Research Development on K-Ion Batteries

Chemical Reviews 120, 6358-6466 DOI: 10.1021/acs.chemrev.9b00463

Citation Report

#	Article	lF	CITATIONS
1	Outlook on K-Ion Batteries. CheM, 2020, 6, 2442-2460.	11.7	135
2	Pseudocapacitance-Induced High-Rate Potassium Storage in CoSe@NrGo Hybrid Nanosheets for Potassium-Ion Batteries. Energy & amp; Fuels, 2020, 34, 10196-10202.	5.1	18
3	Advances in Organic Anode Materials for Na″K″on Rechargeable Batteries. ChemSusChem, 2020, 13, 4866-4884.	6.8	55
4	Ni2P nanoparticle-incorporated reduced graphene oxide & carbon nanotubes to form flexible free-standing intertwining network film anodes for long-life sodium-ion storage. Journal of Materials Science, 2020, 55, 14491-14500.	3.7	5
5	Promise and reality of practical potassiumâ€based energy storage systems. Engineering Reports, 2020, 2, e12328.	1.7	5
6	A high-capacity cathode for rechargeable K-metal battery based on reversible superoxide-peroxide conversion. National Science Review, 2021, 8, nwaa287.	9.5	12
7	KFSA/glyme electrolytes for 4 V-class K-ion batteries. Journal of Materials Chemistry A, 2020, 8, 23766-23771.	10.3	26
8	Model-Based Design of Graphite-Compatible Electrolytes in Potassium-Ion Batteries. ACS Energy Letters, 2020, 5, 2651-2661.	17.4	88
9	Development of KPF ₆ /KFSA Binary-Salt Solutions for Long-Life and High-Voltage K-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 34873-34881.	8.0	62
10	Stable Potassium Metal Anodes with an Allâ€Aluminum Current Collector through Improved Electrolyte Wetting. Advanced Materials, 2020, 32, e2002908.	21.0	70
11	Core–Shell FeSe ₂ /C Nanostructures Embedded in a Carbon Framework as a Free Standing Anode for a Sodium Ion Battery. Small, 2020, 16, e2002200.	10.0	72
12	KTiOPO4-structured electrode materials for metal-ion batteries: A review. Journal of Power Sources, 2020, 480, 228840.	7.8	38
13	Boosting Coulombic Efficiency of Conversionâ€Reaction Anodes for Potassiumâ€lon Batteries via Confinement Effect. Advanced Functional Materials, 2020, 30, 2007712.	14.9	68
14	Vanadyl Phosphates A <i>_x</i> VOPO ₄ (A = Li, Na, K) as Multielectron Cathodes for Alkaliâ€ion Batteries. Advanced Energy Materials, 2020, 10, 2002638.	19.5	26
15	Cobalt phosphide (Co ₂ P) encapsulated in nitrogen-rich hollow carbon nanocages with fast rate potassium ion storage. Chemical Communications, 2020, 56, 14889-14892.	4.1	25
16	Sodium-driven Rechargeable Batteries: An Effort towards Future Energy Storage. Chemistry Letters, 2020, 49, 1507-1516.	1.3	37
17	Electrochemical Activation of Li2MnO3 Electrodes at 0 °C and Its Impact on the Subsequent Performance at Higher Temperatures. Materials, 2020, 13, 4388.	2.9	11
18	Recent progress in organic electrodes for zinc-ion batteries. Journal of Semiconductors, 2020, 41, 091704.	3.7	31

#	Article	IF	CITATIONS
19	Emerging Potassiumâ€ion Hybrid Capacitors. ChemSusChem, 2020, 13, 5837-5862.	6.8	65
20	Potassium–Oxygen Batteries: Significance, Challenges, and Prospects. Journal of Physical Chemistry Letters, 2020, 11, 7849-7856.	4.6	18
21	Ballâ€Milling Strategy for Fast and Stable Potassiumâ€Ion Storage in Antimonyâ€ <i>Carbon</i> Composite Anodes. ChemElectroChem, 2020, 7, 4587-4593.	3.4	6
22	Solid electrolyte interphase (SEI) in potassium ion batteries. Energy and Environmental Science, 2020, 13, 4583-4608.	30.8	187
23	Potassium-Ion Batteries: Key to Future Large-Scale Energy Storage?. ACS Applied Energy Materials, 2020, 3, 9478-9492.	5.1	99
24	Paving the Way toward Highly Efficient, High-Energy Potassium-Ion Batteries with Ionic Liquid Electrolytes. Chemistry of Materials, 2020, 32, 7653-7661.	6.7	58
25	Cucurbit[6]urilâ€Derived Nitrogenâ€Doped Hierarchical Porous Carbon Confined in Graphene Network for Potassiumâ€Ion Hybrid Capacitors. Advanced Science, 2020, 7, 2001681.	11.2	66
26	Aluminum electrolytes for Al dual-ion batteries. Communications Chemistry, 2020, 3, .	4.5	48
27	Potential application of <i>p</i> – <i>i</i> – <i>n</i> semiconductor capacitor with non-linear voltage–charge characteristic for secondary battery. Journal of Applied Physics, 2020, 128, .	2.5	1
28	Interface engineering of inorganic solid-state electrolytes for high-performance lithium metal batteries. Energy and Environmental Science, 2020, 13, 3780-3822.	30.8	96
29	Pushing the Energy Output and Cycling Lifespan of Potassiumâ€lon Capacitor to High Level through Metal–Organic Framework Derived Porous Carbon Microsheets Anode. Advanced Functional Materials, 2020, 30, 2006561.	14.9	75
30	The Features and Progress of Electrolyte for Potassium Ion Batteries. Small, 2020, 16, e2004096.	10.0	98
31	Sodium Ion Microscale Electrochemical Energy Storage Device: Present Status and Future Perspective. Small Structures, 2020, 1, 2000053.	12.0	47
32	Aerosol-Assisted Assembly of Mesoporous Carbon Spheres With Fast and Stable K-ion Storage. Frontiers in Chemistry, 2020, 8, 784.	3.6	2
33	Advanced Postâ€Potassiumâ€Ion Batteries as Emerging Potassiumâ€Based Alternatives for Energy Storage. Advanced Functional Materials, 2020, 30, 2005209.	14.9	62
34	Application of Ionic Liquid as K-Ion Electrolyte of Graphite//K ₂ Mn[Fe(CN) ₆] Cell. ACS Energy Letters, 2020, 5, 2849-2857.	17.4	51
35	Designing Potassium Battery Salts through a Solvent-in-Anion Concept for Concentrated Electrolytes and Mimicking Solvation Structures. Chemistry of Materials, 2020, 32, 10423-10434.	6.7	16
36	Biâ€Based Electrode Materials for Alkali Metalâ€ion Batteries. Small, 2020, 16, e2004022.	10.0	71

#	Article	IF	CITATIONS
37	Quantifying the cost effectiveness of non-aqueous potassium-ion batteries. Journal of Power Sources, 2020, 464, 228228.	7.8	25
38	Initial investigation and evaluation of potassium metal as an anode for rechargeable potassium batteries. Journal of Materials Chemistry A, 2020, 8, 16718-16737.	10.3	44
39	Ultrastable Surfaceâ€Dominated Pseudocapacitive Potassium Storage Enabled by Edgeâ€Enriched Nâ€Doped Porous Carbon Nanosheets. Angewandte Chemie - International Edition, 2020, 59, 19460-19467.	13.8	148
40	Ultrastable Surfaceâ€Dominated Pseudocapacitive Potassium Storage Enabled by Edgeâ€Enriched Nâ€Doped Porous Carbon Nanosheets. Angewandte Chemie, 2020, 132, 19628-19635.	2.0	19
41	Emerging Potassium Metal Anodes: Perspectives on Control of the Electrochemical Interfaces. Accounts of Chemical Research, 2020, 53, 1161-1175.	15.6	105
42	Adsorption of single alkali-metal atoms (Li, Na, K) over the edge-passivated zigzag blue phosphorene nanoribbons. Journal of Physics and Chemistry of Solids, 2020, 146, 109623.	4.0	11
43	Emerging organic potassium-ion batteries: electrodes and electrolytes. Journal of Materials Chemistry A, 2020, 8, 15547-15574.	10.3	69
44	Generalized Domino-Driven Synthesis of Hollow Hybrid Carbon Spheres with Ultrafine Metal Nitrides/Oxides. Matter, 2020, 3, 246-260.	10.0	30
45	Superoxide-Based K–O ₂ Batteries: Highly Reversible Oxygen Redox Solves Challenges in Air Electrodes. Journal of the American Chemical Society, 2020, 142, 11629-11640.	13.7	49
46	High-Performance Cathode of Sodium-Ion Batteries Enabled by a Potassium-Containing Framework of K _{0.5} Mn _{0.7} Fe _{0.2} Ti _{0.1} O ₂ . ACS Applied Materials & Interfaces, 2020, 12, 15313-15319.	8.0	16
47	Phase Change Materials for Electro-Thermal Conversion and Storage: From Fundamental Understanding to Engineering Design. IScience, 2020, 23, 101208.	4.1	55
48	Ordering and Structural Transformations in Layered K _{<i>x</i>} CrO ₂ for K-Ion Batteries. Chemistry of Materials, 2020, 32, 6392-6400.	6.7	13
49	Organic-based active electrode materials for potassium batteries: status and perspectives. Journal of Materials Chemistry A, 2020, 8, 17296-17325.	10.3	32
50	Stable cycling of small molecular organic electrode materials enabled by high concentration electrolytes. Energy Storage Materials, 2020, 31, 318-327.	18.0	56
51	An Empirical Model for the Design of Batteries with High Energy Density. ACS Energy Letters, 2020, 5, 807-816.	17.4	97
52	Recent advances in black-phosphorus-based materials for electrochemical energy storage. Materials Today, 2021, 42, 117-136.	14.2	125
53	Promoting K ion storage property of SnS2 anode by structure engineering. Chemical Engineering Journal, 2021, 406, 126902.	12.7	52
54	Potassium-based electrochemical energy storage devices: Development status and future prospect. Energy Storage Materials, 2021, 34, 85-106.	18.0	61

