Memory materials and devices: From concept to application

InformaÄnÃ-Materiály 2, 261-290 DOI: 10.1002/inf2.12077

Citation Report

#	Article	IF	CITATIONS
1	Recent advances, perspectives, and challenges in ferroelectric synapses*. Chinese Physics B, 2020, 29, 097701.	1.4	19
2	Stimuliâ€Enabled Artificial Synapses for Neuromorphic Perception: Progress and Perspectives. Small, 2020, 16, e2001504.	10.0	55
3	Silent Synapse Activation by Plasmaâ€Induced Oxygen Vacancies in TiO ₂ Nanowireâ€Based Memristor. Advanced Electronic Materials, 2020, 6, 2000536.	5.1	17
4	Unveiling the structural origin to control resistance drift in phase-change memory materials. Materials Today, 2020, 41, 156-176.	14.2	96
5	Recent Progress on Memristive Convolutional Neural Networks for Edge Intelligence. Advanced Intelligent Systems, 2020, 2, 2000114.	6.1	19
6	Recent Progress in Optoelectronic Synapses for Artificial Visualâ€Perception System. Small Structures, 2020, 1, 2000029.	12.0	90
7	Flexible full two-dimensional memristive synapses of graphene/WSe _{2â^'x} O _y /graphene. Physical Chemistry Chemical Physics, 2020, 22, 20658-20664.	2.8	16
8	The incorporation of the ionization effect in organic semiconductors assists in triggering multilevel resistive memory behaviors. Materials Chemistry Frontiers, 2020, 4, 3280-3289.	5.9	13
9	Non-volatile programmable homogeneous lateral MoTe2 junction for multi-bit flash memory and high-performance optoelectronics. Nano Research, 2020, 13, 3445-3451.	10.4	11
10	Self-Selective Resistive Device With Hybrid Switching Mode for Passive Crossbar Memory Application. IEEE Electron Device Letters, 2020, 41, 1009-1012.	3.9	34
11	Highâ€Performance Broadband Tungsten Disulfide Photodetector Decorated with Indium Arsenide Nanoislands. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000297.	1.8	2
12	Improving the Recognition Accuracy of Memristive Neural Networks via Homogenized Analog Type Conductance Quantization. Micromachines, 2020, 11, 427.	2.9	8
13	Flexible <scp>3D</scp> memristor array for binary storage and multiâ€states neuromorphic computing applications. InformaÄnÃ-Materiály, 2021, 3, 212-221.	17.3	52
14	Recent progresses of NMOS and CMOS logic functions based on two-dimensional semiconductors. Nano Research, 2021, 14, 1768-1783.	10.4	19
15	Electronics based on two-dimensional materials: Status and outlook. Nano Research, 2021, 14, 1752-1767.	10.4	59
16	Ambipolar 2D Semiconductors and Emerging Device Applications. Small Methods, 2021, 5, e2000837.	8.6	39
17	2D Polarized Materials: Ferromagnetic, Ferrovalley, Ferroelectric Materials, and Related Heterostructures. Advanced Materials, 2021, 33, e2004469.	21.0	45
18	Enhancing lightâ€matter interaction in <scp>2D</scp> materials by optical micro/nano architectures for highâ€performance optoelectronic devices. InformaÄnÃ-Materiály, 2021, 3, 36-60.	17.3	59

#	Article	IF	CITATIONS
19	Memristive Switching Characteristics in Biomaterial Chitosan-Based Solid Polymer Electrolyte for Artificial Synapse. International Journal of Molecular Sciences, 2021, 22, 773.	4.1	25
20	Nonlinear Weight Quantification for Mitigating Stress Induced Disturb Effect on Multilevel RRAM-Based Neural Network Accelerator. IEEE Journal of the Electron Devices Society, 2021, , 1-1.	2.1	1
21	A wafer-scale synthesis of monolayer MoS ₂ and their field-effect transistors toward practical applications. Nanoscale Advances, 2021, 3, 2117-2138.	4.6	31
