Improved protein structure prediction using potentials

Nature 577, 706-710 DOI: 10.1038/s41586-019-1923-7

Citation Report

#	Article	IF	CITATIONS
1	AWSEM-Suite: a protein structure prediction server based on template-guided, coevolutionary-enhanced optimized folding landscapes. Nucleic Acids Research, 2020, 48, W25-W30.	6.5	18
2	Fast and Flexible Protein Design Using Deep Graph Neural Networks. Cell Systems, 2020, 11, 402-411.e4.	2.9	121
3	Recognition of Potential COVID-19 Drug Treatments through the Study of Existing Protein–Drug and Protein–Protein Structures: An Analysis of Kinetically Active Residues. Biomolecules, 2020, 10, 1346.	1.8	13
4	Predicting the performance of polyvinylidene fluoride, polyethersulfone and polysulfone filtration membranes using machine learning. Journal of Materials Chemistry A, 2020, 8, 21862-21871.	5.2	33
5	Designing peptide nanoparticles for efficient brain delivery. Advanced Drug Delivery Reviews, 2020, 160, 52-77.	6.6	33
6	Integrating Machine Learning with Human Knowledge. IScience, 2020, 23, 101656.	1.9	95
7	Combining fragment docking with graph theory to improve ligand docking for homology model structures. Journal of Computer-Aided Molecular Design, 2020, 34, 1237-1259.	1.3	4
8	Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metabolic Engineering Communications, 2020, 11, e00149.	1.9	46
9	Drug discovery with explainable artificial intelligence. Nature Machine Intelligence, 2020, 2, 573-584.	8.3	411
10	Targeted free energy estimation via learned mappings. Journal of Chemical Physics, 2020, 153, 144112.	1.2	44
11	Challenges in protein docking. Current Opinion in Structural Biology, 2020, 64, 160-165.	2.6	38
12	QDeep: distance-based protein model quality estimation by residue-level ensemble error classifications using stacked deep residual neural networks. Bioinformatics, 2020, 36, i285-i291.	1.8	34
13	Simple Model of Protein Energetics To Identify Ab Initio Folding Transitions from All-Atom MD Simulations of Proteins. Journal of Chemical Theory and Computation, 2020, 16, 5960-5971.	2.3	9
14	Large-scale DNA-based phenotypic recording and deep learning enable highly accurate sequence-function mapping. Nature Communications, 2020, 11, 3551.	5.8	36
15	Scientific Al in materials science: a path to a sustainable and scalable paradigm. Machine Learning: Science and Technology, 2020, 1, 033001.	2.4	35
16	Comparison of deep learning approaches to predict COVID-19 infection. Chaos, Solitons and Fractals, 2020, 140, 110120.	2.5	211
17	Using Deep Learning to Predict Fracture Patterns in Crystalline Solids. Matter, 2020, 3, 197-211.	5.0	93
18	A Perspective on Deep Learning for Molecular Modeling and Simulations. Journal of Physical Chemistry B, 2020, , .	1.2	0

#	Article	IF	CITATIONS
19	\$alpha\$-Satellite: An AI-Driven System and Benchmark Datasets for Dynamic COVID-19 Risk Assessment in the United States. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2755-2764.	3.9	45
20	Artificial Intelligence (AI) and Big Data for Coronavirus (COVID-19) Pandemic: A Survey on the State-of-the-Arts. IEEE Access, 2020, 8, 130820-130839.	2.6	212
21	Homology modeling in the time of collective and artificial intelligence. Computational and Structural Biotechnology Journal, 2020, 18, 3494-3506.	1.9	73
22	AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks. International Journal of Molecular Sciences, 2020, 21, 8424.	1.8	60
23	OPUS-Rota3: Improving Protein Side-Chain Modeling by Deep Neural Networks and Ensemble Methods. Journal of Chemical Information and Modeling, 2020, 60, 6691-6697.	2.5	21
24	Tumor Phylogeny Topology Inference via Deep Learning. IScience, 2020, 23, 101655.	1.9	11
25	Understanding adversarial examples requires a theory of artefacts for deep learning. Nature Machine Intelligence, 2020, 2, 731-736.	8.3	28
26	The role of artificial intelligence in tackling COVID-19. Future Virology, 2020, 15, 717-724.	0.9	66
27	Protein storytelling through physics. Science, 2020, 370, .	6.0	49
28	Can <scp>AI</scp> help in the fight against <scp>COVID</scp> â€19?. Medical Journal of Australia, 2020, 213, 439.	0.8	13
29	PupStruct: Prediction of Pupylated Lysine Residues Using Structural Properties of Amino Acids. Genes, 2020, 11, 1431.	1.0	6
30	Deep Learning in Protein Structural Modeling and Design. Patterns, 2020, 1, 100142.	3.1	119
31	Predicting the Realâ€Valued Interâ€Residue Distances for Proteins. Advanced Science, 2020, 7, 2001314.	5.6	42
32	Ensemble of Bidirectional Recurrent Networks and Random Forests for Protein Secondary Structure Prediction. , 2020, , .		3
33	While We Wait for a Vaccine Against SARS-CoV-2, Why Not Think About Available Drugs?. Frontiers in Physiology, 2020, 11, 820.	1.3	13
34	A Perspective on Deep Learning for Molecular Modeling and Simulations. Journal of Physical Chemistry A, 2020, 124, 6745-6763.	1.1	33
35	Deep Learning of Protein Structural Classes: Any Evidence for an â€~Urfold'?. , 2020, , .		2
36	Crowdsourcing in Crisis: Rising to the Occasion. JCO Clinical Cancer Informatics, 2020, 4, 551-554.	1.0	8

#	Article	IF	CITATIONS
37	Accelerating ophthalmic artificial intelligence research: the role of an open access data repository. Current Opinion in Ophthalmology, 2020, 31, 337-350.	1.3	18
38	Early Detection of Parkinson's Disease Using Deep Learning and Machine Learning. IEEE Access, 2020, 8, 147635-147646.	2.6	123
40	Artificial intelligence in ophthalmology during COVID-19 and in the post COVID-19 era. Current Opinion in Ophthalmology, 2020, 31, 447-453.	1.3	22
41	De Novo Protein Design for Novel Folds Using Guided Conditional Wasserstein Generative Adversarial Networks. Journal of Chemical Information and Modeling, 2020, 60, 5667-5681.	2.5	44
42	Broad Concepts from Polymers Applied to Protein Data. ACS Symposium Series, 2020, , 89-101.	0.5	0
43	Molecular representations in Al-driven drug discovery: a review and practical guide. Journal of Cheminformatics, 2020, 12, 56.	2.8	200
44	Deep Learning in Proteomics. Proteomics, 2020, 20, e1900335.	1.3	91
45	Geometric potentials from deep learning improve prediction of CDR H3 loop structures. Bioinformatics, 2020, 36, i268-i275.	1.8	48
46	Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development. Frontiers in Artificial Intelligence, 2020, 3, 65.	2.0	137
47	Artificial Intelligenceâ€Based Clinical Decision Support for COVIDâ€19–Where Art Thou?. Advanced Intelligent Systems, 2020, 2, 2000104.	3.3	14
48	SARS-CoV-2 ORF8 and SARS-CoV ORF8ab: Genomic Divergence and Functional Convergence. Pathogens, 2020, 9, 677.	1.2	44
49	How artificial intelligence may help the Covidâ€19 pandemic: Pitfalls and lessons for the future. Reviews in Medical Virology, 2021, 31, 1-11.	3.9	53
50	Illuminating the Black Box: Interpreting Deep Neural Network Models for Psychiatric Research. Frontiers in Psychiatry, 2020, 11, 551299.	1.3	43
51	The Expanding Computational Toolbox for Engineering Microbial Phenotypes at the Genome Scale. Microorganisms, 2020, 8, 2050.	1.6	12
52	Artificial Intelligence-Based Application to Explore Inhibitors of Neurodegenerative Diseases. Frontiers in Neurorobotics, 2020, 14, 617327.	1.6	5
53	Distance Matrix-Based Crystal Structure Prediction Using Evolutionary Algorithms. Journal of Physical Chemistry A, 2020, 124, 10909-10919.	1.1	3
54	OPUS-TASS: a protein backbone torsion angles and secondary structure predictor based on ensemble neural networks. Bioinformatics, 2020, 36, 5021-5026.	1.8	42
55	Artificial intelligence and COVID-19: Present state and future vision. Intelligence-based Medicine, 2020, 3-4, 100012.	1.4	21

#	Article	IF	CITATIONS
56	An information gain-based approach for evaluating protein structure models. Computational and Structural Biotechnology Journal, 2020, 18, 2228-2236.	1.9	5
57	A Comprehensive Review of the COVID-19 Pandemic and the Role of IoT, Drones, AI, Blockchain, and 5G in Managing its Impact. IEEE Access, 2020, 8, 90225-90265.	2.6	802
58	A Review of Deep Learning Methods for Antibodies. Antibodies, 2020, 9, 12.	1.2	40
59	The advent of de novo proteins for cancer immunotherapy. Current Opinion in Chemical Biology, 2020, 56, 119-128.	2.8	15
60	Protein Structure Prediction in CASP13 Using AWSEM-Suite. Journal of Chemical Theory and Computation, 2020, 16, 3977-3988.	2.3	15
61	Coarse-grained (hybrid) integrative modeling of biomolecular interactions. Computational and Structural Biotechnology Journal, 2020, 18, 1182-1190.	1.9	23
62	Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nature Methods, 2020, 17, 665-680.	9.0	513
63	Reducing Ensembles of Protein Tertiary Structures Generated De Novo via Clustering. Molecules, 2020, 25, 2228.	1.7	6
64	Digital Orthopaedics: A Glimpse Into the Future in the Midst of a Pandemic. Journal of Arthroplasty, 2020, 35, S68-S73.	1.5	53
65	An up-to-date overview of computational polypharmacology in modern drug discovery. Expert Opinion on Drug Discovery, 2020, 15, 1025-1044.	2.5	44
66	Machine learning model for fast prediction of the natural frequencies of protein molecules. RSC Advances, 2020, 10, 16607-16615.	1.7	11
67	Reliable Computational Prediction of the Supramolecular Ordering of Complex Molecules under Electrochemical Conditions. Journal of Chemical Theory and Computation, 2020, 16, 5227-5243.	2.3	5
68	How Does the Ribosome Fold the Proteome?. Annual Review of Biochemistry, 2020, 89, 389-415.	5.0	50
69	Enhancing Chemogenomics with Predictive Pharmacology. Journal of Medicinal Chemistry, 2020, 63, 12243-12255.	2.9	3
70	New methodologies in ageing research. Ageing Research Reviews, 2020, 62, 101094.	5.0	7
71	Emergence of New Disease: How Can Artificial Intelligence Help?. Trends in Molecular Medicine, 2020, 26, 627-629.	3.5	29
72	Generative models of T-cell receptor sequences. Physical Review E, 2020, 101, 062414.	0.8	9
74	Learning to Make Chemical Predictions: The Interplay of Feature Representation, Data, and Machine Learning Methods. CheM, 2020, 6, 1527-1542.	5.8	61

#	Article	IF	CITATIONS
75	Deep learning for inferring transcription factor binding sites. Current Opinion in Systems Biology, 2020, 19, 16-23.	1.3	53
76	Artificial Intelligence Teaches Drugs to Target Proteins by Tackling the Induced Folding Problem. Molecular Pharmaceutics, 2020, 17, 2761-2767.	2.3	7
77	Discovery and design of soft polymeric bio-inspired materials with multiscale simulations and artificial intelligence. Journal of Materials Chemistry B, 2020, 8, 6562-6587.	2.9	44
78	Will Cryo-Electron Microscopy Shift the Current Paradigm in Protein Structure Prediction?. Journal of Chemical Information and Modeling, 2020, 60, 2443-2447.	2.5	8
79	Artificial intelligence and machine learning to fight COVID-19. Physiological Genomics, 2020, 52, 200-202.	1.0	431
80	CRiSP: accurate structure prediction of disulfide-rich peptides with cystine-specific sequence alignment and machine learning. Bioinformatics, 2020, 36, 3385-3392.	1.8	3
81	Neural networks for protein structure and function prediction and dynamic analysis. Biophysical Reviews, 2020, 12, 569-573.	1.5	13
82	Deep learning 3D structures. Nature Methods, 2020, 17, 249-249.	9.0	18
83	A Generative Neural Network for Maximizing Fitness and Diversity of Synthetic DNA and Protein Sequences. Cell Systems, 2020, 11, 49-62.e16.	2.9	71
84	RNA-Puzzles Round IV: 3D structure predictions of four ribozymes and two aptamers. Rna, 2020, 26, 982-995.	1.6	100
85	Update on therapeutic approaches and emerging therapies for SARS-CoV-2 virus. European Journal of Pharmacology, 2020, 883, 173348.	1.7	55
86	The COVID-19 pandemic. Critical Reviews in Clinical Laboratory Sciences, 2020, 57, 365-388.	2.7	737
87	Synthesizing Systems Biology Knowledge from Omics Using Genome cale Models. Proteomics, 2020, 20, e1900282.	1.3	22
88	The role of chest computed tomography in the management of COVID-19: A review of results and recommendations. Experimental Biology and Medicine, 2020, 245, 1096-1103.	1.1	10
89	Mapping enzyme-substrate interactions: its potential to study the mechanism of enzymes. Advances in Protein Chemistry and Structural Biology, 2020, 122, 1-31.	1.0	11
90	Machine learning and Al-based approaches for bioactive ligand discovery and GPCR-ligand recognition. Methods, 2020, 180, 89-110.	1.9	47
91	Machine Learning in Mass Spectrometric Analysis of DIA Data. Proteomics, 2020, 20, e1900352.	1.3	22
92	Artificial Intelligence to Power the Future of Materials Science and Engineering. Advanced Intelligent Systems, 2020, 2, 1900143.	3.3	75

#	Article	IF	CITATIONS
93	Artificial intelligence method to design and fold alpha-helical structural proteins from the primary amino acid sequence. Extreme Mechanics Letters, 2020, 36, 100652.	2.0	31
94	Solution of Levinthal's Paradox and a Physical Theory of Protein Folding Times. Biomolecules, 2020, 10, 250.	1.8	21
95	A watershed moment for protein structure prediction. Nature, 2020, 577, 627-628.	13.7	19
96	Metal-on-Metal Total Hip Revisions: Pearls and Pitfalls. Journal of Arthroplasty, 2020, 35, S68-S72.	1.5	14
97	Not Enough Natural Data? Sequence and Ye Shall Find. Frontiers in Molecular Biosciences, 2020, 7, 65.	1.6	0
98	Residue Cluster Classes: A Unified Protein Representation for Efficient Structural and Functional Classification. Entropy, 2020, 22, 472.	1.1	6
99	Generalized Sparse Convolutional Neural Networks for Semantic Segmentation of Point Clouds Derived from Tri-Stereo Satellite Imagery. Remote Sensing, 2020, 12, 1289.	1.8	12
100	OPUS-Fold: An Open-Source Protein Folding Framework Based on Torsion-Angle Sampling. Journal of Chemical Theory and Computation, 2020, 16, 3970-3976.	2.3	8
101	Machine Learning Approaches for Quality Assessment of Protein Structures. Biomolecules, 2020, 10, 626.	1.8	16
102	Evolving the Materials Genome: How Machine Learning Is Fueling the Next Generation of Materials Discovery. Annual Review of Materials Research, 2020, 50, 1-25.	4.3	49
103	Comparison of the Performance of Machine Learning Models in Representing High-Dimensional Free Energy Surfaces and Generating Observables. Journal of Physical Chemistry B, 2020, 124, 3647-3660.	1.2	20
104	E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones. SLAS Discovery, 2021, 26, 484-502.	1.4	154
105	The role of local versus nonlocal physicochemical restraints in determining protein native structure. Current Opinion in Structural Biology, 2021, 68, 1-8.	2.6	14
106	Structural motifs in protein cores and at protein–protein interfaces are different. Protein Science, 2021, 30, 381-390.	3.1	8
107	State-of-the-art web services for <i>de novo</i> protein structure prediction. Briefings in Bioinformatics, 2021, 22, .	3.2	13
108	Integrating abiotic chemical catalysis and enzymatic catalysis in living cells. Organic and Biomolecular Chemistry, 2021, 19, 37-45.	1.5	9
109	The application potential of machine learning and genomics for understanding natural product diversity, chemistry, and therapeutic translatability. Natural Product Reports, 2021, 38, 1100-1108.	5.2	30
110	Toward complete rational control over protein structure and function through computational design. Current Opinion in Structural Biology, 2021, 66, 170-177.	2.6	13

#	Article	IF	CITATIONS
111	Multilayer perceptron based deep neural network for early detection of coronary heart disease. Health and Technology, 2021, 11, 127-138.	2.1	18
112	Biological network analysis with deep learning. Briefings in Bioinformatics, 2021, 22, 1515-1530.	3.2	98
113	Small-Molecule Approaches to Targeted Protein Degradation. Annual Review of Cancer Biology, 2021, 5, 181-201.	2.3	27
114	Generative deep learning for macromolecular structure and dynamics. Current Opinion in Structural Biology, 2021, 67, 170-177.	2.6	26
115	Machine learning in plant science and plant breeding. IScience, 2021, 24, 101890.	1.9	127
116	Advances to tackle backbone flexibility in protein docking. Current Opinion in Structural Biology, 2021, 67, 178-186.	2.6	41
117	Improved protein model quality assessment by integrating sequential and pairwise features using deep learning. Bioinformatics, 2021, 36, 5361-5367.	1.8	11
118	Single-sequence and profile-based prediction of RNA solvent accessibility using dilated convolutional neural network. Bioinformatics, 2021, 36, 5169-5176.	1.8	21
119	Biophysical analysis of <scp>SARSâ€CoV</scp> â€2 transmission and theranostic development via N protein computational characterization. Biotechnology Progress, 2021, 37, e3096.	1.3	10
120	PREâ€driven protein NMR structures: an alternative approach in highly paramagnetic systems. FEBS Journal, 2021, 288, 3010-3023.	2.2	18
121	Machine learning the thermodynamic arrow of time. Nature Physics, 2021, 17, 105-113.	6.5	55
122	A novel sequence alignment algorithm based on deep learning of the protein folding code. Bioinformatics, 2021, 37, 490-496.	1.8	19
123	SMI-BLAST: a novel supervised search framework based on PSI-BLAST for protein remote homology detection. Bioinformatics, 2021, 37, 913-920.	1.8	19
124	Covid-19 Containment: Demystifying the Research Challenges and Contributions Leveraging Digital Intelligence Technologies. Algorithms for Intelligent Systems, 2021, , 193-214.	0.5	0
125	Applications of Artificial Intelligence (AI) Protecting from COVID-19 Pandemic: A Clinical and Socioeconomic Perspective. EAI/Springer Innovations in Communication and Computing, 2021, , 45-60.	0.9	3
128	Protseq: An Investigation of High-Throughput, Single-Molecule Protein Sequencing via Amino Acid Conversion into DNA Barcodes. SSRN Electronic Journal, 0, , .	0.4	0
129	IoT and AI for COVID-19 in Scalable Smart Cities. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2021, , 3-19.	0.2	4
130	Artificial Intelligence: Opportunity or Risk?. , 2021, , 149-157.		0

#	Article	IF	CITATIONS
131	New Labeling Methods for Deep Learning Real-valued Inter-residue Distance Prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, PP, 1-1.	1.9	0
132	Structural binding site comparisons reveal Crizotinib as a novel LRRK2 inhibitor. Computational and Structural Biotechnology Journal, 2021, 19, 3674-3681.	1.9	9
133	A mixed chirality α-helix in a stapled bicyclic and a linear antimicrobial peptide revealed by X-ray crystallography. RSC Chemical Biology, 2021, 2, 1608-1617.	2.0	7
134	Crowdsourcing human common sense for quantum control. Physical Review Research, 2021, 3, .	1.3	19
135	Geared Toward Applications: A Perspective on Functional Sequence-Controlled Polymers. ACS Macro Letters, 2021, 10, 243-257.	2.3	61
136	DeepDist: real-value inter-residue distance prediction with deep residual convolutional network. BMC Bioinformatics, 2021, 22, 30.	1.2	37
137	SARS-CoV-2 3D database: understanding the coronavirus proteome and evaluating possible drug targets. Briefings in Bioinformatics, 2021, 22, 769-780.	3.2	31
138	Improved sequence-based prediction of interaction sites in α-helical transmembrane proteins by deep learning. Computational and Structural Biotechnology Journal, 2021, 19, 1512-1530.	1.9	9
139	Energetics of Electron Pairs in Electrophilic Aromatic Substitutions. Molecules, 2021, 26, 513.	1.7	4
140	Drug-Target Interaction Prediction Using Multi-Head Self-Attention and Graph Attention Network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 2208-2218.	1.9	35
141	Using Open Data to Rapidly Benchmark Biomolecular Simulations: Phospholipid Conformational Dynamics. Journal of Chemical Information and Modeling, 2021, 61, 938-949.	2.5	24
143	Breakthroughs in computational design methods open up new frontiers for <i>de novo</i> protein engineering, Design and Selection, 2021, 34, .	1.0	9
145	Classification of the Viral World Based on Atomic Level Structures. , 2021, , 153-161.		0
146	Role-Framework of Artificial Intelligence in Combating the COVID-19 Pandemic. Intelligent Systems Reference Library, 2021, , 357-370.	1.0	1
147	How Does Al Improve Human Decision-Making? Evidence from the Al-Powered Go Program. SSRN Electronic Journal, 0, , .	0.4	5
148	Universal Adversarial Examples and Perturbations for Quantum Classifiers. National Science Review, 0, , .	4.6	6
149	An RNA-centric historical narrative around the Protein Data Bank. Journal of Biological Chemistry, 2021, 296, 100555.	1.6	17
151	Benevolent Al for All. , 2021, , 285-291.		0

#	Article	IF	CITATIONS
152	Application of Al Techniques for COVID-19 in IoT and Big Data Era: A Survey. Studies in Computational Intelligence, 2021, , 175-211.	0.7	7
153	Protein Interresidue Contact Prediction Based on Deep Learning and Massive Features from Multi-sequence Alignment. Lecture Notes in Computer Science, 2021, , 219-228.	1.0	0
154	Protein Structure, Dynamics and Assembly: Implications for Drug Discovery. , 2021, , 91-122.		1
155	Sequence representation approaches for sequence-based protein prediction tasks that use deep learning. Briefings in Functional Genomics, 2021, 20, 61-73.	1.3	34
156	SSnet: A Deep Learning Approach for Protein-Ligand Interaction Prediction. International Journal of Molecular Sciences, 2021, 22, 1392.	1.8	29
157	SPServer: split-statistical potentials for the analysis of protein structures and protein–protein interactions. BMC Bioinformatics, 2021, 22, 4.	1.2	8
158	Crystal structure of steroid reductase SRD5A reveals conserved steroid reduction mechanism. Nature Communications, 2021, 12, 449.	5.8	23
159	Towards Protein Tertiary Structure Prediction Using LSTM/BLSTM. Lecture Notes in Electrical Engineering, 2021, , 65-77.	0.3	0
160	Targeting protein-protein interaction interfaces in COVID-19 drug discovery. Computational and Structural Biotechnology Journal, 2021, 19, 2246-2255.	1.9	28
162	Role of Artificial Intelligence in Forecast Analysis of COVID-19 Outbreak. Algorithms for Intelligent Systems, 2021, , 37-52.	0.5	0
163	Network-based strategies for protein characterization. Advances in Protein Chemistry and Structural Biology, 2021, 127, 217-248.	1.0	0
164	Structure-based in silico approaches for drug discovery against Mycobacterium tuberculosis. Computational and Structural Biotechnology Journal, 2021, 19, 3708-3719.	1.9	10
165	Machine learning in polymer informatics. InformaÄnÃ-Materiály, 2021, 3, 353-361.	8.5	74
166	Contribution of machine learning approaches in response to SARS-CoV-2 infection. Informatics in Medicine Unlocked, 2021, 23, 100526.	1.9	29
167	Deep Learning applications for COVID-19. Journal of Big Data, 2021, 8, 18.	6.9	195
168	Recent advances in de novo protein design: Principles, methods, and applications. Journal of Biological Chemistry, 2021, 296, 100558.	1.6	120
169	Improving the transfer learning performances in the classification of the automotive traffic roads signs. E3S Web of Conferences, 2021, 234, 00064.	0.2	7
170	MVP predicts theÂpathogenicity of missense variants by deep learning. Nature Communications, 2021, 12, 510.	5.8	85

#	Article	IF	Citations
171	Applications of Artificial Intelligence and Internet of Things for Detection and Future Directions to Fight Against COVID-19. Studies in Systems, Decision and Control, 2021, , 107-119.	0.8	12
172	Artificial Intelligence (AI) in medicine as a strategic valuable tool. Pan African Medical Journal, 2021, 38, 184.	0.3	15
173	Target identification and validation. , 2021, , 61-80.		0
174	Representations of protein structure for exploring the conformational space: A speed–accuracy trade-off. Computational and Structural Biotechnology Journal, 2021, 19, 2618-2625.	1.9	2
176	Biological Background—Information, Energy, and Matter. Lecture Notes on Mathematical Modelling in the Life Sciences, 2021, , 1-19.	0.1	0
177	Enzymatic strategies for asymmetric synthesis. RSC Chemical Biology, 2021, 2, 958-989.	2.0	34
178	Local Search is a Remarkably Strong Baseline for Neural Architecture Search. Lecture Notes in Computer Science, 2021, , 465-479.	1.0	13
180	Artificial intelligence-driven drug repurposing and structural biology for SARS-CoV-2. Current Research in Pharmacology and Drug Discovery, 2021, 2, 100042.	1.7	22
181	Perceptron: Basic Principles of Deep Neural Networks. Cardiovascular Prevention and Pharmacotherapy, 0, 3, .	0.0	0
182	Redesign of protein nanocages: the way from 0D, 1D, 2D to 3D assembly. Chemical Society Reviews, 2021, 50, 3957-3989.	18.7	47
183	Contact map based crystal structure prediction using global optimization. CrystEngComm, 2021, 23, 1765-1776.	1.3	9
184	Recent trends in biocatalysis. Chemical Society Reviews, 2021, 50, 8003-8049.	18.7	175
185	Engineering of Ancestors as a Tool to Elucidate Structure, Mechanism, and Specificity of Extant Terpene Cyclase. Journal of the American Chemical Society, 2021, 143, 3794-3807.	6.6	28
186	Crowds, Citizens, and Science: A Multi-Dimensional Framework and Agenda for Future Research. SSRN Electronic Journal, 0, , .	0.4	0
187	Protein Folding Protein Folding and Assembly. , 2021, , 105-115.		0
188	CertRL: formalizing convergence proofs for value and policy iteration in Coq. , 2021, , .		4
189	A graph-based algorithm for detecting rigid domains in protein structures. BMC Bioinformatics, 2021, 22, 66.	1.2	1
191	Heterogeneous Computing Systems for Complex Scientific Discovery Workflows. , 2021, , .		2