#	Article	IF	CITATIONS
55	Rational Construction of Advanced Potassium Ion Diffusion and Storage Matrix. Advanced Functional Materials, 2021, 31, 2005933.	14.9	31
56	The Rise of Prussian Blue Analogs: Challenges and Opportunities for Highâ€Performance Cathode Materials in Potassiumâ€lon Batteries. Small Structures, 2021, 2, 2000054.	12.0	91
57	Carbon materials for high-performance potassium-ion energy-storage devices. Chemical Engineering Journal, 2021, 407, 126991.	12.7	26
58	The strategies to improve the layered-structure cathodes for aqueous multivalent metal-ionÂbatteries. Materials Today Energy, 2021, 19, 100595.	4.7	16
59	Optimal utilization of fluoroethylene carbonate in potassium ion batteries. Chemical Communications, 2021, 57, 1607-1610.	4.1	11
60	Design of Black Phosphorous Derivatives with Excellent Stability and Ion-Kinetics for Alkali Metal-Ion Battery. Energy Storage Materials, 2021, 35, 283-309.	18.0	8
61	Manipulating the Solvation Structure of Nonflammable Electrolyte and Interface to Enable Unprecedented Stability of Graphite Anodes beyond 2 Years for Safe Potassiumâ€ion Batteries. Advanced Materials, 2021, 33, e2006313.	21.0	155
62	Enabling Mgâ€Based Ionic Liquid Electrolytes for Hybrid Dualâ€ion Capacitors. Batteries and Supercaps, 2021, 4, 504-512.	4.7	14
63	Foldable potassium-ion batteries enabled by free-standing and flexible SnS ₂ @C nanofibers. Energy and Environmental Science, 2021, 14, 424-436.	30.8	142
64	Organic Electrode Materials for Non-aqueous K-Ion Batteries. Transactions of Tianjin University, 2021, 27, 1-23.	6.4	19
65	A redox-active conjugated microporous polymer cathode for high-performance lithium/potassium-organic batteries. Science China Chemistry, 2021, 64, 72-81.	8.2	33
66	Atomic layer deposition regulating hydrated K2Ti6O13 nanobelts on graphene platform with accelerated solid solution potassiation for potassium ion capacitors. Chemical Engineering Journal, 2021, 417, 128048.	12.7	13
67	Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries. Journal of Energy Chemistry, 2021, 59, 589-598.	12.9	62
68	Manipulating Particle Chemistry for Hollow Carbon-based Nanospheres: Synthesis Strategies, Mechanistic Insights, and Electrochemical Applications. Accounts of Chemical Research, 2021, 54, 221-231.	15.6	39
69	Unraveling the New Role of an Ethylene Carbonate Solvation Shell in Rechargeable Metal Ion Batteries. ACS Energy Letters, 2021, 6, 69-78.	17.4	99
70	Nonâ€Flammable Liquid and Quasiâ€5olid Electrolytes toward Highlyâ€5afe Alkali Metalâ€Based Batteries. Advanced Functional Materials, 2021, 31, 2008644.	14.9	127
71	Nanoarchitectonics for Coordination Asymmetry and Related Chemistry. Bulletin of the Chemical Society of Japan, 2021, 94, 839-859.	3.2	88
72	Revealing the structure design of alloyed based electrodes for alkali metal ion batteries with in situ TEM. Journal of Energy Chemistry, 2021, 59, 405-418.	12.9	12

#	Article	IF	CITATIONS
73	Self-templated synthesis of hollow hierarchical porous olive-like carbon toward universal high-performance alkali (Li, Na, K)-ion storage. Carbon, 2021, 174, 317-324.	10.3	30
74	Synchronous nesting of hollow FeP nanospheres into a three-dimensional porous carbon scaffold <i>via</i> a salt-template method for performance-enhanced potassium-ion storage. Sustainable Energy and Fuels, 2021, 5, 844-854.	4.9	12
75	Coronene: a high-voltage anion insertion and de-insertion cathode for potassium-ion batteries. New Journal of Chemistry, 2021, 45, 4921-4924.	2.8	7
76	Solution-based chemical pre-alkaliation of metal-ion battery cathode materials for increased capacity. Journal of Materials Chemistry A, 2021, 9, 11771-11777.	10.3	11
77	Electrolytes and Interphases in Potassium Ion Batteries. Advanced Materials, 2021, 33, e2003741.	21.0	181
78	Achieving complementary resistive switching and multi-bit storage goals by modulating the dual-ion reaction through supercritical fluid-assisted ammoniation. Nanoscale, 2021, 13, 14035-14040.	5.6	7
79	Research progress in transition metal chalcogenide based anodes for K-ion hybrid capacitor applications: a mini-review. RSC Advances, 2021, 11, 25450-25460.	3.6	37
80	Boosting Li/Na storage performance of graphite by defect engineering. RSC Advances, 2021, 11, 22297-22304.	3.6	3
81	A vanadium-based oxide-phosphate-pyrophosphate framework as a 4 V electrode material for K-ion batteries. Chemical Science, 2021, 12, 12383-12390.	7.4	10
82	Honeycomb layered oxides: structure, energy storage, transport, topology and relevant insights. Chemical Society Reviews, 2021, 50, 3990-4030.	38.1	43
83	Electrodeposition of Metals and Preparation of Metal Nanoparticles in Nonaqueous Electrolytes and Their Application to Energy Devices. Electrochemistry, 2021, , .	1.4	3
84	Quantifying the reaction mechanisms of a high-capacity CuP ₂ /C composite anode for potassium ion batteries. Journal of Materials Chemistry A, 2021, 9, 6274-6283.	10.3	19
85	Hollow sphere structured Co ₃ V ₂ O ₈ as a half-conversion anode material with ultra-high pseudocapacitance effect for potassium ion batteries. Journal of Materials Chemistry A, 2021, 9, 21995-22001.	10.3	7
86	A high-performance cathode for potassium-ion batteries based on uniform P3-type K _{0.5} Mn _{0.8} Co _{0.1} Ni _{0.1} O ₂ porous microcuboids. Journal of Materials Chemistry A, 2021, 9, 22820-22826.	10.3	40
87	Rational construction of K _{0.5} V ₂ O ₅ nanobelts/CNTs flexible cathode for multi-functional potassium-ion batteries. Nanoscale, 2021, 13, 8199-8209.	5.6	17
88	A stable and ultrafast K ion storage anode based on phase-engineered MoSe ₂ . Chemical Communications, 2021, 57, 3885-3888.	4.1	14
89	Effect of Particle Size and Anion Vacancy on Electrochemical Potassium Ion Insertion into Potassium Manganese Hexacyanoferrates. ChemSusChem, 2021, 14, 1166-1175.	6.8	31
90	Recent advances in ferromagnetic metal sulfides and selenides as anodes for sodium- and potassium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 9506-9534.	10.3	78

#	Article	IF	CITATIONS
91	Phase evolution of electrochemically potassium intercalated graphite. Journal of Materials Chemistry A, 2021, 9, 11187-11200.	10.3	27
92	Vanadium oxide bronzes as cathode active materials for non-lithium-based batteries. CrystEngComm, 2021, 23, 5267-5283.	2.6	6
93	Metal Organic Framework in Batteries. , 2021, , 125-125.		0
94	Tuning the electronic conductivity of porous nitrogen-doped carbon nanofibers with graphene for high-performance potassium-ion storage. Inorganic Chemistry Frontiers, 2021, 8, 3926-3933.	6.0	7
95	Challenges and Strategies toward Cathode Materials for Rechargeable Potassiumâ€lon Batteries. Advanced Materials, 2021, 33, e2004689.	21.0	188
96	Carbon Anode Materials: A Detailed Comparison between Naâ€ion and Kâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2003640.	19.5	150
97	Development of Metal and Metal-Based Composites Anode Materials for Potassium-Ion Batteries. Transactions of Tianjin University, 2021, 27, 248-268.	6.4	13
98	Hierarchical Porous Carbon Nanotube Spheres for High-performance K-O2 Batteries. Chemical Research in Chinese Universities, 2021, 37, 254-258.	2.6	2
99	Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering. Nano Research, 2021, 14, 4502-4511.	10.4	36
100	Stimulating the Reversibility of Sb ₂ S ₃ Anode for Highâ€Performance Potassiumâ€Ion Batteries. Small, 2021, 17, e2008133.	10.0	56
101	High Li ⁺ and Na ⁺ Conductivity in New Hybrid Solid Electrolytes based on the Porous MILâ€121 Metal Organic Framework. Advanced Energy Materials, 2021, 11, 2003542.	19.5	24
102	Expanding the family of mineral-like anhydrous alkali copper sulfate framework structures: new phases, topological analysis and evaluation of ion migration potentialities. Journal of Applied Crystallography, 2021, 54, 237-250.	4.5	7
103	Biomass Template Derived Boron/Oxygen Coâ€Doped Carbon Particles as Advanced Anodes for Potassiumâ€ion Batteries. Energy and Environmental Materials, 2022, 5, 344-352.	12.8	32
104	Carbon nanosheets derived from reconstructed lignin for potassium and sodium storage with low voltage hysteresis. Nano Research, 2021, 14, 4664-4673.	10.4	24
105	Confining Pyrrhotite Fe ₇ S ₈ in Carbon Nanotubes Covalently Bonded onto 3D Fewâ€Layer Graphene Boosts Potassiumâ€Ion Storage and Fullâ€Cell Applications. Small, 2021, 17, e2006719.	10.0	39
106	Recent Progress in Electrolyte Development and Design Strategies for Nextâ€Generation Potassiumâ€lon Batteries. Batteries and Supercaps, 2021, 4, 1428-1450.	4.7	29
107	Single Potassium-Ion Conducting Polymer Electrolytes: Preparation, Ionic Conductivities, and Electrochemical Stability. ACS Applied Energy Materials, 2021, 4, 4156-4164.	5.1	14
108	Structure Prototype Outperforming MXenes in Stability and Performance in Metalâ€lon Batteries: A High Throughput Study. Advanced Energy Materials, 2021, 11, 2003633.	19.5	111

#	Article	IF	CITATIONS
109	<i>m</i> -Phenylenediamine as a Building Block for Polyimide Battery Cathode Materials. ACS Applied Energy Materials, 2021, 4, 4465-4472.	5.1	21
110	Recent Progress and Prospects of Layered Cathode Materials for Potassiumâ€ion Batteries. Energy and Environmental Materials, 2021, 4, 178-200.	12.8	43
111	A New Candidate in Polyanionic Compounds for a Potassium-Ion Battery Cathode: KTiOPO ₄ . Journal of Physical Chemistry Letters, 2021, 12, 2721-2726.	4.6	23
112	Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Materials Today, 2021, 48, 241-269.	14.2	51
113	Frontiers in Hybrid Ion Capacitors: A Review on Advanced Materials and Emerging Devices. ChemElectroChem, 2021, 8, 1393-1429.	3.4	43
114	Effect of the external metal on the electrochemical behavior of M3[Co(CN)6]2 (M: Co, Ni, Cu, Zn), towards their use as anodes in potassium ion batteries. Electrochimica Acta, 2021, 371, 137828.	5.2	16
115	High storage capacity and small volume change of potassium-intercalation into novel vanadium oxychalcogenide monolayers V2S2O, V2Se2O and V2Te2O: An ab initio DFT investigation. Applied Surface Science, 2021, 546, 149062.	6.1	63
116	Stabilization of High-Energy Cathode Materials of Metal-Ion Batteries: Control Strategies and Synthesis Protocols. Energy & Fuels, 2021, 35, 7511-7527.	5.1	11
117	Lithium-, Sodium-, and Potassium-ion Conduction in Polymeric and Discrete Coordination Systems. Chemistry Letters, 2021, 50, 697-710.	1.3	7
118	Atomic layer deposited nickel sulfide for bifunctional oxygen evolution/reduction electrocatalysis and zinc–air batteries. Nanotechnology, 2021, 32, 275402.	2.6	11
119	Application of 2D Materials to Potassiumâ€ion Hybrid Capacitors. ChemSusChem, 2021, 14, 1974-1986.	6.8	26
120	Electron and Ion Transport of Tin Dioxide in Secondary Batteries: Enhancement Approaches, Mechanisms, and Performance. Frontiers in Physics, 2021, 9, .	2.1	1
121	Crystal, interfacial and morphological control of electrode materials for nonaqueous potassium-ion batteries. Nano Today, 2021, 37, 101074.	11.9	30
122	Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Materials Today, 2021, 50, 400-417.	14.2	161
123	Antiphase boundary migration as a diffusion mechanism in a P3 sodium layered oxide. Physical Review Materials, 2021, 5, .	2.4	5
124	Structural engineering of sulfur-doped carbon encapsulated bismuth sulfide core-shell structure for enhanced potassium storage performance. Nano Research, 2021, 14, 3545-3551.	10.4	16
125	Ultrafine TiO ₂ Nanoparticle Supported Nitrogenâ€Rich Graphitic Porous Carbon as an Efficient Anode Material for Potassiumâ€Ion Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100042.	5.8	8
126	Recent Advance in Ionic‣iquidâ€Based Electrolytes for Rechargeable Metal″on Batteries. Advanced Science, 2021, 8, 2004490.	11.2	128