22	Two-dimensional ferroelectric channel transistors integrating ultra-fast memory and neural computing. Nature Communications, 2021, 12, 53.	12.8	160
23	Emulation of biphasic plasticity in retinal electrical synapses for light-adaptive pattern pre-processing. Nanoscale, 2021, 13, 3483-3492.	5.6	16
24	High-performance flexible resistive random access memory devices based on graphene oxidized with a perpendicular oxidation gradient. Nanoscale, 2021, 13, 2448-2455.	5.6	12
25	Nanoscale molecular layers for memory devices: challenges and opportunities for commercialization. Journal of Materials Chemistry C, 2021, 9, 11497-11516.	5.5	18
26	Unraveling the structural and bonding nature of antimony sesquichalcogenide glass for electronic and photonic applications. Journal of Materials Chemistry C, 0, , .	5.5	15
27	Resistive Switching Characteristic Improvement in a Single-Walled Carbon Nanotube Random Network Embedded Hydrogen Silsesquioxane Thin Films for Flexible Memristors. International Journal of Molecular Sciences, 2021, 22, 3390.	4.1	8
28	Change in Structure of Amorphous Sb–Te Phaseâ€Change Materials as a Function of Stoichiometry. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100064.	2.4	10
29	Improvement of RRAM Uniformity and Analog Characteristics Through Localized Metal Doping. , 2021, , .		2
30	Three Resistance States Achieved by Nanocrystalline Decomposition in Geâ€Gaâ€5b Compound for Multilevel Phase Change Memory. Advanced Electronic Materials, 2021, 7, 2100164.	5.1	16
31	Non-Linear Resistive Switching Characteristics in HFO2-Based RRAM with Low-Dimensional Material Engineered Interface. , 2021, , .		1
32	Gate-tunable van der Waals heterostructure based on semimetallic WTe2 and semiconducting MoTe2. Applied Physics Letters, 2021, 118, .	3.3	10
33	Highâ€Throughput Screening for Phaseâ€Change Memory Materials. Advanced Functional Materials, 2021, 31, 2009803.	14.9	43
34	Charge-trapping memory device based on a heterostructure of MoS2 and CrPS4. Journal of the Korean Physical Society, 2021, 78, 816-821.	0.7	5
35	A RRAM based Max-Pooling Scheme for Convolutional Neural Network. , 2021, , .		5
36	Memory-centric neuromorphic computing for unstructured data processing. Nano Research, 2021, 14, 3126-3142.	10.4	21

#	Article	IF	CITATIONS
37	Synthesis of Waferâ€Scale Graphene with Chemical Vapor Deposition for Electronic Device Applications. Advanced Materials Technologies, 2021, 6, 2000744.	5.8	46
38	High-Performance Resistive Switching in Solution-Derived IGZO:N Memristors by Microwave-Assisted Nitridation. Nanomaterials, 2021, 11, 1081.	4.1	21
39	Microstructure and mechanical properties of atomic layer deposited alumina doped zirconia. AIP Advances, 2021, 11, .	1.3	6
41	Bipolar Resistive Switching in the Ag/Sb ₂ Te ₃ /Pt Heterojunction. ACS Applied Electronic Materials, 2021, 3, 2766-2773.	4.3	6
42	Unraveling the optical contrast in Sb ₂ Te and AgInSbTe phase-change materials. JPhys Photonics, 2021, 3, 034011.	4.6	12
43	Memristive Crossbar Arrays for Storage and Computing Applications. Advanced Intelligent Systems, 2021, 3, 2100017.	6.1	80
44	p-/n-Type modulation of 2D transition metal dichalcogenides for electronic and optoelectronic devices. Nano Research, 2022, 15, 123-144.	10.4	20
45	Bandâ€ŧailored van der Waals heterostructure for multilevel memory and artificial synapse. InformaÄnÃ- Materiály, 2021, 3, 917-928.	17.3	59