#	Article	IF	CITATIONS
192	Data science in unveiling COVID-19 pathogenesis and diagnosis: evolutionary origin to drug repurposing. Briefings in Bioinformatics, 2021, 22, 855-872.	3.2	38
193	Using molecular docking and molecular dynamics to investigate protein-ligand interactions. Modern Physics Letters B, 2021, 35, 2130002.	1.0	54
196	Improved Sampling Strategies for Protein Model Refinement Based on Molecular Dynamics Simulation. Journal of Chemical Theory and Computation, 2021, 17, 1931-1943.	2.3	19
197	Tim Taylor and Alan Dorin: Rise of the self-replicators—early visions of machines, Al and robots that can reproduce and evolve. Genetic Programming and Evolvable Machines, 2021, 22, 141-145.	1.5	0
198	The population genomics of adaptive loss of function. Heredity, 2021, 126, 383-395.	1.2	33
199	Perspectives About Modulating Host Immune System in Targeting SARS-CoV-2 in India. Frontiers in Genetics, 2021, 12, 637362.	1.1	5
200	Molecular Mechanisms Behind Anti SARS-CoV-2 Action of Lactoferrin. Frontiers in Molecular Biosciences, 2021, 8, 607443.	1.6	39
201	Prediction Machines: Applied Machine Learning for Therapeutic Protein Design and Development. Journal of Pharmaceutical Sciences, 2021, 110, 665-681.	1.6	20
202	Bioprospecting of Novel Extremozymes From Prokaryotes—The Advent of Culture-Independent Methods. Frontiers in Microbiology, 2021, 12, 630013.	1.5	45
203	Differentially conserved amino acid positions may reflect differences in SARS-CoV-2 and SARS-CoV behaviour. Bioinformatics, 2021, 37, 2282-2288.	1.8	9
205	Improved protein structure refinement guided by deep learning based accuracy estimation. Nature Communications, 2021, 12, 1340.	5.8	160
207	VoroCNN: deep convolutional neural network built on 3D Voronoi tessellation of protein structures. Bioinformatics, 2021, 37, 2332-2339.	1.8	27
208	Engineering an Allosteric Control of Protein Function. Journal of Physical Chemistry B, 2021, 125, 1806-1814.	1.2	18
209	Combination of deep neural network with attention mechanism enhances the explainability of protein contact prediction. Proteins: Structure, Function and Bioinformatics, 2021, 89, 697-707.	1.5	25
210	Hybridized distance- and contact-based hierarchical structure modeling for folding soluble and membrane proteins. PLoS Computational Biology, 2021, 17, e1008753.	1.5	7
212	Predicting the effect of Covid-19 by using artificial intelligence: A case study. Materials Today: Proceedings, 2021, , .	0.9	2
213	Learning Atomic Interactions through Solvation Free Energy Prediction Using Graph Neural Networks. Journal of Chemical Information and Modeling, 2021, 61, 689-698.	2.5	21
215	Progress in Determination of Protein Spatial Structure Based on Machine Learning. Cybernetics and Computer Technologies, 2021, , 54-60.	0.0	0

#	Article	IF	CITATIONS
216	Recent Advances in the Prediction of Protein Structural Classes: Feature Descriptors and Machine Learning Algorithms. Crystals, 2021, 11, 324.	1.0	12
217	Activated sludge models at the crossroad of artificial intelligence—A perspective on advancing process modeling. Npj Clean Water, 2021, 4, .	3.1	19
218	Protein Structure Prediction from NMR Hydrogen–Deuterium Exchange Data. Journal of Chemical Theory and Computation, 2021, 17, 2619-2629.	2.3	25
219	Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Frontiers in Bioengineering and Biotechnology, 2021, 9, 641372.	2.0	30
220	Machine Learning Force Fields. Chemical Reviews, 2021, 121, 10142-10186.	23.0	528
221	Machine Learning Attempts for Predicting Human Subcutaneous Bioavailability of Monoclonal Antibodies. Pharmaceutical Research, 2021, 38, 451-460.	1.7	16
222	Deep Learning Protein Conformational Space with Convolutions and Latent Interpolations. Physical Review X, 2021, 11, .	2.8	12
223	Protein secondary structure prediction based on fusion of machine learning classifiers. , 2021, , .		Ο
224	Combined Proteotranscriptomic-Based Strategy to Discover Novel Antimicrobial Peptides from Cone Snails. Biomedicines, 2021, 9, 344.	1.4	8
225	Ligand efficiency indices for effective drug discovery: a unifying vector formulation. Expert Opinion on Drug Discovery, 2021, 16, 763-775.	2.5	3
226	One Plus One Makes Three: Triangular Coupling of Correlated Amino Acid Mutations. Journal of Physical Chemistry Letters, 2021, 12, 3195-3201.	2.1	4
227	Prediction of Function Determining and Buried Residues Through Analysis of Saturation Mutagenesis Datasets. Frontiers in Molecular Biosciences, 2021, 8, 635425.	1.6	13
229	Deep learning in electron microscopy. Machine Learning: Science and Technology, 2021, 2, 011004.	2.4	50
230	Progress in robotics for combating infectious diseases. Science Robotics, 2021, 6, .	9.9	67
232	Accurate Imputation of Greenhouse Environment Data for Data Integrity Utilizing Two-Dimensional Convolutional Neural Networks. Sensors, 2021, 21, 2187.	2.1	9
233	Toward Characterising the Cellular 3D-Proteome. Frontiers in Bioinformatics, 2021, 1, .	1.0	3
234	Artificial Intelligence and Early Detection of Pancreatic Cancer. Pancreas, 2021, 50, 251-279.	0.5	71
235	Machine learning powered ellipsometry. Light: Science and Applications, 2021, 10, 55.	7.7	36

щ		15	CITATIONS
#	AKTICLE	IF	CHATIONS
236	prediction. Expert Opinion on Drug Discovery, 2021, 16, 1045-1056.	2.5	13
237	Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomedical Materials (Bristol), 2021, 16, 032005.	1.7	14
238	Machine learning on ligand-residue interaction profiles to significantly improve binding affinity prediction. Briefings in Bioinformatics, 2021, 22, .	3.2	17
239	Natural Products, the Fourth Industrial Revolution, and the Quintuple Helix. Natural Product Communications, 2021, 16, 1934578X2110030.	0.2	1
240	A protein folding robot driven by a self-taught agent. BioSystems, 2021, 201, 104315.	0.9	4
241	Characterizing the function of domain linkers in regulating the dynamics of multiâ€domain fusion proteins by microsecond molecular dynamics simulations and artificial intelligence. Proteins: Structure, Function and Bioinformatics, 2021, 89, 884-895.	1.5	2
242	Artificial Intelligence–Aided Precision Medicine for COVID-19: Strategic Areas of Research and Development. Journal of Medical Internet Research, 2021, 23, e22453.	2.1	21
243	Crystallographic molecular replacement using an in silicoâ€generated search model of SARSâ€CoVâ€2 ORF8. Protein Science, 2021, 30, 728-734.	3.1	45
244	Physically-informed Data-driven Deep Learning and Prospect for Transfer Learning in Materials Informatics. The Brain & Neural Networks, 2021, 28, 28-55.	0.1	0
246	DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires. Nature Communications, 2021, 12, 1605.	5.8	107
248	Super-rapid race for saving lives by developing COVID-19 vaccines. Journal of Integrative Bioinformatics, 2021, 18, 27-43.	1.0	14
249	Incorporating Machine Learning into Established Bioinformatics Frameworks. International Journal of Molecular Sciences, 2021, 22, 2903.	1.8	48
250	Accurate prediction of inter-protein residue–residue contacts for homo-oligomeric protein complexes. Briefings in Bioinformatics, 2021, 22, .	3.2	46
251	Challenges in the Computational Modeling of the Protein Structure—Activity Relationship. Computation, 2021, 9, 39.	1.0	0
252	Rejoinder on: Recent advances in directional statistics. Test, 2021, 30, 76-82.	0.7	1
255	Designing self-assembling kinetics with differentiable statistical physics models. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
256	Insilico drug repurposing using FDA approved drugs against Membrane protein of SARS-CoV-2. Journal of Pharmaceutical Sciences, 2021, 110, 2346-2354.	1.6	11
257	Prediction and Visualisation of Viral Genome Antigen Using Deep Learning & Artificial Intelligence. , 2021, , .		1

#	Article	IF	CITATIONS
258	Multi-schema computational prediction of the comprehensive SARS-CoV-2 vs. human interactome. PeerJ, 2021, 9, e11117.	0.9	8
259	Microgravity as an environment for macromolecular crystallization – an outlook in the era of space stations and commercial space flight. Crystallography Reviews, 2021, 27, 3-46.	0.4	11
261	Toll protein family structure, evolution and response of the whiteleg shrimp (<i>Litopenaeusvannamei</i>) to exogenous iridescent virus. Journal of Fish Diseases, 2021, 44, 1131-1145.	0.9	11
262	ATSE: a peptide toxicity predictor by exploiting structural and evolutionary information based on graph neural network and attention mechanism. Briefings in Bioinformatics, 2021, 22, .	3.2	43
263	Deriving and Using Descriptors of Elementary Functions in Rational Protein Design. Frontiers in Bioinformatics, 2021, 1, .	1.0	3
264	Recent Applications of Artificial Intelligence in the Detection of Gastrointestinal, Hepatic and Pancreatic Diseases. Current Medicinal Chemistry, 2022, 29, 66-85.	1.2	7
265	Overcoming Immunological Challenges Limiting Capsid-Mediated Gene Therapy With Machine Learning. Frontiers in Immunology, 2021, 12, 674021.	2.2	12
267	Bio-nano interactions: binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomaterials Research, 2021, 25, 12.	3.2	71
268	Knowledge graphs and their applications in drug discovery. Expert Opinion on Drug Discovery, 2021, 16, 1057-1069.	2.5	39
269	Applications and challenges of AI-based algorithms in the COVID-19 pandemic. BMJ Innovations, 2021, 7, 387-398.	1.0	17
270	Scientific intuition inspired by machine learning-generated hypotheses. Machine Learning: Science and Technology, 2021, 2, 025027.	2.4	23
272	Improving Model Capacity of Quantized Networks with Conditional Computation. Electronics (Switzerland), 2021, 10, 886.	1.8	3
274	Structural biology in the time of COVID-19: perspectives on methods and milestones. IUCrJ, 2021, 8, 335-341.	1.0	14
275	On the use of direct-coupling analysis with a reduced alphabet of amino acids combined with super-secondary structure motifs for protein fold prediction. NAR Genomics and Bioinformatics, 2021, 3, Iqab027.	1.5	0
276	Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opinion on Drug Discovery, 2021, 16, 949-959.	2.5	128
277	Remodelling structure-based drug design using machine learning. Emerging Topics in Life Sciences, 2021, 5, 13-27.	1.1	6
279	The whole isÂgreater thanÂitsÂparts: ensembling improves protein contact prediction. Scientific Reports, 2021, 11, 8039.	1.6	5
280	A complete, parallel and autonomous photonic neural network in a semiconductor multimode laser. JPhys Photonics, 2021, 3, 024017.	2.2	36

#	Article	IF	CITATIONS
282	Protlego: a Python package for the analysis and design of chimeric proteins. Bioinformatics, 2021, 37, 3182-3189.	1.8	13
283	From Conception to Development: Investigating PROTACs Features for Improved Cell Permeability and Successful Protein Degradation. Frontiers in Chemistry, 2021, 9, 672267.	1.8	77
284	Genetically Encoded Fluorescent Indicators for Imaging Brain Chemistry. Biosensors, 2021, 11, 116.	2.3	15
285	Computational studies of the mitochondrial carrier family SLC25. Present status and future perspectives. Bio-Algorithms and Med-Systems, 2021, 17, 65-78.	1.0	2
286	Revolutionizing enzyme engineering through artificial intelligence and machine learning. Emerging Topics in Life Sciences, 2021, 5, 113-125.	1.1	21
287	Extending the New Generation of Structure Predictors to Account for Dynamics and Allostery. Journal of Molecular Biology, 2021, 433, 167007.	2.0	20
288	Protein Structure Refinement Using Multi-Objective Particle Swarm Optimization with Decomposition Strategy. International Journal of Molecular Sciences, 2021, 22, 4408.	1.8	1
289	Application of deep learning and molecular modeling to identify small drug-like compounds as potential HIV-1 entry inhibitors. Journal of Biomolecular Structure and Dynamics, 2022, 40, 7555-7573.	2.0	15
291	Basic and Preclinical Research for Personalized Medicine. Journal of Personalized Medicine, 2021, 11, 354.	1.1	8
292	Genetic Algorithm Embedded with a Search Space Dimension Reduction Scheme for Efficient Peptide Structure Predictions. Journal of Physical Chemistry B, 2021, 125, 3824-3829.	1.2	3
293	Improving integrative 3D modeling into low―to mediumâ€resolution electron microscopy structures with evolutionary couplings. Protein Science, 2021, 30, 1006-1021.	3.1	2
294	FragNet, a Contrastive Learning-Based Transformer Model for Clustering, Interpreting, Visualizing, and Navigating Chemical Space. Molecules, 2021, 26, 2065.	1.7	14
295	Expanding the boundaries of ligand–target modeling by exascale calculations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1535.	6.2	13
296	Analyzing effect of quadruple multiple sequence alignments on deep learning based protein inter-residue distance prediction. Scientific Reports, 2021, 11, 7574.	1.6	19
297	Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	1,009
299	The Al Wars, 1950–2000, and Their Consequences. Journal of Artificial Intelligence and Consciousness, 0, , 2130001.	0.6	1
302	Data Anonymization for Pervasive Health Care: Systematic Literature Mapping Study. JMIR Medical Informatics, 2021, 9, e29871.	1.3	12
303	Universal Architectural Concepts Underlying Protein Folding Patterns. Frontiers in Molecular Biosciences, 2020, 7, 612920.	1.6	9

#	Article	IF	CITATIONS
304	Machine Learning Solutions for Osteoporosis—A Review. Journal of Bone and Mineral Research, 2020, 36, 833-851.	3.1	82
305	Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Molecular Diversity, 2021, 25, 1315-1360.	2.1	423
306	Structure-Guided Rational Design of a Mono- and Diacylglycerol Lipase from <i>Aspergillus oryzae</i> : A Single Residue Mutant Increases the Hydrolysis Ability. Journal of Agricultural and Food Chemistry, 2021, 69, 5344-5352.	2.4	17
308	Protein structure–based gene expression signatures. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5
310	DeepRefiner: high-accuracy protein structure refinement by deep network calibration. Nucleic Acids Research, 2021, 49, W147-W152.	6.5	15
313	Study of real-valued distance prediction for protein structure prediction with deep learning. Bioinformatics, 2021, 37, 3197-3203.	1.8	11
314	Improving deep learning-based protein distance prediction in CASP14. Bioinformatics, 2021, 37, 3190-3196.	1.8	11
315	Evaluation of residue-residue contact prediction methods: From retrospective to prospective. PLoS Computational Biology, 2021, 17, e1009027.	1.5	19
316	Current directions in combining simulation-based macromolecular modeling approaches with deep learning. Expert Opinion on Drug Discovery, 2021, 16, 1025-1044.	2.5	8
317	The breakthrough in protein structure prediction. Biochemical Journal, 2021, 478, 1885-1890.	1.7	39
318	RNA Backbone Torsion and Pseudotorsion Angle Prediction Using Dilated Convolutional Neural Networks. Journal of Chemical Information and Modeling, 2021, 61, 2610-2622.	2.5	12
319	ReFOLD3: refinement of 3D protein models with gradual restraints based on predicted local quality and residue contacts. Nucleic Acids Research, 2021, 49, W589-W596.	6.5	8
320	Side-Chain Polarity Modulates the Intrinsic Conformational Landscape of Model Dipeptides. Journal of Physical Chemistry B, 2021, 125, 5809-5822.	1.2	2
321	A lysine–cysteine redox switch with an NOS bridge regulates enzyme function. Nature, 2021, 593, 460-464.	13.7	74
322	Bursting potentiates the neuro–Al connection. Nature Neuroscience, 2021, 24, 905-906.	7.1	2
323	Overview of current state of research on the application of artificial intelligence techniques for COVID-19. PeerJ Computer Science, 2021, 7, e564.	2.7	38
327	Structure memes: Intuitive visualization of sequence logo and subfamily logo information in a <scp>3D</scp> proteinâ€structural context. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1262-1269.	1.5	0
328	CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein structure prediction. Nature Communications, 2021, 12, 2535.	5.8	44

		CITATION R	EPORT	
#	Article		IF	CITATIONS
329	Discovering and understanding materials through computation. Nature Materials, 2021	., 20, 728-735.	13.3	60
330	Soccer player activity prediction model using an internet of things-assisted wearable sy Technology and Health Care, 2021, 29, 1339-1353.	stem.	0.5	1
332	Recent progress in mass spectrometry-based strategies for elucidating protein–prote Cellular and Molecular Life Sciences, 2021, 78, 5325-5339.	in interactions.	2.4	53
333	Causation and cognition: an epistemic approach. SynthÃ`se, 0, , 1.		0.6	1
334	Stepâ€byâ€step design of proteins for small molecule interaction: A review on recent m Science, 2021, 30, 1502-1520.	illestones. Protein	3.1	4
335	A General Framework to Learn Tertiary Structure for Protein Sequence Characterization Bioinformatics, 2021, 1, .	. Frontiers in	1.0	3
336	Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants. Research Reviews, 2021, 41, 2971-2997.	Medicinal	5.0	39
337	Panomics: New Databases for Advancing Cardiology. Frontiers in Cardiovascular Medici 587768.	ne, 2021, 8,	1.1	5
338	GalaxyHeteromer: protein heterodimer structure prediction by template-based and <i>a docking. Nucleic Acids Research, 2021, 49, W237-W241.</i>	ıb initio	6.5	11
340	Fit without fear: remarkable mathematical phenomena of deep learning through the pri interpolation. Acta Numerica, 2021, 30, 203-248.	sm of	6.3	40
341	Biomolecular modeling thrives in the age of technology. Nature Computational Science 321-331.	, 2021, 1,	3.8	61
343	Deep Learning-Based Advances in Protein Structure Prediction. International Journal of Sciences, 2021, 22, 5553.	Molecular	1.8	57
344	AlphaFold and the amyloid landscape. Journal of Molecular Biology, 2021, 433, 167059		2.0	42
345	DeepOMe: A Web Server for the Prediction of 2′-O-Me Sites Based on the Hybrid CN Architecture. Frontiers in Cell and Developmental Biology, 2021, 9, 686894.	N and BLSTM	1.8	7
346	Recent Advances in Protein Homology Detection Propelled by Inter-Residue Interaction Frontiers in Molecular Biosciences, 2021, 8, 643752.	Map Threading.	1.6	8
347	Structure and Thermal Stability of wtRop and RM6 Proteins through All-Atom Molecular Simulations and Experiments. International Journal of Molecular Sciences, 2021, 22, 59	Dynamics 31.	1.8	7
348	Computational protein modeling and the next viral pandemic. Nature Methods, 2021, 1	.8, 444-445.	9.0	4
349	Artificial intelligence advances for de novo molecular structure modeling in cryoâ€elect microscopy. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 1	ron 2, e1542.	6.2	15

#	Article	IF	CITATIONS
351	Microswimmers learning chemotaxis with genetic algorithms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
352	The problem of manifestation of tertiary structure in the vibrational spectra of proteins. Vibrational Spectroscopy, 2021, 114, 103250.	1.2	5
353	Accelerating Biological Insight for Understudied Genes. Integrative and Comparative Biology, 2021, , .	0.9	2
355	Protein Structure Prediction: Conventional and Deep Learning Perspectives. Protein Journal, 2021, 40, 522-544.	0.7	36
356	Multi-Omics Approach in the Identification of Potential Therapeutic Biomolecule for COVID-19. Frontiers in Pharmacology, 2021, 12, 652335.	1.6	17
357	Harnessing Natural Mosaics: Antibody-Instructed, Multi-Envelope HIV-1 Vaccine Design. Viruses, 2021, 13, 884.	1.5	1
358	Protein folding ―seeing is deceiving. Protein Science, 2021, 30, 1606-1616.	3.1	26
359	Deep template-based protein structure prediction. PLoS Computational Biology, 2021, 17, e1008954.	1.5	19
360	Engineering three-dimensional genome folding. Nature Genetics, 2021, 53, 602-611.	9.4	9
361	SAMF: a self-adaptive protein modeling framework. Bioinformatics, 2021, 37, 4075-4082.	1.8	3
362	Role of attribute selection on tuning the learning performance of Parkinson's data using various intelligent classifiers. International Journal of Advanced Technology and Engineering Exploration, 2021, 8, 560-575.	0.6	1
363	Evolutionary Comparative Analyses of DNA-Editing Enzymes of the Immune System: From 5-Dimensional Description of Protein Structures to Immunological Insights and Applications to Protein Engineering. Frontiers in Immunology, 2021, 12, 642343.	2.2	6
364	ModFOLD8: accurate global and local quality estimates for 3D protein models. Nucleic Acids Research, 2021, 49, W425-W430.	6.5	56
365	Real-time multi-task diffractive deep neural networks via hardware-software co-design. Scientific Reports, 2021, 11, 11013.	1.6	24
368	Biomolecular Modeling and Simulation: A Prospering Multidisciplinary Field. Annual Review of Biophysics, 2021, 50, 267-301.	4.5	27
369	Structure-based protein function prediction using graph convolutional networks. Nature Communications, 2021, 12, 3168.	5.8	300
370	ProteinTools: a toolkit to analyze protein structures. Nucleic Acids Research, 2021, 49, W559-W566.	6.5	49
371	Recent Progress of Machine Learning in Gene Therapy. Current Gene Therapy, 2022, 22, 132-143.	0.9	15

#	Article	IF	CITATIONS
372	A Machine-Learning Protocol for Ultraviolet Protein-Backbone Absorption Spectroscopy under Environmental Fluctuations. Journal of Physical Chemistry B, 2021, 125, 6171-6178.	1.2	13
374	Applications of Machine and Deep Learning in Adaptive Immunity. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 39-62.	3.3	22
375	Alps: Adaptive Quantization of Deep Neural Networks with GeneraLized PositS. , 2021, , .		8
377	Nobel Turing Challenge: creating the engine for scientific discovery. Npj Systems Biology and Applications, 2021, 7, 29.	1.4	31
378	Can We AlphaFold Our Way Out of the Next Pandemic?. Journal of Molecular Biology, 2021, 433, 167093.	2.0	20
379	Machine Learning for Chemical Reactions. Chemical Reviews, 2021, 121, 10218-10239.	23.0	166
380	Physicsâ€based protein structure refinement in the era of artificial intelligence. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1870-1887.	1.5	17
381	Artificial intelligence in early drug discovery enabling precision medicine. Expert Opinion on Drug Discovery, 2021, 16, 991-1007.	2.5	35
382	Interaction mechanism of kafirin with ferulic acid and tetramethyl pyrazine: Multiple spectroscopic and molecular modeling studies. Food Chemistry, 2021, 363, 130298.	4.2	24
383	SIMARD-LinearFold: Long Sequence RNA Design with Simulated Annealing. , 2021, , .		1
384	Biocatalysis. Nature Reviews Methods Primers, 2021, 1, .	11.8	255
385	Deep learning techniques have significantly impacted protein structure prediction and protein design. Current Opinion in Structural Biology, 2021, 68, 194-207.	2.6	77
386	COSMIC Cancer Gene Census 3D database: understanding the impacts of mutations on cancer targets. Briefings in Bioinformatics, 2021, 22, .	3.2	8
387	Perspective on integrating machine learning into computational chemistry and materials science. Journal of Chemical Physics, 2021, 154, 230903.	1.2	107
388	Integrated Multi-Class Classification and Prediction of GPCR Allosteric Modulators by Machine Learning Intelligence. Biomolecules, 2021, 11, 870.	1.8	15
389	Applications of artificial intelligence to drug design and discovery in the big data era: a comprehensive review. Molecular Diversity, 2021, 25, 1643-1664.	2.1	16
390	Recent Applications of Deep Learning Methods on Evolution- and Contact-Based Protein Structure Prediction. International Journal of Molecular Sciences, 2021, 22, 6032.	1.8	11
391	Synthetic biology as driver for the biologization of materials sciences. Materials Today Bio, 2021, 11, 100115.	2.6	31

C	n	
		ICDT.
CHAILO		UK I

#	Article	IF	CITATIONS
392	Fundamentals to function: Quantitative and scalable approaches for measuring protein stability. Cell Systems, 2021, 12, 547-560.	2.9	13
393	Parsimonious neural networks learn interpretable physical laws. Scientific Reports, 2021, 11, 12761.	1.6	14
394	Comprehensive Survey of Using Machine Learning in the COVID-19 Pandemic. Diagnostics, 2021, 11, 1155.	1.3	40
395	Learning-based event locating for single-molecule force spectroscopy. Biochemical and Biophysical Research Communications, 2021, 556, 59-64.	1.0	5
396	Biophysics inspired artificial intelligence for colorectal cancer characterization. Artificial Intelligence in Gastroenterology, 2021, 2, 77-84.	0.2	1
397	MULTICOM2 open-source protein structure prediction system powered by deep learning and distance prediction. Scientific Reports, 2021, 11, 13155.	1.6	Ο
398	Convergence model of AI and IoT for virus disease control system. Personal and Ubiquitous Computing, 2023, 27, 1209-1219.	1.9	9
399	Paradigm Shift: The Promise of Deep Learning in Molecular Systems Engineering and Design. Frontiers in Chemical Engineering, 2021, 3, .	1.3	5
400	Declarative Machine Learning Systems. Queue, 2021, 19, 46-76.	0.8	3
401	How Deep Learning Tools Can Help Protein Engineers Find Good Sequences. Journal of Physical Chemistry B, 2021, 125, 6440-6450.	1.2	7
402	Emerging machine learning approaches to phenotyping cellular motility and morphodynamics. Physical Biology, 2021, 18, 041001.	0.8	11
403	Mapping the multiscale structure of biological systems. Cell Systems, 2021, 12, 622-635.	2.9	19
404	Quantitative predictions from molecular simulations using explicit or implicit interactions. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1560.	6.2	14
405	DNCON2_Inter: predicting interchain contacts for homodimeric and homomultimeric protein complexes using multiple sequence alignments of monomers and deep learning. Scientific Reports, 2021, 11, 12295.	1.6	19
406	3D Interaction Homology: Hydropathic Analyses of the "π–Cation―and "π–π―Interaction Motifs ir Phenylalanine, Tyrosine, and Tryptophan Residues. Journal of Chemical Information and Modeling, 2021, 61, 2937-2956.	ו 2.5	11
407	Structural analysis of mammalian protein phosphorylation at a proteome level. Structure, 2021, 29, 1219-1229.e3.	1.6	8
409	Artificial Intelligence Cracks a 50-Year-Old Grand Challenge in Biology. Engineering, 2021, 7, 706-708.	3.2	3
411	Leveraging Artificial Intelligence (AI) Capabilities for COVID-19 Containment. New Generation Computing, 2021, 39, 717-741.	2.5	17

#	Article	lF	CITATIONS
412	From "Dark Matter―to "Star― Insight Into the Regulation Mechanisms of Plant Functional Long Non-Coding RNAs. Frontiers in Plant Science, 2021, 12, 650926.	1.7	17
413	Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery. Molecular Diversity, 2021, 25, 1439-1460.	2.1	38
414	Combined Theoretical and Experimental Study to Unravel the Differences in Promiscuous Amidase Activity of Two Nonhomologous Enzymes. ACS Catalysis, 2021, 11, 8635-8644.	5.5	6
415	MMpred: a distance-assisted multimodal conformation sampling for <i>de novo</i> protein structure prediction. Bioinformatics, 2021, 37, 4350-4356.	1.8	22
417	Machine learning differentiates enzymatic and non-enzymatic metals in proteins. Nature Communications, 2021, 12, 3712.	5.8	33
420	Crystal structures of Scone: pseudosymmetric folding of a symmetric designer protein. Acta Crystallographica Section D: Structural Biology, 2021, 77, 933-942.	1.1	2
421	Extending the Horizon of Homology Detection with Coevolution-based Structure Prediction. Journal of Molecular Biology, 2021, 433, 167106.	2.0	7
422	AlphaFold – A Personal Perspective on the Impact of Machine Learning. Journal of Molecular Biology, 2021, 433, 167088.	2.0	24
423	Open-access data: A cornerstone for artificial intelligence approaches to protein structure prediction. Structure, 2021, 29, 515-520.	1.6	22
424	Structural discrimination analysis for constraint selection in protein modeling. Bioinformatics, 2021, 37, 3766-3773.	1.8	0
428	Recent advancements in enzyme-mediated crosslinkable hydrogels: <i>In vivo</i> -mimicking strategies. APL Bioengineering, 2021, 5, 021502.	3.3	39
429	Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals. Frontiers in Bioengineering and Biotechnology, 2021, 9, 673005.	2.0	14
430	S2L-PSIBLAST: a supervised two-layer search framework based on PSI-BLAST for protein remote homology detection. Bioinformatics, 2021, 37, 4321-4327.	1.8	7
431	Complementing sequence-derived features with structural information extracted from fragment libraries for protein structure prediction. BMC Bioinformatics, 2021, 22, 351.	1.2	1
432	Fluorescent biosensors illuminating plant hormone research. Plant Physiology, 2021, 187, 590-602.	2.3	19
433	PCPD: Plant cytochrome P450 database and web-based tools for structural construction and ligand docking. Synthetic and Systems Biotechnology, 2021, 6, 102-109.	1.8	24
434	Synthetic data in machine learning for medicine and healthcare. Nature Biomedical Engineering, 2021, 5, 493-497.	11.6	249
435	Computer-aided understanding and engineering of enzymatic selectivity. Biotechnology Advances, 2022, 54, 107793.	6.0	25