#	Article	IF	CITATIONS
127	Crystal defect modulation in cathode materials for non-lithium ion batteries: Progress and challenges. Materials Today, 2021, 45, 169-190.	14.2	53
128	Metal–Organic Framework@Polyacrylonitrile-Derived Potassiophilic Nanoporous Carbon Nanofiber Paper Enables Stable Potassium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 6245-6252.	5.1	23
129	Layered oxides with solid-solution reaction for high voltage potassium-ion batteries cathode. Chemical Engineering Journal, 2021, 412, 128735.	12.7	30
130	Phosphorus and Oxygen Dualâ€Doped Porous Carbon Spheres with Enhanced Reaction Kinetics as Anode Materials for Highâ€Performance Potassiumâ€Ion Hybrid Capacitors. Advanced Functional Materials, 2021, 31, 2102060.	14.9	96
131	An Electrochemical Study on NH4VOPO4: Can Ion-Exchange Improve Side Reactions?. Journal of the Electrochemical Society, 2021, 168, 050513.	2.9	3
132	Recent Advances on Materials for Lithium-Ion Batteries. Energies, 2021, 14, 3145.	3.1	26
133	Manganeseâ€Based Materials for Rechargeable Batteries beyond Lithiumâ€Ion. Advanced Energy Materials, 2021, 11, 2100867.	19.5	95
134	Strategies for High Energy Density Dualâ€Ion Batteries Using Carbonâ€Based Cathodes. Advanced Energy and Sustainability Research, 2021, 2, 2100074.	5.8	21
135	Revealing the Various Electrochemical Behaviors of Sn ₄ P ₃ Binary Alloy Anodes in Alkali Metal Ion Batteries. Advanced Functional Materials, 2021, 31, 2102047.	14.9	25
136	Status of rechargeable potassium batteries. Nano Energy, 2021, 83, 105792.	16.0	113
137	Na3V2O2(PO4)2F3-2 as a stable positive electrode for potassium-ion batteries. Journal of Power Sources, 2021, 493, 229676.	7.8	10
138	Vitreum Etchingâ€Assisted Fabrication of Porous Hollow Carbon Architectures for Enhanced Capacitive Sodium and Potassiumâ€ion Storage. Small, 2021, 17, e2100538.	10.0	18
139	Constructing high-rate and long-life phosphorus/carbon anodes for potassium-ion batteries through rational nanoconfinement. Nano Energy, 2021, 83, 105772.	16.0	54
140	Biomimetics: from biological cells to battery cells. Science Bulletin, 2021, 66, 1054-1055.	9.0	2
141	Anchoring Carbon-Coated CoSe Nanoparticles on Hollow Carbon Nanocapsules for Efficient Potassium Storage. ACS Applied Energy Materials, 2021, 4, 6356-6363.	5.1	11
142	Dual Confinement of CoSe ₂ Nanorods with Polyphosphazene-Derived Heteroatom-Doped Carbon and Reduced Graphene Oxide for Potassium-Ion Batteries. ACS Omega, 2021, 6, 17113-17125.	3.5	12
143	The creation of extra storage capacity in nitrogen-doped porous carbon as high-stable potassium-ion battery anodes. Carbon, 2021, 178, 256-264.	10.3	60
144	A high-output performance mortise and tenon structure triboelectric nanogenerator for human motion sensing. Nano Energy, 2021, 84, 105933.	16.0	30

#	Article	IF	CITATIONS
145	Graphite Anode for Potassium Ion Batteries: Current Status and Perspective. Energy and Environmental Materials, 2022, 5, 458-469.	12.8	44
146	N, P-codoped graphene supported few-layered MoS2 as a long-life and high-rate anode materials for potassium-ion storage. Nano Research, 2021, 14, 3523-3530.	10.4	41
147	Solid‣tate Post Li Metal Ion Batteries: A Sustainable Forthcoming Reality?. Advanced Energy Materials, 2021, 11, .	19.5	49
148	Flexible MXene Framework as a Fast Electron/Potassiumâ€ion Dualâ€Function Conductor Boosting Stable Potassium Storage in Graphite Electrodes. Advanced Functional Materials, 2021, 31, 2102126.	14.9	77
149	Perspective on Carbon Anode Materials for K ⁺ Storage: Balancing the Intercalation ontrolled and Surfaceâ€Đriven Behavior. Advanced Energy Materials, 2021, 11, 2100856.	19.5	60
150	Comprehensive Insights into Electrolytes and Solid Electrolyte Interfaces in Potassium-Ion Batteries. Energy Storage Materials, 2021, 38, 30-49.	18.0	72
151	Advanced Graphene Materials for Sodium/Potassium/Aluminum-Ion Batteries. , 2021, 3, 1221-1237.		34
152	Tunable 2D tremella-derived carbon nanosheets with enhanced pseudocapacitance behavior for ultrafast potassium-ion storage. Science China Technological Sciences, 2021, 64, 2047-2056.	4.0	9
153	Bismuth Nanoparticles Confined in Carbonaceous Nanospheres as Anodes for High-Performance Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 31766-31774.	8.0	30
154	Redox Charge Transfer Kinetics and Reversibility of VO ₂ in Aqueous and Nonâ€Aqueous Electrolytes of Naâ€lon Storage. Energy and Environmental Materials, 2022, 5, 1222-1228.	12.8	4
155	γ′-V ₂ O ₅ Polymorph as a Promising Host Structure for Potassium Storage: an Electrochemical and Structural Study. Chemistry of Materials, 2021, 33, 5276-5289.	6.7	9
156	VN nanoparticle-assembled hollow microspheres/N-doped carbon nanofibers: An anode material for superior potassium storage. Nano Materials Science, 2022, 4, 104-112.	8.8	20
157	Antiperovskite K ₃ OI for K-Ion Solid State Electrolyte. Journal of Physical Chemistry Letters, 2021, 12, 7120-7126.	4.6	33
158	Dealloying-constructed hierarchical nanoporous bismuth-antimony anode for potassium ion batteries. Fundamental Research, 2021, 1, 408-417.	3.3	3
159	A Partial Sulfuration Strategy Derived Multi‥olk–Shell Structure for Ultraâ€ S table K/Na/Liâ€ion Storage. Advanced Materials, 2021, 33, e2100837.	21.0	45
160	Highâ€Performance Cathode Materials for Potassiumâ€Ion Batteries: Structural Design and Electrochemical Properties. Advanced Materials, 2021, 33, e2100409.	21.0	48
161	Organic Negative Electrode Materials for Metalâ€ion and Molecularâ€ion Batteries: Progress and Challenges from a Molecular Engineering Perspective. Advanced Energy Materials, 2021, 11, 2101562.	19.5	44
162	High-performance carbon by amorphization and prepotassiation for potassium-ion battery anodes. Carbon, 2021, 181, 290-299.	10.3	15

#	Article	IF	CITATIONS
163	Modulating the Open-Circuit Voltage of Two-Dimensional MoB MBene Electrode via Specific Surface Chemistry for Na/K Ion Batteries: A First-Principles Study. Journal of Physical Chemistry C, 2021, 125, 18098-18107.	3.1	15
164	High-Specific-Capacity and High-Performing Post-Lithium-Ion Battery Anode over 2D Black Arsenic Phosphorus. ACS Applied Energy Materials, 2021, 4, 7900-7910.	5.1	19
165	Anchoring ultrafine CoP and CoSb nanoparticles into rich N-doped carbon nanofibers for efficient potassium storage. Science China Materials, 2022, 65, 43-50.	6.3	18
166	Frontiers in Theoretical Analysis of Solid Electrolyte Interphase Formation Mechanism. Advanced Materials, 2021, 33, e2100574.	21.0	65
167	Co-Heteroatom-Based MOFs for Bifunctional Electrocatalysts for Oxygen and Hydrogen Evolution Reactions. Inorganic Chemistry, 2021, 60, 13434-13439.	4.0	6
168	Alkynyl-Based Covalent Organic Frameworks as High-Performance Anode Materials for Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 41628-41636.	8.0	37
169	Beyond-carbon materials for potassium ion energy-storage devices. Renewable and Sustainable Energy Reviews, 2021, 146, 111161.	16.4	12
170	Gas phase self-assembly of carbon confined Fe1â^'xS nanoparticles/exfoliated graphite composite with nano-/micro-structure for long-life anode of potassium-ion batteries. Journal of Alloys and Compounds, 2021, 871, 159522.	5.5	8
171	Storage Mechanism of Alkali Metal Ions in the Hard Carbon Anode: an Electrochemical Viewpoint. ACS Applied Materials & Interfaces, 2021, 13, 38441-38449.	8.0	33
172	Elucidating the Factors That Cause Cation Diffusion Shutdown in Spinel-Based Electrodes. Chemistry of Materials, 2021, 33, 6421-6432.	6.7	18
173	Electrolyte modulation of BiPS4 concurrently suppressing the Bi coarsening and polysulfide shuttle effect in K-ion batteries. Energy Storage Materials, 2021, 39, 96-107.	18.0	21
174	Electrolyte Effect on a Polyanionic Organic Anode for Pure Organic K-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 38315-38324.	8.0	17
175	Approaching Superior Potassium Storage of Carbonaceous Anode Through a Combined Strategy of Carbon Hybridization and Sulfur Doping. Energy and Environmental Materials, 2022, 5, 944-953.	12.8	15
176	Effect of Crystallinity of Synthetic Graphite on Electrochemical Potassium Intercalation into Graphite. Electrochemistry, 2021, 89, 433-438.	1.4	5
177	First-row transition metal compounds for aqueous metal ion batteries. Journal of Energy Chemistry, 2021, 63, 195-216.	12.9	8
178	Confining ultrafine SnS nanoparticles in hollow multichannel carbon nanofibers for boosting potassium storage properties. Science Bulletin, 2022, 67, 151-160.	9.0	75
179	Mechanochemical constructing ordered rhombic channels in graphyne analogues for rapid potassium-ion storage. 2D Materials, 2021, 8, 044012.	4.4	7
180	1,3,2-Dioxathiolane 2,2-Dioxide as an Electrolyte Additive for K-Metal Cells. ACS Energy Letters, 2021, 6, 3643-3649.	17.4	23