46	Biomaterial-Based Nonvolatile Resistive Memory Devices toward Ecofriendliness and Biocompatibility. ACS Applied Electronic Materials, 2021, 3, 2832-2861.	4.3	42
47	Modulation Doping: A Strategy for 2D Materials Electronics. Nano Letters, 2021, 21, 6298-6303.	9.1	48
48	Realization of a non-markov chain in a single 2D mineral RRAM. Science Bulletin, 2021, 66, 1634-1640.	9.0	15
49	Inkjet-printed bipolar resistive switching device based on Ag/ZnO/Au structure. Applied Physics Letters, 2021, 119, .	3.3	9
50	Thickness-dependent monochalcogenide GeSe-based CBRAM for memory and artificial electronic synapses. Nano Research, 2022, 15, 2263-2277.	10.4	19
51	A flexible nickel phthalocyanine resistive random access memory with multi-level data storage capability. Journal of Materials Science and Technology, 2021, 86, 151-157.	10.7	18
52	Structure, bonding nature and transition dynamics of amorphous Te. Scripta Materialia, 2021, 202, 114011.	5.2	15
53	A Scalable Artificial Neuron Based on Ultrathin Two-Dimensional Titanium Oxide. ACS Nano, 2021, 15, 15123-15131.	14.6	25
54	Recent advances on crystalline materials-based flexible memristors for data storage and neuromorphic applications. Science China Materials, 2022, 65, 2110-2127.	6.3	45
55	A revew of in situ transmission electron microscopy study on the switching mechanism and packaging reliability in non-volatile memory. Journal of Semiconductors, 2021, 42, 013102.	3.7	6

#	Article	IF	CITATIONS
56	Materials Screening for Disorderâ€Controlled Chalcogenide Crystals for Phaseâ€Change Memory Applications. Advanced Materials, 2021, 33, e2006221.	21.0	32
57	Emulation of Synaptic Scaling Based on MoS ₂ Neuristor for Selfâ€Adaptative Neuromorphic Computing. Advanced Electronic Materials, 2021, 7, 2001104.	5.1	3
58	Design and tailoring of two-dimensional Schottky, PN and tunnelling junctions for electronics and optoelectronics. Nanoscale, 2021, 13, 6713-6751.	5.6	30
59	Emerging 2D Organic-Inorganic Heterojunctions. Cell Reports Physical Science, 2020, 1, 100166.	5.6	23
60	Lowâ€Energy Oxygen Plasma Injection of 2D Bi ₂ Se ₃ Realizes Highly Controllable Resistive Random Access Memory. Advanced Functional Materials, 2022, 32, 2108455.	14.9	27
61	MOFâ€Based Sustainable Memory Devices. Advanced Functional Materials, 2022, 32, 2107949.	14.9	31
62	Chitosan-Based Flexible Memristors with Embedded Carbon Nanotubes for Neuromorphic Electronics. Micromachines, 2021, 12, 1259.	2.9	11
63	A TaOx-Based RRAM with Improved Uniformity and Excellent Analog Characteristics by Local Dopant Engineering. Electronics (Switzerland), 2021, 10, 2451.	3.1	9
64	The Road for 2D Semiconductors in the Silicon Age. Advanced Materials, 2022, 34, e2106886.	21.0	57
65	In-memory computing with emerging nonvolatile memory devices. Science China Information Sciences, 2021, 64, 1.	4.3	31
66	Alloy electrode engineering in memristors for emulating the biological synapse. Nanoscale, 2022, 14, 1318-1326.	5.6	15
67	Modulation of oxygen transport by incorporating Sb2Te3 layer in HfO2-based memristor. Applied Physics Letters, 2021, 119, 193503.	3.3	2
68	Single Crystal Halide Perovskite Film for Nonlinear Resistive Memory with Ultrahigh Switching Ratio. Small, 2022, 18, e2103881.	10.0	13
