porous Carbon Fiber: An Emerging Structural Functional Material. Macromolecules, 2023, 56, 9939-9951.	4.8	1
1772	Manipulation of Cationic Group Density in Covalent Organic Framework Membranes for Efficient Anion Transport. Journal of the American Chemical Society, 2023, 145, 27984-27992.	13.7	5
1773	An Azuleneâ€Based Crystalline Porous Covalent Organic Framework for Efficient Photothermal Conversion. Small, 0, , .	10.0	0
1774	Surfaceâ€enhanced <scp>Raman</scp> scattering of carbazoleâ€based covalent triazine framework. Journal of Applied Polymer Science, 0, , .	2.6	0
1775	Recent bio-applications of covalent organic framework-based nanomaterials. Chemical Communications, 2024, 60, 918-934.	4.1	1
1776	Recent progress in the synthesis and applications of covalent organic framework-based composites. Nanoscale, 2024, 16, 1600-1632.	5.6	0
1777	Exploring Cation-Exchange Membranes: Synthesis, Characterization, and Real-World Applications in a Multidisciplinary Laboratory. Journal of Chemical Education, 0, , .	2.3	0
1778	Ion-pairing design of covalent organic framework membranes for separation and controlled release of pharmaceuticals. Journal of Membrane Science, 2024, 693, 122347.	8.2	0
1779	Photocatalytic production of H ₂ O ₂ from wastewater under visible light by chlorine and ZnIn ₂ S ₄ co-decorated TpPa-1. Catalysis Science and Technology, 2024, 14, 590-597.	4.1	0
1780	Metal-Free Heterogeneous Asymmetric Hydrogenation of Olefins Promoted by Chiral Frustrated Lewis Pair Framework. Journal of the American Chemical Society, 0, , .	13.7	1
1781	TEMPERATURE DEPENDENCE OF THE CRYSTAL GROWTH OF IMINE-BONDED 3-DIMENSIONAL COVALENT ORGANIC FRAMEWORK (3D-COF). , 2023, , .		0

1728MacrocyclobeBased Hierarchically Porous Hydrogen&Bonded Organic Frameworks. Chemistry - A3.301738MacrocyclobeBased Hierarchically Porous Hydrogen&Bonded Organic Frameworks. Chemistry - A1.901738MacrocyclobeBased Hierarchically Porous Hydrogen&Based System to Manufacture Binder&Free1.901738HotaCPressing Metal Covalent Organic Frameworks as Personal Protection Films. Advanced Materials, Q2.001739Stadeed Covalent Organic Ribbons Perpendicular to Graphene Oxide Sheets, a 1D8Cp452D Design for r.3.301739Stadeed Covalent Organic Ribbons Perpendicular to Graphene Oxide Sheets, a 1D8Cp452D Design for r.3.301739Critical review on organophosphate esters in water environment: Occurrence, health hazards and removal technologies. Environmental Pollution, 2024, 343, 123218.3.701739Palladium particle-catalyzed selective butadiene hydrogenation: effect of covalent organic Framework modification. Reaction Chemistry and Engineering. 2024, 9, 950-958.3.701739Neto-Chiner Chaples Consulent Organic Frameworks for Advanced Applications. Advanced Partice and Disorder in Covalent Organic Frameworks and Correlled Lyper Stacking for Partice and Disorder in Covalent Organic Frameworks. 2024, 29, 152.1.31.01739Neto-Chiner Chaples Organic Frameworks (Correlect Lyper Stacking for Partice and Heathcare Applications. Molecules, 2024, 29, 152.1.33.801739Neto-Chiner Chaples Ducolation organic Frameworks for electrochemical charge strange, SusMat, 2024, 4-4-33.1.01.11739Addrescale structure en	#	‡	Article	IF	CITATIONS
177803D Printing of Covalent Organic Frameworks: A Microfluidic/GBased System to Manufacture Binder/aCFiee14.901784HotaCPsecopic Monoliths. Advanced Functional Materials, 2024, 34, .21.001786HotaCPsecopic Monoliths. Advanced Functional Materials, 2024, 34, .33.001787Stacked Covalent Organic Ribbons Perpendicular to Craphene Oxide Sheets; a 1D3CpaCPD Design for33.001788Stacked Covalent Organic Ribbons Perpendicular to Craphene Oxide Sheets; a 1D3CpaCPD Design for33.001789Critical review on organophosphate esters in water environment: Occurrence, health hazards and7.501789Deficit and Discordar in Covalent Organic Frameworks for Advanced Applications. Advanced14.901789Palladium particle catalyzed selective buildene hydrogenation: effect of covalent organic3.701790Mixed Anne Chiral 2D Covalent Organic Frameworks (Cortrolled Lyaer Stacking for Electrochemical Asymmetric Catalysis, Journal of the American Chemical Society, 2024, 146, 635-645.13.711791Not Only Graphene Two-Dimensional Nanomaterials, Recent Trends in Electrochemical (Bio)sensing area for Biomedical and Healthcare Applications. Molecules, 2024, 29, 172.10.011792Electrochemical Society, 2024, 146, 1035-1041.18.7301793Recent and Jubbal dynamics in organic soft porous crystals. Matter, 2024, 7, 408-429.10.011794Local and global dynamics in organic Applications crystals. Matter, 2024, 7, 408-429.10.701795Matalorganic frameworks (MOFs) for pho	1	1782	Macrocycleâ€Based Hierarchically Porous Hydrogenâ€Bonded Organic Frameworks. Chemistry - A European Journal, 0, , .	3.3	0
1784Hotd&Pressing Metal Covalent Organic Frameworks as Personal Protection Films. Advanced Materials, 0,21.001795Stacked Covalent Organic Richons Perpendicular to Graphene Onde Sheets a DB&Ep&ED Design for3.301797Crittical review on organophosphate esters in water environment, Occurrence, health hazards and7.501798Crittical review on organophosphate esters in water environment, Occurrence, health hazards and7.501799Defects and Deode in Covalent Organic Frameworks for Advanced Applications. Advanced14.901799Palladium particle-catalyzed selective butadiene hydrogenation: effect of covalent organic framework modification. Reaction Chemistry and Engineering. 2024, 9, 950-958.13.701790Motocluinker Chiral 2D Covalent Organic Frameworks with Controlled Layer Stacking for Electrochemical Asymmetric Getalysis. Journal of the American Chemical Society, 2024, 146, 635-645.13.711790Not Only Graphene Two-Dimensional Nanomaterials: Recent Trends in Electrochemical (Bio)sensing anges. SusMar, 2024, 4, 4-35.3.801791Natificacia structure engineering of covalent organic Frameworks. Journal of the American 	1	1783	3D Printing of Covalent Organic Frameworks: A Microfluidicâ€Based System to Manufacture Binderâ€Free Macroscopic Monoliths. Advanced Functional Materials, 2024, 34, .	14.9	0