0			n	
	ΙΤΔΤ	$1 \cap N$	INE	DUBL
<u> </u>	/			

#	Article	IF	CITATIONS
436	PyRMD: A New Fully Automated Al-Powered Ligand-Based Virtual Screening Tool. Journal of Chemical Information and Modeling, 2021, 61, 3835-3845.	2.5	21
437	WHISTLE server: A high-accuracy genomic coordinate-based machine learning platform for RNA modification prediction. Methods, 2022, 203, 378-382.	1.9	11
438	Artificial intelligence and the future of life sciences. Drug Discovery Today, 2021, 26, 2515-2526.	3.2	9
439	Three-dimensional missense tolerance ratio analysis. Genome Research, 2021, 31, 1447-1461.	2.4	14
440	Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems. Chemical Reviews, 2021, 121, 9816-9872.	23.0	287
441	Predicting 3D protein structures in light of evolution. Nature Ecology and Evolution, 2021, 5, 1195-1198.	3.4	7
442	Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596, 583-589.	13.7	17,754
443	Artificial Intelligence in Chemistry: Current Trends and Future Directions. Journal of Chemical Information and Modeling, 2021, 61, 3197-3212.	2.5	80
444	Tracing the Pace of COVID-19 Research: Topic Modeling and Evolution. Big Data Research, 2021, 25, 100236.	2.6	17
445	Artificial Intelligence Will (MAY) Make Doctors Expendable (IN GOOD WAYS): Pro. European Urology Focus, 2021, 7, 683-684.	1.6	7
446	Fusion of Al techniques to tackle COVID-19 pandemic: models, incidence rates, and future trends. Multimedia Systems, 2022, 28, 1189-1222.	3.0	10
447	Improving protein tertiary structure prediction by deep learning and distance prediction in <scp>CASP14</scp> . Proteins: Structure, Function and Bioinformatics, 2022, 90, 58-72.	1.5	18
448	Actionable XAI for the Fuzzy Integral. , 2021, , .		1
449	Implementing Deep Learning Algorithm on Physicochemical Properties of Proteins. Advances in Intelligent Systems and Computing, 2022, , 685-693.	0.5	0
450	Systematic risk identification and assessment using a new risk map in pharmaceutical R&D. Drug Discovery Today, 2021, 26, 2786-2793.	3.2	8
452	Mind the Gap: Molecular Architecture of the Axon Initial Segment – From Fold Prediction to a Mechanistic Model of Function?. Journal of Molecular Biology, 2021, 433, 167176.	2.0	8
453	Spherical convolutions on molecular graphs for protein model quality assessment. Machine Learning: Science and Technology, 2021, 2, 045005.	2.4	11
454	Nanoparticle synthesis assisted by machine learning. Nature Reviews Materials, 2021, 6, 701-716.	23.3	179

#	Article	IF	CITATIONS
455	Machine learning methods to model multicellular complexity and tissue specificity. Nature Reviews Materials, 2021, 6, 717-729.	23.3	13
456	Deterministic chaos in the self-assembly of β sheet nanotubes from an amphipathic oligopeptide. Matter, 2021, 4, 3217-3231.	5.0	36
457	Machine Learning Force Fields: Recent Advances and Remaining Challenges. Journal of Physical Chemistry Letters, 2021, 12, 6551-6564.	2.1	58
458	The Combination of Tradition and Future: Data-Driven Natural-Product-Based Treatments for Parkinson's Disease. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-8.	0.5	5
459	Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods, 2021, 1, 100014.	1.4	272
460	Feeding olive flounder (Paralichthys olivaceus) with Lactococcus lactis BFE920 expressing the fusion antigen of Vibrio OmpK and FlaB provides protection against multiple Vibrio pathogens: A universal vaccine effect. Fish and Shellfish Immunology, 2021, 114, 253-262.	1.6	10
461	Equivariant neural networks for inverse problems. Inverse Problems, 2021, 37, 085006.	1.0	6
462	Generative adversarial networks for transition state geometry prediction. Journal of Chemical Physics, 2021, 155, 024116.	1.2	21
463	Fast and effective protein model refinement using deep graph neural networks. Nature Computational Science, 2021, 1, 462-469.	3.8	28
464	Machine Learning Challenges in Pharmacogenomic Research. Clinical Pharmacology and Therapeutics, 2021, 110, 552-554.	2.3	2
465	A Brief History of De Novo Protein Design: Minimal, Rational, and Computational. Journal of Molecular Biology, 2021, 433, 167160.	2.0	77
466	Principles and Methods in Computational Membrane Protein Design. Journal of Molecular Biology, 2021, 433, 167154.	2.0	11
467	Artificial Intelligence for PET Image Reconstruction. Journal of Nuclear Medicine, 2021, 62, 1330-1333.	2.8	17
469	PyPEF—An Integrated Framework for Data-Driven Protein Engineering. Journal of Chemical Information and Modeling, 2021, 61, 3463-3476.	2.5	20
470	Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discovery Today, 2022, 27, 82-101.	3.2	44
471	Highly accurate protein structure prediction for the human proteome. Nature, 2021, 596, 590-596.	13.7	1,773
473	Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373, 871-876.	6.0	2,843
474	Topology evaluation of models for difficult targets in the 14th round of the critical assessment of protein structure prediction (CASP14). Proteins: Structure, Function and Bioinformatics, 2021, 89, 1673-1686	1.5	35

#	Article	IF	CITATIONS
475	Increasing the accuracy of single sequence prediction methods using a deep semi-supervised learning framework. Bioinformatics, 2021, 37, 3744-3751.	1.8	24
476	Virtual screening of potential anticancer drugs based on microbial products. Seminars in Cancer Biology, 2022, 86, 1207-1217.	4.3	6
478	A sequential niche multimodal conformational sampling algorithm for protein structure prediction. Bioinformatics, 2021, 37, 4357-4365.	1.8	11
479	Catalyze Materials Science with Machine Learning. , 2021, 3, 1151-1171.		28
480	A Multitask Deep-Learning Method for Predicting Membrane Associations and Secondary Structures of Proteins. Journal of Proteome Research, 2021, 20, 4089-4100.	1.8	6
482	<scp>SidechainNet</scp> : An <scp>allâ€atom</scp> protein structure dataset for machine learning. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1489-1496.	1.5	14
483	Building Machine Learning systems for multi-atoms structures: CH3NH3PbI3 perovskite nanoparticles. Computational Materials Science, 2021, 195, 110490.	1.4	13
484	Toward the solution of the protein structure prediction problem. Journal of Biological Chemistry, 2021, 297, 100870.	1.6	73
485	Protein structure prediction by <i>AlphaFold</i> 2: are attention and symmetries all you need?. Acta Crystallographica Section D: Structural Biology, 2021, 77, 982-991.	1.1	33
486	Life in Deserts: The Genetic Basis of Mammalian Desert Adaptation. Trends in Ecology and Evolution, 2021, 36, 637-650.	4.2	35
487	Lattice protein design using Bayesian learning. Physical Review E, 2021, 104, 014404.	0.8	3
490	Data-driven Full-waveform Inversion Surrogate using Conditional Generative Adversarial Networks. , 2021, , .		4
491	Educating the future generation of researchers: A cross-disciplinary survey of trends in analysis methods. PLoS Biology, 2021, 19, e3001313.	2.6	8
492	Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthcare Journal, 2021, 8, e188-e194.	0.6	143
493	Modeling of protein complexes in <scp>CASP14</scp> with emphasis on the interaction interface prediction. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1834-1843.	1.5	14
494	The Protein Folding Problem: The Role of Theory. Journal of Molecular Biology, 2021, 433, 167126.	2.0	52
495	Protein oligomer structure prediction using GALAXY in CASP14. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1844-1851.	1.5	4
496	Data-driven computational protein design. Current Opinion in Structural Biology, 2021, 69, 63-69.	2.6	28

#	Article	IF	Citations
497	Protein-structure prediction revolutionized. Nature, 2021, 596, 487-488.	13.7	23
498	Machine learning applications for therapeutic tasks with genomics data. Patterns, 2021, 2, 100328.	3.1	14
499	3dRS, a Web-Based Tool to Share Interactive Representations of 3D Biomolecular Structures and Molecular Dynamics Trajectories. Frontiers in Molecular Biosciences, 2021, 8, 726232.	1.6	6
500	Probing Multidimensional Structural Information of Single Molecules Transporting through a Sub-10 nm Conical Plasmonic Nanopore by SERS. Analytical Chemistry, 2021, 93, 11679-11685.	3.2	15
502	Harnessing artificial intelligence for the next generation of 3D printed medicines. Advanced Drug Delivery Reviews, 2021, 175, 113805.	6.6	83
503	Reinforcement Learning Configuration Interaction. Journal of Chemical Theory and Computation, 2021, 17, 5482-5491.	2.3	9
504	Computational Structural Genomics Unravels Common Folds and Novel Families in the Secretome of Fungal Phytopathogen <i>Magnaporthe oryzae</i> . Molecular Plant-Microbe Interactions, 2021, 34, 1267-1280.	1.4	49
505	Comparative analysis of molecular fingerprints in prediction of drug combination effects. Briefings in Bioinformatics, 2021, 22, .	3.2	47
507	Structural effects driven by rare point mutations in amylin hormone, the type II diabetes-associated peptide. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129935.	1.1	2
509	An update on novel approaches for diagnosis and treatment of SARS-CoV-2 infection. Cell and Bioscience, 2021, 11, 164.	2.1	10
510	Synergistic stabilization of a double mutant in chymotrypsin inhibitor 2 from a library screen in E. coli. Communications Biology, 2021, 4, 980.	2.0	13
511	Engineering Crystal Packing in RNA Structures I: Past and Future Strategies for Engineering RNA Packing in Crystals. Crystals, 2021, 11, 952.	1.0	7
512	Improving fragment-based ab initio protein structure assembly using low-accuracy contact-map predictions. Nature Communications, 2021, 12, 5011.	5.8	44
513	Mapping Electromechanical Coupling Pathways in Voltage-Gated Ion Channels: Challenges and the Way Forward. Journal of Molecular Biology, 2021, 433, 167104.	2.0	13
514	Machine learning for biochemical engineering: A review. Biochemical Engineering Journal, 2021, 172, 108054.	1.8	83
515	Accurate Estimation of Solvent Accessible Surface Area for Coarse-Grained Biomolecular Structures with Deep Learning. Journal of Physical Chemistry B, 2021, 125, 9490-9498.	1.2	4
516	Drugging the Undruggable: How Isoquinolines and PKA Initiated the Era of Designed Protein Kinase Inhibitor Therapeutics. Biochemistry, 2021, 60, 3470-3484.	1.2	5
517	Machine learning directed drug formulation development. Advanced Drug Delivery Reviews, 2021, 175, 113806.	6.6	99

#	Article	IF	CITATIONS
518	From computer-aided drug discovery to computer-driven drug discovery. Drug Discovery Today: Technologies, 2021, 39, 111-117.	4.0	32
520	A neural network approach for solution of the Schrödinger equation for a particle in the P¶schl–Teller potential. Canadian Journal of Physics, 2021, 99, 728-734.	0.4	2
522	A Career's Work, the <scp>l</scp> -Arabinose Operon: How It Functions and How We Learned It. EcoSal Plus, 2022, 10, .	2.1	1
523	Geometric deep learning of RNA structure. Science, 2021, 373, 1047-1051.	6.0	190
524	An automated iterative approach for protein structure refinement using pseudocontact shifts. Journal of Biomolecular NMR, 2021, 75, 319-334.	1.6	5
525	Co-evolutionary distance predictions contain flexibility information. Bioinformatics, 2021, , .	1.8	9
526	Protein tertiary structure prediction and refinement using deep learning and Rosetta in <scp>CASP14</scp> . Proteins: Structure, Function and Bioinformatics, 2021, 89, 1722-1733.	1.5	40
527	Energy Landscapes of Protein Aggregation and Conformation Switching in Intrinsically Disordered Proteins. Journal of Molecular Biology, 2021, 433, 167182.	2.0	56
529	Dendrite enlightenment. Current Opinion in Neurobiology, 2021, 69, 222-230.	2.0	9
531	On the Potential of Machine Learning to Examine the Relationship Between Sequence, Structure, Dynamics and Function of Intrinsically Disordered Proteins. Journal of Molecular Biology, 2021, 433, 167196.	2.0	51
532	Ten future challenges for synthetic biology. Engineering Biology, 2021, 5, 51-59.	0.8	24
533	Reinforcing the role of competition platforms. Patterns, 2021, 2, 100326.	3.1	1
534	Data, Knowledge, and Computation. KI - Kunstliche Intelligenz, 0, , 1.	2.2	0
535	Decoding disease: from genomes to networks to phenotypes. Nature Reviews Genetics, 2021, 22, 774-790.	7.7	46
537	Tracking droplets in soft granular flows with deep learning techniques. European Physical Journal Plus, 2021, 136, 864.	1.2	8
538	Protein oligomer modeling guided by predicted interchain contacts in <scp>CASP14</scp> . Proteins: Structure, Function and Bioinformatics, 2021, 89, 1824-1833.	1.5	16
539	Protein interâ€residue contact and distance prediction by coupling complementary coevolution features with deep residual networks in <scp>CASP14</scp> . Proteins: Structure, Function and Bioinformatics, 2021, 89, 1911-1921.	1.5	23
540	Recent omics-based computational methods for COVID-19 drug discovery and repurposing. Briefings in Bioinformatics, 2021, 22, .	3.2	8

#	Article	IF	CITATIONS
542	A Code Within a Code: How Codons Fine-Tune Protein Folding in the Cell. Biochemistry (Moscow), 2021, 86, 976-991.	0.7	9
543	Distance-guided protein folding based on generalized descent direction. Briefings in Bioinformatics, 2021, 22, .	3.2	3

544 ĐšĐ¾Đ´Đ2Đ½ÑƒÑ,Ñ€Đ, ĐºĐ¾Đа: ĐºĐ°Đº ĐºĐ¾ĐĐ¾ĐĐ¾ĐĐ¾Đ1½Ñ‹ Đ¾ÑущеÑÑ,Đ2Đ»ÑÑŽÑ, Ñ,Đ¾Đ½ĐºÑƒÑŽœ0⁄2аÑÑŊÑ€Đ¾Đ14

545	A complete, parallel, and autonomous photonic neural network in a semiconductor multimode laser. , 2021, , .		2
548	Impact of COVID-19 pandemic and the diagnosis of the virus in the human body. World Journal of Engineering, 2021, ahead-of-print, .	1.0	0
549	A fast and efficient deep learning procedure for tracking droplet motion in dense microfluidic emulsions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200400.	1.6	10
550	Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. Journal of Neural Transmission, 2022, 129, 207-230.	1.4	26
551	A <i>de novo</i> protein structure prediction by iterative partition sampling, topology adjustment and residue-level distance deviation optimization. Bioinformatics, 2021, 38, 99-107.	1.8	8
552	The potential of AI in cancer care and research. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188573.	3.3	9
553	How do I get the most out of my protein sequence using bioinformatics tools?. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1116-1126.	1.1	8
554	The role of machine learning in clinical research: transforming the future of evidence generation. Trials, 2021, 22, 537.	0.7	82
556	Next Generation Protein Structure Predictions and Genetic Variant Interpretation. Journal of Molecular Biology, 2021, 433, 167180.	2.0	21
557	Differentiable molecular simulation can learn all the parameters in a coarse-grained force field for proteins. PLoS ONE, 2021, 16, e0256990.	1.1	13
558	Prediction of protein assemblies, the next frontier: The <scp>CASP14 APRI</scp> experiment. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1800-1823.	1.5	73
560	Two Dimensions of Opacity and the Deep Learning Predicament. Minds and Machines, 2022, 32, 43-75.	2.7	21
561	Accurate Prediction of Hydration Sites of Proteins Using Energy Model With Atom Embedding. Frontiers in Molecular Biosciences, 2021, 8, 756075.	1.6	5
562	CSI-LSTM: a web server to predict protein secondary structure using bidirectional long short term memory and NMR chemical shifts. Journal of Biomolecular NMR, 2021, 75, 393-400.	1.6	2
564	Artificial intelligence in cancer research, diagnosis and therapy. Nature Reviews Cancer, 2021, 21, 747-752.	12.8	87

#	Article	IF	CITATIONS
566	Deep learning: an efficient method for plasmonic design of geometric nanoparticles. Nanotechnology, 2021, 32, 505607.	1.3	4
567	Complex Organ Construction from Human Pluripotent Stem Cells for Biological Research and Disease Modeling with New Emerging Techniques. International Journal of Molecular Sciences, 2021, 22, 10184.	1.8	4
568	Mapping the glycosyltransferase fold landscape using interpretable deep learning. Nature Communications, 2021, 12, 5656.	5.8	22
570	Identification of SNPs in rice GPAT genes and in silico analysis of their functional impact on GPAT proteins. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12346.	0.5	0
572	Quantum federated learning through blind quantum computing. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	31
574	Theory and Practice of Coarse-Grained Molecular Dynamics of Biologically Important Systems. Biomolecules, 2021, 11, 1347.	1.8	29
576	Robotomorphy. Al and Ethics, 2022, 2, 5-13.	4.6	12
577	X-ray imaging meets deep learning. , 2021, , .		0
578	Single cortical neurons as deep artificial neural networks. Neuron, 2021, 109, 2727-2739.e3.	3.8	104
579	Applying Machine Learning to Stem Cell Culture and Differentiation. Current Protocols, 2021, 1, e261.	1.3	11
581	Contemporary biomedical engineering perspective on volitional evolution for human radiotolerance enhancement beyond low-earth orbit. Synthetic Biology, 2021, 6, ysab023.	1.2	0
582	Next-Generation Genome-Scale Metabolic Modeling through Integration of Regulatory Mechanisms. Metabolites, 2021, 11, 606.	1.3	18
583	An Insight into FDA Approved Antibody-Drug Conjugates for Cancer Therapy. Molecules, 2021, 26, 5847.	1.7	158
584	Crowds, citizens, and science: a multi-dimensional framework and agenda for future research. Industry and Innovation, 2022, 29, 251-284.	1.7	19
585	Protein sequenceâ€toâ€structure learning: Is this the end(â€toâ€end revolution)?. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1770-1786.	1.5	30
586	Getting the Most Out of Enzyme Cascades: Strategies to Optimize In Vitro Multi-Enzymatic Reactions. Catalysts, 2021, 11, 1183.	1.6	43
587	End-to-end deep learning method to predict complete strain and stress tensors for complex hierarchical composite microstructures. Journal of the Mechanics and Physics of Solids, 2021, 154, 104506.	2.3	68
589	<i>m</i> CNN-ETC: identifying electron transporters and their functional families by using multiple windows scanning techniques in convolutional neural networks with evolutionary information of protein sequences. Briefings in Bioinformatics, 2022, 23, .	3.2	7

#	Article	IF	CITATIONS
590	An Artificial Intelligenceâ€Based Motion Trajectory Prediction of Fibrous Matters. Advanced Intelligent Systems, 0, , 2100136.	3.3	2
591	Artificial intelligence-enhanced drug design and development: Toward a computational precision medicine. Drug Discovery Today, 2022, 27, 215-222.	3.2	35
592	Classification and reconstruction of optical quantum states with deep neural networks. Physical Review Research, 2021, 3, .	1.3	25
594	Computational Analysis of Synthetic Planning: Past and Future. Chinese Journal of Chemistry, 2021, 39, 3127-3143.	2.6	8
595	Green biomanufacturing promoted by automatic retrobiosynthesis planning and computational enzyme design. Chinese Journal of Chemical Engineering, 2022, 41, 6-21.	1.7	1
596	Peptide-Based Supramolecular Systems Chemistry. Chemical Reviews, 2021, 121, 13869-13914.	23.0	171
597	Deep neural network for detecting arbitrary precision peptide features through attention based segmentation. Scientific Reports, 2021, 11, 18249.	1.6	4
598	Artificial intelligence and machine learning: an introduction for orthopaedic surgeons. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30, 361-364.	2.3	35
599	AlphaFold 2: Why It Works and Its Implications for Understanding the Relationships of Protein Sequence, Structure, and Function. Journal of Chemical Information and Modeling, 2021, 61, 4827-4831.	2.5	109
600	FALCON2: a web server for high-quality prediction of protein tertiary structures. BMC Bioinformatics, 2021, 22, 439.	1.2	0
601	OPUS-X: an open-source toolkit for protein torsion angles, secondary structure, solvent accessibility, contact map predictions and 3D folding. Bioinformatics, 2021, 38, 108-114.	1.8	5
602	Data Management and Modeling in Plant Biology. Frontiers in Plant Science, 2021, 12, 717958.	1.7	10
605	Learning impurity spectral functions from density of states. Journal of Physics Condensed Matter, 2021, 33, 495601.	0.7	0
606	Predicting human-pathogen protein-protein interactions using Natural Language Processing methods. Informatics in Medicine Unlocked, 2021, 26, 100738.	1.9	1
607	SARSâ€CoVâ€2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. Molecular Systems Biology, 2021, 17, e10079.	3.2	22
608	BioSeq-BLM: a platform for analyzing DNA, RNAÂand protein sequences based on biological language models. Nucleic Acids Research, 2021, 49, e129-e129.	6.5	84
609	Interlocking mechanism design based on deep-learning methods. Applications in Engineering Science, 2021, 7, 100056.	0.5	1
610	Investigating deep feedforward neural networks for classification of transposon-derived piRNAs. Complex & Intelligent Systems, 2022, 8, 477-487.	4.0	2

#	Article	IF	CITATIONS
611	Chimeric single α-helical domains as rigid fusion protein connections for protein nanotechnology and structural biology. Structure, 2022, 30, 95-106.e7.	1.6	4
612	Improved 3-D Protein Structure Predictions using Deep ResNet Model. Protein Journal, 2021, 40, 669-681.	0.7	4
613	Boosting Intelligent Data Analysis in Smart Sensors by Integrating Knowledge and Machine Learning. Sensors, 2021, 21, 6168.	2.1	6
614	A guide to machine learning for biologists. Nature Reviews Molecular Cell Biology, 2022, 23, 40-55.	16.1	626
615	Improved estimation of model quality using predicted inter-residue distance. Bioinformatics, 2021, 37, 3752-3759.	1.8	9
616	Integration of Mass Spectrometry Data for Structural Biology. Chemical Reviews, 2022, 122, 7952-7986.	23.0	36
617	Hybrid Deep Learning Based on a Heterogeneous Network Profile for Functional Annotations of Plasmodium falciparum Genes. International Journal of Molecular Sciences, 2021, 22, 10019.	1.8	5
618	The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules, 2021, 26, 5629.	1.7	14
619	SCONES: Self-Consistent Neural Network for Protein Stability Prediction Upon Mutation. Journal of Physical Chemistry B, 2021, 125, 10657-10671.	1.2	14
620	Modellheuristiken für effizientes forward model learning. Automatisierungstechnik, 2021, 69, 848-857.	0.4	0
621	From serendipity to rational drug design in brain disorders: in silico, inÂvitro, and inÂvivo approaches. Current Opinion in Pharmacology, 2021, 60, 177-182.	1.7	1
622	Composition based crystal materials symmetry prediction using machine learning with enhanced descriptors. Computational Materials Science, 2021, 198, 110686.	1.4	15
623	Deep learning opens up protein science's next frontiers. Physics Today, 2021, 74, 14-17.	0.3	3
624	Assessing the accuracy of contact and distance predictions in <scp>CASP14</scp> . Proteins: Structure, Function and Bioinformatics, 2021, 89, 1888-1900.	1.5	15
625	Testing machine learning techniques for general application by using protein secondary structure prediction. A brief survey with studies of pitfalls and benefits using a simple progressive learning approach. Computers in Biology and Medicine, 2021, 138, 104883.	3.9	7
626	A Machine Learning Shortcut for Screening the Spinel Structures of Mg/Zn Ion Battery Cathodes with a High Conductivity and Rapid Ion Kinetics. Energy Storage Materials, 2021, 42, 277-285.	9.5	18
627	Comprehensive analysis of embeddings and pre-training in NLP. Computer Science Review, 2021, 42, 100433.	10.2	16
628	Data-driven decision support in livestock farming for improved animal health, welfare and greenhouse gas emissions: Overview and challenges. Computers and Electronics in Agriculture, 2021, 190, 106406.	3.7	34

#	Article	IF	CITATIONS
629	Modeling protein structures with the coarse-grained UNRES force field in the CASP14 experiment. Journal of Molecular Graphics and Modelling, 2021, 108, 108008.	1.3	17
630	A structural-based machine learning method to classify binding affinities between TCR and peptide-MHC complexes. Molecular Immunology, 2021, 139, 76-86.	1.0	6
631	Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases. Advanced Drug Delivery Reviews, 2021, 178, 113922.	6.6	34
632	Machine learning accelerates quantum mechanics predictions of molecular crystals. Physics Reports, 2021, 934, 1-71.	10.3	21
633	The extra-nuclear interactome of the estrogen receptors: implications for physiological functions. Molecular and Cellular Endocrinology, 2021, 538, 111452.	1.6	19
634	In silico, inÂvitro, and inÂvivo machine learning in synthetic biology and metabolic engineering. Current Opinion in Chemical Biology, 2021, 65, 85-92.	2.8	21
635	High throughput and quantitative enzymology in the genomic era. Current Opinion in Structural Biology, 2021, 71, 259-273.	2.6	18
636	Machine learning in protein structure prediction. Current Opinion in Chemical Biology, 2021, 65, 1-8.	2.8	143
637	The long road to engineering durable disease resistance in wheat. Current Opinion in Biotechnology, 2022, 73, 270-275.	3.3	14
638	Tensorox: Accelerating GPU Applications via Neural Approximation on Unused Tensor Cores. IEEE Transactions on Parallel and Distributed Systems, 2022, 33, 429-443.	4.0	4
639	Finding and removing Clever Hans: Using explanation methods to debug and improve deep models. Information Fusion, 2022, 77, 261-295.	11.7	42
640	Computational Modeling of Protein Three-Dimensional Structure: Methods and Resources. , 2021, , 155-178.		4
641	Insightful artificial intelligence. Mind and Language, 2021, 36, 315-329.	1.2	15
642	MEMES: Machine learning framework for Enhanced MolEcular Screening. Chemical Science, 2021, 12, 11710-11721.	3.7	26
643	Machine and Deep Learning in Molecular and Genetic Aspects of Sleep Research. Neurotherapeutics, 2021, 18, 228-243.	2.1	5
644	To See Is to Believe. , 2021, , 177-206.		0
645	Machine learning, artificial intelligence, and data science breaking into drug design and neglected diseases. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1513.	6.2	21
646	GEFA: Early Fusion Approach in Drug-Target Affinity Prediction. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 718-728.	1.9	37