69	Non-volatile and volatile switching behaviors determined by first reset in Ag/TaO /TiN device for neuromorphic system. Journal of Alloys and Compounds, 2022, 896, 163075.	5.5	11
70	Write Asymmetry of Spin-Orbit Torque Memory Induced by in-Plane Magnetic Fields. IEEE Electron Device Letters, 2021, 42, 1766-1769.	3.9	6
71	Pt/Al ₂ O ₃ /TaO _{<i>X</i>} /Ta Self-Rectifying Memristor With Record-Low Operation Current (<2 pA), Low Power (f]), and High Scalability. IEEE Transactions on Electron Devices, 2022, 69, 838-842.	3.0	11
72	Transfer modeling of 1T1R crossbar arrays with line resistances based on matrix algebra method. Solid-State Electronics, 2022, 189, 108220.	1.4	0
73	Design of Reconfigurable Spin-Wave Nanochannels Based on Strain-Mediated Multiferroic Heterostructures and Logic Device Applications. IEEE Transactions on Electron Devices, 2022, 69, 1650-1657.	3.0	2

#	Article	IF	CITATIONS
74	A Highâ€Performance Inâ€Memory Photodetector Realized by Charge Storage in a van der Waals MISFET. Advanced Materials, 2022, 34, e2107734.	21.0	15
75	Two-dimensional reconfigurable electronics enabled by asymmetric floating gate. Nano Research, 2022, 15, 4439-4447.	10.4	6
76	Optical Modification of 2D Materials: Methods and Applications. Advanced Materials, 2022, 34, e2110152.	21.0	29
77	Ab initio molecular-dynamics simulations of electronic structures and characteristics of Cu/SiO2/Pt memristive stack. , 2022, 18, 83-92.		0
78	Memristor based on α-In2Se3 for emulating biological synaptic plasticity and learning behavior. Science China Materials, 0, , 1.	6.3	9
79	锑碲å•金Sb2Te3ä,ç©ºä½æ—åºåŒ–的原ä½ç"μåæ~¾å¾®å¦ç"ç©¶. Chinese Science Bulletin, 2022, , .	0.7	1
80	In Materia Neuron Spiking Plasticity for Sequential Event Processing Based on Dualâ€Mode Memristor. Advanced Intelligent Systems, 2022, 4, .	6.1	6
81	Carrier Trapping in Wrinkled 2D Monolayer MoS ₂ for Ultrathin Memory. ACS Nano, 2022, 16, 6309-6316.	14.6	22
82	Sustainable Macromolecular Materials in Flexible Electronics. Macromolecular Materials and Engineering, 2022, 307, .	3.6	4
83	Improved Performance of NbOx Resistive Switching Memory by In-Situ N Doping. Nanomaterials, 2022, 12, 1029.	4.1	7
84	A Hierarchically Encoded Data Storage Device with Controlled Transiency. Advanced Materials, 2022, , 2201035.	21.0	4
85	Implementation of Neuronal Intrinsic Plasticity by Oscillatory Device in Spiking Neural Network. IEEE Transactions on Electron Devices, 2022, 69, 1830-1834.	3.0	7
86	Artificial synaptic and self-rectifying properties of crystalline (Na1-K)NbO3 thin films grown on Sr2Nb3O10 nanosheet seed layers. Journal of Materials Science and Technology, 2022, 123, 136-143.	10.7	7
87	A New Insight and Modeling of Pulse-to-Pulse Variability in Analog Resistive Memory for On-Chip Training. IEEE Transactions on Electron Devices, 2022, 69, 3100-3104.	3.0	1
88	Deep machine learning unravels the structural origin of midâ€gap states in chalcogenide glass for highâ€density memory integration. InformaÄnÃ-Materiály, 2022, 4, .	17.3	34
89	Performance Optimization of Atomic Layer Deposited HfO _x Memristor by Annealing With Back-End-of-Line Compatibility. IEEE Electron Device Letters, 2022, 43, 1141-1144.	3.9	9
90	Recent Progress on Waveguide-Based Phase-Change Photonic Storage Memory. Journal of Nanoelectronics and Optoelectronics, 2022, 17, 187-194.	0.5	0
91	First-principles investigation of amorphous Ge-Sb-Se-Te optical phase-change materials. Optical Materials Express, 2022, 12, 2497.	3.0	12