#	Article	IF	CITATIONS
181	Revisiting the anodic stability of nickel-cobalt hydroxide/carbon composite electrodes for rechargeable Ni-Zn battery. Chinese Chemical Letters, 2022, 33, 2648-2652.	9.0	5
182	Highly Graphitic Nâ€Doped Biomassâ€Derived Hard Carbon with a Low Operating Potential for Potassiumâ€lon Batteries. Energy Technology, 2021, 9, 2100644.	3.8	7
183	Electrochemical Overview: A Summary of ACo <i>_x</i> Mn <i>_y</i> Ni <i>_z</i> O ₂ and Metal Oxides as Versatile Cathode Materials for Metalâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2107761.	14.9	13
184	Fast potassium migration in mesoporous carbon with ultrathin framework boosting superior rate performance for high-power potassium storage. Energy Storage Materials, 2021, 40, 490-498.	18.0	96
185	A red phosphorus-graphite composite as anode material for potassium-ion batteries. Materials Today Energy, 2021, 21, 100840.	4.7	8
186	A Lignosulfonate Binder for Hard Carbon Anodes in Sodium-Ion Batteries: A Comparative Study. ACS Sustainable Chemistry and Engineering, 2021, 9, 12708-12717.	6.7	10
187	Effects of Intra-Structural Interactions of Indium Hexacyanoferrate on the Li+ and K+ Intercalation Potential. Journal of the Electrochemical Society, 0, , .	2.9	1
188	Engineering metal selenides for sodium-and potassium-ion batteries. Cell Reports Physical Science, 2021, 2, 100555.	5.6	20
189	Unusual Melting Trend in an Alkali Asymmetric Sulfonamide Salt Series: Single-Crystal Analysis and Modeling. Inorganic Chemistry, 2021, 60, 14679-14686.	4.0	5
190	A Lowâ€Strain Phosphate Cathode for Highâ€Rate and Ultralong Cycleâ€Life Potassiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 25779-25786.	2.0	8
191	Nitrogen-doped carbon decorated TiO2/Ti3C2T MXene composites as anode material for high-performance sodium-ion batteries. Surface and Coatings Technology, 2021, 422, 127568.	4.8	22
192	A Lowâ€Strain Phosphate Cathode for Highâ€Rate and Ultralong Cycleâ€Life Potassiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 25575-25582.	13.8	137
193	Accordionâ€Like Carbon with High Nitrogen Doping for Fast and Stable K Ion Storage. Advanced Energy Materials, 2021, 11, 2101928.	19.5	88
194	Photocorrosion inhibition of sulphideâ€based nanomaterials for energy production through photocatalytic water splitting. International Journal of Energy Research, 2022, 46, 634-666.	4.5	24
195	<i>In Situ</i> Probing Potassium-Ion Intercalation-Induced Amorphization in Crystalline Iron Phosphate Cathode Materials. Nano Letters, 2021, 21, 7579-7586.	9.1	20
196	Bi-continuous ion/electron transfer avenues enhancing the rate capability of SnS2 anode for potassium-ion batteries. Journal of Power Sources, 2021, 506, 230160.	7.8	17
197	Metal Phosphides Embedded with In Situâ€Formed Metal Phosphate Impurities as Buffer Materials for Highâ€Performance Potassiumâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2101413.	19.5	24
198	XPS Analysis of K-based Reference Compounds to Allow Reliable Studies of Solid Electrolyte Interphase in K-ion Batteries. ACS Applied Energy Materials, 2021, 4, 11693-11699.	5.1	33

#	Article	IF	CITATIONS
199	Achieving Highâ€Performance 3D K ⁺ â€Preâ€intercalated Ti ₃ C ₂ T _{<i>x</i>} MXene for Potassiumâ€Ion Hybrid Capacitors via Regulating Electrolyte Solvation Structure. Angewandte Chemie, 2021, 133, 26450-26457.	2.0	3
200	Achieving Highâ€Performance 3D K ⁺ â€Preâ€intercalated Ti ₃ C ₂ T _{<i>x</i>} MXene for Potassiumâ€Ion Hybrid Capacitors via Regulating Electrolyte Solvation Structure. Angewandte Chemie - International Edition, 2021, 60, 26246-26253.	13.8	50
201	Edge-nitrogen enriched carbon nanosheets for potassium-ion battery anodes with an ultrastable cycling stability. Carbon, 2021, 184, 277-286.	10.3	37
202	Potassium iodide as a low-cost cathode material for efficient potassium-ion storage. Energy Storage Materials, 2021, 41, 798-804.	18.0	3
203	Nitrogen-doped chain-like carbon nanospheres with tunable interlayer distance for superior pseudocapacitance-dominated zinc- and potassium-ion storage. Carbon, 2021, 184, 534-543.	10.3	35
204	SnSe nanocomposite chemically-bonded with carbon-coating as an anode material for K-ion batteries with outstanding capacity and cyclability. Chemical Engineering Journal, 2021, 421, 129988.	12.7	48
205	Homogeneous triple-phase interfaces enabling one-pot route to metal compound/carbon composites. Journal of Colloid and Interface Science, 2021, 599, 271-279.	9.4	3
206	Nickel silicate hydroxide on hierarchically porous carbon derived from rice husks as high-performance electrode material for supercapacitors. International Journal of Hydrogen Energy, 2021, 46, 35351-35364.	7.1	17
207	Red phosphorus: A rising star of anode materials for advanced K-ion batteries. Energy Storage Materials, 2021, 42, 193-208.	18.0	22
208	Understanding solid electrolyte interphases: Advanced characterization techniques and theoretical simulations. Nano Energy, 2021, 89, 106489.	16.0	43
209	New insights into carbon-based and MXene anodes for Na and K-ion storage: A review. Journal of Energy Chemistry, 2021, 62, 660-691.	12.9	56
210	Ion competition and limiting dendrite growth models of hybrid-ion symmetric cell. Energy Storage Materials, 2021, 42, 268-276.	18.0	20
211	Highly stable potassium metal batteries enabled by regulating surface chemistry in ether electrolyte. Energy Storage Materials, 2021, 42, 526-532.	18.0	37
212	Ultrafast-kinetics, ultralong-cycle-life, bifunctional inorganic open-framework for potassium-ion batteries. Energy Storage Materials, 2021, 42, 806-814.	18.0	7
213	Ultra-stable Sb/hard carbon composite anodes with synergistic alkali-ion storage performances. Materials Research Bulletin, 2021, 144, 111491.	5.2	13
214	Sn4P3 nanoparticles confined in multilayer graphene sheets as a high-performance anode material for potassium-ion batteries. Journal of Energy Chemistry, 2022, 66, 413-421.	12.9	64
215	Engineered single-crystal metal-selenide for rapid K-ion diffusion and polyselenide convention. Chemical Engineering Journal, 2022, 427, 131963.	12.7	32
216	11,11,12,12-tetracyano-9,10-anthraquinonedimethane as a high potential and sustainable cathode for organic potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 607, 1173-1179.	9.4	7

#	Article	IF	CITATIONS
217	Heterostructure engineering of ultrathin SnS2/Ti3C2T nanosheets for high-performance potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 606, 167-176.	9.4	28
218	Boosting potassium-storage performance via confining highly dispersed molybdenum dioxide nanoparticles within N-doped porous carbon nano-octahedrons. Journal of Colloid and Interface Science, 2022, 607, 1109-1119.	9.4	4
219	An insight into the initial Coulombic efficiency of carbon-based anode materials for potassium-ion batteries. Chemical Engineering Journal, 2022, 428, 131093.	12.7	38
220	Copper phosphide as a promising anode material for potassium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 8378-8385.	10.3	16
221	Insoluble polyanionic anthraquinones with two strong ionic O-K bonds as stable organic cathodes for pure organic K-ion batteries. Science China Materials, 2021, 64, 1598-1608.	6.3	12
222	Non-flammable liquid electrolytes for safe batteries. Materials Horizons, 2021, 8, 2913-2928.	12.2	58
223	Pseudo-solid-state electrolytes utilizing the ionic liquid family for rechargeable batteries. Energy and Environmental Science, 2021, 14, 5834-5863.	30.8	42
224	Hybrid nanostructures for electrochemical potassium storage. Nanoscale Advances, 2021, 3, 5442-5464.	4.6	2
225	Construction of NiS Nanosheets Anchored on the Inner Surface of Nitrogen-Doped Hollow Carbon Matrixes with Enhanced Sodium and Potassium Storage Performances. ACS Applied Energy Materials, 2021, 4, 662-670.	5.1	27
226	Developing better ester- and ether-based electrolytes for potassium-ion batteries. Chemical Science, 2021, 12, 2345-2356.	7.4	43
227	Advanced cathodes for potassium-ion batteries with layered transition metal oxides: a review. Journal of Materials Chemistry A, 2021, 9, 8221-8247.	10.3	37
228	Impact of Mg and Ti doping in O3 type NaNi _{1/2} Mn _{1/2} O ₂ on reversibility and phase transition during electrochemical Na intercalation. Journal of Materials Chemistry A, 2021, 9, 12830-12844.	10.3	32
229	An overview of hydroxy-based polyanionic cathode insertion materials for metal-ion batteries. Physical Chemistry Chemical Physics, 2021, 23, 18283-18299.	2.8	3
230	A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by <i>in situ</i> transmission electron microscopy. Energy and Environmental Science, 2021, 14, 2670-2707.	30.8	42
231	Manganese phosphoxide/Ni ₅ P ₄ hybrids as an anode material for high energy density and rate potassium-ion storage. Journal of Materials Chemistry A, 2021, 9, 13936-13949.	10.3	5
232	Recent progress in â€~water-in-salt' and â€~water-in-salt'-hybrid-electrolyte-based high voltage rechargeable batteries. Sustainable Energy and Fuels, 2021, 5, 1619-1654.	4.9	27
233	Recent Advances in Stability of Carbonâ€Based Anodes for Potassiumâ€Ion Batteries. Batteries and Supercaps, 2021, 4, 554-570.	4.7	25
234	Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Storage Materials, 2020, 30, 206-227.	18.0	95

#	Article	IF	CITATIONS
235	Sulfur-Rich Graphene Nanoboxes with Ultra-High Potassiation Capacity at Fast Charge: Storage Mechanisms and Device Performance. ACS Nano, 2021, 15, 1652-1665.	14.6	132
236	Probing electrochemical reactivity in an Sb ₂ S ₃ -containing potassium-ion battery anode: observation of an increased capacity. Journal of Materials Chemistry A, 2020, 8, 11424-11434.	10.3	30
237	Origin of Capacity Degradation of High-Voltage KVPO ₄ F Cathode. Journal of the Electrochemical Society, 2020, 167, 110555.	2.9	22
238	Electrochemical Redox Processes Involved in Carbon-Coated KVPO ₄ F for High Voltage K-Ion Batteries Revealed by XPS Analysis. Journal of the Electrochemical Society, 2020, 167, 130527.	2.9	15
239	Self-supported metal-organic framework nanoarrays for alkali metal ion batteries. Journal of Alloys and Compounds, 2022, 894, 162415.	5.5	10
240	Ternary Ionogel Electrolytes Enable Quasiâ€Solidâ€State Potassium Dualâ€Ion Intercalation Batteries. Advanced Energy and Sustainability Research, 2022, 3, 2100122.	5.8	6
241	Advanced Multifunctional Aqueous Rechargeable Batteries Design: From Materials and Devices to Systems. Advanced Materials, 2022, 34, e2104327.	21.0	78
242	The role of oxygen vacancies in metal oxides for rechargeable ion batteries. Science China Chemistry, 2021, 64, 1826-1853.	8.2	33
243	Paper-based aqueous Al ion battery with water-in-salt electrolyte. Green Energy and Environment, 2023, 8, 1380-1388.	8.7	5
244	Revealing the Thermal Safety of Prussian Blue Cathode for Safer Nonaqueous Batteries. Advanced Energy Materials, 2021, 11, 2101764.	19.5	29
245	Biredoxâ€lonic Anthraquinoneâ€Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Liâ€Organic Batteries. Advanced Science, 2022, 9, e2103632.	11.2	8
246	Sulfurized Polyacrylonitrile as a High-Performance and Low-Volume Change Anode for Robust Potassium Storage. ACS Nano, 2021, 15, 18419-18428.	14.6	17
247	Surface Chemistry and Mesopore Dual Regulation by Sulfurâ€Promised High Volumetric Capacity of Ti ₃ C ₂ T <i>_x</i> Films for Sodiumâ€Ion Storage. Small, 2021, 17, e2103626.	10.0	19
248	Graphene/Phosphorene nano-heterostructure as a potential anode material for (K/Na)-ion batteries: Insights from DFT and AIMD. Computational Materials Science, 2022, 202, 110936.	3.0	23
249	Application of expanded graphite-based materials for rechargeable batteries beyond lithium-ions. Nanoscale, 2021, 13, 19291-19305.	5.6	29
250	Carbonyl-containing Polymers for Organic Batteries. RSC Polymer Chemistry Series, 2020, , 198-244.	0.2	0
251	Research Development and Its Workforce: An Evidence-Based Compendium for Higher Education and Other Environments. International Journal on Studies in Education, 2020, 2, 1-25.	3.0	0
252	Role of the Solvation Shell Structure and Dynamics on Kâ€lon and Liâ€lon Transport in Mixed Carbonate Electrolytes. Batteries and Supercaps, 0, , .	4.7	3