1786Stacked Covalent Organic Ribbons Perpendicular to Craphene Oxido Shects; a ID&EpSeED Design for3.301787Critical review on organophosphate esters in water environment: Occurrence, health hazards and7.501788Defects and Disorder in Covalent Organic Frameworks for Advanced Applications. Advanced14.001789Palladium particle-catalyzed selective butadiene hydrogenation: effect of covalent organic8.701790Palladium particle-catalyzed selective butadiene hydrogenation: effect of covalent organic8.701790Miterials, O., .13.711791Not Only Graphene Two-Dimensional Nanomaterials: Recent Trends in Electrochemical (Bio)sensing3.801792MultiaEccela structure engineering of covalent organic framework for electrochemical (Bio)sensing3.801793Retaborgenic frameworks Journal of the American Chemical Society, 2024, 146, 635-645.13.731794Local and global dynamics in organic soft porous crystals. Matter, 2024, 74, 4665.601795MultiaEccela structure engineering of covalent Organic Framework for electrochemical charge14.901796Ideolaring CoFs: Transforming Nonconducting 2D Layered COF Into a Conducting Quasi-3D13.731797Constructing Bifunctional and Robust Covalent Organic Frameworks via Three-component One-pot Toebener Reaction for Cf(VI) Removal. Applied Catalsis B: Environmental, 2023, 122672.13.701798Metal-organic frameworks (MOFs) for photoelectrocatalytic (PEC) reducing canson dioxide (CO2) to S.65.60 <td>1</td> <td>1784</td> <td>Hotâ€Pressing Metal Covalent Organic Frameworks as Personal Protection Films. Advanced Materials, 0, , .</td> <td>21.0</td> <td>0</td>	1	1784	Hotâ€Pressing Metal Covalent Organic Frameworks as Personal Protection Films. Advanced Materials, 0, , .	21.0	0
1787Critical review on organophosphate esters in water environment: Occurrence, health hazards and7.501788Defects and Disorder in Covalent Organic Frameworks for Advanced Applications. Advanced14.901789Palladium particle-catalyzed selective butadiene hydrogenation: effect of covalent organic3.701789Palladium particle-catalyzed selective butadiene hydrogenation: effect of covalent organic3.701790Mixed-Linker Chiral 2D Covalent Organic Frameworks with Controlled Layer Stacking for Electrochemical Asymmetric Catalysis, Journal of the American Chemical Society, 2024, 146, 635-645.15.711791Not Only Graphene Two-Dimensional Nanomaterials: Recent Trends in Electrochemical (Bio)sensing Rea for Biomedical and Healthcare Applications. Molecules, 2024, 29, 172.8.801792Multi&Scale structure engineering of covalent organic frameworks for electrochemical (Bio)sensing Reado Biomedical and Healthcare Applications. Molecules, 2024, 29, 172.10.011793Electbolity On-Demand: Multivariate 3D Covalent Organic Frameworks. Journal of the American 	1	1786	Stacked Covalent Organic Ribbons Perpendicular to Graphene Oxide Sheets; a 1Dâ€pâ€2D Design for Photocatalytic Tandem Reactions. Chemistry - A European Journal, 2024, 30, .	3.3	0
1798Defects and Disorder in Covalent Organic Frameworks for Advanced Applications. Advanced14.901799Palladium particle-catalyzed selective butadiene hydrogenation: effect of covalent organic3.701790Miked-Linker Chiral 2D Covalent Organic Frameworks with Controlled Layer Stacking for Telectrochemical Asymmetric Catalysis. Journal of the American Chemical Society, 2024, 146, 635-645.13.711791Not Only Graphene Two-Dimensional Nanomaterials: Recent Trends in Electrochemical (Bio)sensing Area for Biomedical and Healthcare Applications. Molecules, 2024, 29, 172.3.801792Multifecale structure engineering of covalent organic framework for electrochemical charge storage. SusMat, 2024, 4, 433.01793Flexibility On-Demand: Multivariate 3D Covalent Organic Frameworks. Journal of the American 	1	1787	Critical review on organophosphate esters in water environment: Occurrence, health hazards and removal technologies. Environmental Pollution, 2024, 343, 123218.	7.5	0
1789Palladium particle-catalyzed selective butadiene hydrogenation: effect of covalent organic3.73.71790Mcked-Linker Chiral 2D Covalent Organic Frameworks with Controlled Laver Stacking for Electrochemical Asymmetric Catalysis. Journal of the American Chemical Society, 2024, 146, 635-645.13.73.83.81791Not Only Graphene Two-Dimensional Nanomaterials: Recent Trends in Electrochemical (Bio)sensing storage. SusMat, 2024, 4, 4-33.3.83.81792Multiféccale structure engineering of covalent organic Frameworks. Journal of the American Chemical Society, 2024, 146, 1035-1041.3.83.81793Fexbolity On-Demand: Multivariate 3D Covalent Organic Frameworks. Journal of the American Chemical Society, 2024, 146, 1035-1041.3.83.81794Iocal and global dynamics in organic soft porous crystals. Matter, 2024, 7, 408-429.10.03.81795Metal-organic frameworks (MOFs) for photoelectrocatalytic (PEC) reducing carbon dioxide (CO2) to Nydrocarbon fuels. Nanoscale, 0,3.83.81795Constructing Bifunctional and Robust Covalent Organic Frameworks via Three-component One-port Societyr. 2025, 125672.3.83.81796Net MOFs/COFs-derivant decorating FeSiAl coupling magnetic and electrical losses for enhanced accementation of net (VI) Removal. Applied catalysis B: Environmental, 2023, 125672.3.63.81799Repid and in-stru preparation COFs coated capillary by adsorption method for the separation and etermination of phyladize estructure using CEC. 13.8, 1252.15657.3.83.81799Repid and in-stru preparation COFs coated capillary by adsorption method for the separat	1	1788	Defects and Disorder in Covalent Organic Frameworks for Advanced Applications. Advanced Functional Materials, 0, , .	14.9	Ο