#	Article	IF	CITATIONS
92	Printable ion-gel-gated In2O3 synaptic transistor array for neuro-inspired memory. Applied Physics Letters, 2022, 120, .	3.3	24
93	Conductance Switching in Liquid Crystal-Inspired Self-Assembled Monolayer Junctions. ACS Applied Materials & Interfaces, 2022, 14, 31044-31053.	8.0	1
94	Topologically protected magnetoelectric switching in a multiferroic. Nature, 2022, 607, 81-85.	27.8	20
95	RRAM and WORM memory devices using Protamine Sulfate and Graphene Oxide. Materials Today: Proceedings, 2022, 65, 2773-2777.	1.8	1
96	Twoâ€dimensional In ₂ Se ₃ : A rising advanced material for ferroelectric data storage. InformaÄnÃ-Materiály, 2022, 4, .	17.3	43
97	High On/Off Ratio Organic Resistive Switching Memory Based on Carbazolyl Dicyanobenzene and a Polymer Composite. Journal of Physical Chemistry C, 2022, 126, 12897-12905.	3.1	10
98	Tuning oxygen vacancies and resistive switching behaviors in amorphous Y2O3 film-based memories. Journal of Alloys and Compounds, 2022, 923, 166399.	5.5	3
99	2D materials and van der Waals heterojunctions for neuromorphic computing. Neuromorphic Computing and Engineering, 2022, 2, 032004.	5.9	14
100	Memristors with Biomaterials for Biorealistic Neuromorphic Applications. Small Science, 2022, 2, .	9.9	16
101	Active layer nitrogen doping technique with excellent thermal stability for resistive switching memristor. Applied Surface Science, 2022, 603, 154307.	6.1	8
102	The effect of acceptor dopant on the memory effect of BaTiO3 ceramics. Journal of Alloys and Compounds, 2022, 928, 167182.	5.5	2
103	Photonic synapses with ultralow energy consumption for artificial visual perception and brain storage. Opto-Electronic Advances, 2022, 5, 210069-210069.	13.3	15
104	MR-PIPA: An Integrated Multilevel RRAM (HfO _{<i>x</i>})-Based Processing-In-Pixel Accelerator. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2022, 8, 59-67.	1.5	12
105	Design of Memory Shifting System Based on Dual-Space Storage Architecture. IEEE Access, 2022, 10, 91897-91905.	4.2	0
106	Milk–Ta2O5 Hybrid Memristors with Crossbar Array Structure for Bio-Organic Neuromorphic Chip Applications. Nanomaterials, 2022, 12, 2978.	4.1	3
107	On-Surface Single-Molecule Identification of Mass-Selected Cyclodextrin-Supported Polyoxovanadates for Multistate Resistive-Switching Memory Applications. ACS Applied Nano Materials, 2022, 5, 14216-14220.	5.0	11
108	Molecular-Shape-Controlled Binary to Ternary Resistive Random-Access Memory Switching of N-Containing Heteroaromatic Semiconductors. ACS Applied Materials & Interfaces, 2022, 14, 44676-44684.	8.0	6
109	Advancements in materials, devices, and integration schemes for a new generation of neuromorphic computers. Materials Today, 2022, 59, 80-106.	14.2	11

#	Article	IF	CITATIONS
110	Bi-exponential decay model of electron in Al ₂ O ₃ /Au NCs/Al ₂ O ₃ structure. AIP Advances, 2022, 12, 095220.	1.3	0
111	Gateâ€tunable spin valve effect in <scp>Fe₃GeTe₂</scp> â€based van der Waals heterostructures. InformaÄnÃ-Materiály, 2023, 5, .	17.3	15
112	Quantized synaptic characteristics in HfO2-nanocrystal based resistive switching memory. Journal of Materials Research and Technology, 2022, 21, 981-991.	5.8	7
113	Uniform self-rectifying resistive random-access memory based on an MXene-TiO ₂ Schottky junction. Nanoscale Advances, 2022, 4, 5062-5069.	4.6	6