ARTICLE IF CITATIONS Enhanced Electrochemical Properties of KTiOPO₄â€"rGO Negative Electrode for Sodium 253 3.15 and Potassium Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 24823-24830. Multifunctional Separator Allows Stable Cycling of Potassium Metal Anodes and of Potassium Metal 254 21.0 Batteries. Advanced Materials, 2022, 34, e2105855. Reconstructing Vanadium Oxide with Anisotropic Pathways for a Durable and Fast Aqueous K-Ion 255 14.6 30 Battery. ACS Nano, 2021, 15, 17717-17728. Potassium Fluoride and Carbonate Lead to Cell Failure in Potassium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 53841-53849. Polyvinylpyrrolidone-Bridged Prussian Blue/rGO Composite as a High-Performance Cathode for K-Ion 257 8.0 15 Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 54079-54087. One-Step Construction of V₅S₈ Nanoparticles Embedded in Amorphous Carbon Nanorods for High-Capacity and Long-Life Potassium Ion Half/Full Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 54308-54314. 8.0 Recent progress in quantum dots based nanocomposite electrodes for rechargeable monovalent 259 10.3 12 metal-ion and lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 508-553. High edge-nitrogen-doped porous carbon nanosheets with rapid pseudocapacitive mechanism for 260 10.3 boosted potassium-ion storage. Carbon, 2022, 187, 302-309. Impact of the Salt Anion on K Metal Reactivity in EC/DEC Studied Using GC and XPS Analysis. ACS Applied 261 8.0 23 Materials & amp; Interfaces, 2021, 13, 57505-57513. Poly(benzobisthiazole-dione) Frameworks for Highly Reversible Sodium- and Potassium-Ion Storage. 5.1 Energy & amp; Fuels, 2021, 35, 20367-20373. Surface modification and in situ carbon intercalation of two-dimensional niobium carbide as promising electrode materials for potassium-ion batteries. Chemical Engineering Journal, 2022, 431, 263 19 12.7 133838. A review on carbon nanomaterials for <scp>Kâ€ion</scp> battery anode: Progress and perspectives. 264 4.5 International Journal of Energy Research, 2022, 46, 4033-4070. Defectâ€Selectivity and "Orderâ€inâ€Disorder―Engineering in Carbon for Durable and Fast Potassium 265 21.0 96 Storage. Advanced Materials, 2022, 34, e2108621. A review on energy storage devices based on rylene imide dyes: Synthesis, applications and challenges. Fuel, 2022, 310, 122487. 6.4 Lithium and Potassium Cations Affect the Performance of Maleamate-Based Organic Anode Materials 267 2 4.1 for Potassium- and Lithium-Ion Batteries. Nanomaterials, 2021, 11, 3120. Potassium-ion batteries using KFSI/DME electrolytes: Implications of cation solvation on the 28 K+-graphite (co-)intercalation mechanism. Energy Storage Materials, 2022, 45, 291-300. Recent developments in electrode materials for dual-ion batteries: Potential alternatives to 269 14.2 60 conventional batteries. Materials Today, 2022, 52, 269-298. Layered Superconductor Cu_{0.11}TiSe₂ as a Highâ€Stable Kâ€Cathode. Advanced 270 14.9 Functional Materials, 2022, 32, 2109893.

#	Article	IF	Citations
271	Joint Enhancement in the Electrochemical Reversibility and Cycle Lives for Copper Sulfide for Sodium- and Potassium-Ion Storage via Selenium Substitution. ACS Applied Materials & Interfaces, 2021, , .	8.0	8
272	Coexistence of two coordinated states contributing to high-voltage and long-life Prussian blue cathode for potassium ion battery. Chemical Engineering Journal, 2022, 431, 133926.	12.7	27
273	Alkali and alkaline-earth metal ion–solvent co-intercalation reactions in nonaqueous rechargeable batteries. Chemical Science, 2021, 12, 15206-15218.	7.4	6
274	Thermodynamic Studies on Energy Density of Batteries. , 2022, , 275-285.		0
275	Electrode materials for K-ion batteries. , 2023, , 83-127.		3
276	<i>In-Situ</i> Perfusing Sb Nanoparticles into Hierarchical N-Doped Carbon Microspheres Towards K ⁺ -Storing Performances. SSRN Electronic Journal, O, , .	0.4	0
277	Contribution of nano-design approaches to future electrochemical energy storage systems. Frontiers of Nanoscience, 2021, 19, 273-325.	0.6	2
278	Carbon quantum dots in hard carbon: An approach to achieving PIB anodes with high potassium adsorption. Carbon, 2022, 189, 142-151.	10.3	19
279	Preparation and characterization of Schiff base metal complexes for high performance supercapattery. Journal of Energy Storage, 2022, 48, 103956.	8.1	3
280	Solution Combustion Synthesis of NaFe _{0.5} Mn _{0.5} O ₂ /C Composite as a Cathode for Improved Sodium-Ion Storage Applications. SSRN Electronic Journal, 0, , .	0.4	0
281	Ferric sauce for potassium-ion battery. Nature Sustainability, 2022, 5, 183-184.	23.7	2
282	A polymeric cathode-electrolyte interface enhances the performance of MoS2-graphite potassium dual-ion intercalation battery. Cell Reports Physical Science, 2022, 3, 100693.	5.6	9
283	Graphdiyne/Graphene/Graphdiyne Sandwiched Carbonaceous Anode for Potassium-Ion Batteries. ACS Nano, 2022, 16, 3163-3172.	14.6	56
284	A review of hard carbon anode: Rational design and advanced characterization in potassium ion batteries. InformaÄnÃ-Materiály, 2022, 4, .	17.3	85
285	Construction of Novel Bimetallic Oxyphosphide as Advanced Anode for Potassium Ion Hybrid Capacitor. Advanced Science, 2022, 9, e2105193.	11.2	14
286	Realization of Sn2P2S6-carbon nanotube anode with high K+/Na+ storage performance via rational interface manipulation–induced shuttle-effect inhibition and self-healing. Chemical Engineering Journal, 2022, 435, 134965.	12.7	19
287	Non-lithium-based metal ion capacitors: recent advances and perspectives. Journal of Materials Chemistry A, 2022, 10, 357-378.	10.3	34
288	MXene-Based Aerogel Anchored with Antimony Single Atoms and Quantum Dots for High-Performance Potassium-Ion Batteries. Nano Letters, 2022, 22, 1225-1232.	9.1	64

ARTICLE IF CITATIONS The road to potassium-ion batteries. , 2022, , 265-307. 289 1 A Strainâ€Relaxation Red Phosphorus Freestanding Anode for Nonâ€Aqueous Potassium Ion Batteries. 19.5 Advanced Energy Materials, 2022, 12, . Design of Flexible Films Based on Kinked Carbon Nanofibers for High Rate and Stable Potassium-Ion 291 27.0 41 Storage. Nano-Micro Letters, 2022, 14, 47. Toward Theoretical Capacity and Superhigh Power Density for Potassium–Selenium Batteries via Facilitating Reversible Potassiation Kinetics. ACS Applied Materials & amp; Interfaces, 2022, 14, 6828-6840 Homologous Nitrogenâ€Doped Hierarchical Carbon Architectures Enabling Compatible Anode and 293 10.0 10 Cathode for Potassiumâ€Ion Hybrid Capacitors. Small, 2022, 18, e2107139. Preparation of K2Fe[Fe(CN)6] nanoparticles by improved electrostatic spray assisted precipitation 294 5.5 technology as potassium ion battery cathodes. Journal of Alloys and Compounds, 2022, 904, 164049. Exploration of CrPO4@N-doped carbon composite as advanced anode material for potassium-ion 295 5.2 2 batteries. Electrochimica Acta, 2022, 409, 139996. Cation Diffusion Facilitated by Antiphase Boundaries in Layered Intercalation Compounds. Chemistry 296 6.7 of Materials, 2022, 34, 1889-1896. Nature of bismuth and antimony based phosphate nanobundles/graphene for superior potassium ion 297 12.7 18 batteries. Chemical Engineering Journal, 2022, 435, 134746. Preferentially engineering edge–nitrogen sites in porous hollow spheres for ultra–fast and 12.7 24 reversible potassium storage. Chemical Engineering Journal, 2022, 435, 134821. Facile fabrication of oxygen and nitrogen co-doped 3D-carbon nanoarrays for high performance 299 environmentally friendly wireless charging integration supercapacitor. Journal of Energy Storage, 2 8.1 2022, 49, 104082. Defect-rich potassium amide: A new solid-state potassium ion electrolyte. Journal of Energy Chemistry, 2022, 69, 555-560. Application of Advanced Vibrational Spectroscopy in Revealing Critical Chemical Processes and 301 Phenomena of Electrochemical Energy Storage and Conversion. ACS Applied Materials & amp; 8.0 12 Interfaces, 2022, 14, 23033-23055. Implantation of Fe7S8 nanocrystals into hollow carbon nanospheres for efficient potassium storage. 9.4 Journal of Colloid and Interface Science, 2022, 615, 840-848. Hierarchical porous nitrogen, oxygen, and phosphorus ternary doped hollow biomass carbon spheres 303 79 for highâ€speed and longâ€life potassium storage. , 2022, 4, 45-59. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nature 304 293 Sustainability, 2022, 5, 225-234. Bimetallic sulfide NiCo₂S₄ yolkâ€"shell nanospheres as high-performance 305 5.6 15 cathode materials for rechargeable magnesium batteries. Nanoscale, 2022, 14, 4753-4761. Hierarchical porous carbon-incorporated metal-based nanocomposites for secondary metal-ion batteries., 2022, , 179-216.

#	Article	IF	CITATIONS
307	Effects of Ni Dopant on Morphology, Crystal and Electronic Structure, Electrical Properties of Sodium Trititanate. SSRN Electronic Journal, 0, , .	0.4	0
308	In-Situ Synthesis of Antimony Nanoparticles Encapsulated in Nitrogen-Doped Porous Carbon Framework as High Performance Anode Material for Potassium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
309	B, N Stabilization Effect on Multicavity Carbon Microspheres for Boosting Durable and Fast Potassium-Ion Storage. SSRN Electronic Journal, 0, , .	0.4	0
310	Less is more: tiny amounts of insoluble multi-functional nanoporous additives play a big role in lithium secondary batteries. Journal of Materials Chemistry A, 2022, 10, 8047-8058.	10.3	5
311	An Îʿ-Mnse Nanorod as Anode for Superior Potassium-Ion Storage Via Synergistic Effects of Physical Encapsulation and Chemical Bonding. SSRN Electronic Journal, 0, , .	0.4	0
312	Nanostructured metal selenides as anodes for potassium-ion batteries. Sustainable Energy and Fuels, 2022, 6, 2087-2112.	4.9	8
313	Environmentally Benign Humic Acid for Potassium-Ion Hybrid Capacitors. SSRN Electronic Journal, 0, , .	0.4	0
314	Metal organic framework-based nanostructure materials: applications for non-lithium ion battery electrodes. CrystEngComm, 2022, 24, 2925-2947.	2.6	18
315	Iron-chalcogenide-based electrode materials for electrochemical energy storage. Journal of Materials Chemistry A, 2022, 10, 7517-7556.	10.3	20
317	Development of Nonaqueous Electrolytes for High-Voltage K-Ion Batteries. Bulletin of the Chemical Society of Japan, 2022, 95, 569-581.	3.2	14
318	Lignin-based materials for electrochemical energy storage devices. Nano Materials Science, 2023, 5, 141-160.	8.8	26
319	Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere. Science Bulletin, 2022, 67, 933-945.	9.0	96
320	Manganese-Based Tunnel-Type Cathode Materials for Secondary Li-Ion and K-Ion Batteries. Inorganic Chemistry, 2022, 61, 3959-3969.	4.0	3
321	Optimizing the Interlayer Spacing of Heteroatom-Doped Carbon Nanofibers toward Ultrahigh Potassium-Storage Performances. ACS Applied Materials & Interfaces, 2022, 14, 9212-9221.	8.0	27
322	Micrometer Carbon Ball-Decorated Nanowire-Structured SnO ₂ @C Composites as an Anode for Potassium-Ion Batteries with Enhanced Performance. Energy & Fuels, 2022, 36, 2833-2840.	5.1	4
323	Electrolyte formulation strategies for potassiumâ€based batteries. Exploration, 2022, 2, .	11.0	18
324	Ti3C2Tx@K2Ti4O9 composite materials by controlled oxidation and alkalization strategy for potassium ion batteries. Ceramics International, 2022, 48, 16418-16424.	4.8	8
325	Mechanistic Elucidation of Electronically Conductive PEDOT:PSS Tailored Binder for a Potassiumâ€lon Battery Graphite Anode: Electrochemical, Mechanical, and Thermal Safety Aspects. Advanced Energy Materials, 2022, 12, .	19.5	19