1790Mixed-Linker Chiral 2D Covalent Organic Frameworks with Controlled Layer Stacking for Electrochemical Asymmetric Catalysis. Journal of the American Chemical Society, 2024, 146, 635-645.13.711791Not Only Graphene Two-Dimensional Nanomaterials: Recent Trends in Electrochemical (Bio)sensing Area for Biomedical and Healthcare Applications. Molecules, 2024, 29, 172.3.801792MultiäEscale structure engineering of covalent organic framework for electrochemical charge storage. SusMat, 2024, 4, 433.14.901793Flexibility On-Demand: Multivariate 3D Covalent Organic Frameworks. Journal of the American Chemical Society, 2024, 146, 1035-1041.13.731794Local and global dynamics in organic soft porous crystals. Matter, 2024, 7, 408-429.10.011795Metal-organic frameworks (MOFs) for photoelectrocatalytic (PEC) reducing carbon dioxide (CO2) to hydrocarbon fuels. Nanoscale, 0,5.601797Constructing Blfunctional and Robust Covalent Organic Frameworks via Three-component One-pot Deebner Reaction for Cr(VI) Removal. Applied Catalysis B: Environmental, 2023, 123672.20.201798The MOFs/COFs-derivant decorating FoSIAI coupling magnetic and electrical losses for enhanced microwave absorption. Applied Surface Science, 2023, 125617.6.101799Repid and in-situ preparation COFs coated capillary by adsorption method for the separation and determination of phthalate ester using CEC. Talanta, 2023, 125617.5.501799Repid and in-situ preparation COFs coated capillary by adsorption method for the separation and determination of phthalate ester using CEC. Talanta, 2023, 125617.5.5<	1	1789	Palladium particle-catalyzed selective butadiene hydrogenation: effect of covalent organic framework modification. Reaction Chemistry and Engineering, 2024, 9, 950-958.	3.7	0
1791Net Only Graphene Two-Dimensional Nanomaterials: Recent Trends in Electrochemical (Bio)sensing3.89.11792Multiäcscale structure engineering of covalent organic framework for electrochemical charge14.901793Fexibility On-Demand: Multivariate 3D Covalent Organic Frameworks. Journal of the American13.731794Iccal and global dynamics in organic soft porous crystals. Matter, 2024, 7, 408-429.10.011795Metal-organic frameworks (MOFs) for photoelectrocatalytic (PEC) reducing carbon dioxide (CO2) to Mydrocarbon fuels. Nanoscale, O,13.731795Jaloring COFs: Transforming Nonconducting 2D Layered COF into a Conducting Quasi-3D Crkittecture via Interlayer Kritting with Polypyrrole. Journal of the American Chemical Society, O,13.731797Constructing Bifunctional and Robust Covalent Organic Frameworks via Three-component One-pot Deebner Reaction for Cr (W) Removal. Applied Catalysis B: Environmental, 2023, 123672.0.001798Repid and in-situ preparation COFs coated capillary by adsorption method for the separation and determination of phthalate ester using CEC. Talanta, 2023, 125617.5.501799Repid and in-situ preparation COFs coated capillary by adsorption method for the separation and determination of phthalate ester using CEC. Talanta, 2023, 125617.5.50	1	1790	Mixed-Linker Chiral 2D Covalent Organic Frameworks with Controlled Layer Stacking for Electrochemical Asymmetric Catalysis. Journal of the American Chemical Society, 2024, 146, 635-645.	13.7	1
1792MultitäGescale structure engineering of covalent organic framework for electrochemical charge14.901793Flexibility On-Demand: Multivariate 3D Covalent Organic Frameworks. Journal of the American Chemical Society, 2024, 146, 1035-1041.13.731794Local and global dynamics in organic soft porous crystals. Matter, 2024, 7, 408-429.10.011795Metal-organic frameworks (MOFs) for photoelectrocatalytic (PEC) reducing carbon dioxide (CO2) to hydrocarbon fuels. Nanoscale, 0,5.601796Talloring COFs: Transforming Nonconducting 2D Layered COF into a Conducting Quasi-3D Architecture via Interlayer Knitting with Polypyrrole. Journal of the American Chemical Society, 0,13.701797Constructing Bifunctional and Robust Covalent Organic Frameworks via Three-component One-pot 	1	1791	Not Only Graphene Two-Dimensional Nanomaterials: Recent Trends in Electrochemical (Bio)sensing Area for Biomedical and Healthcare Applications. Molecules, 2024, 29, 172.	3.8	0
1793Flexibility On-Demand: Multivariate 3D Covalent Organic Frameworks. Journal of the American13.731794Local and global dynamics in organic soft porous crystals. Matter, 2024, 7, 408-429.10.011795Metal-organic frameworks (MOFs) for photoelectrocatalytic (PEC) reducing carbon dioxide (CO2) to hydrocarbon fuels. Nanoscale, 0,5.601796Architecture via Interlayer Knitting with Polypyrrole. Journal of the American Chemical Society, 0,13.701797Constructing Bifunctional and Robust Covalent Organic Frameworks via Three-component One-pot Doebner Reaction for Cr(VI) Removal. Applied Catalysis B: Environmental, 2023, 123672.20.201798Rapid and in-situ preparation COFs coated capillary by adsorption method for the separation and determination of phthalate ester using CEC. Talanta, 2023, 125617.5.501800Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications.38.11	1	1792	Multiâ€scale structure engineering of covalent organic framework for electrochemical charge storage. SusMat, 2024, 4, 4-33.	14.9	0
1794Local and global dynamics in organic soft porous crystals. Matter, 2024, 7, 408-429.10.011795Metal-organic frameworks (MOFs) for photoelectrocatalytic (PEC) reducing carbon dioxide (CO2) to hydrocarbon fuels. Nanoscale, 0,5.601796Tailoring COFs: Transforming Nonconducting 2D Layered COF into a Conducting Quasi-3D Architecture via Interlayer Knitting with Polypyrrole. Journal of the American Chemical Society, 0,13.701797Constructing Bifunctional and Robust Covalent Organic Frameworks via Three-component One-pot Doebner Reaction for Cr(VI) Removal. Applied Catalysis B: Environmental, 2023, , 123672.20.201798The MOFs/COFs-derivant decorating FeSiAl coupling magnetic and electrical losses for enhanced microwave absorption. Applied Surface Science, 2023, , 159242.6.101799Rapid and in-situ preparation COFs coated capillary by adsorption method for the separation and determination of phthalate ester using CEC. Talanta, 2023, , 125617.5.501800Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chemical Society Reviews, 2024, 53, 1823-1869.38.11	1	1793	Flexibility On-Demand: Multivariate 3D Covalent Organic Frameworks. Journal of the American Chemical Society, 2024, 146, 1035-1041.	13.7	3
1795Metal-organic frameworks (MOFs) for photoelectrocatalytic (PEC) reducing carbon dioxide (CO2) to hydrocarbon fuels. Nanoscale, 0,5.601796Tailoring COFs: Transforming Nonconducting 2D Layered COF into a Conducting Quasi-3D Architecture via Interlayer Knitting with Polypyrrole. Journal of the American Chemical Society, 0,13.701797Constructing Bifunctional and Robust Covalent Organic Frameworks via Three-component One-pot Doebner Reaction for Cr (VI) Removal. Applied Catalysis B: Environmental, 2023, , 123672.20.201798The MOFs/COFs-derivant decorating FeSiAl coupling magnetic and electrical losses for enhanced 	1	1794	Local and global dynamics in organic soft porous crystals. Matter, 2024, 7, 408-429.	10.0	1