#	Article	IF	CITATIONS
647	Use of molecular docking computational tools in drug discovery. Progress in Medicinal Chemistry, 2021, 60, 273-343.	4.1	154
648	How the Protein Data Bank changed biology: An introduction to the JBC Reviews thematic series, part 1. Journal of Biological Chemistry, 2021, 296, 100608.	1.6	14
649	Application of artificial intelligence in COVID-19 medical area: a systematic review. Journal of Thoracic Disease, 2021, 13, 7034-7053.	0.6	19
650	Mapping Conformational Space of All 8000 Tripeptides by Quantum Chemical Methods: What Strain Is Affordable within Folded Protein Chains?. Journal of Physical Chemistry B, 2021, 125, 58-69.	1.2	6
651	Proteolysis targeting chimeras (PROTACs) come of age: entering the third decade of targeted protein degradation. RSC Chemical Biology, 2021, 2, 725-742.	2.0	118
652	Recent advances and future perspectives for automated parameterisation, Bayesian inference and machine learning in voltammetry. Chemical Communications, 2021, 57, 1855-1870.	2.2	35
653	A Review on COVID-19. Studies in Computational Intelligence, 2021, , 25-42.	0.7	20
654	Artificial intelligence and machine learning in design of mechanical materials. Materials Horizons, 2021, 8, 1153-1172.	6.4	237
655	Global Integration and Distribution of Data Through Machine Learning for COVID-19. Lecture Notes in Electrical Engineering, 2021, , 375-381.	0.3	0
656	Interdependence in Artificial Intelligence to Empower Worldwide COVID-19 Sensitivity. Lecture Notes in Electrical Engineering, 2021, , 809-819.	0.3	1
657	Wir können über uns nachdenken – der Computer nicht. , 2021, , 215-229.		0
658	Electrostatic features for nucleocapsid proteins of SARS-CoV and SARS-CoV-2. Mathematical Biosciences and Engineering, 2021, 18, 2372-2383.	1.0	8
659	MO4: A Many-Objective Evolutionary Algorithm for Protein Structure Prediction. IEEE Transactions on Evolutionary Computation, 2022, 26, 417-430.	7.5	48
660	Applications of Artificial Intelligence and Molecular Immune Pathogenesis, Ongoing Diagnosis and Treatments for COVID-19. Studies in Systems, Decision and Control, 2021, , 521-549.	0.8	0
662	The language of proteins: NLP, machine learning & protein sequences. Computational and Structural Biotechnology Journal, 2021, 19, 1750-1758.	1.9	175
663	Guardians of the Cell: State-of-the-Art of Membrane Proteins from a Computational Point-of-View. Methods in Molecular Biology, 2021, 2315, 3-28.	0.4	0
665	Adversarial learning in quantum artificial intelligence. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 140302.	0.2	3
666	Machine Learning Approaches on High Throughput NGS Data to Unveil Mechanisms of Function in Biology and Disease. Cancer Genomics and Proteomics, 2021, 18, 605-626.	1.0	11

#	Article	IF	CITATIONS
667	Artificial Intelligence Against COVID-19: A Meta-analysis of Current Research. Studies in Big Data, 2020, , 165-176.	0.8	15
668	Insights into the biased activity of dextromethorphan and haloperidol towards SARS-CoV-2 NSP6: in silico binding mechanistic analysis. Journal of Molecular Medicine, 2020, 98, 1659-1673.	1.7	39
669	Machine Learning for COVID-19 needs global collaboration and data-sharing. Nature Machine Intelligence, 2020, 2, 293-294.	8.3	48
670	Artificial intelligence cooperation to support the global response to COVID-19. Nature Machine Intelligence, 2020, 2, 295-297.	8.3	80
671	Deep learning and generative methods in cheminformatics and chemical biology: navigating small molecule space intelligently. Biochemical Journal, 2020, 477, 4559-4580.	1.7	29
672	Hybrid methods for combined experimental and computational determination of protein structure. Journal of Chemical Physics, 2020, 153, 240901.	1.2	48
673	Role of data science in managing COVID-19 pandemic. Indian Chemical Engineer, 2020, 62, 385-395.	0.9	8
674	Applications of machine learning in spectroscopy. Applied Spectroscopy Reviews, 2021, 56, 733-763.	3.4	46
675	Machine learning for condensed matter physics. Journal of Physics Condensed Matter, 2021, 33, 053001.	0.7	47
676	The impact of structural bioinformatics tools and resources on SARS-CoV-2 research and therapeutic strategies. Briefings in Bioinformatics, 2021, 22, 742-768.	3.2	29
677	Geometricus represents protein structures as shape-mers derived from moment invariants. Bioinformatics, 2020, 36, i718-i725.	1.8	24
715	<i>Ab initio</i> solution of the many-electron Schrödinger equation with deep neural networks. Physical Review Research, 2020, 2, .	1.3	227
716	Deep learning enables the atomic structure determination of the Fanconi Anemia core complex from cryoEM. IUCrJ, 2020, 7, 881-892.	1.0	10
717	Sequence-guided protein structure determination using graph convolutional and recurrent networks. , 2020, , .		7
718	Deep Ranking in Template-free Protein Structure Prediction. , 2020, , .		5
719	Artificial intelligence in pulmonary medicine: computer vision, predictive model and COVID-19. European Respiratory Review, 2020, 29, 200181.	3.0	47
720	Template-based prediction of protein structure with deep learning. BMC Genomics, 2020, 21, 878.	1.2	15
721	RamaNet: Computational de novo helical protein backbone design using a long short-term memory generative adversarial neural network. F1000Research, 0, 9, 298.	0.8	3

#	Article	IF	Citations
722	RamaNet: ComputationalÂde novoÂhelical protein backbone design using a long short-term memory generative neural network. F1000Research, 0, 9, 298.	0.8	7
723	FilterDCA: Interpretable supervised contact prediction using inter-domain coevolution. PLoS Computational Biology, 2020, 16, e1007621.	1.5	8
724	Mapping the landscape of Artificial Intelligence applications against COVID-19. Journal of Artificial Intelligence Research, 0, 69, 807-845.	7.0	275
725	New Ways to Manage Pandemics: Using Technologies in the Era of COVID-19, a Narrative Review. Iranian Journal of Psychiatry, 2020, 15, 236-242.	0.4	14
726	A Legal Definition of Al. SSRN Electronic Journal, 0, , .	0.4	11
727	Artificial Intelligence's New Clothes? From General Purpose Technology to Large Technical System. SSRN Electronic Journal, 0, , .	0.4	5
728	Improvement of Prediction Performance With Conjoint Molecular Fingerprint in Deep Learning. Frontiers in Pharmacology, 2020, 11, 606668.	1.6	29
731	Computational anti-COVID-19 drug design: progress and challenges. Briefings in Bioinformatics, 2022, 23, .	3.2	8
732	Virus-templated magnetic composite hydrogels for surface immobilization of mimic-free-lipase. Nanoscale, 2021, 13, 17871-17880.	2.8	4
733	GenRadar: Self-Supervised Probabilistic Camera Synthesis Based on Radar Frequencies. IEEE Access, 2021, 9, 148994-149042.	2.6	3
734	Gender Analysis of Decision Making on Maternal Health Care among Rural Farmers in Southwestern Nigeria: Implications for Food Security. Journal of Contemporary International Relations and Diplomacy, 2021, 1, .	1.5	3
735	Physics-Based Coarse-Grained Modeling in Bio- and Nanochemistry. , 2022, , 31-69.		1
736	Generative Adversarial Neural Networks and Deep Learning: Successful Cases and Advanced Approaches. International Journal of Computing, 0, , 339-349.	1.5	11
737	Applying and improving <scp>AlphaFold</scp> at <scp>CASP14</scp> . Proteins: Structure, Function and Bioinformatics, 2021, 89, 1711-1721.	1.5	231
738	Amino acid environment affinity model based on graph attention network. Journal of Bioinformatics and Computational Biology, 2022, 20, 2150032.	0.3	1
739	SAP-Net: Deep learning to predict sound absorption performance of metaporous materials. Materials and Design, 2021, 212, 110156.	3.3	19
740	Fast activation maximization for molecular sequence design. BMC Bioinformatics, 2021, 22, 510.	1.2	16
741	Evolutionary Insights into the Microneme-Secreted, Chitinase-Containing High-Molecular-Weight Protein Complexes Involved in <i>Plasmodium</i> Invasion of the Mosquito Midgut. Infection and Immunity, 2022, 90, IAI0031421.	1.0	5

35

ARTICLE IF CITATIONS # Discovering Catalytic Reaction Networks Using Deep Reinforcement Learning from First-Principles. 742 6.6 17 Journal of the American Chemical Society, 2021, 143, 16804-16812. AI applications in functional genomics. Computational and Structural Biotechnology Journal, 2021, 19, 743 34 <u>5762-5790.</u> Differentiable biology: using deep learning for biophysics-based and data-driven modeling of 745 9.0 44 molecular mechanisms. Nature Methods, 2021, 18, 1169-1180. Artificial intelligence for search and discovery of quantum materials. Communications Materials, 746 2.9 29 2021, 2, . Photoactivatable ribonucleosides mark base-specific RNA-binding sites. Nature Communications, 2021, 748 5.8 14 12,6026. Efficient generative modeling of protein sequences using simple autoregressive models. Nature Communications, 2021, 12, 5800. 5.8 751 <scp>Foldâ€switching</scp> proteins. Biopolymers, 2021, 112, e23478. 1.2 2 Machine learning applications in macromolecular X-ray crystallography. Crystallography Reviews, 0.4 2021, 27, 54-101 Editorial overview: Understanding, predicting, and optimizing biomolecular interactions with 753 2.8 0 machine learning. Current Opinion in Chemical Biology, 2021, 65, A1-A3. Synthetic biology applications of the yeast mating signal pathway. Trends in Biotechnology, 2021, , . Markovian Quantum Neuroevolution for Machine Learning. Physical Review Applied, 2021, 16, . 756 1.5 13 Contemporary Approaches to the Discovery and Development of Broad-Spectrum Natural Product 1.5 Prototypes for the Control of Coronaviruses. Journal of Natural Products, 2021, 84, 3001-3007. Computing infrastructure construction and optimization for high-performance computing and 758 1.1 5 artificial intelligence. CCF Transactions on High Performance Computing, 2021, 3, 331-343. Inhibitors of the Plasmodium falciparum Hsp90 towards Selective Antimalarial Drug Design: The Past, 759 1.8 Present and Future. Cells, 2021, 10, 2849. Structure and Topology Prediction of Phage Adhesion Devices Using AlphaFold2: The Case of Two 760 1.6 18 Oenococcus oeni Phages. Microorganisms, 2021, 9, 2151. Comprehensive discovery of CRISPR-targeted terminally redundant sequences in the human gut metagenome: Viruses, plasmids, and more. PLoS Computational Biology, 2021, 17, e1009428. Development of Diagnostic and Therapeutic Strategy for Long QT Syndrome Using Human Induced 762 0.0 0 Pluripotent Stem Cell Models. Japanese Journal of Electrocardiology, 2021, 41, 124-133. Protein engineering: a driving force toward synthetic immunology. Trends in Biotechnology, 2022, 40, 509-521.
#	Article	IF	CITATIONS
764	A stacked deep learning approach to cyber-attacks detection in industrial systems: application to power system and gas pipeline systems. Cluster Computing, 2022, 25, 561-578.	3.5	27
765	AoP-LSE: Antioxidant Proteins Classification Using Deep Latent Space Encoding of Sequence Features. Current Issues in Molecular Biology, 2021, 43, 1489-1501.	1.0	6
766	Pandemic drugs at pandemic speed: infrastructure for accelerating COVID-19 drug discovery with hybrid machine learning- and physics-based simulations on high-performance computers. Interface Focus, 2021, 11, 20210018.	1.5	23
767	Evaluation of FRET X for single-molecule protein fingerprinting. IScience, 2021, 24, 103239.	1.9	18
768	Artificial Intelligence in Anatomic Pathology. Advances in Molecular Pathology, 2021, 4, 145-171.	0.2	6
774	Machine Learning in a Molecular Modeling Course for Chemistry, Biochemistry, and Biophysics Students. The Biophysicist, 2020, 1, .	0.1	2
775	Protein homodimers structure prediction based on deep neural network. Informatika, 2020, 17, 44-53.	0.1	0
779	Inverse Ising techniques to infer underlying mechanisms from data*. Chinese Physics B, 2020, 29, 080201.	0.7	3
782	The future of biomolecular simulation in the pharmaceutical industry: what we can learn from aerodynamics modelling and weather prediction. Part 1. understanding the physical and computational complexity of <i>in silico</i> drug design. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1348-1356.	1.1	3
783	adabmDCA: adaptive Boltzmann machine learning for biological sequences. BMC Bioinformatics, 2021, 22, 528.	1.2	11
784	The Intriguing Relation Between Counterfactual Explanations and Adversarial Examples. Minds and Machines, 2022, 32, 77-109.	2.7	14
785	CoCoPRED: coiled-coil protein structural feature prediction from amino acid sequence using deep neural networks. Bioinformatics, 2022, 38, 720-729.	1.8	4
786	Accurate prediction of protein torsion angles using evolutionary signatures and recurrent neural network. Scientific Reports, 2021, 11, 21033.	1.6	4
787	Computational Framework for Machine-Learning-Enabled ¹³ C Fluxomics. ACS Synthetic Biology, 2022, 11, 103-115.	1.9	6
788	A transfer learning approach for predictive modeling of bioprocesses using small data. Biotechnology and Bioengineering, 2022, 119, 411-422.	1.7	25
789	New Antagonists of the Membrane Androgen Receptor OXER1 from the ZINC Natural Product Database. ACS Omega, 2021, 6, 29664-29674.	1.6	8
790	Improved Protein Structure Prediction Using a New Multiâ€Scale Network and Homologous Templates. Advanced Science, 2021, 8, e2102592.	5.6	65
791	Protein Design with Deep Learning. International Journal of Molecular Sciences, 2021, 22, 11741.	1.8	23

#	Article	IF	CITATIONS
792	Distanceâ€based reconstruction of protein quaternary structures from interâ€chain contacts. Proteins: Structure, Function and Bioinformatics, 2022, 90, 720-731.	1.5	8
793	Comprehensive analyses of bioinformatics applications in the fight against COVID-19 pandemic. Computational Biology and Chemistry, 2021, 95, 107599.	1.1	21
794	Optical coherent dot-product chip for sophisticated deep learning regression. Light: Science and Applications, 2021, 10, 221.	7.7	56
795	Role of Emerging Technologies in COVID 19: Analyses, Predictions, and Future Countermeasures. SSRN Electronic Journal, 0, , .	0.4	3
796	The Papers that Influenced My Career: Creamer and Rose. Seibutsu Butsuri, 2020, 60, 190-191.	0.0	0
797	A Review on PEM Fuel Cells Used for Automotive Applications, Models and Hydrogen Storage for Hybrid Electric Fuel Cell Vehicle. , 0, , .		4
799	PolyFold: An interactive visual simulator for distance-based protein folding. PLoS ONE, 2020, 15, e0243331.	1.1	1
801	A tale of solving two computational challenges in protein science: neoantigen prediction and protein structure prediction. Briefings in Bioinformatics, 2022, 23, .	3.2	7
802	Electrochemical characterization of mutant forms of rubredoxin B from Mycobacterium tuberculosis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2022, 1870, 140734.	1.1	2
803	Predicting conformers of flexible metal complexes using deep neural network. , 2022, , 193-216.		1
804	Quantum computing for chemical and biomolecular product design. Current Opinion in Chemical Engineering, 2022, 36, 100754.	3.8	26
805	A Survey on Applications of Artificial Intelligence in Fighting Against COVID-19. ACM Computing Surveys, 2022, 54, 1-32.	16.1	55
806	CoCoNet—boosting RNA contact prediction by convolutional neural networks. Nucleic Acids Research, 2021, 49, 12661-12672.	6.5	3
807	Protein-DNA Binding Residue Prediction via Bagging Strategy and Sequence-based Cube-Format Feature. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, PP, 1-1.	1.9	2
808	Modeling Sequence-Space Exploration and Emergence of Epistatic Signals in Protein Evolution. Molecular Biology and Evolution, 2022, 39, .	3.5	25
809	Grundlagen genetischer und evolutionĤer Algorithmen. Springer Reference Geisteswissenschaften, 2020, , 1-26.	0.0	0
810	Breaking (Global) Barriers in Parallel Stochastic Optimization with Wait-Avoiding Group Averaging. IEEE Transactions on Parallel and Distributed Systems, 2020, , 1-1.	4.0	2
811	Deep Learning Approach with Rotate-Shift Invariant Input to Predict Protein Homodimer Structure. Lecture Notes in Computer Science, 2020, , 296-303.	1.0	2

#	Article	IF	Citations
812	Biocomputers: Problems They Solve, State of the Art, and Prospects. Nanotechnologies in Russia, 2020, 15, 3-12.	0.7	2
813	The Applications of Biosensing and Artificial Intelligence Technologies for Rapid Detection and Diagnosis of COVID-19 in Remote Setting. Medical Virology, 2020, , 109-134.	2.1	4
815	InsectBase 2.0: a comprehensive gene resource for insects. Nucleic Acids Research, 2022, 50, D1040-D1045.	6.5	74
816	Accurate protein function prediction via graph attention networks with predicted structure information. Briefings in Bioinformatics, 2022, 23, .	3.2	39
817	Deep graph learning of inter-protein contacts. Bioinformatics, 2022, 38, 947-953.	1.8	36
818	Fast end-to-end learning on protein surfaces. , 2021, , .		33
820	Enzymeless DNA Base Identification by Chemical Stepping in a Nanopore. Journal of the American Chemical Society, 2021, 143, 18181-18187.	6.6	17
821	Graph representation learning for structural proteomics. Emerging Topics in Life Sciences, 2021, 5, 789-802.	1.1	6
822	3D Interaction Homology: Computational Titration of Aspartic Acid, Glutamic Acid and Histidine Can Create pH-Tunable Hydropathic Environment Maps. Frontiers in Molecular Biosciences, 2021, 8, 773385.	1.6	4
825	Expression, Purification, and Characterization of Bovine Leukemia Virus-Like Particles Produced in Drosophila S2 Cells. Frontiers in Virology, 2021, 1, .	0.7	3
826	Machine Learning for Health: Algorithm Auditing & Quality Control. Journal of Medical Systems, 2021, 45, 105.	2.2	23
827	ProPythia: A Python package for protein classification based on machine and deep learning. Neurocomputing, 2022, 484, 172-182.	3.5	8
829	Deep Learning and Computational Chemistry. Methods in Molecular Biology, 2022, 2390, 125-151.	0.4	3
830	Deep Learning in Structure-Based Drug Design. Methods in Molecular Biology, 2022, 2390, 261-271.	0.4	5
831	Performance Evaluation of Offline Speech Recognition on Edge Devices. Electronics (Switzerland), 2021, 10, 2697.	1.8	8
835	RamaNet: ComputationalÂde novoÂhelical protein backbone design using a long short-term memory generative neural network. F1000Research, 0, 9, 298.	0.8	3
836	Computational prediction of RNA tertiary structures using machine learning methods*. Chinese Physics B, 2020, 29, 108704.	0.7	5
840	Including residual contact information into replica-exchange MD simulations significantly enriches native-like conformations. PLoS ONE, 2020, 15, e0242072.	1.1	2

#	Article	IF	CITATIONS
841	miRe2e: a full end-to-end deep model based on transformers for prediction of pre-miRNAs. Bioinformatics, 2022, 38, 1191-1197.	1.8	10
842	A systematic structural comparison of all solved small proteins deposited in PDB. The effect of disulfide bonds in protein fold. Computational and Structural Biotechnology Journal, 2021, 19, 6255-6262.	1.9	2
843	Ageing and Alzheimer's Disease. , 2021, , 1-16.		2
844	Machine learning to empower electrohydrodynamic processing. Materials Science and Engineering C, 2022, 132, 112553.	3.8	12
845	Gradient boosted trees with individual explanations: An alternative to logistic regression for viability prediction in the first trimester of pregnancy. Computer Methods and Programs in Biomedicine, 2022, 213, 106520.	2.6	6
846	Fundamental aspects of the structural biology of coronaviruses. , 2022, , 31-52.		Ο
847	Conditional Densities and Likelihoods for Hypertoroidal Densities Based on Trigonometric Polynomials. , 2021, , .		0
848	Time-efficient Bayesian Inference for a (Skewed) Von Mises Distribution on the Torus in a Deep Probabilistic Programming Language. , 2021, , .		0
849	Three-Dimensional Graph Matching to Identify Secondary Structure Correspondence of Medium-Resolution Cryo-EM Density Maps. Biomolecules, 2021, 11, 1773.	1.8	3
851	Concordance of X-ray and AlphaFold2 Models of SARS-CoV-2 Main Protease with Residual Dipolar Couplings Measured in Solution. Journal of the American Chemical Society, 2021, 143, 19306-19310.	6.6	40
852	Toward the assessment of predicted inter-residue distance. Bioinformatics, 2022, 38, 962-969.	1.8	8
853	From Lock-In to Transformation: A Path-Centric Theory of Emerging Technology and Organizing. Organization Science, 2022, 33, 194-211.	3.0	11
854	Accurate Machine Learning Prediction of Protein Circular Dichroism Spectra with Embedded Density Descriptors. Jacs Au, 2021, 1, 2377-2384.	3.6	16
855	Knowledge-guided artificial intelligence technologies for decoding complex multiomics interactions in cells. Clinical and Experimental Pediatrics, 2022, 65, 239-249.	0.9	2
857	Advances in NMR Spectroscopy of Weakly Aligned Biomolecular Systems. Chemical Reviews, 2022, 122, 9307-9330.	23.0	27
858	Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein–Protein Interactions唀A Method for All Seasons. Chemical Reviews, 2022, 122, 7500-7531.	23.0	101
859	Limits and potential of combined folding and docking. Bioinformatics, 2022, 38, 954-961.	1.8	14
860	Ensembl Genomes 2022: an expanding genome resource for non-vertebrates. Nucleic Acids Research, 2022, 50, D996-D1003.	6.5	141

#	Article	IF	CITATIONS
861	Evaluation of Deep Neural Network ProSPr for Accurate Protein Distance Predictions on CASP14 Targets. International Journal of Molecular Sciences, 2021, 22, 12835.	1.8	7
863	Transition to sustainable chemistry through digitalization. CheM, 2021, 7, 2866-2882.	5.8	39
864	Nickel import and export in the human pathogen <i>Helicobacter pylori</i> , perspectives from molecular modelling. Metallomics, 2021, 13, .	1.0	6
865	The trRosetta server for fast and accurate protein structure prediction. Nature Protocols, 2021, 16, 5634-5651.	5.5	290
866	Simultaneous Assignment and Structure Determination of Proteins From Sparsely Labeled NMR Datasets. Frontiers in Molecular Biosciences, 2021, 8, 774394.	1.6	7
867	Structure, Activity and Function of the PRMT2 Protein Arginine Methyltransferase. Life, 2021, 11, 1263.	1.1	21
868	Identification, Characterization, and In Silico Analysis of New Imine Reductases From Native Streptomyces Genomes. Frontiers in Catalysis, 2021, 1, .	1.8	1
869	Neural Upscaling from Residue-Level Protein Structure Networks to Atomistic Structures. Biomolecules, 2021, 11, 1788.	1.8	5
870	Deep Reinforcement Learning Algorithms for Path Planning Domain in Grid-like Environment. Applied Sciences (Switzerland), 2021, 11, 11335.	1.3	2
871	Engineer design process assisted by explainable deep learning network. Scientific Reports, 2021, 11, 22525.	1.6	2
872	Synthetic Biology Advanced Natural Product Discovery. Metabolites, 2021, 11, 785.	1.3	8
873	The repetitive local sampling and the local distribution theory. Wiley Interdisciplinary Reviews: Computational Molecular Science, 0, , e1588.	6.2	2
875	Comparing Native Crystal Structures and AlphaFold2 Predicted Water-Soluble G Protein-Coupled Receptor QTY Variants. Life, 2021, 11, 1285.	1.1	11
876	Ten things I`hate' about refinement. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1497-1515.	1.1	4
877	<scp>FSATOOL</scp> 2.0: An integrated molecular dynamics simulation and trajectory data analysis program. Journal of Computational Chemistry, 2022, 43, 215-224.	1.5	2
878	Seismic savanna: machine learning for classifying wildlife and behaviours using groundâ€based vibration field recordings. Remote Sensing in Ecology and Conservation, 2022, 8, 236-250.	2.2	8
879	Pandemic Analytics: How Countries are Leveraging Big Data Analytics and Artificial Intelligence to Fight COVID-19?. SN Computer Science, 2022, 3, 54.	2.3	23
880	High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy. Analytical Chemistry, 2021, 93, 15850-15860.	3.2	38

#	Article	IF	CITATIONS
881	Revealing Topological Barriers against Knot Untying in Thermal and Mechanical Protein Unfolding by Molecular Dynamics Simulations. Biomolecules, 2021, 11, 1688.	1.8	2
882	Comparison of SHANK3 deficiency in animal models: phenotypes, treatment strategies, and translational implications. Journal of Neurodevelopmental Disorders, 2021, 13, 55.	1.5	40
883	Spliceator: multi-species splice site prediction using convolutional neural networks. BMC Bioinformatics, 2021, 22, 561.	1.2	24
884	Interpreting Potts and Transformer Protein Models Through the Lens of Simplified Attention. , 2021, , .		4
886	From Neuroethics to Neo-romanticism. Aldous Huxley in Response to Current Proposals for Ethical and Legal Regulation of Neuroscience. Scio, 2021, , 113-148.	0.0	0
888	Molecular modeling in cardiovascular pharmacology: current state of the art and perspectives. Drug Discovery Today, 2021, , .	3.2	3
889	Residue Folding Degree—Relationship to Secondary Structure Categories and Use as Collective Variable. International Journal of Molecular Sciences, 2021, 22, 13042.	1.8	3
890	DeepRank: a deep learning framework for data mining 3D protein-protein interfaces. Nature Communications, 2021, 12, 7068.	5.8	56
891	A geometric deep learning approach to predict binding conformations of bioactive molecules. Nature Machine Intelligence, 2021, 3, 1033-1039.	8.3	64
892	De novo protein design by deep network hallucination. Nature, 2021, 600, 547-552.	13.7	280
893	Transformer-Based Generative Model Accelerating the Development of Novel BRAF Inhibitors. ACS Omega, 2021, 6, 33864-33873.	1.6	18
894	Machine learning in landscape ecological analysis: a review of recent approaches. Landscape Ecology, 2022, 37, 1227-1250.	1.9	26
896	A Review of Protein Structure Prediction using Deep Learning. BIO Web of Conferences, 2021, 41, 04003.	0.1	0
897	Fitting Small Piece-Wise Linear Neural Network Models to Interpolate Data Sets. Association for Women in Mathematics Series, 2021, , 137-179.	0.1	0
900	Attraction and Repulsion of Biology. Seibutsu Butsuri, 2021, 61, 419-420.	0.0	0
901	Linking Protein Folding to Amyloid Formation. Seibutsu Butsuri, 2021, 61, 358-365.	0.0	0
902	Pathogenicity Prediction of Single Amino Acid Variants with Machine Learning Model Based on Protein Structural Energies. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, PP, 1-1.	1.9	2
903	JUWELS Booster – A Supercomputer for Large-Scale AI Research. Lecture Notes in Computer Science, 2021, , 453-468.	1.0	4

#	Article	IF	CITATIONS
904	MUfoldQA_G: High-accuracy protein model QA via retraining and transformation. Computational and Structural Biotechnology Journal, 2021, 19, 6282-6290.	1.9	3
905	Artificial intelligence - Technology for prediction and prevention of third wave of COVID-19 pandemic. Current Medical Issues, 2021, 19, 274.	0.1	Ο
907	Lipid–Protein Interactions in Plasma Membrane Organization and Function. Annual Review of Biophysics, 2022, 51, 135-156.	4.5	30
908	Machine Learning and Artificial Intelligence in Pharmaceutical Research and Development: a Review. AAPS Journal, 2022, 24, 19.	2.2	65
909	An inductive transfer learning force field (ITLFF) protocol builds protein force fields in seconds. Briefings in Bioinformatics, 2022, 23, .	3.2	5
910	Identification of Iron-Sulfur (Fe-S) Cluster and Zinc (Zn) Binding Sites Within Proteomes Predicted by DeepMind's AlphaFold2 Program Dramatically Expands the Metalloproteome. Journal of Molecular Biology, 2022, 434, 167377.	2.0	26
911	Scalable and Programmable Neural Network Inference Accelerator Based on In-Memory Computing. IEEE Journal of Solid-State Circuits, 2022, 57, 198-211.	3.5	18
913	Engines of discovery: Computers in advanced synthesis planning and identification of drug candidates. , 2020, , .		0
914	The New Technologies in the Pandemic Era. Journal of Bioengineering and Technology Applied To Health, 2020, 3, 134-164.	0.0	0
915	Rational Exploration of Fold Atlas for Human Solute Carrier Proteins. SSRN Electronic Journal, O, , .	0.4	0
916	Technologies for profiling the impact of genomic variants on transcription factor binding. Medizinische Genetik, 2021, 33, 147-155.	0.1	1
917	Chess fortresses, a causal test for state of the art Symbolic [Neuro] architectures. , 2021, , .		0
918	Deep Learning Architectures for Improving Effectiveness of Covid Detection $\hat{a} \in A$ Pilot Study. , 2021, , .		0
920	VDAC2 and the BCL-2 family of proteins. Biochemical Society Transactions, 2021, 49, 2787-2795.	1.6	23
921	Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Topics in Catalysis, 2022, 65, 6-39.	1.3	27
922	Sample complexity of learning parametric quantum circuits. Quantum Science and Technology, 2022, 7, 025014.	2.6	9
923	Enhancing protein inter-residue real distance prediction by scrutinising deep learning models. Scientific Reports, 2022, 12, 787.	1.6	6
925	Translatability Analysis of National Institutes of Health–Funded Biomedical Research That Applies Artificial Intelligence. JAMA Network Open, 2022, 5, e2144742.	2.8	5