#	Article	IF	CITATIONS
326	O- and S-Terminated M ₂ C MXenes as Anode Materials for Na/K-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 4267-4275.	3.1	3
327	Anion Doping for Layered Oxides with a Solid-Solution Reaction for Potassium-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2022, 14, 13379-13387.	8.0	11
328	K2.13V1.52Ti0.48(PO4)3 as an anode material with a long cycle life for potassium-ion batteries. Electrochemistry Communications, 2022, 136, 107247.	4.7	4
329	Interphases in the electrodes of potassium ion batteries. JPhys Materials, 2022, 5, 022001.	4.2	4
330	Highâ€Potential Cathodes with Nitrogen Active Centres for Quasiâ€Solid Protonâ€Ion Batteries. Angewandte Chemie, 2022, 134, .	2.0	12
331	Highâ€Potential Cathodes with Nitrogen Active Centres for Quasiâ€Solid Protonâ€Ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
332	Opportunities and challenges for 2D heterostructures in battery applications: a computational perspective. Nanotechnology, 2022, , .	2.6	1
333	Review—Recent Advances in Understanding Potassium Metal Anodes. Journal of the Electrochemical Society, 2022, 169, 030510.	2.9	15
334	Sodium and potassium ion rich ferroelectric solid electrolytes for traditional and electrode-less structural batteries. APL Materials, 2022, 10, .	5.1	7
335	Grapheneâ€Based Conductive Networks to Enhance the Performance of Polyimide Anode Materials for Dualâ€Ion Batteries. ChemistrySelect, 2022, 7, .	1.5	6
336	K ₃ SbS ₄ as a Potassium Superionic Conductor with Low Activation Energy for K–S Batteries. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19
337	Stabilizing SEI by cyclic ethers toward enhanced K+ storage in graphite. Journal of Energy Chemistry, 2022, 71, 344-350.	12.9	9
338	K ₃ SbS ₄ as a Potassium Superionic Conductor with Low Activation Energy for K–S Batteries. Angewandte Chemie, 2022, 134, .	2.0	4
339	Enhanced NaFe0.5Mn0.5O2/C Nanocomposite as a Cathode for Sodium-Ion Batteries. Nanomaterials, 2022, 12, 984.	4.1	10
340	An Openâ€Ended Ni ₃ S ₂ –Co ₉ S ₈ Heterostructures Nanocage Anode with Enhanced Reaction Kinetics for Superior Potassiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2201420.	21.0	68
341	Hollow CoS/C Structures for High-Performance Li, Na, K Ion Batteries. Frontiers in Chemistry, 2022, 10, 845742.	3.6	1
342	Soft carbon-coated bulk graphite for improved potassium ion storage. Chinese Chemical Letters, 2023, 34, 107312.	9.0	11
343	Tracking Passivation and Cation Flux at Incipient Solidâ€Electrolyte Interphases on Multi‣ayer Graphene using High Resolution Scanning Electrochemical Microscopy. ChemElectroChem, 2022, 9, .	3.4	18

#	Article	IF	CITATIONS
344	Designing a durable high-rate K0.45Ni0.1Fe0.1Mn0.8O2 cathode for K-ion batteries: A joint study of theory and experiment. Science China Materials, 2022, 65, 1741-1750.	6.3	3
345	Engineering Ion Diffusion by CoS@SnS Heterojunction for Ultrahigh-Rate and Stable Potassium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 16379-16385.	8.0	42
346	Bio-interactive nanoarchitectonics with two-dimensional materials and environments. Science and Technology of Advanced Materials, 2022, 23, 199-224.	6.1	37
347	Hexagonal Î'-MnO2 nanoplates as efficient cathode material for potassium-ion batteries. Ceramics International, 2022, 48, 28856-28863.	4.8	30
348	Thermal dynamics of P2-Na0.67Ni0.33Mn0.67O2 cathode materials for sodium ion batteries studied by in situ analysis. Journal of Materials Research, 2022, 37, 1156-1163.	2.6	1
349	Nickel tetrathiooxalate as a cathode material for potassium batteries. Mendeleev Communications, 2022, 32, 226-227.	1.6	1
350	Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. Bulletin of the Chemical Society of Japan, 2022, 95, 774-795.	3.2	65
351	Inorganic cathode materials for potassium ion batteries. Materials Today Energy, 2022, 25, 100982.	4.7	18
352	Glyoxal-based electrolytes for potassium-ion batteries. Energy Storage Materials, 2022, 47, 534-541.	18.0	11
353	Strengthened the structural stability of in-situ Fâ^' doping Ni-rich LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries. Chemical Engineering Journal, 2022, 438, 135537.	12.7	50
354	In situ perfusing Sb particles into porous N-doped carbon microspheres and their electrochemical properties in potassium ion batteries. Journal of Alloys and Compounds, 2022, 906, 164263.	5.5	5
355	A stable covalent organic framework cathode enables ultra-long cycle life for alkali and multivalent metal rechargeable batteries. Energy Storage Materials, 2022, 48, 439-446.	18.0	42
356	Towards rechargeable Na-SexSy batteries: From fundamental insights to improvement strategies. Chemical Engineering Journal, 2022, 442, 136189.	12.7	5
357	Fast and homogeneous ion regulation toward a 4ÂV, high-rate and dendrite-free potassium metal battery. Chemical Engineering Journal, 2022, 442, 135927.	12.7	11
358	B, N stabilization effect on multicavity carbon microspheres for boosting durable and fast potassium-ion storage. Journal of Colloid and Interface Science, 2022, 620, 24-34.	9.4	13
359	Stable Solid Electrolyte Interphase for Long-Life Potassium Metal Batteries. ACS Energy Letters, 2022, 7, 401-409.	17.4	32
360	Advanced Preâ€Diagnosis Method of Biomass Intermediates Toward High Energy Dualâ€Carbon Potassiumâ€lon Capacitor. Advanced Energy Materials, 2022, 12, .	19.5	76
361	Dimensionally Stable Polyimide Frameworks Enabling Long-Life Electrochemical Alkali-Ion Storage. ACS Applied Materials & Amp; Interfaces, 2022, 14, 826-833.	8.0	4

#	Article	IF	CITATIONS
362	Boosting K ⁺ Capacitive Storage in Dualâ€Doped Carbon Crumples with B–N Moiety via a General Proticâ€Salt Synthetic Strategy. Advanced Functional Materials, 2022, 32, .	14.9	35
363	Confining MoSe ₂ Nanosheets into N-Doped Hollow Porous Carbon Microspheres for Fast-Charged and Long-Life Potassium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 59882-59891.	8.0	18
364	Puffing Up Hollow Carbon Nanofibers with Highâ€Energy Metalâ€Organic Frameworks for Capacitiveâ€Dominated Potassiumâ€Ion Storage. Small, 2022, 18, e2105767.	10.0	13
365	Water–Solid Interface Engineering Stabilizes Kâ€Birnessite Cathode. Advanced Functional Materials, 2022, 32, 2108267.	14.9	2
366	Suppressing the Jahn–Teller Effect in Mnâ€Based Layered Oxide Cathode toward Longâ€Life Potassiumâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	14.9	52
367	Amine-Wetting-Enabled Dendrite-Free Potassium Metal Anode. ACS Nano, 2022, 16, 7291-7300.	14.6	36
368	High-efficiency cathode potassium compensation and interfacial stability improvement enabled by dipotassium squarate for potassium-ion batteries. Energy and Environmental Science, 2022, 15, 3015-3023.	30.8	25
369	Organic electrolyte design for practical potassium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 19090-19106.	10.3	30
370	Vacancy Engineering in Ws2 Nanosheets for Enhanced Potassiumâ€ion Storage. SSRN Electronic Journal, 0, , .	0.4	0
371	Stabilizing BiOCl/Ti ₃ C ₂ T _{<i>x</i>} hybrids for potassium-ion batteries <i>via</i> solid electrolyte interphase reconstruction. Inorganic Chemistry Frontiers, 2022, 9, 3165-3175.	6.0	5
372	Perspectives on Iron Oxide-Based Materials with Carbon as Anodes for Li- and K-Ion Batteries. Nanomaterials, 2022, 12, 1436.	4.1	17
373	Advanced Dualâ€ion Batteries with Highâ€Capacity Negative Electrodes Incorporating Black Phosphorus. Advanced Science, 2022, , 2201116.	11.2	11
374	Dynamic Reversible Evolution of Solid Electrolyte Interface in Nonflammable Triethyl Phosphate Electrolyte Enabling Safe and Stable Potassiumâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	14.9	32
375	Ultrastable Bioderived Organic Anode Induced by Synergistic Coupling of Binder/Carbon-Network for Advanced Potassium-Ion Storage. Nano Letters, 2022, 22, 4115-4123.	9.1	17
376	Charge–Discharge Behavior of Graphite Negative Electrodes in FSA-Based Ionic Liquid Electrolytes: Comparative Study of Li-, Na-, K-Ion Systems. Journal of the Electrochemical Society, 2022, 169, 050507.	2.9	14
377	Controlling the Cathodic Potential of KVPO ₄ F through Oxygen Substitution. Chemistry of Materials, 2022, 34, 4523-4535.	6.7	18
378	Synthesis of multicore-shell FeS2@C nanocapsules for stable potassium-ion batteries. Journal of Energy Chemistry, 2022, 73, 126-132.	12.9	43
379	Superconcentrated NaFSA–KFSA Aqueous Electrolytes for 2 V-Class Dual-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 23507-23517.	8.0	7