1796Tailoring COFs: Transforming Nonconducting 2D Layered COF into a Conducting Quasi-3D Architecture via Interlayer Knitting with Polypyrrole. Journal of the American Chemical Society, 0, , .13.701797Constructing Bifunctional and Robust Covalent Organic Frameworks via Three-component One-pot Doebner Reaction for Cr(VI) Removal. Applied Catalysis B: Environmental, 2023, , 123672.20.201798The MOFs/COFs-derivant decorating FeSiAl coupling magnetic and electrical losses for enhanced microwave absorption. Applied Surface Science, 2023, , 159242.6.101799Rapid and in-situ preparation COFs coated capillary by adsorption method for the separation and determination of phthalate ester using CEC. Talanta, 2023, , 125617.5.501800Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications.38.11	1	1795	Metal-organic frameworks (MOFs) for photoelectrocatalytic (PEC) reducing carbon dioxide (CO2) to hydrocarbon fuels. Nanoscale, 0, , .	5.6	0
1797Constructing Bifunctional and Robust Covalent Organic Frameworks via Three-component One-pot Doebner Reaction for Cr(VI) Removal. Applied Catalysis B: Environmental, 2023, , 123672.20.201798The MOFs/COFs-derivant decorating FeSiAl coupling magnetic and electrical losses for enhanced microwave absorption. Applied Surface Science, 2023, , 159242.6.101799Rapid and in-situ preparation COFs coated capillary by adsorption method for the separation and determination of phthalate ester using CEC. Talanta, 2023, , 125617.5.501800Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications.38.11	1	1796	Tailoring COFs: Transforming Nonconducting 2D Layered COF into a Conducting Quasi-3D Architecture via Interlayer Knitting with Polypyrrole. Journal of the American Chemical Society, 0, , .	13.7	0
1798The MOFs/COFs-derivant decorating FeSiAl coupling magnetic and electrical losses for enhanced microwave absorption. Applied Surface Science, 2023, 159242.6.101799Rapid and in-situ preparation COFs coated capillary by adsorption method for the separation and determination of phthalate ester using CEC. Talanta, 2023, 125617.5.501800Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chemical Society Reviews, 2024, 53, 1823-1869.38.11	1	1797	Constructing Bifunctional and Robust Covalent Organic Frameworks via Three-component One-pot Doebner Reaction for Cr(VI) Removal. Applied Catalysis B: Environmental, 2023, , 123672.	20.2	0
1799Rapid and in-situ preparation COFs coated capillary by adsorption method for the separation and determination of phthalate ester using CEC. Talanta, 2023, 125617.5.501800Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chemical Society Reviews, 2024, 53, 1823-1869.38.11	1	1798	The MOFs/COFs-derivant decorating FeSiAl coupling magnetic and electrical losses for enhanced microwave absorption. Applied Surface Science, 2023, , 159242.	6.1	0
 Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. 38.1 1 Chemical Society Reviews, 2024, 53, 1823-1869. 	1	799	Rapid and in-situ preparation COFs coated capillary by adsorption method for the separation and determination of phthalate ester using CEC. Talanta, 2023, , 125617.	5.5	0
	1	1800	Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chemical Society Reviews, 2024, 53, 1823-1869.	38.1	1

#	Article	lF	Citations
1801	BF ₃ â€induced reversible covalent organic framework radicals. SmartMat, 0, , .	10.7	1
1802	Structural survey of metal-covalent organic frameworks and covalent metal-organic frameworks. International Journal of Minerals, Metallurgy and Materials, 2023, 30, 2297-2309.	4.9	1
1803	A hydrazone-linked covalent organic framework as a dual-mode colorimetric and fluorescence pH sensor. Microporous and Mesoporous Materials, 2024, 366, 112971.	4.4	0
1804	Donorâ€Acceptor Interactions Enhanced Colorimetric Sensors for Both Acid and Base Vapor Based on Twoâ€Đimensional Covalent Organic Frameworks. Chemistry - A European Journal, 2024, 30, .	3.3	0
1805	Phenazine-based conjugated microporous polymers: Influence of planarity and imine content on energy storage performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 685, 133210.	4.7	0
1806	Ligand Exchanges Among [N-I ⁺ -N] Halogen Bonds: A Robust Strategy for the Construction of Functional Halogen-Bonded Organic Frameworks (XOFs). , 2024, 6, 508-516.		0
1807	Sustainable remediation of pesticide pollutants using covalent organic framework – A review on material properties, synthesis methods and application. Environmental Research, 2024, 246, 118018.	7.5	0
1808	Integrating Levels of Hierarchical Organization in Porous Organic Molecular Materials. Nano-Micro Letters, 2024, 16, .	27.0	2
1809	Recent advances of nanoparticles-assisted CRISPR/Cas biosensors. Microchemical Journal, 2024, 199, 109930.	4.5	0
1810	Construction of a conjugated covalent organic framework for iodine capture. RSC Advances, 2024, 14, 1665-1669.	3.6	0
1811	Constructing Highly Emissive Covalent Organic Frameworks for Fe ³⁺ Ion Detection via Wall Function. Macromolecular Rapid Communications, 2024, 45, .	3.9	0
1812	Single-Crystal One-Dimensional Porous Ladder Covalent Polymers. Journal of the American Chemical Society, 2024, 146, 782-790.	13.7	0
1813	Various Stacking Patterns of Two-Dimensional Molecular Assemblies in Hydrogen-Bonded Cocrystals: Insight into Competitive Intermolecular Interactions and Control of Stacking Patterns. Springer Theses, 2024, , 45-76.	0.1	0
1814	Multivalentâ€lon Electrochromic Energy Saving and Storage Devices. Advanced Functional Materials, 0,	14.9	0
1815	Hydrothermal synthesis of polyimide-linked covalent organic frameworks towards ultrafast and stable cathodic sodium storage. Science China Chemistry, 2024, 67, 1300-1310.	8.2	0
1816	<i>N</i> â€Heterocyclic Carbene Promoted Construction of Amideâ€Linked COFs <i>via</i> the Oxidation of Imineâ€Linked COFs with Molecular Oxygen. ChemistrySelect, 2024, 9, .	1.5	0