114	Oxide Dissolution Mediated Formation of Conducting Filament in ReRAM Devices: A Phase Field Study. Materials Transactions, 2022, , .	1.2	0
115	Synthesis and Nonlinear Optical Behavior of Thermally Stable Chromophores Based on 9,9-Dimethyl-9 <i>H</i> -fluoren-2-amine: Improving Intrinsic Hyperpolarizability through Modulation of "Push–Pull― ACS Omega, 2022, 7, 39045-39060.	3.5	3
116	Design of bifunctional phase-change device for storage memories and reconfigurable metasurfaces. Ceramics International, 2022, , .	4.8	1
117	Self-rectifying and artificial synaptic characteristics of amorphous Ta2O5 thin film grown on two-dimensional metal-oxide nanosheet. Applied Surface Science, 2023, 609, 155353.	6.1	4
118	Forming-Free HfO\$_{ext{2}}\$-Based Resistive Random Access Memory by X-Ray Irradiation. IEEE Transactions on Electron Devices, 2022, , 1-5.	3.0	1
119	High Uniformity Ferroelectric MoS2 Nonvolatile Memory Array. , 2022, , .		0
120	Tailoring the oxygen concentration in Ge-Sb-O alloys to enable femtojoule-level phase-change memory operations. Materials Futures, 2022, 1, 045302.	8.4	9
121	Recent advances in doped Ge ₂ Sb ₂ Te ₅ thin film based phase change memories. Materials Advances, 2023, 4, 747-768.	5.4	11
122	High Endurance Organic Resistive Switching Memory Based on 1,2-Dicyanobenzene and Polymer Composites. Wuli Xuebao/Acta Physica Sinica, 2023, .	0.5	0
123	Supramolecular Framework Constructed by Dendritic Nanopolymer for Stable Flexible Perovskite Resistive Randomâ€Access Memory. Small, 2023, 19, .	10.0	5
124	Ultraflexible and Energyâ€Efficient Artificial Synapses Based on Molecular/Atomic Layer Deposited Organic–Inorganic Hybrid Thin Films. Advanced Electronic Materials, 2023, 9, .	5.1	0
125	Improved resistive switching characteristics in the p+-Si/ZnO:Al/Ni heterojunction device. Applied Physics A: Materials Science and Processing, 2023, 129, .	2.3	1
126	Non-Volatile Memory and Synaptic Characteristics of TiN/CeOx/Pt RRAM Devices. Materials, 2022, 15, 9087.	2.9	4
127	Enhanced Short-Term Memory Plasticity of WOx-Based Memristors by Inserting AlOx Thin Layer. Materials, 2022, 15, 9081.	2.9	0

#	Article	IF	CITATIONS
128	Forming-Free Tunable Analog Switching in WOx/TaOx Heterojunction for Emulating Electronic Synapses. Materials, 2022, 15, 8858.	2.9	4
129	Titanium oxide memristors driven by oxygen diffusion dynamics and 1S1M biomimetic system. Vacuum, 2023, 210, 111844.	3.5	1
130	Organic Memristor Based on High Planar Cyanostilbene/Polymer Composite Films. Chemical Research in Chinese Universities, 0, , .	2.6	1
131	Energy Efficient CNTFET SRAM Cells Using Low Power Techniques. , 2022, , .		1
132	Recent progress in transparent memristors. Journal Physics D: Applied Physics, 2023, 56, 313001.	2.8	0
133	Effect of vacancy ordering on the grain growth of Ge ₂ Sb ₂ Te ₅ film. Nanotechnology, 2023, 34, 155703.	2.6	1
134	Electrochemical Resistive Switching in Nanoporous Hybrid Films by One-Step Molecular Layer Deposition. Journal of Physical Chemistry Letters, 2023, 14, 1389-1394.	4.6	1
135	Hydrogen-assisted growth of one-dimensional tellurium nanoribbons with unprecedented high mobility. Materials Today, 2023, 63, 50-58.	14.2	7
136	Understanding the Resistive Switching Mechanism of 2-D RRAM: Monte Carlo Modeling and a Proposed Application for Reliability Research. IEEE Transactions on Electron Devices, 2023, 70, 1676-1681.	3.0	1