#	Article	IF	CITATIONS
380	Fundamental Understanding and Research Progress on the Interfacial Behaviors for Potassiumâ€lon Battery Anode. Advanced Science, 2022, 9, e2200683.	11.2	53
381	Designing carbon anodes for advanced potassium-ion batteries: Materials, modifications, and mechanisms. , 2022, 1, 100057.		39
382	Highly Potassiophilic Graphdiyne Skeletons Decorated with Cu Quantum Dots Enable Dendriteâ€Free Potassiumâ€Metal Anodes. Advanced Materials, 2022, 34, e2202685.	21.0	26
383	An Anodeâ€Free Potassiumâ€Metal Battery Enabled by a Directly Grown Grapheneâ€Modulated Aluminum Current Collector. Advanced Materials, 2022, 34, e2202902.	21.0	27
384	Active material and interphase structures governing performance in sodium and potassium ion batteries. Chemical Science, 2022, 13, 6121-6158.	7.4	41
385	VPO ₄ F Fluorophosphates Polyanion Cathodes for Highâ€Voltage Proton Storage. Angewandte Chemie - International Edition, 2022, 61, .	13.8	11
386	Dendrite-free alkali metal electrodeposition from contact-ion-pair state induced by mixing alkaline earth cation. Cell Reports Physical Science, 2022, 3, 100907.	5.6	4
387	Zinc-guided 3D graphene bulk materials for high-performance binder-free anodes of potassium-ion batteries. Journal of Power Sources, 2022, 540, 231613.	7.8	2
388	An α-MnSe nanorod as anode for superior potassium-ion storage via synergistic effects of physical encapsulation and chemical bonding. Chemical Engineering Journal, 2022, 446, 137152.	12.7	20
389	Coupling core–shell Bi@Void@TiO ₂ heterostructures into carbon nanofibers for achieving fast potassium storage and long cycling stability. Journal of Materials Chemistry A, 2022, 10, 12908-12920.	10.3	12
390	Intercalation-Deposition Mechanism Induced by Aligned Carbon Fiber Toward Dendrite-Free Metallic Potassium Batteries. SSRN Electronic Journal, 0, , .	0.4	0
391	In-situ synthesis of antimony nanoparticles encapsulated in nitrogen-doped porous carbon framework as high performance anode material for potassium-ion batteries. Chemical Engineering Journal, 2022, 446, 137302.	12.7	12
392	Improving strategies for the molecular structure of organic anode/cathode materials in potassiumâ€ i on batteries. EcoMat, 2022, 4, .	11.9	9
393	Tuning the structure and electrochemical performance of pinecone-derived porous carbon for potassium-ion battery anodes using molten ZnCl2. Ionics, 2022, 28, 3799-3816.	2.4	3
394	High-performance, three-dimensional and porous K3V2(PO4)3/C cathode material for potassium-ion batteries. Ionics, 2022, 28, 3817-3831.	2.4	6
395	VPO4F Fluorophosphates Polyanion Cathodes forÂHighâ€Voltage Proton Storage. Angewandte Chemie, 0, , .	2.0	0
396	Advances and perspectives on one-dimensional nanostructure electrode materials for potassium-ion batteries. Materials Today, 2022, 56, 114-134.	14.2	26
397	Carbon materials toward efficient potassium storage: Rational design, performance evaluation and potassium storage mechanism. Green Energy and Environment, 2023, 8, 115-140.	8.7	10

ARTICLE IF CITATIONS # Monolayer and bilayer siligraphenes as high-performance anode materials for potassium ion batteries: 398 4.9 19 A first principles study. Journal of Molecular Liquids, 2022, 360, 119523. Highly effective solid electrolyte interface on SnO2@C enabling stable potassium storage 399 12.7 performance. Chemical Engineering Journal, 2022, 446, 137265. Organic-conjugated polyanthraquinonylimide cathodes for rechargeable magnesium batteries. 400 10.3 15 Journal of Materials Chemistry A, 2022, 10, 14111-14120. Thermally fabricated cobalt telluride in nitrogen-rich carbon dodecahedra as high-rate potassium and sodium ion battery anodes. Sustainable Energy and Fuels, 2022, 6, 3582-3590. Synthesis of CoSe₂ reinforced nitrogen-doped carbon composites as advanced anodes for 402 6.0 8 potassium-ion batteries. Inorganic Chemistry Frontiers, 2022, 9, 3719-3727. Constructing Extended π-Conjugated Molecules with <i>o</i>-Quinone Groups as High-Energy Organic Cathode Materials. ACS Applied Materials & amp; Interfaces, 2022, 14, 27994-28003. 8.0 Expanding the ReS₂ Interlayer Promises High-Performance Potassium-Ion Storage. ACS 404 8.0 9 Applied Materials & amp; Interfaces, 0, , . Synthesis of KVPO₄F/Carbon Porous Single Crystalline Nanoplates for High-Rate 405 9.1 37 Pótassium-Ion Batteries. Nano Letters, 2022, 22, 4933-4940. Nitrogen and phosphorus co-doped carbon for improving capacity and rate performances of 406 7 5.6 potassium ion batteries. FlatChem, 2022, , 100398. All-Solid-State Potassium Polymer Batteries Enabled by the Effective Pretreatment of Potassium Metal. ACS Energy Letters, 2022, 7, 2244-2246. Advances in Carbon Materials for Sodium and Potassium Storage. Advanced Functional Materials, 408 14.9 54 2022, 32, . Recent progress in the realization of metal-ion capacitors with alloying anodic hosts: A mini review. 409 Electrochemistry Communications, 2022, 139, 107305. Electrochemical Proton Storage: From Fundamental Understanding to Materials to Devices. 410 27.0 24 Nano-Micro Letters, 2022, 14, . Deformation and Stresses During Alkali Metal Alloying/Dealloying of Sn-Based Electrodes. Applied 10.1 Mechanics Reviews, 2022, 74, . Layered Oxide Cathodes Promoted by Crystal Regulation Strategies for Potassiumâ€lon Batteries. 412 3.3 4 Chemistry - A European Journal, 2022, 28, . Intercalation-deposition mechanism induced by aligned carbon fiber toward dendrite-free metallic potassium batteries. Energy Storage Materials, 2022, 51, 122-129. Optimized electrode formulation for enhanced performance of graphite in K-ion batteries. 414 5.26 Electrochimica Acta, 2022, 425, 140747. Next-generation Rechargeable Batteries Utilizing Ionic Liquids and Various Charge Carriers. 1.4 Electrochemistry, 2022, 90, 101005-101005.

ARTICLE IF CITATIONS # Charge storage mechanisms of a $\tilde{l}\in a\in d$ conjugated polymer for advanced alkali-ion battery anodes. 7.4 7 416 Chemical Science, 2022, 13, 8161-8170. Investigation of ion-electrode interactions of linear polyimides and alkali metal ions for next 7.4 generation alternative-ion batteries. Chemical Science, 2022, 13, 9191-9201. N-doped pinecone-based carbon with a hierarchical porous pie-like structure: a long-cycle-life anode 418 3.6 5 material for potassium-ion batteries. RSC Advances, 2022, 12, 20305-20318. 3d Electronic Channels Wrapped Large-Sized Snse as Flexible Electrode for Sodium-Ion Batteries. SSRN 0.4 Electronic Journal, 0, , . The effects of solvents on the physical and electrochemical properties of potassium-ion conducting 420 1.8 5 polymer gel electrolytes. High Performance Polymers, 2023, 35, 28-35. å±,状KxMnO2基é'¾ç¦»åç"µæ±æ£æžææ–™çš"ç"究现状åŠå'展è¶‹åŠ;. Scientia Sinica Chimica, 2022, , . 0.4 K⁺ Single Cation Ionic Liquids Electrolytes with Low Melting Asymmetric Salt. Journal of 422 3.1 8 Physical Chemistry Č, 2022, 126, 11407-11413. Highly Dispersed Antimony–Bismuth Alloy Encapsulated in Carbon Nanofibers for Ultrastable K-Ion 423 4.6 Batteries. Journal of Physical Chemistry Letters, 2022, 13, 6587-6596. Boron-Doped Pine-Cone Carbon With 3D Interconnected Porosity for Use as an Anode for 424 3.6 5 Potassium-Ion Batteries With Long Life Cycle. Frontiers in Chemistry, 0, 10, . Defect Properties of Li2NiGe3O8. Clean Technologies, 2022, 4, 619-628. 4.2 High Conductivity in a Fluorine-Free K-Ion Polymer Electrolyte. ACS Applied Energy Materials, 2022, 5, 426 5.19 9009-9019. Cyclic-anion salt for high-voltage stable potassium-metal batteries. National Science Review, 2022, 9, . 9.5 123 Tailoring Nitrogen Terminals on MXene Enables Fast Charging and Stable Cycling Na-Ion Batteries at 428 27.0 28 Low Temperature. Nano-Micro Letters, 2022, 14, . A Rechargeable K/Br Battery. Advanced Functional Materials, 2022, 32, . 429 14.9 28 Vacancy engineering in WS2 nanosheets for enhanced potassiumâ€ion storage. Journal of Power 430 7.8 6 Sources, 2022, 542, 231791. Recent Progress of Novel Non-Carbon Anode Materials for Potassium-Ion Battery. Energy Storage 19 Materials, 2022, 51, 327-360. Application of NiCoP/NiCo2N designed by heterogeneous interface engineering in low-temperature 432 8.1 6 flexible supercapacitors. Journal of Energy Storage, 2022, 54, 105302. Research progress on high-temperature resistant polymer separators for lithium-ion batteries. Energy 28 Storage Materials, 2022, 51, 638-659.

#	Article	IF	CITATIONS
434	Ultra-small few-layered MoSe2 nanosheets encapsulated in nitrogen-doped porous carbon nanofibers to create large heterointerfaces for enhanced potassium-ion storage. Applied Surface Science, 2022, 601, 154196.	6.1	3
435	Aqueous zinc-ion batteries based on a 2D layered Bi2Te3 cathode. Chemical Engineering Journal, 2022, 450, 138132.	12.7	4
436	Recent advances and promise of zinc-ion energy storage devices based on MXenes. Journal of Materials Science, 2022, 57, 13817-13844.	3.7	5
437	Electrochemical energy storage devices under particular service environments: Achievements, challenges, and perspective. Applied Physics Reviews, 2022, 9, .	11.3	11
438	Insights of cationic diffusion in nickel-based honeycomb layered tellurates using molecular dynamics simulation. Solid State Ionics, 2022, 383, 115982.	2.7	0
439	A Mushroom Derived Biomass Carbon as High-Stability Anode for Potassium Ion Battery. SSRN Electronic Journal, 0, , .	0.4	0
440	Corrugated Layered Titanates as High-Voltage Cathode Materials for Potassium-Ion Batteries. , 2022, 4, 1653-1659.		7
441	Coaxial Hard Carbonâ€coated Carbon Nanotubes as Anodes for Sodiumâ€ion Batteries. ChemNanoMat, 2022, 8, .	2.8	1
442	Reclaimed δ-MnO2 from exhausted Zn/C primary cells as active cathode in secondary Zn2+ ion batteries. Journal of Solid State Electrochemistry, 2022, 26, 2479-2489.	2.5	1
443	Hydration Enables Airâ€Stable and Highâ€Performance Layered Cathode Materials for both Organic and Aqueous Potassiumâ€Ion Batteries. Advanced Functional Materials, 2022, 32, .	14.9	9
444	Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries. Nature Communications, 2022, 13, .	12.8	54
445	A Comparative Study on the K-ion Storage Behavior of Commercial Carbons. Crystals, 2022, 12, 1140.	2.2	0
446	Porous Structures Formed by Fluorine-Doped Reduced Graphene Oxide Sheets as High-Performance Anodes for Potassium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 11317-11327.	5.1	1
447	Unveiling Interstitial Anionic Electron-Driven Ultrahigh K-Ion Storage Capacity in a Novel Two-Dimensional Electride Exemplified by Sc ₃ Si ₂ . Journal of Physical Chemistry Letters, 2022, 13, 7439-7447.	4.6	14
448	Constructing Flexible and Conductive Carbon Matrix on Organic Potassium Terephthalate to Enhance the K-storage Performance. Journal of Electroanalytical Chemistry, 2022, , 116727.	3.8	0
449	Direct-Chemical Vapor Deposition-Enabled Graphene for Emerging Energy Storage: Versatility, Essentiality, and Possibility. ACS Nano, 2022, 16, 11646-11675.	14.6	16
450	Formation of Mn–Ni Prussian Blue Analogue Spheres as a Superior Cathode Material for Potassium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 11789-11796.	5.1	21
451	Key Factor Determining the Cyclic Stability of the Graphite Anode in Potassium-Ion Batteries. ACS Nano, 2022, 16, 12511-12519.	14.6	25