#	Article	IF	CITATIONS
926	Ultrafast end-to-end protein structure prediction enables high-throughput exploration of uncharacterized proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	26
927	Clinical pharmacology: Current innovations and future challenges. Fundamental and Clinical Pharmacology, 2022, 36, 456-467.	1.0	2
928	Linking protein structural and functional change to mutation using amino acid networks. PLoS ONE, 2022, 17, e0261829.	1.1	21
929	Secondary Structure and X-ray Crystallographic Analysis of the Glideosome-Associated Connector (GAC) from Toxoplasma gondii. Crystals, 2022, 12, 110.	1.0	3
931	Detection of Freezing of Gait Using Convolutional Neural Networks and Data From Lower Limb Motion Sensors. IEEE Transactions on Biomedical Engineering, 2022, 69, 2256-2267.	2.5	16
932	ProtSeq: Toward high-throughput, single-molecule protein sequencing via amino acid conversion into DNA barcodes. IScience, 2022, 25, 103586.	1.9	9
933	A potential implication of UDP-glucuronosyltransferase 2B10 in the detoxification of drugs used in pediatric hematopoietic stem cell transplantation setting: an in silico investigation. BMC Molecular and Cell Biology, 2022, 23, 5.	1.0	1
934	Potential Application of Machine-Learning-Based Quantum Chemical Methods in Environmental Chemistry. Environmental Science & Technology, 2022, 56, 2115-2123.	4.6	22
935	Method of the Year: protein structure prediction. Nature Methods, 2022, 19, 5-10.	9.0	40
936	Extracting phylogenetic dimensions of coevolution reveals hidden functional signals. Scientific Reports, 2022, 12, 820.	1.6	12
937	DeepUMQA: ultrafast shape recognition-based protein model quality assessment using deep learning. Bioinformatics, 2022, 38, 1895-1903.	1.8	25
938	PHR-search: a search framework for protein remote homology detection based on the predicted protein hierarchical relationships. Briefings in Bioinformatics, 2022, , .	3.2	0
940	Darwinian genomics and diversity in the tree of life. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	19
942	The impact of AlphaFold2 one year on. Nature Methods, 2022, 19, 15-20.	9.0	107
944	TransDTI: Transformer-Based Language Models for Estimating DTIs and Building a Drug Recommendation Workflow. ACS Omega, 2022, 7, 2706-2717.	1.6	18
945	Assessment of Skin Toxicity in an inÂVitro Reconstituted Human Epidermis Model Using Deep Learning. American Journal of Pathology, 2022, 192, 687-700.	1.9	6
948	Artificial intelligence and COVID-19. , 2022, , 95-112.		0
949	In Silico Research of New Therapeutics Rotenoids Derivatives against Leishmania amazonensis Infection. Biology, 2022, 11, 133.	1.3	1

#	Article	IF	CITATIONS
950	Machine learning algorithm to predict anterior cruciate ligament revision demonstrates external validity. Knee Surgery, Sports Traumatology, Arthroscopy, 2022, 30, 368-375.	2.3	23
951	ABlooper: fast accurate antibody CDR loop structure prediction with accuracy estimation. Bioinformatics, 2022, 38, 1877-1880.	1.8	78
952	Using artificial intelligence technology to fight COVID-19: a review. Artificial Intelligence Review, 2022, 55, 4941-4977.	9.7	24
953	High-level features for resource economy and fast learning in skill transfer. Advanced Robotics, 2022, 36, 291-303.	1.1	2
954	Chlorophyll <i>a</i> de-excitation pathways in the LHCII antenna. Journal of Chemical Physics, 2022, 156, 070902.	1.2	8
955	Machine learning-based approaches for identifying human blood cells harboring CRISPR-mediated fetal chromatin domain ablations. Scientific Reports, 2022, 12, 1481.	1.6	4
956	Positional SHAP (PoSHAP) for Interpretation of machine learning models trained from biological sequences. PLoS Computational Biology, 2022, 18, e1009736.	1.5	17
957	A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers. Bioinformatics, 2022, 38, 1904-1910.	1.8	29
958	Engineering synthetic RNA devices for cell control. Nature Reviews Genetics, 2022, 23, 215-228.	7.7	43
959	Declarative machine learning systems. Communications of the ACM, 2022, 65, 42-49.	3.3	7
960	From genes to ecosystems: using molecular information from diatoms to understand ecological processes. , 2022, , 487-529.		1
961	Machine learning in postgenomic biology and personalized medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2022, 12, .	4.6	3
962	The Builders of the Junction: Roles of Junctophilin1 and Junctophilin2 in the Assembly of the Sarcoplasmic Reticulum–Plasma Membrane Junctions in Striated Muscle. Biomolecules, 2022, 12, 109.	1.8	8
963	A reproducibility analysis-based statistical framework for residue–residue evolutionary coupling detection. Briefings in Bioinformatics, 2022, 23, .	3.2	2
964	Computational methods to study intrinsically disordered proteins. , 2022, , 489-504.		3
965	Prediction, validation, and analysis of protein structures: A beginner's guide. , 2022, , 373-385.		3
966	Therapeutic targeting of "undruggable―MYC. EBioMedicine, 2022, 75, 103756.	2.7	136
968	Al in health and medicine. Nature Medicine, 2022, 28, 31-38.	15.2	638

#	Article	IF	CITATIONS
969	Deconvolution of the MBP-Bri2 Interaction by a Yeast Two Hybrid System and Synergy of the AlphaFold2 and High Ambiguity Driven Protein-Protein Docking. Crystals, 2022, 12, 197.	1.0	4
970	Data-Driven Machine Learning in Environmental Pollution: Gains and Problems. Environmental Science & Technology, 2022, 56, 2124-2133.	4.6	111
971	High-throughput screening, next generation sequencing and machine learning: advanced methods in enzyme engineering. Chemical Communications, 2022, 58, 2455-2467.	2.2	30
972	Using metagenomic data to boost protein structure prediction and discovery. Computational and Structural Biotechnology Journal, 2022, 20, 434-442.	1.9	3
973	AAV capsid design: A Goldilocks challenge. Trends in Molecular Medicine, 2022, 28, 183-193.	3.5	25
974	QFold: quantum walks and deep learning to solve protein folding. Quantum Science and Technology, 2022, 7, 025013.	2.6	13
975	How sticky are our proteins? Quantifying hydrophobicity of the human proteome. Bioinformatics Advances, 2022, 2, .	0.9	9
976	Interpreting neural networks for biological sequences by learning stochastic masks. Nature Machine Intelligence, 2022, 4, 41-54.	8.3	14
977	Control of subunit stoichiometry in single-chain MspA nanopores. Biophysical Journal, 2022, 121, 742-754.	0.2	7
979	Current advances in biopharmaceutical informatics: guidelines, impact and challenges in the computational developability assessment of antibody therapeutics. MAbs, 2022, 14, 2020082.	2.6	35
980	SEQUENCE SLIDER: integration of structural and genetic data to characterize isoforms from natural sources. Nucleic Acids Research, 2022, 50, e50-e50.	6.5	2
981	Molecular distance matrix prediction based on graph convolutional networks. Journal of Molecular Structure, 2022, 1257, 132540.	1.8	2
982	AutoCellANLS: An Automated Analysis System for Mycobacteria-Infected Cells Based on Unstained Micrograph. Biomolecules, 2022, 12, 240.	1.8	0
983	RNA secondary structure prediction with convolutional neural networks. BMC Bioinformatics, 2022, 23, 58.	1.2	12
984	Matritecture: Mapping the extracellular matrix architecture during health and disease. Matrix Biology Plus, 2022, 14, 100102.	1.9	6
985	TMQuery: a database of precomputed template modeling scores for assessment of protein structural similarity. Bioinformatics, 2022, , .	1.8	0
987	Long-COVID diagnosis: From diagnostic to advanced Al-driven models. European Journal of Radiology, 2022, 148, 110164.	1.2	36
988	Mechanistic artificial intelligence (mechanistic-AI) for modeling, design, and control of advanced manufacturing processes: Current state and perspectives. Journal of Materials Processing Technology, 2022, 302, 117485.	3.1	32

#	Article	IF	Citations
989	Al in 3D compound design. Current Opinion in Structural Biology, 2022, 73, 102326.	2.6	8
990	pyFoldX: enabling biomolecular analysis and engineering along structural ensembles. Bioinformatics, 2022, 38, 2353-2355.	1.8	6
991	<scp>DLPacker</scp> : Deep learning for prediction of amino acid side chain conformations in proteins. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1278-1290.	1.5	24
992	From Protein Design to the Energy Landscape of a Cold Unfolding Protein. Journal of Physical Chemistry B, 2022, 126, 1212-1231.	1.2	3
994	Machine Learning at the Interface of Polymer Science and Biology: How Far Can We Go?. Biomacromolecules, 2022, 23, 576-591.	2.6	10
995	Antibody structure prediction using interpretable deep learning. Patterns, 2022, 3, 100406.	3.1	106
996	De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update. Journal of Chemical Information and Modeling, 2022, 62, 761-774.	2.5	12
997	Development of a Hyperthermostable Artificial Scaffold Based on Ultrahigh-Affinity Protein Pairs and Its Application in Cellulose Degradation. ACS Sustainable Chemistry and Engineering, 2022, 10, 2072-2083.	3.2	2
998	Has DeepMind's AlphaFold solved the protein folding problem?. BioTechniques, 2022, 72, 73-76.	0.8	12
1000	Protein–DNA/RNA interactions: Machine intelligence tools and approaches in the era of artificial intelligence and big data. Proteomics, 2022, 22, e2100197.	1.3	20
1001	Workshops of the eighth international brain–computer interface meeting: BCIs: the next frontier. Brain-Computer Interfaces, 2022, 9, 69-101.	0.9	4
1002	Hot spots-making directed evolution easier. Biotechnology Advances, 2022, 56, 107926.	6.0	35
1003	CR-I-TASSER: assemble protein structures from cryo-EM density maps using deep convolutional neural networks. Nature Methods, 2022, 19, 195-204.	9.0	33
1004	Deep Learning and Its Applications in Computational Pathology. BioMedInformatics, 2022, 2, 159-168.	1.0	7
1005	Predicted 3D model of the M protein of Porcine Epidemic Diarrhea Virus and analysis of its immunogenic potential. PLoS ONE, 2022, 17, e0263582.	1.1	12
1006	End-to-End Deep Learning Model to Predict and Design Secondary Structure Content of Structural Proteins. ACS Biomaterials Science and Engineering, 2022, 8, 1156-1165.	2.6	22
1007	The Structure-Derived Mechanism of Box H/ACA Pseudouridine Synthase Offers a Plausible Paradigm for Programmable RNA Editing. ACS Catalysis, 2022, 12, 2756-2769.	5.5	5
1008	Accelerating Protein Folding Molecular Dynamics Using Inter-Residue Distances from Machine Learning Servers. Journal of Chemical Theory and Computation, 2022, 18, 1929-1935.	2.3	8

#	Article	IF	CITATIONS
1009	Deep learning for drug repurposing: Methods, databases, and applications. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	48
1011	Deep learning methods for 3D structural proteome and interactome modeling. Current Opinion in Structural Biology, 2022, 73, 102329.	2.6	19
1012	De novo protein folding on computers. Benefits and challenges. Computers in Biology and Medicine, 2022, 143, 105292.	3.9	6
1013	Recent advances for quantum classifiers. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	40
1014	Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling. Nature Communications, 2021, 12, 7114.	5.8	19
1015	Decoding the link of microbiome niches with homologous sequences enables accurately targeted protein structure prediction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
1016	Protein–RNA interaction prediction with deep learning: structure matters. Briefings in Bioinformatics, 2022, 23, .	3.2	37
1017	Unveiling the Structure of Wide Flat Minima in Neural Networks. Physical Review Letters, 2021, 127, 278301.	2.9	13
1018	Estimation of Photometric Redshifts. I. Machine-learning Inference for Pan-STARRS1 Galaxies Using Neural Networks. Astronomical Journal, 2021, 162, 297.	1.9	2
1019	Interpreting Potts and Transformer Protein Models Through the Lens of Simplified Attention. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2022, 27, 34-45.	0.7	0
1021	Utilization of AlphaFold2 to Predict MFS Protein Conformations after Selective Mutation. SSRN Electronic Journal, 0, , .	0.4	0
1022	Structure and Regulation of the Myotonic Dystrophy Kinase-Related Cdc42-Binding Kinase. SSRN Electronic Journal, 0, , .	0.4	0
1023	Trends of antimalarial marine natural products: progresses, challenges and opportunities. Natural Product Reports, 2022, 39, 969-990.	5.2	14
1025	Analysis of COVID-19 vaccination progress using machine learning approach. AIP Conference Proceedings, 2022, , .	0.3	0
1027	Rapid prediction of protein natural frequencies using graph neural networks. , 2022, 1, 277-285.		10
1028	A GAN-Based Data Injection Attack Method on Data-Driven Strategies in Power Systems. IEEE Transactions on Smart Grid, 2022, 13, 3203-3213.	6.2	5
1029	Al-powered drug repurposing for developing COVID-19 treatments. , 2024, , 144-154.		4
1030	Case Study: The Distilling of a Biased Algorithmic Decision System through a Business Lens. SSRN Electronic Journal, 0, , .	0.4	2

#	Article	IF	CITATIONS
1031	Deep-Precognitive Diagnosis: Preventing Future Pandemics by Novel Disease Detection With Biologically-Inspired Conv-Fuzzy Network. IEEE Access, 2022, 10, 23167-23185.	2.6	5
1032	Biomimicry for natural and synthetic composites and use of machine learning in hierarchical design. , 2022, , 141-182.		1
1033	Artificial Intelligence in Medicine: Biochemical 3D Modeling and Drug Discovery. , 2022, , 661-672.		0
1034	Solving the Protein Secondary Structure Prediction Problem With the Hessian Free Optimization Algorithm. IEEE Access, 2022, 10, 27759-27770.	2.6	0
1035	Artificial Intelligence for Medical Decisions. , 2022, , 159-179.		1
1037	DLSSAffinity: protein–ligand binding affinity prediction <i>via</i> a deep learning model. Physical Chemistry Chemical Physics, 2022, 24, 10124-10133.	1.3	14
1038	Aging and Alzheimer's Disease. , 2022, , 1057-1072.		0
1039	An analysis of protein language model embeddings for fold prediction. Briefings in Bioinformatics, 2022, 23, .	3.2	16
1040	Al and Immunoinformatics. , 2022, , 1387-1395.		0
1042	Online Knowledge Distillation by Temporal-Spatial Boosting. , 2022, , .		4
1043	Role of artificial intelligence in fast-track drug discovery and vaccine development for COVID-19. , 2022, , 201-229.		4
1044	The Amino Terminal Domain and Modulation of Connexin36 Gap Junction Channels by Intracellular Magnesium Ions. Frontiers in Physiology, 2022, 13, 839223.	1.3	2
1045	Inverse design of 3d molecular structures with conditional generative neural networks. Nature Communications, 2022, 13, 973.	5.8	70
1046	PreRBP-TL: prediction of species-specific RNA-binding proteins based on transfer learning. Bioinformatics, 2022, 38, 2135-2143.	1.8	17
1048	Development and validation of a deep neural network–based model to predict acute kidney injury following intravenous administration of iodinated contrast media in hospitalized patients with chronic kidney disease: a multicohort analysis. Nephrology Dialysis Transplantation, 2022, , .	0.4	6
1049	An association test of the spatial distribution of rare missense variants within protein structures identifies Alzheimer's disease–related patterns. Genome Research, 2022, 32, 778-790.	2.4	5
1050	Evolution and Functions of Plant U-Box Proteins: From Protein Quality Control to Signaling. Annual Review of Plant Biology, 2022, 73, 93-121.	8.6	22
1052	Seipin forms a flexible cage at lipid droplet formation sites. Nature Structural and Molecular Biology, 2022, 29, 194-202.	3.6	33

#	Article	IF	CITATIONS
1053	TRScore: a 3D RepVGG-based scoring method for ranking protein docking models. Bioinformatics, 2022, 38, 2444-2451.	1.8	6
1054	Human Growth Factor/Immunoglobulin Complexes for Treatment of Myocardial Ischemia-Reperfusion Injury. Frontiers in Bioengineering and Biotechnology, 2022, 10, 749787.	2.0	1
1055	Can Robots Do Epidemiology? Machine Learning, Causal Inference, and Predicting the Outcomes of Public Health Interventions. Philosophy and Technology, 2022, 35, 14.	2.6	4
1056	Machine Learning Approaches for Metalloproteins. Molecules, 2022, 27, 1277.	1.7	5
1057	Residue-Frustration-Based Prediction of Protein–Protein Interactions Using Machine Learning. Journal of Physical Chemistry B, 2022, 126, 1719-1727.	1.2	4
1058	Modeling the Structure and Interactions of Intrinsically Disordered Peptides with Multiple Replica, Metadynamics-Based Sampling Methods and Force-Field Combinations. Journal of Chemical Theory and Computation, 2022, 18, 1915-1928.	2.3	7
1059	Pathogenic Leptospira Evolved a Unique Gene Family Comprised of Ricin B-Like Lectin Domain-Containing Cytotoxins. Frontiers in Microbiology, 2022, 13, 859680.	1.5	10
1060	VHH Structural Modelling Approaches: A Critical Review. International Journal of Molecular Sciences, 2022, 23, 3721.	1.8	9
1062	Next-Generation Molecular Discovery: From Bottom-Up In Vivo and In Vitro Approaches to In Silico Top-Down Approaches for Therapeutics Neogenesis. Life, 2022, 12, 363.	1.1	1
1063	LPTD: a novel linear programming-based topology determination method for cryo-EM maps. Bioinformatics, 2022, , .	1.8	0
1064	Structure-based drug repurposing: Traditional and advanced AI/ML-aided methods. Drug Discovery Today, 2022, 27, 1847-1861.	3.2	46
1065	Construct a variable-length fragment library for de novo protein structure prediction. Briefings in Bioinformatics, 2022, 23, .	3.2	4
1066	Restoring and attributing ancient texts using deep neural networks. Nature, 2022, 603, 280-283.	13.7	53
1067	A-Prot: protein structure modeling using MSA transformer. BMC Bioinformatics, 2022, 23, 93.	1.2	6
1069	Labeling of heterochronic ribosomes reveals C1ORF109 and SPATA5 control a late step in human ribosome assembly. Cell Reports, 2022, 38, 110597.	2.9	11
1070	Pharmacoproteomics of Brain Barrier Transporters and Substrate Design for the Brain Targeted Drug Delivery. Pharmaceutical Research, 2022, 39, 1363-1392.	1.7	19
1071	AIM5LA: A Latency-Aware Deep Reinforcement Learning-Based Autonomous Intersection Management System for 5G Communication Networks. Sensors, 2022, 22, 2217.	2.1	11
1072	A comparative study on COVID-19 prediction using deep learning and machine learning algorithms: A case study on performance analysis. Sakarya University Journal of Computer and Information Sciences, 0, , .	0.6	0

	CITATION	Report	
#	ARTICLE <i>PALD</i> encoding a lipid dropletâ€associated protein is critical for the accumulation of lipid	IF 3.5	CITATIONS
1073	droplets and pollen longevity in <i>Arabidopsis</i> . New Phytologist, 2022, 235, 204-219. Membrane contact probability: An essential and predictive character for the structural and functional studies of membrane proteins. PLoS Computational Biology, 2022, 18, e1009972.	1.5	8
1075	Predicting micro-bubble dynamics with semi-physics-informed deep learning. AIP Advances, 2022, 12, .	0.6	11
1076	Compound–protein interaction prediction by deep learning: Databases, descriptors and models. Drug Discovery Today, 2022, 27, 1350-1366.	3.2	23
1077	Exploring High Thermal Conductivity Amorphous Polymers Using Reinforcement Learning. ACS Applied Materials & amp; Interfaces, 2022, 14, 15587-15598.	4.0	21
1079	Machine Learning May Sometimes Simply Capture Literature Popularity Trends: A Case Study of Heterocyclic Suzuki–Miyaura Coupling. Journal of the American Chemical Society, 2022, 144, 4819-4827.	6.6	64
1080	Predicting residues involved in anti-DNA autoantibodies with limited neural networks. Medical and Biological Engineering and Computing, 2022, , .	1.6	1
1081	Advances in computer-aided drug design for type 2 diabetes. Expert Opinion on Drug Discovery, 2022, 17, 461-472.	2.5	2
1082	Where to From Here?. Frontiers in Molecular Biosciences, 2022, 9, 848444.	1.6	3
1083	Better, Faster, Cheaper: Recent Advances in Cryo–Electron Microscopy. Annual Review of Biochemistry, 2022, 91, 1-32.	5.0	45
1084	Learning functional properties of proteins with language models. Nature Machine Intelligence, 2022, 4, 227-245.	8.3	72
1085	Fast protein structure comparison through effective representation learning with contrastive graph neural networks. PLoS Computational Biology, 2022, 18, e1009986.	1.5	6
1086	Using Structure-guided Fragment-Based Drug Discovery to Target Pseudomonas aeruginosa Infections in Cystic Fibrosis. Frontiers in Molecular Biosciences, 2022, 9, 857000.	1.6	1
1087	A Generalized Attraction–Repulsion Potential and Revisited Fragment Library Improves PEP-FOLD Peptide Structure Prediction. Journal of Chemical Theory and Computation, 2022, 18, 2720-2736.	2.3	10
1088	Integration of artificial intelligence and multi-omics in kidney diseases. Fundamental Research, 2023, 3, 126-148.	1.6	5
1089	Large-scale design and refinement of stable proteins using sequence-only models. PLoS ONE, 2022, 17, e0265020.	1.1	17
1090	Protein design via deep learning. Briefings in Bioinformatics, 2022, 23, .	3.2	33
1091	SARS-CoV-2 Membrane Protein: From Genomic Data to Structural New Insights. International Journal of Molecular Sciences, 2022, 23, 2986.	1.8	15

#	Article	IF	CITATIONS
1092	Heat Shock-Binding Protein 21 Regulates the Innate Immune Response to Viral Infection. Journal of Virology, 2022, 96, e0000122.	1.5	4
1093	Molecular basis of specificity and deamidation of eIF4A by Burkholderia Lethal Factor 1. Communications Biology, 2022, 5, 272.	2.0	2
1095	Scoring protein sequence alignments using deep learning. Bioinformatics, 2022, 38, 2988-2995.	1.8	0
1096	Active Learning Module for Protein Structure Analysis Using Novel Enzymes. The Biophysicist, 2022, 3, 49-63.	0.1	1
1097	Optogenetic tools for microbial synthetic biology. Biotechnology Advances, 2022, , 107953.	6.0	9
1098	Circuit topology predicts pathogenicity of missense mutations. Proteins: Structure, Function and Bioinformatics, 2022, 90, 1634-1644.	1.5	7
1100	Further Progress in Image Recognition Based on Deep Learning: with Focus on Unsupervised Representation Learning and Transformer. leice Ess Fundamentals Review, 2022, 15, 258-267.	0.1	0
1101	Current progress and open challenges for applying deep learning across the biosciences. Nature Communications, 2022, 13, 1728.	5.8	105
1104	An in-membrane NMR spectroscopic approach probing native ligand-GPCR interaction. International Journal of Biological Macromolecules, 2022, 206, 911-916.	3.6	6
1105	Identification of putative binding interface of PI(3,5)P2 lipid on rice black-streaked dwarf virus (RBSDV) P10 protein. Virology, 2022, 570, 81-95.	1.1	3
1106	A Protein Data Bank survey of multimodal binding of thiocyanate to proteins: Evidence for thiocyanate promiscuity. International Journal of Biological Macromolecules, 2022, 208, 29-36.	3.6	5
1107	Niching methods integrated with a differential evolution memetic algorithm for protein structure prediction. Swarm and Evolutionary Computation, 2022, 71, 101062.	4.5	5
1108	Prediction of inhibitory activities of small molecules against Pantothenate synthetase from Mycobacterium tuberculosis using Machine Learning models. Computers in Biology and Medicine, 2022, 145, 105453.	3.9	1
1109	Protein Residue Contact Prediction Based on Deep Learning and Massive Statistical Features from Multi-Sequence Alignment. Tsinghua Science and Technology, 2022, 27, 843-854.	4.1	8
1110	The Animation Transformer: Visual Correspondence via Segment Matching. , 2021, , .		14
1111	Variant Library Annotation Tool (VaLiAnT): an oligonucleotide library design and annotation tool for saturation genome editing and other deep mutational scanning experiments. Bioinformatics, 2022, 38, 892-899.	1.8	3
1113	High-Performance Deep Learning Toolbox for Genome-Scale Prediction of Protein Structure and Function. , 2021, 2021, 46-57.		8
1114	15 years of microbial biotechnology: the time has come to think big—and act soon. Microbial Biotechnology, 2022, 15, 240-246.	2.0	1

ARTICLE IF CITATIONS # SpinSPJ: a novel NMR scripting system to implement artificial intelligence and advanced applications. 1115 1.2 1 BMC Bioinformatics, 2021, 22, 581. JAX, M.D. A framework for differentiable physics*. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 124016. The Role of Molecular Modeling and Bioinformatics in Treating a Pandemic Disease: The Case of 1117 0.4 1 COVID-19. The Open Covid Journal, 2021, 1, 216-234. A review of regression and classification techniques for analysis of common and rare variants and 3.5 gene-environmental factors. Neurocomputing, 2022, 489, 466-485. SASA-Net: A spatial-aware self-attention mechanism for building protein 3D structure directly from 1119 0 inter-residue distances., 2021,,. Generating novel molecule for target protein (SARS-CoV-2) using drug–target interaction based on graph neural network. Network Modeling Analysis in Health Informatics and Bioinformatics, 2022, 11, 1.2 1121 Machine Learning Approaches for COVID-19 Pandemic., 2022, , 133-143. 6 A random forest classifier for protein–protein docking models. Bioinformatics Advances, 2022, 2, . <i>CELSR3</i> variants are associated with febrile seizures and epilepsy with antecedent febrile 1123 1.9 13 seizures. CNS Neuroscience and Therapeutics, 2022, 28, 382-389. 1124 Artificial Intelligence (AI) and Big Data Analytics for the COVID-19 Pandemic., 2022, , 1-17. 1 AlphaFold-Predicted Structures of KCTD Proteins Unravel Previously Undetected Relationships among 1125 1.8 13 the Members of the Family. Biomolecules, 2021, 11, 1862. Fuzzing Deep Learning Models against Natural Robustness with Filter Coverage., 2021, , . Latent Deep Space: Generative Adversarial Networks (GANs) in the Sciences. Media+Environment, 2021, 1127 0.7 12 3, . Artificial intelligence in clinical research of cancers. Briefings in Bioinformatics, 2022, 23, . 1129 3.2 14 1130 Discover the Binding Domain of Transmembrane Proteins Based on Structural Universality., 2021, , . 1 MoleGuLAR: Molecule Generation Using Reinforcement Learning with Alternating Rewards. Journal of 2.5 Chemical Information and Modeling, 2021, 61, 5815-5826. A guide to studying protein aggregation. FEBS Journal, 2023, 290, 554-583. 1133 2.255 1134 Artificial Intelligence in Vaccine and Drug Design. Methods in Molecular Biology, 2022, 2410, 131-146. 0.4