137	Demonstration of ferroelectricity in PLD grown HfO ₂ -ZrO ₂ nanolaminates. AIMS Materials Science, 2023, 10, 342-355.	1.4	0
138	Reliability Improvement and Effective Switching Layer Model of Thinâ€Film MoS ₂ Memristors. Advanced Functional Materials, 2024, 34, .	14.9	7
139	Driving Strategy Based on Artificial Neuron Device for Array Circuits. IEEE Transactions on Electron Devices, 2023, 70, 3378-3381.	3.0	0
140	Giant Magnetocaloric Effect in Magnets Down to the Monolayer Limit. Small, 2023, 19, .	10.0	2
141	Two-Dimensional Layered Materials Meet Perovskite Oxides: A Combination for High-Performance Electronic Devices. ACS Nano, 2023, 17, 9748-9762.	14.6	4
142	A New Strategy for Optimizing Threshold Voltage of Artificial Neurons. , 2023, , .		0
143	Reconfigurable Neuromorphic Computing: Materials, Devices, and Integration. Advanced Materials, 2023, 35, .	21.0	5
144	Anisotropic mass transport enables distinct synaptic behaviors on 2D material surface. , 2023, 5, 100047.		2
145	Improvement of Rectification Characteristics of TaO _x /Al ₂ O ₃ Memristors by Oxygen Anion Migration and Barrier Modulation. IEEE Transactions on Electron Devices, 2023, 70, 3354-3359.	3.0	1

#	Article	IF	CITATIONS
146	Ferroelectric-controlled all MXene nonvolatile flexible memory devices for data storage application. Applied Physics Letters, 2023, 123, .	3.3	2
147	How could imperfect device properties influence the performances of spiking neural networks?. Science China Information Sciences, 2023, 66, .	4.3	0
148	Uncovering the Role of Crystal Phase in Determining Nonvolatile Flash Memory Device Performance Fabricated from MoTe ₂ -Based 2D van der Waals Heterostructures. ACS Applied Materials & Interfaces, 2023, 15, 35196-35205.	8.0	0
149	Room-Temperature and Tunable Tunneling Magnetoresistance in Fe ₃ GaTe ₂ -Based 2D van der Waals Heterojunctions. ACS Applied Materials & Interfaces, 2023, 15, 36519-36526.	8.0	16
150	Effect of growth temperature on self-rectifying BaTiO3/ZnO heterojunction for high-density crossbar arrays and neuromorphic computing. Journal of Colloid and Interface Science, 2023, 652, 836-844.	9.4	3
151	Non-volatile tunable optics by design: From chalcogenide phase-change materials to device structures. Materials Today, 2023, 68, 334-355.	14.2	2
152	Nanoelectronics Using Metal–Insulator Transition. Advanced Materials, 2024, 36, .	21.0	1
153	Crystallization behavior of MnTe/GeTe stacked thin films for multi-level phase change memory. Applied Surface Science, 2023, , 158362.	6.1	0
154	Surface effects on the crystallization kinetics of amorphous antimony. Nanoscale, 2023, 15, 15259-15267.	5.6	1
155	Organic-2D composite material-based RRAM with high reliability for mimicking synaptic behavior. Journal of Materiomics, 2024, 10, 440-447.	5.7	0
156	Recent Progress in Siliconâ€Based Photonic Integrated Circuits and Emerging Applications. Advanced Optical Materials, 2023, 11, .	7.3	2
157	Effect of heat treatment on resistive switching memory characteristics of NiO nanodots of tens of nanometers shattered by AFM tips. Solid State Sciences, 2023, 146, 107341.	3.2	0
158	Laser-modulated formation of conduction path for the achievement of ultra-low switching voltage in resistive random-access memory (RRAM). Nano Energy, 2023, 117, 108886.	16.0	0
159	High efficient field-free magnetization switching via exchange bias effect induced by antiferromagnetic insulator interface. Applied Physics Letters, 2023, 123, .	3.3	0