1817	Covalent Organic Framework Ionomer Steering the CO ₂ Electroreduction Pathway on Cu at Industrial-Grade Current Density. Journal of the American Chemical Society, 2024, 146, 1572-1579.	13.7	0
1818	Molecular Co-Catalyst Confined within a Metallacage for Enhanced Photocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2024, 146, 2275-2285.	13.7	0

ARTICLE IF CITATIONS Chargeâ€Assisted Ionic Hydrogenâ€Bonded Organic Frameworks: Designable and Stabilized 1819 3.3 0 Multifunctional Materials. Chemistry - A European Journal, 2024, 30, . Triple Isomerism in 3D Covalent Organic Frameworks. Journal of the American Chemical Society, 2024, 13.7 146, 1832-1838. New metal–organic frameworks and other porous filler–based hybrid membranes for gas separation 1821 0 and wastewater treatment. , 2024, , 139-186. Co-immobilization of enzymes and chemocatalysts for one-pot chemoenzymatic cascades: Scaffold 6.1 engineering toward more efficient catalysis. Chem Catalysis, 2024, 4, 100894. Optimized Polymeric Membranes for Water Treatment: Fabrication, Morphology, and Performance. 1823 4.5 0 Polymers, 2024, 16, 271. Stimuli-responsive coordination polymers toward next-generation smart materials and devices. 1824 41.6 EScience, 2024, , 100231. Atomically Dispersed Iron Active Sites on Covalent Organic Frameworks for Artificial Photosynthesis 1825 19.5 1 of Hydrogen Peroxide. Advanced Energy Materials, 2024, 14, . Bioinspired 2D nanofluidic membranes for energy applications. Chemical Society Reviews, 2024, 53, 1826 38.1 2300-2325. A panoramic perspective of recent progress in 2D and 3D covalent organic frameworks for drug 1827 9.9 1 delivery. Aggregate, 2024, 5, . Atomically dispersed Ni active sites on covalent organic frameworks for heterogeneous 20.2 metallaphotocatalytic C–N cross-coupling. Applied Catalysis B: Environmental, 2024, 345, 123698. Enhanced photocatalysis of metal/covalent organic frameworks by plasmonic nanoparticles and 1829 0 12.2 homo/hetero-junctions. Materials Horizons, 2024, 11, 1611-1637. Hierarchical Selfâ€Assembly of Curved Aromatics: From Donor–Acceptor Porphyrins to Triply Periodic 13.8 Minimal Surfaces. Angewandte Chemie - International Edition, 2024, 63, . Hierarchical Selfâ€Assembly of Curved Aromatics: From Donor–Acceptor Porphyrins to Triply Periodic 1831 2.0 0 Minimal Surfaces. Angewandte Chemie, 2024, 136, . Sequential Oxidation/Cyclization of Readily Available Imine Linkages to Access Benzoxazoleâ€Linked 13.8 Covalent Organic Framéworks. Angewandte Chemie - International Edition, 2024, 63, . Sequential Oxidation/Cyclization of Readily Available Imine Linkages to Access Benzoxazoleâ Elinked 1833 2.0 0 Covalent Organic Frameworks. Angewandte Chemie, 2024, 136, . Polysilicate Porous Organic Polymers (PSiPOPs), a Family of Porous, Ordered 3D Reticular Materials 1834 with Polysilicate Nodes and Organic Linkers. Chemistry of Materials, 2024, 36, 1385-1394. Phase behavior of patchy colloids confined in patchy porous media. Nanoscale, 2024, 16, 4668-4677. 1835 5.6 0 Reversible modulation of interlayer stacking in 2D copper-organic frameworks for tailoring porosity 12.8 and photocatalytic activity. Nature Communications, 2024, 15, .

#	Article	IF	CITATIONS
1837	lonic Liquidâ€Mediated Dynamic Polymerization for Facile Aqueousâ€Phase Synthesis of Enzymeâ€Covalent Organic Framework Biocatalysts. Angewandte Chemie, 2024, 136, .	2.0	0
1838	lonic Liquidâ€Mediated Dynamic Polymerization for Facile Aqueousâ€Phase Synthesis of Enzymeâ€Covalent Organic Framework Biocatalysts. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1839	Cyclotriphosphazene based materials: Structure, functionalization and applications. Progress in Materials Science, 2024, 142, 101232.	32.8	1
1840	Stepwise construction of coordinative linkages and dynamic covalent linkages for a porous metal–organic framework. Chemical Communications, 2024, 60, 1488-1491.	4.1	0
1841	Efficient and Selective Adsorption of <i>cis</i> -Diols via the Suzuki–Miyaura Cross-Coupling-Modified Phenylboronic-Acid Functionalized Covalent Organic Framework. Langmuir, 2024, 40, 1884-1891.	3.5	0
1843	Subâ€Stoichiometric Covalent Organic Frameworks. Advanced Functional Materials, 0, , .	14.9	0
1844	Tuning the Topology of Twoâ€Dimensional Covalent Organic Frameworks through Siteâ€Selective Synthetic Strategy. Chemistry - A European Journal, 2024, 30, .	3.3	1
1845	Nitrogen-rich covalent organic framework as a practical coating for effective determinations of polycyclic aromatic hydrocarbons. Talanta, 2024, 271, 125655.	5.5	0
1846	Pore-Networked Soft Materials Based on Metal–Organic Polyhedra. Accounts of Chemical Research, 2024, 57, 327-337.	15.6	0
1847	Water-Soluble, Self-Assembled Molecular Cage and Two-Dimensional Framework through Flexibility Adjustment of the Precursors. Crystal Growth and Design, 2024, 24, 886-891.	3.0	0
1848	Recent Advances and Perspectives of Covalent Organic Frameworks for Alkali-Ion Batteries. Energy Material Advances, 2024, 5, .	11.0	0
1849	Aptasensor based on high surface area covalent organic framework for simple and ultrasensitive detection of sarcosine in the diagnosis of prostate cancer. Analytica Chimica Acta, 2024, 1291, 342235.	5.4	0
1850	Accelerated Diffusion of a Copper(I)-Functionalized COF Packed Bed Reactor for Efficient Continuous Flow Catalysis. ACS Applied Materials & Interfaces, 2024, 16, 5158-5167.	8.0	3
1851	Polymer-Coated Covalent Organic Frameworks as Porous Liquids for Gas Storage. Chemistry of Materials, 2024, 36, 1579-1590.	6.7	0
1852	Benzotrifuran-based donor–acceptor covalent organic frameworks for enhanced photocatalytic hydrogen generation. Green Chemistry, 2024, 26, 2605-2612.	9.0	0
1853	Covalent organic frameworks with interlayer fixed Pt atoms for efficient electrocatalytic hydrogen evolution. Materials Chemistry Frontiers, 2024, 8, 1619-1627.	5.9	0
1854	Atomic observation and structural evolution of covalent organic framework rotamers. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