#	Article	IF	CITATIONS
1135	Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams. Science Advances, 2021, 7, eabg4930.	4.7	26
1136	Inter-protein contact map generated only from intra-monomer by image inpainting. , 2021, , .		3
1138	Reconstructing the transcription regulatory network to optimize resource allocation for robust biosynthesis. Trends in Biotechnology, 2022, 40, 735-751.	4.9	4
1139	Artificial virtuous agents: from theory to machine implementation. Al and Society, 2023, 38, 1301-1320.	3.1	7
1140	Forecasting with trees. International Journal of Forecasting, 2022, 38, 1473-1481.	3.9	39
1141	Machine learning-based approach: global trends, research directions, and regulatory standpoints. Data Science and Management, 2021, 4, 19-29.	4.1	83
1142	LYRUS: a machine learning model for predicting the pathogenicity of missense variants. Bioinformatics Advances, 2022, 2, vbab045.	0.9	4
1143	Artificial intelligence unifies knowledge and actions in drug repositioning. Emerging Topics in Life Sciences, 2021, 5, 803-813.	1.1	4
1144	Molecular representations for machine learning applications in chemistry. International Journal of Quantum Chemistry, 2022, 122, .	1.0	26
1145	Machine and Deep Learning Algorithms and Applications. Synthesis Lectures on Signal Processing, 2021, 12, 1-123.	0.3	1
1146	Advancing statistical learning and artificial intelligence in nanophotonics inverse design. Nanophotonics, 2022, 11, 2483-2505.	2.9	15
1147	DeepANIS: Predicting antibody paratope from concatenated CDR sequences by integrating bidirectional long-short-term memory and transformer neural networks. , 2021, , .		1
1148	A Mixed Strategy of Higher-Order Structure for Link Prediction Problem on Bipartite Graphs. Mathematics, 2021, 9, 3195.	1.1	3
1149	Seeking the Optimal Descriptor for S _N 2 Reactions through Statistical Analysis of Density Functional Theory Results. Journal of Organic Chemistry, 2022, 87, 363-372.	1.7	3
1151	Self-organizing map based differential evolution with dynamic selection strategy for multimodal optimization problems. Mathematical Biosciences and Engineering, 2022, 19, 5968-5997.	1.0	1
1152	Artificial intelligence in food science and nutrition: a narrative review. Nutrition Reviews, 2022, 80, 2288-2300.	2.6	22
1153	ECQ\$\$^{ext {x}}\$\$: Explainability-Driven Quantization forÂLow-Bit andÂSparse DNNs. Lecture Notes in Computer Science, 2022, , 271-296.	1.0	5
1154	Conserved topology of virus glycoepitopes presents novel targets for repurposing HIV antibody 2G12. Scientific Reports, 2022, 12, 2594.	1.6	3

#	Article	IF	CITATIONS
1155	Soft Actor-Critic Deep Reinforcement Learning with Hybrid Mixed-Integer Actions for Demand Responsive Scheduling of Energy Systems. Industrial & Engineering Chemistry Research, 2022, 61, 8443-8461.	1.8	8
1156	TCSP: a Template-Based Crystal Structure Prediction Algorithm for Materials Discovery. Inorganic Chemistry, 2022, 61, 8431-8439.	1.9	10
1157	RNA folding using quantum computers. PLoS Computational Biology, 2022, 18, e1010032.	1.5	10
1158	Ataxia with Ocular Apraxia Type 1 (AOA1) (APTX, W279* Mutation): Neurological, Neuropsychological, and Molecular Outlining of a Heterogenous Phenotype in Four Colombian Siblings. Molecular Neurobiology, 2022, , 1.	1.9	0
1159	BiRDS - Binding Residue Detection from Protein Sequences Using Deep ResNets. Journal of Chemical Information and Modeling, 2022, 62, 1809-1818.	2.5	6
1161	Design of Protein Segments and Peptides for Binding to Protein Targets. Biodesign Research, 2022, 2022, .	0.8	6
1162	Spatial covariance analysis reveals the residue-by-residue thermodynamic contribution of variation to the CFTR fold. Communications Biology, 2022, 5, 356.	2.0	10
1164	Quantum self-supervised learning. Quantum Science and Technology, 2022, 7, 035005.	2.6	8
1166	The Importance of Weakly Co-Evolving Residue Networks in Proteins is Revealed by Visual Analytics. Frontiers in Bioinformatics, 2022, 2, .	1.0	2
1167	Computational simulation using machine learning models in prediction of CO2 absorption in environmental applications. Journal of Molecular Liquids, 2022, 358, 119159.	2.3	12
1168	The Intricacy of the Viral-Human Protein Interaction Networks: Resources, Data, and Analyses. Frontiers in Microbiology, 2022, 13, 849781.	1.5	2
1171	Dataâ€Driven Materials Innovation and Applications. Advanced Materials, 2022, 34, e2104113.	11.1	51
1172	Impact of Machine Learning-Associated Research Strategies on the Identification of Peptide-Receptor Interactions in the Post-Omics Era. Neuroendocrinology, 2023, 113, 251-261.	1.2	7
1173	Introduction to the special issue on Applications of Artificial Intelligence in Biomarker Research. Cancer Biomarkers, 2022, 33, 171-172.	0.8	0
1174	The role of culturally competent robots in major health disasters. , 2022, , 245-276.		0
1175	Artificial intelligence: a way forward for agricultural sciences. , 2022, , 641-668.		2
1176	Characterizing and explaining the impact of disease-associated mutations in proteins without known structures or structural homologs. Briefings in Bioinformatics, 2022, 23, .	3.2	18
1177	Autophagy and evasion of the immune system by SARS-CoV-2. Structural features of the non-structural protein 6 from wild type and Omicron viral strains interacting with a model lipid bilayer. Chemical Science, 2022, 13, 6098-6105.	3.7	11

# 1178	ARTICLE Artificial Intelligence Assisted Drug Research and Development. , 2022, , .	IF	CITATIONS 2
1179	The third AI summer: AAAI Robert S. Engelmore Memorial Lecture. AI Magazine, 2022, 43, 105-125.	1.4	15
1180	Imputing DNA Methylation by Transferred Learning Based Neural Network. Journal of Computer Science and Technology, 2022, 37, 320-329.	0.9	2
1181	Structural Analyses of CrtJ and Its B12-Binding Co-Regulators SAerR and LAerR from the Purple Photosynthetic Bacterium Rhodobacter capsulatus. Microorganisms, 2022, 10, 912.	1.6	2
1182	Accelerating materials discovery using artificial intelligence, high performance computing and robotics. Npj Computational Materials, 2022, 8, .	3.5	71
1183	LM-GVP: an extensible sequence and structure informed deep learning framework for protein property prediction. Scientific Reports, 2022, 12, 6832.	1.6	21
1184	Learning the travelling salesperson problem requires rethinking generalization. Constraints, 2022, 27, 70-98.	0.4	5
1185	The Role of Big Data Analytics in Drug Discovery and Vaccine Development Against COVID-19. Advances in Data Mining and Database Management Book Series, 2022, , 232-260.	0.4	0
1187	Machine learning recognition of protein secondary structures based on two-dimensional spectroscopic descriptors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202713119.	3.3	16
1188	Learning aerodynamics with neural network. Scientific Reports, 2022, 12, 6779.	1.6	9
1189	Deep-learning-based 3D cellular force reconstruction directly from volumetric images. Biophysical Journal, 2022, 121, 2180-2192.	0.2	5
1190	G-Quadruplex-Binding Proteins: Promising Targets for Drug Design. Biomolecules, 2022, 12, 648.	1.8	31
1191	Refined Contact Map Prediction of Peptides Based on GCN and ResNet. Frontiers in Genetics, 2022, 13, 859626.	1.1	2
1193	<i>MrParse</i> : finding homologues in the PDB and the EBI AlphaFold database for molecular replacement and more. Acta Crystallographica Section D: Structural Biology, 2022, 78, 553-559.	1.1	12
1194	High throughput screen for the improvement of inducible promoters for tumor microenvironment cues. Scientific Reports, 2022, 12, 7169.	1.6	2
1195	Mimetic Neural Networks: A Unified Framework for Protein Design and Folding. Frontiers in Bioinformatics, 2022, 2, .	1.0	5
1197	Artificial intelligence in cancer target identification and drug discovery. Signal Transduction and Targeted Therapy, 2022, 7, 156.	7.1	77
1198	The metaphorical swiss army knife: The multitude and diverse roles of HEAT domains in eukaryotic translation initiation. Nucleic Acids Research, 2022, 50, 5424-5442.	6.5	8

#	Article	IF	CITATIONS
1199	Present Impact of AlphaFold2 Revolution on Structural Biology, and an Illustration With the Structure Prediction of the Bacteriophage J-1 Host Adhesion Device. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	18
1200	Heterogeneity of the GFP fitness landscape and data-driven protein design. ELife, 2022, 11, .	2.8	24
1202	The terminal enzymes of (bacterio)chlorophyll biosynthesis. Royal Society Open Science, 2022, 9, 211903.	1.1	10
1203	Explainable predictive modeling for limited spectral data. Chemometrics and Intelligent Laboratory Systems, 2022, 225, 104572.	1.8	12
1204	Advances in computational structure-based antibody design. Current Opinion in Structural Biology, 2022, 74, 102379.	2.6	32
1205	Protein folding in vitro and in the cell: From a solitary journey to a team effort. Biophysical Chemistry, 2022, 287, 106821.	1.5	13
1206	A Distributed Learning Scheme for Variational Quantum Algorithms. IEEE Transactions on Quantum Engineering, 2022, 3, 1-16.	2.9	6
1207	GlyNet: a multi-task neural network for predicting protein–glycan interactions. Chemical Science, 2022, 13, 6669-6686.	3.7	7
1208	Cryo-electron Microscopy of Adeno-associated Virus. Chemical Reviews, 2022, 122, 14018-14054.	23.0	15
1209	Inter-Residue Distance Prediction From Duet Deep Learning Models. Frontiers in Genetics, 2022, 13, .	1.1	3
1210	Accounting Conformational Dynamics into Structural Modeling Reflected by Cryo-EM with Deep Learning. Combinatorial Chemistry and High Throughput Screening, 2022, 25, .	0.6	0
1211	Machine learning: its challenges and opportunities in plant system biology. Applied Microbiology and Biotechnology, 2022, 106, 3507-3530.	1.7	26
1212	Different methods, techniques and their limitations in protein structure prediction: A review. Progress in Biophysics and Molecular Biology, 2022, 173, 72-82.	1.4	12
1213	Limit surface/states searching algorithm with a deep neural network and Monte Carlo dropout for nuclear power plant safety assessment. Applied Soft Computing Journal, 2022, 124, 109007.	4.1	5
1214	Applying Classical, <i>Ab Initio</i> , and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews, 2022, 122, 10970-11021.	23.0	138
1215	Development and validation of a meta-learner for combining statistical and machine learning prediction models in individuals with depression. BMC Psychiatry, 2022, 22, 337.	1.1	5
1216	Predicting target–ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery. Scientific Reports, 2022, 12, 8434.	1.6	4
1217	DomBpred: Protein Domain Boundary Prediction Based on Domain-Residue Clustering Using Inter-Residue Distance. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 912-922.	1.9	2

#	Article	IF	CITATIONS
1218	A Comprehensive Review of Artificial Intelligence in Prevention and Treatment of COVID-19 Pandemic. Frontiers in Genetics, 2022, 13, 845305.	1.1	4
1219	Machine learning enabling high-throughput and remote operations at large-scale user facilities. , 2022, 1, 413-426.		10
1221	Constraint Guided Neighbor Generation for Protein Structure Prediction. IEEE Access, 2022, 10, 54991-55001.	2.6	3
1224	Enhancing protein contact map prediction accuracy via ensembles of inter-residue distance predictors. Computational Biology and Chemistry, 2022, 99, 107700.	1.1	2
1225	Protein language-model embeddings for fast, accurate, and alignment-free protein structure prediction. Structure, 2022, 30, 1169-1177.e4.	1.6	52
1226	Therapeutic Targeting the Allosteric Cysteinome of RAS and Kinase Families. Journal of Molecular Biology, 2022, 434, 167626.	2.0	4
1227	Advanced molecular approaches in male infertility diagnosis. Biology of Reproduction, 2022, 107, 684-704.	1.2	1
1230	Disulfide bond formation in Escherichia coli. , 2022, , 341-371.		0
1232	Protein secondary structure prediction using data-partitioning combined with stacked convolutional neural networks and bidirectional gated recurrent units. International Journal of Information Technology (Singapore), 2022, 14, 2285-2295.	1.8	4
1233	Evaluation guidelines for machine learning tools in the chemical sciences. Nature Reviews Chemistry, 2022, 6, 428-442.	13.8	49
1234	Interpretable machine learning for real estate market analysis. Real Estate Economics, 2023, 51, 1178-1208.	1.0	8
1235	The Structural Rule Distinguishing a Superfold: A Case Study of Ferredoxin Fold and the Reverse Ferredoxin Fold. Molecules, 2022, 27, 3547.	1.7	1
1236	Prospects and challenges of dynamic DNA nanostructures in biomedical applications. Bone Research, 2022, 10, .	5.4	64
1237	Dataâ€Driven Highâ€Throughput Rational Design of Doubleâ€Atom Catalysts for Oxygen Evolution and Reduction. Advanced Functional Materials, 2022, 32, .	7.8	40
1238	Deep learning geometrical potential for high-accuracy ab initio protein structure prediction. IScience, 2022, 25, 104425.	1.9	7
1239	In Silico Modeling of COVID-19 Pandemic Course Differentiation Using the FOD Model. Coronaviruses, 2022, 03, .	0.2	1
1240	The road to fully programmable protein catalysis. Nature, 2022, 606, 49-58.	13.7	126
1241	COVID-19 vaccine design using reverse and structural vaccinology, ontology-based literature mining and machine learning. Briefings in Bioinformatics, 2022, 23, .	3.2	4

	CITATION RE	LPORT	
#	Article	IF	CITATIONS
1242	Social impact and governance of AI and neurotechnologies. Neural Networks, 2022, 152, 542-554.	3.3	12
1243	Ownership Verification of DNN Architectures via Hardware Cache Side Channels. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32, 8078-8093.	5.6	3
1245	Artificial Intelligence for Image Processing in Agriculture. Agriculture Automation and Control, 2022, , 159-183.	0.3	1
1246	Long-range dispersion-inclusive machine learning potentials for structure search and optimization of hybrid organic–inorganic interfaces. , 2022, 1, 463-475.		16
1248	Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chemical Reviews, 2022, 122, 11287-11368.	23.0	38
1250	CryoEM Reveals the Complexity and Diversity of ATP Synthases. Frontiers in Microbiology, 0, 13, .	1.5	13
1251	Deep embeddings to comprehend and visualize microbiome protein space. Scientific Reports, 2022, 12, .	1.6	3
1252	A transfer learning approach for reaction discovery in small data situations using generative model. IScience, 2022, 25, 104661.	1.9	4
1253	Rational exploration of fold atlas for human solute carrier proteins. Structure, 2022, 30, 1321-1330.e5.	1.6	13
1254	CRFalign: A Sequence-Structure Alignment of Proteins Based on a Combination of HMM-HMM Comparison and Conditional Random Fields. Molecules, 2022, 27, 3711.	1.7	2
1255	Collective Variable for Metadynamics Derived From AlphaFold Output. Frontiers in Molecular Biosciences, 0, 9, .	1.6	5
1256	An fMRI Sequence Representation Learning Framework for Attention Deficit Hyperactivity Disorder Classification. Applied Sciences (Switzerland), 2022, 12, 6211.	1.3	3
1257	Controllable protein design with language models. Nature Machine Intelligence, 2022, 4, 521-532.	8.3	76
1258	Probabilistic metabolite annotation using retention time prediction and meta-learned projections. Journal of Cheminformatics, 2022, 14, .	2.8	9
1259	Cryoâ€EM structures of pentameric autoinducerâ€2 exporter from <i>Escherichia coli</i> reveal its transport mechanism. EMBO Journal, 2022, 41, .	3.5	8
1260	Al-Based Protein Structure Prediction in Drug Discovery: Impacts and Challenges. Journal of Chemical Information and Modeling, 2022, 62, 3142-3156.	2.5	36
1261	Applications of Neural Networks in Biomedical Data Analysis. Biomedicines, 2022, 10, 1469.	1.4	7
1262	Key aspects of the past 30 Years of protein design. Reports on Progress in Physics, 0, , .	8.1	2

#	Article	IF	CITATIONS
1263	<scp>rrQNet</scp> : Protein contact map quality estimation by deep evolutionary reconciliation. Proteins: Structure, Function and Bioinformatics, 2022, 90, 2023-2034.	1.5	0
1264	Recent Deep Learning Methodology Development for RNA–RNA Interaction Prediction. Symmetry, 2022, 14, 1302.	1.1	2
1265	In-Silico targeting of SARS-CoV-2 NSP6 for drug and natural products repurposing. Virology, 2022, 573, 96-110.	1.1	7
1266	Artificial intelligence channelizing protein-peptide interactions pipeline for host-parasite paradigm in IL-10 and IL-12 reciprocity by SHP-1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166466.	1.8	4
1267	Systematic Evaluation of Chiral Fungicide Penflufen for the Bioactivity Improvement and Input Reduction Using Alphafold Models and Transcriptome Sequencing. SSRN Electronic Journal, 0, , .	0.4	0
1268	Engineering the biosynthesis of fungal nonribosomal peptides. Natural Product Reports, 2023, 40, 62-88.	5.2	17
1270	AlphaZero Ideas. SSRN Electronic Journal, 0, , .	0.4	1
1271	Differentiable Simulation for Material Thermal Response Design in Additive Manufacturing Processes. SSRN Electronic Journal, 0, , .	0.4	0
1272	COVID-19 Hastalarının Mortalitesini Tahmin Etmek için Torbalama ve Arttırma Yöntemleri. DÜMF Mühendislik Dergisi, 0, , .	0.2	0
1273	Alè¾åŠ©å•̂æˆë,çš"å^†åè¡̈ç¤æ–¹æ³•:从åºå^—模型å^ºå›¾è®º. Scientia Sinica Chimica, 2022, , .	0.2	0
1274	Machine learning models for predicting postoperative outcomes following skull base meningioma surgery. Journal of Neurological Surgery, Part B: Skull Base, 0, , .	0.4	1
1275	Structural Protein Effects Underpinning Cognitive Developmental Delay of the PURA p.Phe233del Mutation Modelled by Artificial Intelligence and the Hybrid Quantum Mechanics–Molecular Mechanics Framework. Brain Sciences, 2022, 12, 871.	1.1	4
1276	An Overview of Alphafold's Breakthrough. Frontiers in Artificial Intelligence, 0, 5, .	2.0	17
1277	6DCNN with Roto-Translational Convolution Filters for Volumetric Data Processing. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36, 4707-4715.	3.6	0
1278	Predicting RNA distance-based contact maps by integrated deep learning on physics-inferred secondary structure and evolutionary-derived mutational coupling. Bioinformatics, 2022, 38, 3900-3910.	1.8	14
1279	Application of Machine Learning Algorithms for Asthma Management with mHealth: A Clinical Review. Journal of Asthma and Allergy, 0, Volume 15, 855-873.	1.5	18
1281	Novel insights into the structural changes induced by disease-associated mutations in TDP-43: a computational approach. Journal of Biomolecular Structure and Dynamics, 2023, 41, 5624-5634.	2.0	1
1282	lg-VAE: Generative modeling of protein structure by direct 3D coordinate generation. PLoS Computational Biology, 2022, 18, e1010271.	1.5	51

#	Article	IF	CITATIONS
1283	Utilization of AlphaFold2 to Predict MFS Protein Conformations after Selective Mutation. International Journal of Molecular Sciences, 2022, 23, 7235.	1.8	9
1284	Protein Science Meets Artificial Intelligence: A Systematic Review and a Biochemical Meta-Analysis of an Inter-Field. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
1285	A Knowledge-Based Discovery Approach Couples Artificial Neural Networks With Weight Engineering to Uncover Immune-Related Processes Underpinning Clinical Traits of Breast Cancer. Frontiers in Immunology, 0, 13, .	2.2	1
1286	Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system. Molecular Diversity, 2023, 27, 959-985.	2.1	11
1287	Personalized structural biology reveals the molecular mechanisms underlying heterogeneous epileptic phenotypes caused by de novo KCNC2 variants. Human Genetics and Genomics Advances, 2022, 3, 100131.	1.0	1
1288	Machine Learning and Artificial Intelligence: A Paradigm Shift in Big Data-Driven Drug Design and Discovery. Current Topics in Medicinal Chemistry, 2022, 22, 1692-1727.	1.0	8
1289	Many dissimilar NusG protein domains switch between $\hat{I}\pm$ -helix and \hat{I}^2 -sheet folds. Nature Communications, 2022, 13, .	5.8	20
1290	Analysis and Dynamic Monitoring of Indoor Air Quality Based on Laser-Induced Breakdown Spectroscopy and Machine Learning. Chemosensors, 2022, 10, 259.	1.8	6
1291	Robust ranking by ensembling of diverse models and assessment metrics. Journal of Statistical Computation and Simulation, 0, , 1-26.	0.7	0
1292	Evaluating the impact of X-ray damage on conformational heterogeneity in room-temperature (277â€K) and cryo-cooled protein crystals. Acta Crystallographica Section D: Structural Biology, 2022, 78, 945-963.	1.1	11
1293	Functional Characterization of a 20GD Involved in Abietane-Type Diterpenoids Biosynthetic Pathway in Salvia miltiorrhiza. Frontiers in Plant Science, 0, 13, .	1.7	6
1294	Multi-head attention-based U-Nets for predicting protein domain boundaries using 1D sequence features and 2D distance maps. BMC Bioinformatics, 2022, 23, .	1.2	2
1295	Intuitive physics learning in a deep-learning model inspired by developmental psychology. Nature Human Behaviour, 2022, 6, 1257-1267.	6.2	35
1296	Combining ab initio and machine learning method to improve the prediction of diatomic vibrational energies. International Journal of Quantum Chemistry, 2022, 122, .	1.0	4
1297	Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chemical Reviews, 2022, 122, 11974-12045.	23.0	54
1298	Data-Driven Synthetic Cell Factories Development for Industrial Biomanufacturing. Biodesign Research, 2022, 2022, .	0.8	2
1299	Machine Learning Optimization of Lignin Properties in Green Biorefineries. ACS Sustainable Chemistry and Engineering, 2022, 10, 9469-9479.	3.2	12
1300	The Prospects of Monte Carlo Antibody Loop Modelling on a Fault-Tolerant Quantum Computer. Frontiers in Drug Discovery, 0, 2, .	1.1	4

#	Article	IF	CITATIONS
1301	Plasmodium 6-Cysteine Proteins: Functional Diversity, Transmission-Blocking Antibodies and Structural Scaffolds. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	7
1303	Structure-based rational design of hydroxysteroid dehydrogenases for improving and diversifying steroid synthesis. Critical Reviews in Biotechnology, 2023, 43, 770-786.	5.1	3
1304	Prediction of high-temperature polymer dielectrics using a Bayesian molecular design model. Journal of Applied Physics, 2022, 132, .	1.1	5
1305	The integration of AlphaFold-predicted and crystal structures of human trans-3-hydroxy-l-proline dehydratase reveals a regulatory catalytic mechanism. Computational and Structural Biotechnology Journal, 2022, 20, 3874-3883.	1.9	7
1306	Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches. , 0, , .		1
1307	Towards robust, interpretable neural networks via Hebbian/anti-Hebbian learning: A software framework for training with feature-based costs. Software Impacts, 2022, 13, 100347.	0.8	3
1308	Application of deep learning methods: From molecular modelling to patient classification. Experimental Cell Research, 2022, 418, 113278.	1.2	3
1309	A stacked meta-ensemble for protein inter-residue distance prediction. Computers in Biology and Medicine, 2022, 148, 105824.	3.9	3
1310	Proteome-Wide Profiling of the Covalent-Druggable Cysteines with a Structure-Based Deep Graph Learning Network. Research, 2022, 2022, .	2.8	4
1311	Structures of multisubunit membrane complexes with the CRYO ARM 200. Microscopy (Oxford,) Tj ETQq1 1 0.78	84314 rgB ⁻ 0.7	[/Overlock]
1312	Scaffolding protein functional sites using deep learning. Science, 2022, 377, 387-394.	6.0	191
1314	Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors, 2022, 12, 562.	2.3	135
1316	Trans-Inf-Net: COVID-19 Lung Infection Segmentation Based on Transformer. , 2022, , .		2
1317	PICASSO: Unleashing the Potential of GPU-centric Training for Wide-and-deep Recommender Systems. , 2022, , .		7
1318	ProtCPT2 is a deep unsupervised language model for protein design. Nature Communications, 2022, 13, .	5.8	160
1319	Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science. Nature Communications, 2022, 13, .	5.8	4
1320	Artificial Intelligence-Based Data-Driven Strategy to Accelerate Research, Development, and Clinical Trials of COVID Vaccine. BioMed Research International, 2022, 2022, 1-16.	0.9	15
1321	Investigation of the Defective Growth Pattern and Multidrug Resistance in a Clinical Isolate of Candida glabrata Using Whole-Genome Sequencing and Computational Biology Applications. Microbiology Spectrum, 2022, 10, .	1.2	1

# 1322	ARTICLE A multifaceted strategy to improve recombinant expression and structural characterisation of a Trypanosoma invariant surface protein. Scientific Reports, 2022, 12, .	IF 1.6	Citations 0
1323	Human mitochondrial protein complexes revealed by large-scale coevolution analysis and deep learning-based structure modeling. Bioinformatics, 2022, 38, 4301-4311.	1.8	14
1324	GenoPPML $\hat{a} \in \hat{a}$ a framework for genomic privacy-preserving machine learning. , 2022, , .		7
1325	Quantum Neural Network Classifiers: A Tutorial. SciPost Physics Lecture Notes, 0, , .	0.0	10
1326	Designing drugs when there is low data availability: one-shot learning and other approaches to face the issues of a long-term concern. Expert Opinion on Drug Discovery, 2022, 17, 929-947.	2.5	6
1328	Comprehensive analysis of pathways in Coronavirus 2019 (COVID-19) using an unsupervised machine learning method. Applied Soft Computing Journal, 2022, 128, 109510.	4.1	9
1329	Designing Microbial Cell Factories for the Production of Chemicals. Jacs Au, 2022, 2, 1781-1799.	3.6	50
1330	Viral informatics: bioinformatics-based solution for managing viral infections. Briefings in Bioinformatics, 2022, 23, .	3.2	10
1331	A newly identified secreted larval antigen elicits basophil-dependent protective immunity against N. brasiliensis infection. Frontiers in Immunology, 0, 13, .	2.2	2
1332	Mining for informative signals in biological sequences. Nature Machine Intelligence, 0, , .	8.3	0
1333	Active Neuron Least Squares: A Training Method for Multivariate Rectified Neural Networks. SIAM Journal of Scientific Computing, 2022, 44, A2253-A2275.	1.3	1
1334	Computational Design of Peptide-Based Binders to Therapeutic Targets. ACS Symposium Series, 0, , 55-102.	0.5	0
1335	Physicsâ€Aware Machine Learning and Adversarial Attack in Complexâ€Valued Reconfigurable Diffractive Allâ€Optical Neural Network. Laser and Photonics Reviews, 2022, 16, .	4.4	8
1336	Phenotypic and transcriptomic responses of the shade-grown species <i>Panax ginseng</i> to variable light conditions. Annals of Botany, 2022, 130, 749-762.	1.4	5
1337	NanoNet: Rapid and accurate end-to-end nanobody modeling by deep learning. Frontiers in Immunology, 0, 13, .	2.2	34
1338	I-TASSER-MTD: a deep-learning-based platform for multi-domain protein structure and function prediction. Nature Protocols, 2022, 17, 2326-2353.	5.5	104
1339	DropTrack—Automatic droplet tracking with YOLOv5 and DeepSORT for microfluidic applications. Physics of Fluids, 2022, 34, .	1.6	11
1341	Comparative studies of AlphaFold, RoseTTAFold and Modeller: a case study involving the use of G-protein-coupled receptors. Briefings in Bioinformatics, 2022, 23, .	3.2	43