160	Implementation of Stable Nonvolatile Resistive Switching Behaviors in TiO ₂ Nanoparticleâ€Incorporated 2D Layered Halide Perovskiteâ€Based Devices. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	1.8	0
161	3D Vertical Self-Rectifying Memristor Arrays With Split-Cell Structure, Large Nonlinearity (>10 ⁴) and fJ-Level Switching Energy. IEEE Electron Device Letters, 2023, 44, 2059-2062.	3.9	2
162	Hybrid FinFET - Memristor based digital circuits for low power IC applications. Materials Today: Proceedings, 2023, , .	1.8	0
163	Silicon-processes-compatible contact engineering for two-dimensional materials integrated circuits. Nano Research, 2023, 16, 12471-12490.	10.4	1

#	Article	IF	CITATIONS
164	Emerging Robust Polymer Materials for High-Performance Two-Terminal Resistive Switching Memory. Polymers, 2023, 15, 4374.	4.5	0
165	Selfâ€Rectifying Memristors for Threeâ€DimensionalÂlnâ€Memory Computing. Advanced Materials, 2024, 36, .	21.0	1
166	Enhanced memristive effect of laser-reduced graphene and ferroelectric MXene-based flexible trilayer memristors. Carbon, 2024, 218, 118656.	10.3	1
167	Three-Dimensional/Two-Dimensional Perovskite-Resistive Random-Access Memory with Low SET Voltage and High Stability. ACS Applied Electronic Materials, 0, , .	4.3	0
168	Flexible SnO ₂ –MoS ₂ based memristive device exhibiting stable and enhanced memory phenomenon. Journal Physics D: Applied Physics, 2024, 57, 105107.	2.8	0
169	Multilevel Reset Dependent Set of a Biodegradable Memristor with Physically Transient. Advanced Science, 2024, 11, .	11.2	0
170	Fabrication and integration of photonic devices for phase-change memory and neuromorphic computing. International Journal of Extreme Manufacturing, 0, , .	12.7	0
171	A High-Throughput and Configurable TRNG Based on Dual-Mode Memristor for Stochastic Computing. , 2023, , .		0
172	Investigation and mitigation of Mott neuronal oscillation fluctuation in spiking neural network. Science China Information Sciences, 2024, 67, .	4.3	0
173	High-temperature tolerant TaO <i>X</i> /HfO2 self-rectifying memristor array with robust retention and ultra-low switching energy. Applied Physics Letters, 2024, 124, .	3.3	0
174	Toward Memristive Phaseâ€Change Neural Network with Highâ€Quality Ultraâ€Effective Highlyâ€Selfâ€Adjustable Online Learning. , 2024, 3, .		0
175	Device-Architecture Co-optimization for RRAM-based In-memory Computing. , 2023, , .		0
176	基于准二维钙钛矿的é«~稳定电é~»éšæœºå~å,¨å™¨. Science China Materials, 2024, 67, 879-886.	6.3	0
177	Multilevel and Low-Power Resistive Switching Based on pn Heterojunction Memory. Journal of Electronic Materials, 2024, 53, 2162-2167.	2.2	0
178	The filaments control for tunning digital resistive switching in data storage application and analog behavior as an artificial synapse with CsPbBr3-based memristor. Applied Physics Letters, 2024, 124, .	3.3	0
179	The Roadmap of 2D Materials and Devices Toward Chips. Nano-Micro Letters, 2024, 16, .	27.0	0
180	Short-term memory characteristics of TiN/WOX/FTO-based transparent memory device. Chinese Journal of Physics, 2024, 88, 1044-1052.	3.9	0
181	Reconfigurable Sensingâ€Memoryâ€Processing and Logical Integration Within 2D Ferroelectric Optoelectronic Transistor for CMOSâ€Compatible Bionic Vision. Advanced Functional Materials, 0, , .	14.9	0