1855	Critical review in electrocatalytic nitrate reduction to ammonia towards a sustainable nitrogen utilization. Chemical Engineering Journal, 2024, 483, 148952.	12.7	0

#	Article	IF	CITATIONS
1856	Applications of Emerging Metal and Covalent Organic Frameworks in Perovskite Photovoltaics: Materials and Devices. Advanced Energy Materials, 2024, 14, .	19.5	0
1857	Creating amphiphilic porosity in two-dimensional covalent organic frameworks via steric-hindrance-mediated precision hydrophilic-hydrophobic microphase separation. Nature Communications, 2024, 15, .	12.8	0
1858	An expanded hydrogen-bonded organic framework formed by a tetrakis(terphenyl)ethene derivative. Bulletin of the Chemical Society of Japan, 2024, 97, .	3.2	0
1859	Linker-Guided Growth of Single-Crystal Covalent Organic Frameworks. Journal of the American Chemical Society, 2024, 146, 3449-3457.	13.7	0
1860	Synthesis of 12-Connected Three-Dimensional Covalent Organic Framework with Inj Topology. Journal of the American Chemical Society, 2024, 146, 4327-4332.	13.7	0
1861	Spirobifluoreneâ€Based Porous Organic Salts: Their Porous Network Diversification and Construction of Chiral Helical Luminescent Structures. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1862	Spirobifluoreneâ€Based Porous Organic Salts: Their Porous Network Diversification and Construction of Chiral Helical Luminescent Structures. Angewandte Chemie, 2024, 136, .	2.0	0
1863	Three-dimensional covalent organic frameworks with nia nets for efficient separation of benzene/cyclohexane mixtures. Nature Communications, 2024, 15, .	12.8	0
1864	Construction of Layer-Blocked Covalent Organic Framework Heterogenous Films via Surface-Initiated Polycondensations with Strongly Enhanced Photocatalytic Properties. ACS Central Science, 0, , .	11.3	0
1865	A robust cationic covalent triazine framework-based nanotrap for fast and efficient recovery of gold from electronic waste. Chemical Engineering Journal, 2024, 483, 149208.	12.7	0
1866	Covalent–Organic Framework-Based Materials in Theranostic Applications: Insights into Their Advantages and Challenges. ACS Omega, 2024, 9, 6235-6252.	3.5	0
1867	Design and assembly of porous organic cages. Chemical Communications, 2024, 60, 2261-2282.	4.1	0
1868	One-step synthesis of a highly crystalline covalent organic framework with olefin and imine dual linkages for tuning the catalytic activity. Journal of Materials Chemistry A, 2024, 12, 5254-5260.	10.3	0
1869	Tuning the Pyridine Units in Vinyleneâ€Linked Covalent Organic Frameworks Boosting 2e ^{â^'} Oxygen Reduction Reaction. Small, 0, , .	10.0	0
1870	Research Progress of Materials Used for Elemental Halogen Capture. Acta Chimica Sinica, 2024, 82, 62.	1.4	0
1871	Atomically isolated Sb(CN) ₃ on sp ² -c-COFs with balanced hydrophilic and oleophilic sites for photocatalytic C-H activation. Science Advances, 2024, 10, .	10.3	0
1872	Creation of Cationic Polymeric Nanotrap Featuring High Anion Density and Exceptional Alkaline Stability for Highly Efficient Pertechnetate Removal from Nuclear Waste Streams. ACS Central Science, 2024, 10, 426-438.	11.3	1
1873	Porous materials as effective chemiresistive gas sensors. Chemical Society Reviews, 2024, 53, 2530-2577.	38.1	0

#	Article	IF	CITATIONS
1874	Amphiphilic Covalent Organic Framework Nanoparticles for Pickering Emulsion Catalysis with Size Selectivity. Angewandte Chemie, 2024, 136, .	2.0	0
1875	1D Covalent Organic Frameworks Triggering Highly Efficient Photosynthesis of H ₂ O ₂ via Controllable Modular Design. Angewandte Chemie, 2024, 136, .	2.0	0
1876	Amphiphilic Covalent Organic Framework Nanoparticles for Pickering Emulsion Catalysis with Size Selectivity. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1877	Rigidifying AlEgens in covalent organic framework nanosheets for electrochemiluminescence enhancement: TABE-PZ-CON as a novel emitter for microRNA-21 detection. Analytica Chimica Acta, 2024, 1295, 342321.	5.4	0
1878	1D Covalent Organic Frameworks Triggering Highly Efficient Photosynthesis of H ₂ O ₂ via Controllable Modular Design. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1879	A "turn-on―fluorescent sensor based on three-component covalent organic framework for trace water detection. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2024, 311, 123978.	3.9	0
1880	Intuitive and Efficient Approach to Determine the Band Structure of Covalent Organic Frameworks from Their Chemical Constituents. Journal of Chemical Theory and Computation, 2024, 20, 1252-1262.	5.3	0
1881	Covalent Organic Frameworks as Promising Platforms for Efficient Electrochemical Reduction of Carbon Dioxide: A Review. Small Structures, 2024, 5, .	12.0	0
1882	From structure to function: Harnessing the ionic conductivity of covalent organic frameworks. Bulletin of the Korean Chemical Society, 2024, 45, 296-307.	1.9	0
1883	Janus Quasi-Solid Electrolyte Membranes with Asymmetric Porous Structure for High-Performance Lithium-Metal Batteries. Nano-Micro Letters, 2024, 16, .	27.0	1
1884	Red-Light-Based Effective Photocatalysis of a Photosensitive Covalent Organic Framework Triggered Singlet Oxygen. ACS Catalysis, 2024, 14, 2631-2641.	11.2	0
1885	Building the future: the research frontiers and industrial prospects in framework chemistry. Scientia Sinica Chimica, 2024, , .	0.4	0
1886	Microwave-assisted synthesis of mixed-linker covalent organic frameworks enabling tunable and ultrahigh iodine capture. Chemical Engineering Journal, 2024, 485, 149135.	12.7	0
1887	Coupling Electron Transfer and Redox Site in Boranil Covalent Organic Framework Toward Boosting Photocatalytic Water Oxidation. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1888	Coupling Electron Transfer and Redox Site in Boranil Covalent Organic Framework Toward Boosting Photocatalytic Water Oxidation. Angewandte Chemie, 2024, 136, .	2.0	0
1889	Synthesis of yolk–shell COF with corrole and electrocatalytic property of Co-doped COF for oxygen reduction reaction. Chemistry Letters, 2024, 53, .	1.3	0
1890	Sunflower-like missing-linker covalent organic framework for efficient extraction of non-steroidal anti-inflammatory drugs. Environmental Science and Pollution Research, 2024, 31, 16601-16612.	5.3	0