#	Article	IF	CITATIONS
1342	Protein Design: From the Aspect of Water Solubility and Stability. Chemical Reviews, 2022, 122, 14085-14179.	23.0	54
1343	Structural insight and characterization of human Twinkle helicase in mitochondrial disease. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
1345	Enhancing Protein Function Prediction Performance by Utilizing AlphaFold-Predicted Protein Structures. Journal of Chemical Information and Modeling, 2022, 62, 4008-4017.	2.5	14
1346	PRRGNVis: Multi-Level Visual Analysis of Comparison for Predicted Results of Recurrent Geometric Network. Applied Sciences (Switzerland), 2022, 12, 8465.	1.3	0
1347	Length-Based Substructure Mutation Policies for Improved RNA Design in Simulated Annealing. , 2022, ,		0
1348	Graph Clustering Analyses of Discontinuous Molecular Dynamics Simulations: Study of Lysozyme Adsorption on a Graphene Surface. Langmuir, 2022, 38, 10817-10825.	1.6	7
1349	Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Frontiers in Molecular Biosciences, 0, 9, .	1.6	9
1350	Improved Protein Real-Valued Distance Prediction Using Deep Residual Dense Network (DRDN). Protein Journal, 2022, 41, 468-476.	0.7	1
1351	Compendious survey of protein tandem repeats in inbred mouse strains. BMC Genomic Data, 2022, 23, .	0.7	0
1352	Atomic-Level View of the Functional Transition in Vertebrate Hemoglobins: The Case of Antarctic Fish Hbs. Journal of Chemical Information and Modeling, 2022, 62, 3874-3884.	2.5	0
1353	VLA-SMILES: Variable-Length-Array SMILES Descriptors in Neural Network-Based QSAR Modeling. Machine Learning and Knowledge Extraction, 2022, 4, 715-737.	3.2	0
1354	Algorithmically-guided discovery of viral epitopes via linguistic parsing: Problem formulation and solving by soft computing. Applied Soft Computing Journal, 2022, , 109509.	4.1	1
1355	Deep Learning Concepts and Applications for Synthetic Biology. , 2022, 1, 360-371.		4
1356	The rise of the machines in chemistry. Magnetic Resonance in Chemistry, 2022, 60, 1044-1051.	1.1	0
1357	Novel insights into RB1 mutation. Cancer Letters, 2022, 547, 215870.	3.2	13
1358	Physics guided neural networks for modelling of non-linear dynamics. Neural Networks, 2022, 154, 333-345.	3.3	18
1359	Systematic evaluation of chiral fungicide penflufen for the bioactivity improvement and input reduction using alphafold2 models and transcriptome sequencing. Journal of Hazardous Materials, 2022, 440, 129729.	6.5	11
1360	CENN: Conservative energy method based on neural networks with subdomains for solving variational problems involving heterogeneous and complex geometries. Computer Methods in Applied Mechanics and Engineering, 2022, 400, 115491.	3.4	5

# 1361	ARTICLE Brain-inspired chaotic backpropagation for MLP. Neural Networks, 2022, 155, 1-13.	IF 3.3	CITATIONS 5
1362	Analysis of microstructural parameters of trabecular bone based on electrical impedance spectroscopy and deep neural networks. Bioelectrochemistry, 2022, 148, 108232.	2.4	1
1363	A reinforcement learning approach for protein–ligand binding pose prediction. BMC Bioinformatics, 2022, 23, .	1.2	5
1364	Upper confident bound advantage function proximal policy optimization. Cluster Computing, 0, , .	3.5	0
1365	A comprehensive review on recent approaches for cancer drug discovery associated with artificial intelligence. Computers in Biology and Medicine, 2022, 150, 106140.	3.9	13
1366	Molecular structure optimizations with Gaussian process regression. , 2023, , 391-428.		4
1367	Machine learning for high-entropy alloys: Progress, challenges and opportunities. Progress in Materials Science, 2023, 131, 101018.	16.0	54
1368	Redesigning density functional theory with machine learning. , 2023, , 531-558.		1
1369	Multi-omic analysis of host-microbial interactions central to the gut-brain axis. Molecular Omics, 2022, 18, 896-907.	1.4	3
1370	MetaAudio: A Few-Shot Audio Classification Benchmark. Lecture Notes in Computer Science, 2022, , 219-230.	1.0	2
1371	Review of Pedestrian Trajectory Prediction Methods: Comparing Deep Learning and Knowledge-Based Approaches. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 24126-24144.	4.7	28
1372	A Survey on Attention Mechanisms for Medical Applications: are we Moving Toward Better Algorithms?. IEEE Access, 2022, 10, 98909-98935.	2.6	4
1373	Computational Methods for Peptide Macrocycle Drug Design. AAPS Advances in the Pharmaceutical Sciences Series, 2022, , 79-161.	0.2	1
1374	The complexity landscape of viral genomes. GigaScience, 2022, 11, .	3.3	4
1375	Deep learning-based molecular dynamics simulation for structure-based drug design against SARS-CoV-2. Computational and Structural Biotechnology Journal, 2022, 20, 5014-5027.	1.9	6
1376	Virtual screening techniques in pharmaceutical research. , 2022, , 89-128.		0
1377	Theoretical Analysis of Deep Neural Networks in Physical Layer Communication. IEEE Transactions on Communications, 2022, 70, 6589-6603.	4.9	1
1378	Decentralised Federated Learning for Hospital Networks With Application to COVID-19 Detection. IEEE Access, 2022, 10, 92681-92691.	2.6	8

#	Article	IF	Citations
1379	Protein Fold Recognition Exploited by Computational and Functional Approaches: Recent Insights. , 2022, , 1-22.		0
1380	Characterising Intrinsically Disordered Proteins Using NMR Spectroscopy and MD Simulations. New Developments in NMR, 2022, , 383-410.	0.1	2
1381	Interactive Disentanglement: Learning Concepts by Interacting with their Prototype Representations. , 2022, , .		3
1382	Adversarial Attacks and Defenses in Image Classification: A Practical Perspective. , 2022, , .		3
1383	Compute Trends Across Three Eras of Machine Learning. , 2022, , .		67
1385	Local Backbone Geometry Plays a Critical Role in Determining Conformational Preferences of Amino Acid Residues in Proteins. Biomolecules, 2022, 12, 1184.	1.8	2
1386	Why big data and compute are not necessarily the path to big materials science. Communications Materials, 2022, 3, .	2.9	9
1387	Reduced B cell antigenicity of Omicron lowers host serologic response. Cell Reports, 2022, 41, 111512.	2.9	5
1388	Estimating conformational heterogeneity of tryptophan synthase with a templateâ€based <scp>Alphafold2</scp> approach. Protein Science, 2022, 31, .	3.1	10
1389	Objective study of the facial parameters of observations in patients with type 2 diabetes mellitus by machine learning. Annals of Translational Medicine, 2022, 10, 960-960.	0.7	0
1390	ADGRL3 genomic variation implicated in neurogenesis and ADHD links functional effects to the incretin polypeptide GIP. Scientific Reports, 2022, 12, .	1.6	0
1391	spectrai: a deep learning framework for spectral data. Journal of Spectral Imaging, 0, , .	0.0	1
1393	Modelling peptide–protein complexes: docking, simulations and machine learning. QRB Discovery, 2022, 3, .	0.6	9
1394	Fast and accurate Ab Initio Protein structure prediction using deep learning potentials. PLoS Computational Biology, 2022, 18, e1010539.	1.5	9
1395	Data, data, burning deep, in the forests of the net. Biochemical and Biophysical Research Communications, 2022, 633, 42-44.	1.0	0
1396	Geographic encoding of transcripts enabled high-accuracy and isoform-aware deep learning of RNA methylation. Nucleic Acids Research, 2022, 50, 10290-10310.	6.5	12
1397	Development of a Deep Learning Generative Neural Network for Computer-Aided Design of Potential SARS-Cov-2 Inhibitors. Mathematical Biology and Bioinformatics, 2022, 17, 188-207.	0.1	2
1398	Programmable Synthesis of Biobased Materials Using Cellâ€Free Systems. Advanced Materials, 2023, 35,	11.1	3

		_	
(ITA-	LON	DEDC	NDT.
CITA		NEPU	ואר

#	Article	IF	CITATIONS
1399	Identifying interpretable gene-biomarker associations with functionally informed kernel-based tests in 190,000 exomes. Nature Communications, 2022, 13, .	5.8	6
1400	Machine Learning for Harnessing Thermal Energy: From Materials Discovery to System Optimization. ACS Energy Letters, 2022, 7, 3204-3226.	8.8	11
1401	Computer-Aided Drug Design Boosts RAS Inhibitor Discovery. Molecules, 2022, 27, 5710.	1.7	6
1403	An ensemble 3D deep-learning model to predict protein metal-binding site. Cell Reports Physical Science, 2022, 3, 101046.	2.8	5
1404	Development of Proteins for Highâ€Performance Energy Storage Devices: Opportunities, Challenges, and Strategies. Advanced Energy Materials, 2022, 12, .	10.2	5
1405	Glycerolipid Synthesis and Lipid Droplet Formation in the Endoplasmic Reticulum. Cold Spring Harbor Perspectives in Biology, 2023, 15, a041246.	2.3	11
1406	Artificial intelligence-informed planning for the rapid response of hazard-impacted road networks. Scientific Reports, 2022, 12, .	1.6	2
1407	Using genetic programming to predict and optimize protein function. PeerJ Physical Chemistry, 0, 4, e24.	0.0	2
1409	The Statistical Trends of Protein Evolution: A Lesson from AlphaFold Database. Molecular Biology and Evolution, 2022, 39, .	3.5	9
1410	Neural representations of cryo-EM maps and a graph-based interpretation. BMC Bioinformatics, 2022, 23, .	1.2	4
1411	Identifying SNARE Proteins Using an Alignment-Free Method Based on Multiscan Convolutional Neural Network and PSSM Profiles. Journal of Chemical Information and Modeling, 2022, 62, 4820-4826.	2.5	47
1412	Linking research of biomedical datasets. Briefings in Bioinformatics, 0, , .	3.2	0
1415	Single-sequence protein structure prediction using a language model and deep learning. Nature Biotechnology, 2022, 40, 1617-1623.	9.4	145
1416	Phylogenetic analysis and characterization of arsenic (As) transforming bacterial marker proteins following isolation of As-tolerant indigenous bacteria. Archives of Microbiology, 2022, 204, .	1.0	4
1418	Energy Profile Bayes and Thompson Optimized Convolutional Neural Network protein structure prediction. Neural Computing and Applications, 0, , .	3.2	0
1419	Looking for SARS-CoV-2 Therapeutics Through Computational Approaches. Current Medicinal Chemistry, 2023, 30, 3158-3214.	1.2	3
1421	Combining cysteine scanning with chemical labeling to map protein-protein interactions and infer bound structure in an intrinsically disordered region. Frontiers in Molecular Biosciences, 0, 9, .	1.6	1
1422	We are all aging, and here's why. Aging Medicine (Milton (N S W)), 0, , .	0.9	3

#	Article	IF	CITATIONS
1423	Physics-informed multi-fidelity learning-driven imaging method for electrical capacitance tomography. Engineering Applications of Artificial Intelligence, 2022, 116, 105467.	4.3	4
1424	Constraint Guided Beta-Sheet Refinement for Protein Structure Prediction. Computational Biology and Chemistry, 2022, 101, 107773.	1.1	1
1425	Machine learning models for photonic crystals band diagram prediction and gap optimisation. Photonics and Nanostructures - Fundamentals and Applications, 2022, 52, 101076.	1.0	6
1426	Machine learning assisted droplet trajectories extraction in dense emulsions. Communications in Applied and Industrial Mathematics, 2022, 13, 70-77.	0.6	Ο
1433	Expressive power of complex-valued restricted Boltzmann machines for solving nonstoquastic Hamiltonians. Physical Review B, 2022, 106, .	1.1	5
1434	Digital absorptive capacity: developing an instrument. Knowledge Management Research and Practice, 2024, 22, 61-72.	2.7	Ο
1435	Neuro-Inspired Deep Neural Networks with Sparse, Strong Activations. , 2022, , .		2
1436	Using Alphafold2 to Predict the Structure of the Gp5/M Dimer of Porcine Respiratory and Reproductive Syndrome Virus. International Journal of Molecular Sciences, 2022, 23, 13209.	1.8	4
1437	Multitargeted Molecular Docking and Dynamic Simulation Studies of Bioactive Compounds from Rosmarinus officinalis against Alzheimer's Disease. Molecules, 2022, 27, 7241.	1.7	6
1438	Predicted Structure and Functions of the Prototypic Alphaherpesvirus Herpes Simplex Virus Type-1 UL37 Tegument Protein. Viruses, 2022, 14, 2189.	1.5	2
1439	Protein folding problem: enigma, paradox, solution. Biophysical Reviews, 2022, 14, 1255-1272.	1.5	16
1440	Bacteriophage-encoded lethal membrane disruptors: Advances in understanding and potential applications. Frontiers in Microbiology, 0, 13, .	1.5	4
1441	Protein Data Bank: A Comprehensive Review of 3D Structure Holdings and Worldwide Utilization by Researchers, Educators, and Students. Biomolecules, 2022, 12, 1425.	1.8	24
1442	Dynamic regulation of Monascus azaphilones biosynthesis by the binary MrPigE-MrPigF oxidoreductase system. Applied Microbiology and Biotechnology, 2022, 106, 7519-7530.	1.7	3
1443	ZmMS39 encodes a callose synthase essential for male fertility in maize (Zea mays L.). Crop Journal, 2023, 11, 394-404.	2.3	6
1445	Stable Evaluation of 3D Zernike Moments for Surface Meshes. Algorithms, 2022, 15, 406.	1.2	1
1446	Toward inhibition of human cytomegalovirus replication with compounds targeting cellular proteins. Journal of General Virology, 2022, 103, .	1.3	1
1449	Learning the stress-strain fields in digital composites using Fourier neural operator. IScience, 2022, 25, 105452.	1.9	14

#	Article	IF	CITATIONS
1450	Exploring and engineering PAM-diverse Streptococci Cas9 for PAM-directed bifunctional and titratable gene control in bacteria. Metabolic Engineering, 2023, 75, 68-77.	3.6	6
1451	A multiscale modeling methodÂfor therapeutic antibodies in ion exchange chromatography. Biotechnology and Bioengineering, 2023, 120, 125-138.	1.7	8
1452	Modern computational methods for rational enzyme engineering. Chem Catalysis, 2022, 2, 2481-2498.	2.9	10
1453	Proteins from Thermophilic <i>Thermus thermophilus</i> Often Do Not Fold Correctly in a Mesophilic Expression System Such as <i>Escherichia coli</i> . ACS Omega, 2022, 7, 37797-37806.	1.6	2
1454	Training quantum embedding kernels on near-term quantum computers. Physical Review A, 2022, 106, .	1.0	26
1455	How feasible is end-to-end deep learning for clinical neuroimaging?. Journal of Neuroradiology, 2022, 49, 399-400.	0.6	2
1456	Alphafold Predictions Provide Insights into the Structural Features of the Functional Oligomers of All Members of the KCTD Family. International Journal of Molecular Sciences, 2022, 23, 13346.	1.8	6
1457	EDomics: a comprehensive and comparative multi-omics database for animal evo-devo. Nucleic Acids Research, 2023, 51, D913-D923.	6.5	5
1458	Safety assessment of food and feed derived from genetically modified plants. , 2023, , 938-958.		0
1459	Recognition motifs for importin 4 [(L)PPRS(G/P)P] and importin 5 [KP(K/Y)LV] binding, identified by bio-informatic simulation and experimental in vitro validation. Computational and Structural Biotechnology Journal, 2022, 20, 5952-5961.	1.9	2
1460	Improved inter-residue contact prediction via a hybrid generative model and dynamic loss function. Computational and Structural Biotechnology Journal, 2022, 20, 6138-6148.	1.9	3
1461	3D Modeling of Non-coding RNA Interactions. Advances in Experimental Medicine and Biology, 2022, , 281-317.	0.8	2
1462	Predicting functional effect of missense variants using graph attention neural networks. Nature Machine Intelligence, 2022, 4, 1017-1028.	8.3	15
1463	Deep learning of protein sequence design of protein–protein interactions. Bioinformatics, 2023, 39, .	1.8	6
1464	Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks. Nature Communications, 2022, 13, .	5.8	22
1465	Toward autonomous laboratories: Convergence of artificial intelligence and experimental automation. Progress in Materials Science, 2023, 132, 101043.	16.0	19
1466	Image prediction of disease progression for osteoarthritis by style-based manifold extrapolation. Nature Machine Intelligence, 2022, 4, 1029-1039.	8.3	6
1467	In Silico Protein Folding Prediction of COVID-19 Mutations and Variants. Biomolecules, 2022, 12, 1665.	1.8	4

#	Article	IF	CITATIONS
1468	Ada-MIP: Adaptive Self-supervised Graph Representation Learning via Mutual Information and Proximity Optimization. ACM Transactions on Knowledge Discovery From Data, 2023, 17, 1-23.	2.5	0
1469	Improving protein structure prediction using templates and sequence embedding. Bioinformatics, 2023, 39, .	1.8	4
1470	Mapping Citizen Science through the Lens of Human-Centered Al. Human Computation, 2022, 9, 66-95.	1.0	8
1472	A structural biology community assessment of AlphaFold2 applications. Nature Structural and Molecular Biology, 2022, 29, 1056-1067.	3.6	261
1473	Origin of Correlations between Local Conformational States of Consecutive Amino Acid Residues and Their Role in Shaping Protein Structures and in Allostery. Journal of Physical Chemistry B, 2022, 126, 9493-9505.	1.2	2
1474	An integrated protein structure fitness scoring approach for identifying native-like model structures. Computational and Structural Biotechnology Journal, 2022, 20, 6467-6472.	1.9	0
1475	Predictive Molecular Models for Charged Materials Systems: From Energy Materials to Biomacromolecules. Advanced Materials, 2023, 35, .	11.1	2
1478	Protein structure prediction in the deep learning era. Current Opinion in Structural Biology, 2022, 77, 102495.	2.6	12
1479	Systematic inspection of genomic tandem repeats and rearrangements in autism model. Brain Disorders, 2022, 8, 100059.	1.1	0
1480	Exploring the theoretical foundation of molecular assembly: current status and opportunities. Scientia Sinica Chimica, 2023, 53, 145-173.	0.2	2
1481	Instruments, agents, and artificial intelligence: novel epistemic categories of reliability. SynthÃ^se, 2022, 200, .	0.6	4
1482	Stereoselectivity and Substrate Specificity of the Fe(II)/α-Ketoglutarate-Dependent Oxygenase TqaL. Journal of the American Chemical Society, 2022, 144, 21512-21520.	6.6	12
1484	Clustered regularly interspaced short palindromic repeats (CRISPR) technology and genetic engineering strategies for microalgae towards carbon neutrality: A critical review. Bioresource Technology, 2023, 368, 128350.	4.8	10
1486	From sequence to function through structure: Deep learning for protein design. Computational and Structural Biotechnology Journal, 2023, 21, 238-250.	1.9	29
1488	The mechanical cell – the role of force dependencies in synchronising protein interaction networks. Journal of Cell Science, 2022, 135, .	1.2	4
1489	Prediction of protein structure and intrinsic disorder in the era of deep learning. , 2023, , 199-224.		0
1490	An agnostic analysis of the human AlphaFold2 proteome using local protein conformations. Biochimie, 2023, 207, 11-19.	1.3	4
1492	Crystal structure of the <scp>OrfX1</scp> – <scp>OrfX3</scp> complex from the <scp>PMP1</scp> neurotoxin gene cluster. FEBS Letters, 2023, 597, 515-523.	1.3	2

#	Article	IF	CITATIONS
1493	Differentiable simulation for material thermal response design in additive manufacturing processes. Additive Manufacturing, 2023, 61, 103337.	1.7	3
1494	A systematic review on the state-of-the-art strategies for protein representation. Computers in Biology and Medicine, 2023, 152, 106440.	3.9	1
1495	Recent advances in machine learning applications in metabolic engineering. Biotechnology Advances, 2023, 62, 108069.	6.0	18
1496	A quantum walks assisted algorithm for peptide and protein folding prediction. BioSystems, 2023, 223, 104822.	0.9	3
1497	Assessing seismic-like events prediction in model knits with unsupervised machine learning. Extreme Mechanics Letters, 2023, 58, 101932.	2.0	0
1498	Generating new protein sequences by using dense network and attention mechanism. Mathematical Biosciences and Engineering, 2022, 20, 4178-4197.	1.0	0
1499	Multi-feature Machine Learning with Quantum Superposition. , 2022, , .		1
1500	Prediction of Phosphorylation Sites in Amino Acid Sequences Using Convolutional Neural Networks. , 2022, , .		0
1503	RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Research, 2023, 51, D488-D508.	6.5	152
1504	Investigation of Protein-Protein Interactions Utilizing a Nano-Gold Colloid Surface Plasmon Resonance: Application to SARS CoV-2 Spike Protein Coated Gold Colloids. ACS Symposium Series, 0, , 145-164.	0.5	0
1505	Machine learning for data integration in human gut microbiome. Microbial Cell Factories, 2022, 21, .	1.9	15
1508	A Peptides Prediction Methodology with Fragments and CNN for Tertiary Structure Based on GRSA2. Axioms, 2022, 11, 729.	0.9	1
1509	The evolution of structural genomics. Biophysical Reviews, 0, , .	1.5	2
1510	Deep Learning on Images and Genetic Sequences in Plants: Classifications and Regressions. , 2022, , 224-233.		1
1511	Forecasting the atmospheric refractive index structure constant profile with an altitude-time correlations-inspired deep learning model. Optics Express, 2023, 31, 2426.	1.7	1
1512	Artificial Intelligence and Advanced Materials. Advanced Materials, 2023, 35, .	11.1	10
1513	Deviceâ€System Endâ€ŧoâ€End Design of Photonic Neuromorphic Processor Using Reinforcement Learning. Laser and Photonics Reviews, 2023, 17, .	4.4	3
1514	A rare loss-of-function genetic mutation suggest a role of dermcidin deficiency in hidradenitis suppurativa pathogenesis. Frontiers in Immunology, 0, 13, .	2.2	6

#	Article	IF	CITATIONS	
1516	Multi-omics revolution to promote plant breeding efficiency. Frontiers in Plant Science, 0, 13, .	1.7	10	
1518	The curse of the protein ribbon diagram. PLoS Biology, 2022, 20, e3001901.	2.6	2	
1521	Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity. Nature Communications, 2022, 13, .	5.8	51	
1522	Artificial intelligence for template-free protein structure prediction: a comprehensive review. Artificial Intelligence Review, 2023, 56, 7665-7732.	9.7	2	
1523	Artificial intelligence-enabled rapid and symptom-based medication recommendation system (COV-MED) for the COVID-19 patients. Journal of Ideas in Health, 2022, 5, .	0.1	0	
1524	The present and future of Turing models in developmental biology. Development (Cambridge), 2022, 149, .	1.2	6	
1525	A Lightweight CNN and Class Weight Balancing on Chest X-ray Images for COVID-19 Detection. Electronics (Switzerland), 2022, 11, 4008.	1.8	1	
1526	Scaling Up Bayesian Uncertainty Quantification for Inverse Problems Using Deep Neural Networks. SIAM-ASA Journal on Uncertainty Quantification, 2022, 10, 1684-1713.	1.1	6	
1527	Improved model quality assessment using sequence and structural information by enhanced deep neural networks. Briefings in Bioinformatics, 2023, 24, .	3.2	13	
1528	The Modern Mathematics of Deep Learning. , 2022, , 1-111.		21	
1529	Peptide Utility (PU) search server: A new tool for peptide sequence search from multiple databases. Heliyon, 2022, 8, e12283.	1.4	5	
1530	Perspectives of Machine Learning Development on Kerogen Molecular Model Reconstruction and Shale Oil/Gas Exploitation. Energy & amp; Fuels, 2023, 37, 98-117.	2.5	4	
1531	Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling. Nature Communications, 2022, 13, .	5.8	11	
1533	Improving Ion Mobility Mass Spectrometry of Proteins through Tristate Gating and Optimization of Multiplexing Parameters. Journal of the American Society for Mass Spectrometry, 2023, 34, 101-108.	1.2	3	
1535	T-Cell Receptor Repertoire Sequencing in the Era of Cancer Immunotherapy. Clinical Cancer Research, 2023, 29, 994-1008.	3.2	9	
1536	NetBCE: An Interpretable Deep Neural Network for Accurate Prediction of Linear B-cell Epitopes. Genomics, Proteomics and Bioinformatics, 2022, 20, 1002-1012.	3.0	7	
1537	Insights into divalent cation regulation and G13-coupling of orphan receptor GPR35. Cell Discovery, 2022, 8, .	3.1	15	
1538	Data Mining and Machine Learning over HPC Approach Enhancing Antibody Conformations Prediction. ACS Symposium Series, 0, , 75-92.	0.5	ο	
		CITATION RE	PORT	
------	---	-----------------------------------	------	-----------
#	Article		IF	CITATIONS
1539	Federated Learning with Privacy-preserving and Model IP-right-protection. , 2023, 20, 1	9-37.		8
1540	Resolving colistin resistance and heteroresistance in Enterobacter species. Nature Com 2023, 14, .	munications,	5.8	11
1541	Leveraging scaffold information to predict protein–ligand binding affinity with an em neural network. Briefings in Bioinformatics, 2023, 24, .	pirical graph	3.2	4
1542	A Quantum-Computing-Based Method for Solving Quantum Confinement Problem in S IEEE Transactions on Electron Devices, 2023, 70, 1366-1373.	emiconductor.	1.6	1
1543	Deep Antimicrobial Activity and Stability Analysis Inform Lysin Sequence–Function M Synthetic Biology, 2023, 12, 249-264.	apping. ACS	1.9	5
1544	Computing the Volume, Surface Area, Mean, and Gaussian Curvatures of Molecules and Derivatives. Journal of Chemical Information and Modeling, 2023, 63, 973-985.	1 Their	2.5	2
1545	Standing on the Shoulders of Al Giants. Computer, 2023, 56, 97-101.		1.2	2
1546	Metabolic engineering for sustainability and health. Trends in Biotechnology, 2023, 41,	425-451.	4.9	17
1547	A Charge Domain SRAM Compute-in-Memory Macro With C-2C Ladder-Based 8-Bit MAG FinFET Process for Edge Inference. IEEE Journal of Solid-State Circuits, 2023, 58, 1037-1	C Unit in 22-nm l050.	3.5	10
1548	Identification of Artemisia Argyi (AA) Therapy in Alzheimer's Disease (AD) Using Networ and Molecular Docking. Advanced Biology, 2023, 7, .	k Pharmacology	1.4	1
1549	The structure of the high-affinity nickel-binding site in the Ni,Zn-HypA•UreE2 comple 2023, 15, .	x. Metallomics,	1.0	4
1550	3D-equivariant graph neural networks for protein model quality assessment. Bioinforma	atics, 2023, 39,	1.8	11
1551	Prediction of effector protein structures from fungal phytopathogens enables evolutior analyses. Nature Microbiology, 2023, 8, 174-187.	ıary	5.9	47
1552	Uncertainty, Evidence, and the Integration of Machine Learning into Medical Practice. Jo Medicine and Philosophy, 2023, 48, 84-97.	purnal of	0.4	3
1553	Actinâ€related protein 5 suppresses the cooperative activation of cardiac gene transcri myocardin and <scp>MEF2</scp> . FEBS Open Bio, 2023, 13, 363-379.	ption by	1.0	1
1554	Artificial intelligence applied in neoantigen identification facilitates personalized cancer immunotherapy. Frontiers in Oncology, 0, 12, .		1.3	5
1555	Critical Assessment of Methods for Predicting the 3D Structure of Proteins and Protein Annual Review of Biophysics, 2023, 52, 183-206.	Complexes.	4.5	16
1556	A Combined Artificial-Intelligence Aerodynamic Design Method for a Transonic Compre Based on Reinforcement Learning and Genetic Algorithm. Applied Sciences (Switzerland	ssor Rotor d), 2023, 13, 1026.	1.3	2