1891	MOFs-, COFs- and MOGs-assisted chemiluminescence methods. Microchemical Journal, 2024, 199, 110096.	4.5	0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1892	A toolbox for investigating liquid metal systems. Cell Reports Physical Science, 2024, 5	5, 101820.	5.6	0
1893	Design, synthesis, and progress of covalent organic frameworks (COFs)-based electroc valorisation of biomass-derived platform chemicals. Materials Today Advances, 2024, 2	catalysts for 21, 100473.	5.2	0
1894	Atomically dispersed Co ²⁺ in a redox-active COF for electrochemical CO< reduction to ethanol: unravelling mechanistic insight through <i>operando</i> studies Environmental Science, 2024, 17, 2315-2325.	₂ 5. Energy and	30.8	0
1895	Single-Atom Catalysts on Covalent Organic Frameworks for Energy Applications. ACS , Materials & amp; Interfaces, 0, , .	Applied	8.0	0
1896	Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated coval polymer anodes. , 2024, 43, 100249.	ent organic		0
1897	A theoretical prediction of 2D covalent organic frameworks constructed by B-heterocy Computational and Theoretical Chemistry, 2024, 1233, 114503.	clic carbenes.	2.5	0
1898	Strategic design of a rare trigonal symmetric luminescent covalent organic framework modification. Journal of Chemical Physics, 2024, 160, .	by linker	3.0	0
1899	Rapid and scalable synthesis of porous organic cages with solvent recyclability. Journal State Chemistry, 2024, 333, 124605.	of Solid	2.9	0
1900	Design, optimization, and characterization of covalent organic framework-based nano delivery systems. Materials Letters, 2024, 361, 136122.	particle drug	2.6	0
1902	Linkage-engineered donor–acceptor covalent organic frameworks for optimal photo hydrogen peroxide from water and air. Nature Catalysis, 2024, 7, 195-206.	synthesis of	34.4	0
1903	Positional Thiophene Isomerization: A Geometric Strategy for Precisely Regulating the State of Covalent Organic Frameworks to Boost Oxygen Reduction. Angewandte Cher International Edition, 2024, 63, .	Electronic nie -	13.8	0
1904	Positional Thiophene Isomerization: A Geometric Strategy for Precisely Regulating the State of Covalent Organic Frameworks to Boost Oxygen Reduction. Angewandte Cher	Electronic nie, 2024, 136, .	2.0	0
1905	Synthesizing covalent organic frameworks for unprecedented iodine capture performa 2024, 10, e25921.	ınce. Heliyon,	3.2	0
1906	Synergistic Modulating Interlayer Space and Electronâ€Transfer of Covalent Organic F Oxygen Reduction Reaction. Small, 0, , .	rameworks for	10.0	0
1907	Microporous Polymeric Networks Containing a Long-Term Stable Au ^I Cat Cyclization. ACS Applied Polymer Materials, 2024, 6, 2453-2463.	alyst for Enyne	4.4	0
1908	Covalent organic frameworks nanocomposites and their role in performance enhancer bioanalysis based biosensor. TrAC - Trends in Analytical Chemistry, 2024, 172, 117604	nent of	11.4	0
1909	Mercapto-β-cyclodextrin covalent organic frameworks for enantioselective liquid-liquid Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 687, 13349	d extraction. 6.	4.7	0
1910	Pore Restructuring of Peptide Frameworks by Mutations at Distal Packing Residues. Biomacromolecules, 2024, 25, 2016-2023.		5.4	0

#	Article	IF	CITATIONS
1911	Designing Stateâ€ofâ€theâ€Art Gas Sensors: From Fundamentals to Applications. Chemical Record, 2024, 24, .	5.8	0
1912	An Appraisal for Providing Charge Transfer (CT) Through Synthetic Porous Frameworks for their Semiconductor Applications. Small, 0, , .	10.0	Ο
1913	Confined Space Nanoarchitectonics for Dynamic Functions and Molecular Machines. Micromachines, 2024, 15, 282.	2.9	0
1915	Self-standing perylene diimide covalent organic framework membranes for trace TMA sensing at room temperature. Journal of Colloid and Interface Science, 2024, 663, 262-269.	9.4	Ο
1916	Constructing 2D Phthalocyanine Covalent Organic Framework with Enhanced Stability and Conductivity via Interlayer Hydrogen Bonding as Electrocatalyst for CO ₂ Reduction. Small, 0, , .	10.0	0
1917	Engineering covalent organic framework membranes for efficient ionic/molecular separations. Matter, 2024, 7, 1406-1439.	10.0	0
1918	Regulating the Tautomerization in Covalent Organic Frameworks for Efficient Sacrificial Agent-Free Photocatalytic H ₂ O ₂ Production. Macromolecules, 2024, 57, 2039-2047.	4.8	0
1919	Ultrathin Composite Separator Based on Lithiated COF Nanosheet for High Stability Lithium Metal Batteries. Advanced Functional Materials, 0, , .	14.9	0
1920	Decoupling synthesis and crystallization of covalent organic frameworks (COFs) for more crystalline layer targeting high efficiency dye separation. Separation and Purification Technology, 2024, 341, 126881.	7.9	0
1921	Dispersed Au Nanoparticles Anchored on Covalent Organic Frameworks/Carbon Nanotubes via Self-Reduction for Electrochemical Sensing of Acetaminophen. ACS Applied Nano Materials, 2024, 7, 4980-4988.	5.0	0
1922	Postsynthetic Modification Strategy for Constructing Electrochemiluminescence-Active Chiral Covalent Organic Frameworks Performing Efficient Enantioselective Sensing. Analytical Chemistry, 2024, 96, 3942-3950.	6.5	0
1923	Effect of Tautomerization on Water Desalination by Covalent Organic Frameworks. Chemical Engineering Science, 2024, 291, 119923.	3.8	0
1924	Covalent organic frameworks modified with silver nanoparticles as substrates for label-free SERS detection of fungicides. Journal of Food Measurement and Characterization, 2024, 18, 2903-2915.	3.2	0
1925	Insights into sensing applications of fluorescent covalent organic frameworks. TrAC - Trends in Analytical Chemistry, 2024, 173, 117625.	11.4	0
1926	Toward the Next Generation of Permanently Porous Materials: Halogen-Bonded Organic Frameworks. Crystal Growth and Design, 2024, 24, 2304-2321.	3.0	0
1927	Singleâ€Layered Imineâ€Linked Porphyrinâ€Based Twoâ€Dimensional Covalent Organic Frameworks Targeting CO ₂ Reduction. Advanced Energy Materials, 0, , .	19.5	0
1928	MOFs/COFs hybrids as next-generation materials for electrocatalytic CO2 reduction reaction. Chemical Engineering Journal, 2024, 486, 150098.	12.7	0
1929	Mapping TpPa-1 covalent organic framework (COF) molecular interactions in mixed solvents via atomistic modeling and experimental study. Journal of Membrane Science, 2024, 698, 122613.	8.2	0

#	Article	IF	CITATIONS
1930	Covalent Organic Frameworks with Tunable Chirality for Chiral-Induced Spin Selectivity. Journal of the American Chemical Society, 2024, 146, 6733-6743.	13.7	0
1931	Charging modulation of the pyridine nitrogen of covalent organic frameworks for promoting oxygen reduction reaction. Nature Communications, 2024, 15, .	12.8	0
1932	Investigation of the Dynamic Behaviour of H ₂ and D ₂ in a Kinetic Quantum Sieving System. ACS Applied Materials & Interfaces, 2024, 16, 12467-12478.	8.0	0
1933	Hetero-Motif Molecular Junction Photocatalysts: A New Frontier in Artificial Photosynthesis. Accounts of Chemical Research, 2024, 57, 870-883.	15.6	0
1934	Covalent organic frameworks for efficient hydrogen peroxide production. EnergyChem, 2024, 6, 100121.	19.1	0
1935	A Systematic Review of MOF, COF, and Their Hybridâ€Based Composite Membranes for Gas Separation. Macromolecular Symposia, 2024, 413, .	0.7	0
1936	Recent advances in the application of magnetic materials for the management of perfluoroalkyl substances in aqueous phases. Chemosphere, 2024, 352, 141522.	8.2	0
1937	A sp2-carbon-linked orange-emitting 2D covalent organic framework containing pyrene and tetraphenylethene units: Synthesis and application for rare-earth free white light-emitting diodes. Applied Materials Today, 2024, 37, 102124.	4.3	0
1939	Heterostructural covalent organic framework/polymer composite materials: Recent advances in multidisciplinary applications. Nano Today, 2024, 55, 102211.	11.9	0
1940	Recent Progress in Covalent Organic Frameworks for Cathode Materials. Polymers, 2024, 16, 687.	4.5	0
1941	Targeted Detoxification of Aflatoxin B ₁ in Edible Oil by an Enzyme–Metal Nanoreactor. Journal of Agricultural and Food Chemistry, 2024, 72, 5966-5974.	5.2	0
1942	Fabricating Covalent–Organic Quantum Dots through Selective Disassembly of Hydrogen-Covalent Hybridized Organic Frameworks for Efficient and Sensitive Uranium Detection. , 2024, 6, 1297-1303.		0
1943	Covalent organic frameworks: spotlight on applications in the pharmaceutical arena. Bioanalysis, 0, , .	1.5	0
1944	The construction of COFs functionalized CRISPR electrochemical sensor for ultrasensitive detection of bacteria by hyper-branched rolling circle amplification. Sensors and Actuators B: Chemical, 2024, 409, 135610.	7.8	0
1945	Recent advances in photoelectrochemical platforms based on porous materials for environmental pollutant detection. RSC Advances, 2024, 14, 7940-7963.	3.6	0
1946	Synthesis and Properties of a Zwitterionic Covalent Organic Framework (COF): The Meltability Strategy and Processability. Chemistry of Materials, 2024, 36, 2674-2684.	6.7	0
1947	Stilbene-Cross-Linked Pillar[5]arene-Based Polymer for Efficient Iodine Vapor Capture and Adsorption from Water. ACS Applied Polymer Materials, 2024, 6, 3470-3480.	4.4	0
1948	Peptide hydrogen-bonded organic frameworks. Chemical Society Reviews, 2024, 53, 3640-3655.	38.1	0

ARTICLE IF CITATIONS Recent progress in separation of technetium-99 from spent nuclear fuel and radioactive waste. 1949 18.8 0 Challenges and prospects. Coordination Chemistry Reviews, 2024, 508, 215759. Engineering Covalent Organic Frameworks Toward Advanced Zincâ€Based Batteries. Advanced Materials, 1950 21.0 Red Light–Blue Light Chromoselective C(sp²)–X Bond Activation by Organic 1951 0 13.7 Helicenium-Based Photocatalysis. Journal of the American Chemical Society, 2024, 146, 7922-7930. Chiral Memory in Dynamic Transformation from Porous Organic Cages to Covalent Organic Frameworks for Enantiorecognition Analysis. Journal of the American Chemical Society, 2024, 146, 7594-7604. Tailoring Î²-ketoenamine covalent organic framework with azo for blue light-driven selective oxidation 1954 9.4 0 of amines with oxygen. Journal of Colloid and Interface Science, 2024, 665, 252-262. Construction of skyloft-like polyamide membrane on tubular ceramic support for high-flux nanofiltration. Separation and Purification Technology, 2024, 343, 127075. Regulating the H₂O₂ Photosynthetic Activity of Covalent Organic 1956 11.2 0 Frameworks through Linkage Orientation. ACS Catalysis, 2024, 14, 4728-4737. Encoding ordered structural complexity to covalent organic frameworks. Nature Communications, 12.8 2024, 15, . High Sodium Ion Storage by Multifunctional Covalent Organic Frameworks for Sustainable Sodium 1958 8.0 0 Batteries. ACS Applied Materials & amp; Interfaces, 2024, 16, 14750-14758. Steering lithium and potassium storage mechanism in covalent organic frameworks by incorporating 1959 transition metal single atoms. Proceedings of the National Academy of Sciences of the United States 7.1 of America, 2024, 121, . Imine-Linked π-Conjugated Covalent Organic Frameworks as an Efficient Electrode Material for 1960 0 5.1Pseudocapacitive Energy Storage. ACS Applied Energy Materials, 2024, 7, 2872-2880. Metal-free thiophene-based covalent organic frameworks achieve efficient photocatalytic hydrogen evolution by accelerating interfacial charge transfer. International Journal of Hydrogen Energy, 7.1 2024, 63, 184-192. Atomic-level imaging of beam-sensitive COFs and MOFs by low-dose electron microscopy. Nanoscale 1962 8.0 0 Horizons, 0, , . Covalent organic frameworks filled Pebax hybrid membrane for efficient toluene/N2 separation. 1964 8.2 Journal of Membrane Science, 2024, 700, 122676. Tuning Electron Transfer in Pyrene-Based Two Dimensional Covalent Organic Frameworks: Unveiling the Impact of Semi-isomerism on Physicochemical Properties. Chemistry of Materials, 2024, 36, 1965 0 6.7 2880-2887. Covalent organic framework isomers with divergent photocatalytic properties. Chemical 1966 Communications, 2024, 60, 4423-4426. Nanomaterials for coâ€immobilization of multiple enzymes., 0, , . 1967 0 Emerging trends in biomass-derived porous carbon materials for hydrogen storage. International 1968 7.1 Journal of Hydrogen Energy, 2024, 62, 272-306.