#	Article	IF	CITATIONS
1557	Striatin family proteins: The neglected scaffolds. Biochimica Et Biophysica Acta - Molecular Cell Research, 2023, 1870, 119430.	1.9	2
1558	Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Knowledge-Based Systems, 2023, 263, 110273.	4.0	69
1559	Molecular Evolutionary Relationships of Side-Necked Turtle Hemoglobin:cDNA-Derived Primary Structures and Computer-Assisted Tertiary Structuresof α ^A , α ^D , and β Globin Chains. Journal of the Nihon University Medical Association, 2022, 81, 283-291.	0.0	0
1560	Toward Zero Touch Networks: From the Perspective of Hierarchical Language Systems. IEEE Network, 2022, 36, 260-268.	4.9	1
1561	A computational method for the load spectra of large-scale structures with a data-driven learning algorithm. Science China Technological Sciences, 2023, 66, 141-154.	2.0	1
1563	Neural Information Squeezer for Causal Emergence. Entropy, 2023, 25, 26.	1.1	6
1564	EVIncRNA-Dpred: improved prediction of experimentally validated IncRNAs by deep learning. Briefings in Bioinformatics, 2023, 24, .	3.2	4
1566	Medicinal terpenoid UDP-glycosyltransferases in plants: recent advances and research strategies. Journal of Experimental Botany, 2023, 74, 1343-1357.	2.4	7
1567	Mapping interaction between big spaces; active space from protein structure and available chemical space. , 2023, , 299-332.		0
1568	What Can De Novo Protein Design Bring to the Treatment of Hematological Disorders?. Biology, 2023, 12, 166.	1.3	2
1569	Improving DNA-Binding Protein Prediction Using Three-Part Sequence-Order Feature Extraction and a Deep Neural Network Algorithm. Journal of Chemical Information and Modeling, 2023, 63, 1044-1057.	2.5	7
1570	Machine learning in materials modeling and design. , 2023, , 203-236.		0
1571	Metagenomics and new enzymes for the bioeconomy to 2030. , 2023, , 165-178.		1
1572	The Relative Distance Prediction of Transmembrane Protein Surface Residue Based on Improved Residual Networks. Mathematics, 2023, 11, 642.	1.1	0
1573	Intelligent Drug Design and Use for Cancer Treatment: The Roles of AI and Precision Oncology in Targeting Patient-Specific Splicing Profiles. , 2023, , 217-238.		0
1574	Machine learning in computational modelling of membrane protein sequences and structures: From methodologies to applications. Computational and Structural Biotechnology Journal, 2023, 21, 1205-1226.	1.9	3
1575	Artificial Intelligence and Machine Learning Technology Driven Modern Drug Discovery and Development. International Journal of Molecular Sciences, 2023, 24, 2026.	1.8	30
1577	Structural and Functional Data Processing in Bio-Computing and Deep Learning. Advances in Computer and Electrical Engineering Book Series, 2023, , 198-215.	0.2	0

#	Article	IF	CITATIONS
1578	Water potential governs the effector specificity of the transcriptional regulator <scp>XylR</scp> of <scp><i>Pseudomonas putida</i></scp> . Environmental Microbiology, 2023, 25, 1041-1054.	1.8	0
1579	No-go theorem and a universal decomposition strategy for quantum channel compilation. Physical Review Research, 2023, 5, .	1.3	0
1580	SASA-Net: A Spatial-Aware Self-Attention Mechanism for Building Protein 3D Structure Directly From Inter- Residue Distances. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 3482-3488.	1.9	0
1581	Predicting the 3D Structure of RNA from Sequence. , 2023, , 1-34.		0
1582	How a single mutation alters the protein structure: a simulation investigation on protein tyrosine phosphatase SHP2. RSC Advances, 2023, 13, 4263-4274.	1.7	2
1583	Magnetic resonance imagining-based automated brain tumor detection using deep learning techniques. , 2023, , 75-107.		0
1584	Structures of human dynein in complex with the lissencephaly 1 protein, LIS1. ELife, 0, 12, .	2.8	10
1587	In silico prediction of molecular mechanisms of toxicity mediated by the leptospiral PF07598 gene family-encoded virulence-modifying proteins. Frontiers in Molecular Biosciences, 0, 9, .	1.6	2
1588	Drug Effect Deep Learner Based on Graphical Convolutional Network. Computational Methods in Engineering & the Sciences, 2023, , 83-140.	0.3	1
1589	Predicting protein flexibility with <scp>AlphaFold</scp> . Proteins: Structure, Function and Bioinformatics, 2023, 91, 847-855.	1.5	15
1590	Globus automation services: Research process automation across the space–time continuum. Future Generation Computer Systems, 2023, 142, 393-409.	4.9	13
1591	An Empirical Evaluation of Deep Neural Networks in Federated Learning. , 2022, , .		0
1592	New Heuristic Methods for Protein Model Quality Assessment via Two-Stage Machine Learning and Hierarchical Ensemble. , 2022, , .		0
1593	Analysis Strategy. Springer Theses, 2023, , 59-66.	0.0	0
1594	Protein Loop Modeling Using AlphaFold2. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, , 1-8.	1.9	1
1595	Protein 8-State Secondary Structure Prediction Based on Wasserstein Generative Adversarial Network and Residual Network. Hans Journal of Computational Biology, 2023, 13, 1-9.	0.0	Ο
1597	On the origin of the genetic code. Genes and Genetic Systems, 2023, 98, 9-24.	0.2	1
1598	Towards characterizing of Enterocytozoon hepatopenaei (EHP) spore wall proteins with feature identification and analogy modeling. Informatics in Medicine Unlocked, 2023, 38, 101215.	1.9	0

#	Article	IF	CITATIONS
1599	Sex and gender considerations in Alzheimer's disease: The Women's Brain Project contribution. Frontiers in Aging Neuroscience, 0, 15, .	1.7	13
1600	SAINT-Angle: self-attention augmented inception-inside-inception network and transfer learning improve protein backbone torsion angle prediction. Bioinformatics Advances, 2023, 3, .	0.9	1
1601	Structure and regulation of the myotonic dystrophy kinase-related Cdc42-binding kinase. Structure, 2023, 31, 435-446.e4.	1.6	3
1602	Application of wavelet-packet transform driven deep learning method in PM2.5 concentration prediction: A case study of Qingdao, China. Sustainable Cities and Society, 2023, 92, 104486.	5.1	20
1603	Survey on Al Sustainability: Emerging Trends on Learning Algorithms and Research Challenges [Review Article]. IEEE Computational Intelligence Magazine, 2023, 18, 60-77.	3.4	1
1604	State-of-the-art and future directions of machine learning for biomass characterization and for sustainable biorefinery. Journal of Energy Chemistry, 2023, 81, 42-63.	7.1	14
1605	Application of computational methods for class A GPCR Ligand discovery. Journal of Molecular Graphics and Modelling, 2023, 121, 108434.	1.3	3
1606	Progress at protein structure prediction, as seen in CASP15. Current Opinion in Structural Biology, 2023, 80, 102594.	2.6	26
1607	Assessing protein homology models with docking reproducibility. Journal of Molecular Graphics and Modelling, 2023, 121, 108430.	1.3	1
1608	Machine learning for evolutionary-based and physics-inspired protein design: Current and future synergies. Current Opinion in Structural Biology, 2023, 80, 102571.	2.6	11
1609	Real-to-bin conversion for protein residue distances. Computational Biology and Chemistry, 2023, 104, 107834.	1.1	1
1610	Accelerating the design and development of polymeric materials via deep learning: Current status and future challenges. , 2023, 1, .		1
1611	Advances in peptide/protein structure prediction tools and their relevance for structural biology in the last decade. Current Bioinformatics, 2023, 18, .	0.7	0
1613	Al and Big Data for Cancer Segmentation, Detection and Prevention. Integrated Science, 2022, , 15-31.	0.1	0
1614	Recent advances in electrochemical biosensors – A brief review. , 2023, 2, 100023.		23
1616	The <scp>cryoâ€EM</scp> structure of fullâ€length <scp>RAD52</scp> protein contains an undecameric ring. FEBS Open Bio, 2023, 13, 408-418.	1.0	11
1617	A theoretical framework for the ecological role of threeâ€dimensional structural diversity. Frontiers in Ecology and the Environment, 2023, 21, 4-13.	1.9	16
1618	Information entropy-based differential evolution with extremely randomized trees and LightGBM for protein structural class prediction. Applied Soft Computing Journal, 2023, 136, 110064.	4.1	7

CITATIONS

IF ARTICLE # Technological Advancements and Elucidation Gadgets for Healthcare Applications: An Exhaustive Methodological Review-Part-I (AI, Big Data, Block Chain, Open-Source Technologies, and Cloud) Tj ETQq0 0 0 rgBT (Overlock \$0 Tf 50 73 1619

1620	Sequence and structure alignments in post-AlphaFold era. Current Opinion in Structural Biology, 2023, 79, 102539.	2.6	2
1621	Learning Correlations between Internal Coordinates to Improve 3D Cartesian Coordinates for Proteins. Journal of Chemical Theory and Computation, 2023, 19, 4689-4700.	2.3	3
1622	Chasing longâ€range evolutionary couplings in the <scp>AlphaFold</scp> era. Biopolymers, 2023, 114, .	1.2	4
1623	Quality assessment of V _H H models. Journal of Biomolecular Structure and Dynamics, 2023, 41, 13287-13301.	2.0	1
1624	From prediction to function: Current practices and challenges towards the functional characterization of type III effectors. Frontiers in Microbiology, 0, 14, .	1.5	4
1625	Enabling technology and core theory of synthetic biology. Science China Life Sciences, 2023, 66, 1742-1785.	2.3	10
1626	Insights into the convergent evolution of fructan biosynthesis in angiosperms from the highly characteristic chicory genome. New Phytologist, 2023, 238, 1245-1262.	3.5	4
1627	Data-Driven Learning for Data Rights, Data Pricing, and Privacy Computing. Engineering, 2023, 25, 66-76.	3.2	4
1628	Certificates of quantum many-body properties assisted by machine learning. Physical Review Research, 2023, 5, .	1.3	0
1629	On augmenting topological graph representations for attributed graphs. Applied Soft Computing Journal, 2023, 136, 110104.	4.1	0
1630	Four principles to establish a universal virus taxonomy. PLoS Biology, 2023, 21, e3001922.	2.6	38
1631	Assessing a computational pipeline to identify binding motifs to the α2β1 integrin. Frontiers in Chemistry, 0, 11, .	1.8	0
1632	Protein structure prediction using the evolutionary algorithm <scp>USPEX</scp> . Proteins: Structure, Function and Bioinformatics, 2023, 91, 933-943.	1.5	0
1633	Discrimination of psychrophilic enzymes using machine learning algorithms with amino acid composition descriptor. Frontiers in Microbiology, 0, 14, .	1.5	4
1634	An Intellectual Aerodynamic Design Method for Compressors Based on Deep Reinforcement Learning. Aerospace, 2023, 10, 171.	1.1	0
1635	Expanding the Promiscuity of a Copperâ€Dependent Oxidase for Enantioselective Crossâ€Coupling of Indoles. Angewandte Chemie, 2023, 135, .	1.6	0
1636	Expanding the Promiscuity of a Copperâ€Dependent Oxidase for Enantioselective Crossâ€Coupling of Indoles. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2

#	Article	IF	CITATIONS
1637	Development of green technology based on supercritical solvent for production of nanomedicine: Solubility prediction using computational methods. Journal of Molecular Liquids, 2023, 376, 121471.	2.3	9
1638	A New Method for Inversion of Dam Foundation Hydraulic Conductivity Using an Improved Genetic Algorithm Coupled with an Unsaturated Equivalent Continuum Model and Its Application. Materials, 2023, 16, 1662.	1.3	1
1639	Deep Learning Opacity in Scientific Discovery. Philosophy of Science, 2023, 90, 1089-1099.	0.5	5
1641	Improved Assessment of Globularity of Protein Structures and the Ellipsoid Profile of the Biological Assemblies from the PDB. Biomolecules, 2023, 13, 385.	1.8	1
1642	Artificial intelligence for drug discovery: Resources, methods, and applications. Molecular Therapy - Nucleic Acids, 2023, 31, 691-702.	2.3	27
1643	WG-ICRN: Protein 8-state secondary structure prediction based on Wasserstein generative adversarial networks and residual networks with Inception modules. Mathematical Biosciences and Engineering, 2023, 20, 7721-7737.	1.0	0
1644	A Novel CCK Receptor GPR173 Mediates Potentiation of GABAergic Inhibition. Journal of Neuroscience, 2023, 43, 2305-2325.	1.7	10
1645	NP-hard but no longer hard to solve? Using quantum computing to tackle optimization problems. , 0, 2, .		4
1646	Al for Quantum Mechanics: High Performance Quantum Many-Body Simulations via Deep Learning. , 2022, , .		4
1647	Fragment-Based <i>Ab Initio</i> Phasing of Peptidic Nanocrystals by MicroED. ACS Bio & Med Chem Au, 2023, 3, 201-210.	1.7	3
1648	Evaluating native-like structures of RNA-protein complexes through the deep learning method. Nature Communications, 2023, 14, .	5.8	11
1649	ProteInfer, deep neural networks for protein functional inference. ELife, 0, 12, .	2.8	31
1651	Glycoproteins Involved in Sea Urchin Temporary Adhesion. Marine Drugs, 2023, 21, 145.	2.2	2
1652	We Can Think About Ourselves – The Computer Cannot. , 2023, , 197-211.		0
1653	Molecular architecture and dynamics of SARS-CoV-2 envelope by integrative modeling. Structure, 2023, 31, 492-503.e7.	1.6	16
1654	Before and after AlphaFold2: An overview of protein structure prediction. Frontiers in Bioinformatics, 0, 3, .	1.0	32
1655	Smarter Radiologists: A User-Friendly Algorithm Aiming to Improve the Accuracy and Readability of Intracranial Hemorrhage CT Detection. , 2022, , .		0
1656	<i>TLN1</i> contains a cancer-associated cassette exon that alters talin-1 mechanosensitivity. Journal of Cell Biology, 2023, 222, .	2.3	1

#	Article	IF	Citations
1657	Harnessing the Power of Discovery. Cancer Discovery, 2023, 13, 819-823.	7.7	4
1658	Evolutionary Engineering of a Cp*Rh(III) Complex-Linked Artificial Metalloenzyme with a Chimeric β-Barrel Protein Scaffold. Journal of the American Chemical Society, 0, , .	6.6	1
1660	Implicit Solutions of the Electrical Impedance Tomography Inverse Problem in the Continuous Domain with Deep Neural Networks. Entropy, 2023, 25, 493.	1.1	0
1661	AlphaFold2 and its applications in the fields of biology and medicine. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	48
1662	Kobayashi Award 2021: Neuropeptides, receptors, and follicle development in the ascidian, Ciona intestinalis Type A: New clues to the evolution of chordate neuropeptidergic systems from biological niches. General and Comparative Endocrinology, 2023, 337, 114262.	0.8	6
1663	Prediction of phase selection of amorphous alloys and high entropy alloys by artificial neural network. Computational Materials Science, 2023, 223, 112129.	1.4	2
1664	Evolutionary-scale prediction of atomic-level protein structure with a language model. Science, 2023, 379, 1123-1130.	6.0	623
1665	On-the-fly Raman microscopy guaranteeing the accuracy of diagnosis by reinforcement learning. , 2023, , .		0
1666	Drug discovery processes: When and where the rubber meets the road. , 2023, , 339-415.		1
1667	Secondary and Topological Structural Merge Prediction of Alpha-Helical Transmembrane Proteins Using a Hybrid Model Based on Hidden Markov and Long Short-Term Memory Neural Networks. International Journal of Molecular Sciences, 2023, 24, 5720.	1.8	1
1669	Genome-Wide Identification and Expression Analysis of Cysteine-Rich Polycomb-like Protein (CPP) Gene Family in Tomato. International Journal of Molecular Sciences, 2023, 24, 5762.	1.8	2
1670	Novel thienocycloalkylpyridazinones as useful scaffolds for acetylcholinesterase inhibition and serotonin 5-HT6 receptor interaction. Bioorganic and Medicinal Chemistry, 2023, 84, 117256.	1.4	2
1672	Machine learning and Bayesian inference in nuclear fusion research: an overview. Plasma Physics and Controlled Fusion, 2023, 65, 053001.	0.9	8
1673	Statistical genetics in and out of quasi-linkage equilibrium. Reports on Progress in Physics, 2023, 86, 052601.	8.1	3
1674	Characterization of RNA polymerase II trigger loop mutations using molecular dynamics simulations and machine learning. PLoS Computational Biology, 2023, 19, e1010999.	1.5	1
1675	Illuminating the "Twilight Zone― Advances in Difficult Protein Modeling. Methods in Molecular Biology, 2023, , 25-40.	0.4	2
1676	Modeling of Protein Complexes. Methods in Molecular Biology, 2023, , 349-371.	0.4	1
1677	Development and evaluation of a java-based deep neural network method for drug response predictions. Frontiers in Artificial Intelligence, 0, 6, .	2.0	1

	C	tation Report	
#	Article	IF	CITATIONS
1678	Quality Estimates for 3D Protein Models. Methods in Molecular Biology, 2023, , 101-118.	0.4	1
1679	Using Local Protein Model Quality Estimates to Guide a Molecular Dynamics-Based Refinement Strategy. Methods in Molecular Biology, 2023, , 119-140.	0.4	0
1680	Omics and Remote Homology Integration to Decipher Protein Functionality. Methods in Molecular Biology, 2023, , 61-81.	0.4	1
1681	Modeling of SARS-CoV-2 Virus Proteins: Implications on Its Proteome. Methods in Molecular Biology, 2023, , 265-299.	0.4	0
1682	CryoRes: Local Resolution Estimation of Cryo-EM Density Maps by Deep Learning. Journal of Molecula Biology, 2023, 435, 168059.	ır 2.0	9
1683	Super High-Throughput Screening of Enzyme Variants by Spectral Graph Convolutional Neural Networks. Journal of Chemical Theory and Computation, 2023, 19, 4668-4677.	2.3	1
1684	Topological regulation of a transmembrane protein by luminal-to-cytosolic retrotranslocation of glycosylated sequence. Cell Reports, 2023, 42, 112311.	2.9	0
1685	3D interaction homology: The hydrophobic residues alanine, isoleucine, leucine, proline and valine play different structural roles in soluble and membrane proteins. Frontiers in Molecular Biosciences, 0, 10, .	1.6	3
1686	REDfold: accurate RNA secondary structure prediction using residual encoder-decoder network. BMC Bioinformatics, 2023, 24, .	1.2	3
1687	Characterization of TLR1 and expression profiling of TLR signaling pathway related genes in response to Aeromonas hydrophila challenge in hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vache Frontiers in Immunology, 0, 14, .	elli â™,). 2.2	1
1688	Deep learning-based EEG analysis to classify normal, mild cognitive impairment, and dementia: Algorithms and dataset. NeuroImage, 2023, 272, 120054.	2.1	4
1689	Protein Structure Prediction: Challenges, Advances, and the Shift of Research Paradigms. Genomics, Proteomics and Bioinformatics, 2023, , .	3.0	2
1690	Leveraging deep learning to improve vaccine design. Trends in Immunology, 2023, 44, 333-344.	2.9	3
1691	Are Deep Neural Networks Adequate Behavioral Models of Human Visual Perception?. Annual Review of Vision Science, 2023, 9, 501-524.	2.3	12
1693	Prediction of drug permeation through microneedled skin by machine learning. Bioengineering and Translational Medicine, 2023, 8, .	3.9	9
1694	Artificial intelligence in precision medicine. , 2023, , 531-569.		1
1695	Intelligent De Novo Design of Novel Antimicrobial Peptides against Antibiotic-Resistant Bacteria Strains. International Journal of Molecular Sciences, 2023, 24, 6788.	1.8	3
1696	Rational In Silico Design of Molecularly Imprinted Polymers: Current Challenges and Future Potential. International Journal of Molecular Sciences, 2023, 24, 6785.	1.8	4

#	Article	IF	CITATIONS
1697	Comparative modeling and enzymatic affinity of novel haloacid dehalogenase from <i>Bacillus megaterium</i> strain BHS1 isolated from alkaline Blue Lake in Turkey. Journal of Biomolecular Structure and Dynamics, 2024, 42, 1429-1442.	2.0	2
1698	Harnessing Deep Learning for Omics in an Era of COVID-19. OMICS A Journal of Integrative Biology, 2023, 27, 141-152.	1.0	2
1699	Recent advances in predicting and modeling protein–protein interactions. Trends in Biochemical Sciences, 2023, 48, 527-538.	3.7	7
1700	Disto-TRP: An approach for identifying transient receptor potential (TRP) channels using structural information generated by AlphaFold. Gene, 2023, 871, 147435.	1.0	0
1701	The Integral Role of Intelligent IoT System, Cloud Computing, Artificial Intelligence, and 5G in the User-Level Self-Monitoring of COVID-19. Electronics (Switzerland), 2023, 12, 1912.	1.8	4
1702	Basis operator network: A neural network-based model for learning nonlinear operators via neural basis. Neural Networks, 2023, 164, 21-37.	3.3	1
1716	Applications of Deep Learning in Healthcare: A Systematic Analysis. Lecture Notes in Electrical Engineering, 2023, , 385-399.	0.3	1
1727	Cognitive Computing and System Analysis of Seven Times Pass Method Applications and Its Significance. Communications in Computer and Information Science, 2023, , 176-185.	0.4	0
1730	The Prediction of Protein Structure Using Neural Network. Lecture Notes in Networks and Systems, 2023, , 1021-1028.	0.5	0
1737	Graph machine learning in drug discovery. , 2023, , 141-160.		0
1738	Machine learning methods in drug design. , 2023, , 329-360.		0
1748	Why Deep Learning's Performance Data Are Misleading. , 2023, , .		2
1750	Al Techniques and IoT Applications Transforming the Future of Healthcare. Advances in Healthcare Information Systems and Administration Book Series, 2023, , 210-233.	0.2	0
1752	The Realm of Unconventional Noncovalent Interactions in Proteins: Their Significance in Structure and Function. ACS Omega, 2023, 8, 22268-22284.	1.6	11
1770	Deep Learning Enhanced Medical Microwave Imaging. Lecture Notes in Bioengineering, 2023, , 179-201.	0.3	0
1783	Automatic Subnetwork Search Through Dynamic Differentiable Neuron Pruning. , 2023, , .		0
1787	Data, measurement and empirical methods in the science of science. Nature Human Behaviour, 2023, 7, 1046-1058.	6.2	7
1807	Object-oriented basis of artificial intelligence methodologies. Handbook of Statistics, 2023, , .	0.4	0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1813	Decentralized Machine Learning Governance. , 2023, , .			0
1816	Biomanufacturing by In Vitro Biotransformation (ivBT) Using Purified Cascade Multi-en Advances in Biochemical Engineering/Biotechnology, 2023, , .	zymes.	0.6	0
1821	Perspectives of machine learning on protein structure prediction and function. , 2023,	,.		0
1822	Protein Fold Recognition Exploited by Computational and Functional Approaches: Rece 2023, , 555-576.	ent Insights. ,		0
1824	Discovering RNA modification enzymes using a comparative genomics approach. Meth Enzymology, 2023, , 55-67.	ods in	0.4	0
1825	Deep learning for clinical decision-making and improved healthcare outcome. , 2023, ,	187-201.		0
1826	Predicting the 3D Structure of RNA from Sequence. , 2023, , 365-398.			0
1829	ExplainableFold: Understanding AlphaFold Prediction with Explainable Al. , 2023, , .			1
1840	Survey on Explainable AI: From Approaches, Limitations and Applications Aspects. Hum Intelligent Systems, 2023, 3, 161-188.	ian-centric	2.2	5
1844	Exploring a <i>Streptomyces</i> wax synthase using acyl-SNACs as donor substrates. Biology, 2023, 4, 742-747.	RSC Chemical	2.0	1
1854	Designing Enzymes for New Chemical Transformations. , 2023, , .			0
1856	Outlook of future landscape of artificial intelligence in health care of liver disease and o 2023, , 309-322.	challenges. ,		0
1860	Artificial Intelligence Applicability in Orthodontics: Quo Vadis Orthodontics?. Studies ir 2023, , 284-290.	ı Big Data,	0.8	0
1879	Tutorial: a guide for the selection of fast and accurate computational tools for the pred intrinsic disorder in proteins. Nature Protocols, 2023, 18, 3157-3172.	liction of	5.5	4
1893	Computational design of industrially relevant enzymes. Advances in Catalysis, 2023, , .		0.1	0
1900	Soft Augmentation for Image Classification. , 2023, , .			0
1920	A Poisoning Attack for Data-Driven Strategies in Power Systems. , 2023, , .			0
1924	Quantifying Instance Hardness of Protein Folding within the HP-model. , 2023, , .			0

ARTICLE IF CITATIONS # Machine Learning in Molecular Dynamics Simulation. Lecture Notes in Electrical Engineering, 2023, 1926 0.3 0 635-640. Machine Learning in Biological Networks., 2023, , 111-125. Artificial intelligence and deep learning in molecular testing., 2024, , 687-730. 0 1938 Machine culture. Nature Human Behaviour, 2023, 7, 1855-1868. 6.2 Multi-region Quality Assessment Based on Spatial-Temporal Community Detection from Computed 1969 1.0 0 Tomography Images. Lecture Notes in Computer Science, 2023, , 681-693. 1982 Using symmetry to drive new protein assemblies. Nature Chemistry, 2023, 15, 1653-1654. 6.6 Deep Learning Misconduct and How Conscious Learning Avoids it. Artificial Intelligence, 0, , . 1987 2.0 0 Gaussian Latent Representations for Uncertainty Estimation using Mahalanobis Distance in Deep 2009 Classifiers., 2023,,. Towards an Effective and Interpretable Refinement Approach for DNN Verification., 2023, , . 0 2010 Aster: Encoding Data Augmentation Relations into Seed Test Suites for Robustness Assessment and Fuzzing of Data-Augmented Deep Learning Models., 2023,,. PRUNE1 and NME/NDPK family proteins influence energy metabolism and signaling in cancer metastases. 2017 2.7 0 Cancer and Metastasis Reviews, 0, , . What can molecular assembly learn from catalysed assembly in living organisms?. Chemical Society 18.7 Reviews, 2024, 53, 1892-1914. The role of artificial intelligence in crop improvement. Advances in Agronomy, 2024, , 1-66. 2028 2.4 0 Development and use of machine learning algorithms in vaccine target selection. Npj Vaccines, 2024, 9, Gut Microbiota and Artificial Intelligence. Impact of Meat Consumption on Health and Environmental 2035 0.4 0 Sustainability, 2024, , 152-161. Shapley value: from cooperative game to explainable artificial intelligence. Autonomous Intelligent 2.0 Systems, 2024, 4, . Computational drug development for membrane protein targets. Nature Biotechnology, 2024, 42, 2062 9.4 1 229-242. Sparks of function by de novo protein design. Nature Biotechnology, 2024, 42, 203-215. 9.4

#	Article	IF	CITATIONS
2064	Consistent Protein Structure Determination Using Sparse NMR Data. , 2024, , 181-205.		0
2081	Al-Assisted Methods for Protein Structure Prediction and Analysis. Microorganisms for Sustainability, 2024, , 365-391.	0.4	0
2083	Exploring artificial intelligence through a biologist's lens. , 2024, , 1-12.		0
2093	Utilisation of Machine Learning Techniques in Various Stages of Clinical Trial. Lecture Notes in Networks and Systems, 2024, , 433-449.	0.5	0
2095	Natural Products: Exploring Potential Against SARS CoV2. , 2024, , 441-474.		0
2098	Bridging Bytes and Biology-Advanced Learning and Bioinformatics in Innovative Drug Discovery. Advances in Bioinformatics and Biomedical Engineering Book Series, 2024, , 94-112.	0.2	0
2105	Diffractive Optical Neural Networks. , 2024, , 73-94.		0
2107	Structural and Functional Data Processing in Bio-Computing and Deep Learning. , 2023, , 1453-1466.		Ο