#	Article	IF	CITATIONS
452	Phase Transformations and Phase Segregation during Potassiation of Sn <i>_x</i> P <i>_y</i> Anodes. Chemistry of Materials, 2022, 34, 7460-7467.	6.7	4
453	Recent progresses and perspectives of VN-based materials in the application of electrochemical energy storage. Journal of Industrial and Engineering Chemistry, 2022, 114, 52-76.	5.8	5
454	Porphyrin- and phthalocyanine-based systems for rechargeable batteries. Energy Storage Materials, 2022, 52, 495-513.	18.0	17
455	Exploration of bifunctional Vanadium-based Metal-Organic framework with double active centers for Potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 628, 556-565.	9.4	6
456	Origin of enhanced capacity retention of aqueous potassium-ion batteries using monohydrate-melt electrolyte. Journal of Power Sources, 2022, 548, 232096.	7.8	5
457	Dendrite-free Zn anodes enabled by a hierarchical zincophilic TiO2 layer for rechargeable aqueous zinc-ion batteries. Applied Surface Science, 2022, 606, 154932.	6.1	19
458	Gradient-tailored and heterointerface-rich architectures enable superior Li-ion storage performances of GeS2@NiS@N-doped carbon microspheres. Applied Surface Science, 2022, 605, 154782.	6.1	5
459	3D electronic channels wrapped Large-Sized SnSe as flexible electrode for Sodium-Ion batteries. Applied Surface Science, 2022, 606, 154955.	6.1	2
460	The direct modification of metal Cu interface for high-performing solid-state anode via KCu7S4/Cu7S4 interconversion mechanism. Chemical Engineering Journal, 2023, 452, 139263.	12.7	1
461	Thermodynamic and Electrochemical Investigations of Potassium–Antimony Alloys. Russian Journal of Applied Chemistry, 2022, 95, 341-351.	0.5	0
462	Edge-enriched and S-doped carbon nanorods to accelerate electrochemical kinetics of sodium/potassium storage. Carbon, 2023, 201, 776-784.	10.3	10
463	Achieving stable K-storage performance of carbon sphere-confined Sb via electrolyte regulation. Journal of Energy Chemistry, 2023, 76, 51-58.	12.9	8
464	Dualâ€ion Intercalation Chemistry Enabling Hybrid Metalâ€ion Batteries. ChemSusChem, 2023, 16, .	6.8	7
465	Less is More: Trace Amount of a Cyclic Sulfate Electrolyte Additive Enable Ultra-Stable Graphite Anode for High-Performance Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 44429-44438.	8.0	5
466	Controlling Li Dendritic Growth in Graphite Anodes by Potassium Electrolyte Additives for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 42078-42092.	8.0	14
467	Insights into Cationic Transference Number Values and Solid Electrolyte Interphase Growth in Liquid/Solid Electrolytes for Potassium Metal Batteries. ACS Physical Chemistry Au, 2022, 2, 490-495.	4.0	2
468	Accelerated Diffusion Kinetics in ZnTe/CoTe ₂ Heterojunctions for High Rate Potassium Storage. Advanced Energy Materials, 2022, 12, .	19.5	69
469	Self-templated anchor of FeS2 nanoparticles on porous carbon matrix as highly reversible K-storage anode. Applied Surface Science, 2023, 608, 155153.	6.1	5

#	Article	IF	CITATIONS
470	Schiff-Base Covalent Organic Framework/Carbon Nanotubes Composite for Advanced Potassium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 15592-15599.	5.0	19
471	Environmentally Benign Humic Acid for Potassium-Ion Hybrid Capacitors. Energy & Fuels, 2022, 36, 12807-12815.	5.1	1
472	Edge-oxidation-induced densification towards hybrid bulk carbon for low-voltage, reversible and fast potassium storage. Energy Storage Materials, 2022, 53, 482-491.	18.0	33
473	A crystalline organic hybrid indium antimony sulfide for high performance lithium/sodium storage. Journal of Solid State Chemistry, 2022, 316, 123637.	2.9	6
474	Development of polyanionic sodium-ion battery insertion materials. , 2022, , .		0
475	Mineral inspired electrode materials for metal-ion batteries. , 2022, , .		0
476	Perspectives on Lithium-Based Batteries and Post-Lithium Batteries for Electric Vehicles. , 2022, , .		0
477	Robust carbon nanotube-interwoven KFeSO4F microspheres as reliable potassium cathodes. Science Bulletin, 2022, 67, 2208-2215.	9.0	35
478	Carbon-based flexible electrodes for electrochemical potassium storage devices. New Carbon Materials, 2022, 37, 852-874.	6.1	10
479	Electrode Potentials Part 2: Nonaqueous and Solid-State Systems. Electrochemistry, 2022, 90, 102002-102002.	1.4	3
480	Electrochemical performance of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>KTiOAsO</mml:mi><mml:mn>4(KTA) in potassium-ion batteries from density-functional theory. Physical Review Materials, 2022, 6, .</mml:mn></mml:msub></mml:math 	mm al# mn><	:/n 2 ml:msub
481	Engineering Microstructure of a Robust Polymer Anode by Moderate Pyrolysis for High-Performance Sodium Storage. ACS Applied Materials & Interfaces, 2022, 14, 49641-49649.	8.0	2
482	Rational design of 3D porous niobium carbide MXene/rGO hybrid aerogels as promising anode for potassium-ion batteries with ultrahigh rate capability. Nano Research, 2023, 16, 2463-2473.	10.4	7
483	A Fastâ€Charging and Highâ€Temperature Allâ€Organic Rechargeable Potassium Battery. Advanced Science, 2022, 9, .	11.2	8
484	Concave Engineering of Hollow Carbon Spheres toward Advanced Anode Material for Sodium/Potassiumâ€ion Batteries. Advanced Energy Materials, 2022, 12, .	19.5	34
485	V ₂ O ₅ as a versatile electrode material for postlithium energy storage systems. , 2023, 2, .		7
486	Operando spectroelectrochemistry of bulk-exfoliated 2D SnS2 for anodes within alkali metal ion batteries reveals unusual tin (III) states. Frontiers in Chemistry, 0, 10, .	3.6	1
487	Thermodynamic Transformation of Crystalline Organic Hybrid Iron Selenide to Fe _{<i>x</i>} Se _{<i>y</i>} @CN Microrods for Sodium Ion Storage. ACS Applied Materials & Interfaces, 2022, 14, 49854-49864.	8.0	21

ARTICLE IF CITATIONS A mushroom derived biomass carbon as high-stability anode for potassium ion battery. Journal of 488 5.5 12 Alloys and Compounds, 2023, 934, 167820. Advanced electrochemical energy storage and conversion on graphdiyne interface., 2022, 1, e9120036. 489 24 Recovery of LiFePO4 from used lithium-ion batteries by sodium-bisulphate-assisted roasting. Journal of 490 9.3 20 Cleaner Production, 2022, 379, 134748. Cocoon-shaped P3-type K0.5Mn0.7Ni0.3O2 as an advanced cathode material for potassium-ion batteries. Journal of Energy Chemistry, 2023, 76, 332-338. Interlayerâ€Engineering and Surfaceâ€Substituting Manganeseâ€Based Selfâ€Evolution for Highâ€Performance 492 19.5 12 Potassium Cathode. Advanced Energy Materials, 2023, 13, . Electrolyte manipulation enhanced pseudo-capacitive K-storage for TiO2 anode. Applied Surface 493 6.1 Science, 2023, 611, 155617. <scp>DFT</scp>Â+ <i>U</i> calculations of structural, magnetic, and electrochemical properties and Na⁺ diffusion barrier in the <scp>O3</scp>â€phase of 494 <scp>NaTm₀</scp>_.<scp>₅Ni₀</scp>_.<scp><sub>2< (TmÂ=ÂTi, Mn). International Journal of Quantum Chemistry, 2023, 123, Status Quo on Graphene Electrode Catalysts for Improved Oxygen Reduction and Evolution Reactions 3.8 in Li-Air Batteries. Molecules, 2022, 27, 7851. Self-Discharge Mechanism of High-Voltage KVPO₄F for K-Ion Batteries. ACS Applied Energy 496 5.1 6 Materials, 2022, 5, 14913-14921. Mg-Doped KFeSO₄F as a High-Performance Cathode Material for Potassium-Ion Batteries. 5.1 ACS Applied Energy Materials, 2022, 5, 13470-13479. Unlock the Potassium Storage Behavior of Singleâ€Phased Tungsten Selenide Nanorods via Large Cation 498 21.0 10 Insertion. Advanced Materials, 2023, 35, . Carbon host pore structure regulation boosting fast and stable Se-K electrochemistry towards Se-K 499 10.3 ion capacitors. Carbon, 2023, 203, 141-151. Effect of non-stoichiometry of K Fe[Fe(CN)6] as inner solid-contact layer on the potential response of 500 5.2 5 all-solid-state potassium ion-selective electrodes. Electrochimica Acta, 2023, 439, 141561. Recent advances in dispersion and alignment of fillers in PVDF-based composites for high-performance dielectric energy storage. Materials Today Energy, 2023, 31, 101208. Boosting Reversibility of Conversion/Alloying Reactions for Sulfur-Rich Antimony-Based Sulfides 502 5 with Extraordinary Potassium Storage Performance., 2022, 4, 2604-2612. Advances in Fine Structure Optimizations of Layered Transitionâ€Metal Oxide Cathodes for Potassiumâ€lon Batteries. Advanced Energy Máterials, 2023, 13, . P3-type layered K_{0.6}Cr_{0.6}Ti_{0.4}O₂ for potassium 504 3.3 2 storage applications. Energy Advances, 2023, 2, 98-102. Fluorosulfonamide-type electrolyte additives for long-life K-ion batteries. Journal of Materials Chemistry A, 2023, 11, 914-925.

# 506	ARTICLE Impregnating ultrafine FeS ₂ nanoparticles within hierarchical carbon tubes for advanced	IF 6.0	Citations 6
507	Effects of Ni dopant on morphology, crystal and electronic structure, electrical properties of sodium trititanate. Materialia, 2023, 27, 101640.	2.7	4
508	Sulfur doped hollow carbon nanofiber anodes for fast-charging potassium-ion storage. Applied Surface Science, 2023, 614, 156149.	6.1	7
509	Binder Chemistry Dependent Electrolyte Reduction in Potassiumâ€Ion Batteries: A Successive, Twoâ€Step Reduction Way. Advanced Energy Materials, 2023, 13, .	19.5	14
510	Template-free synthesis of hollow carbon-based nanostructures from MOFs for rechargeable battery applications. Science China Chemistry, 2023, 66, 65-77.	8.2	16
512	Understanding the Predominant Potassium-Ion Intercalation Mechanism of Single-Phased Bimetal Oxides by <i>in Situ</i> Magnetometry. Nano Letters, 2022, 22, 10102-10110.	9.1	8
513	Reduced graphene oxide bubbles boosting 3D hierarchically porous carbon confined transition metal chalcogenides for high-performance Na/K-ion capacitors. Carbon, 2023, 204, 219-230.	10.3	6
514	Capillary Evaporationâ€Induced Fabrication of Compact Flake Graphite Anode with High Volumetric Performance for Potassium Ion Batteries. Advanced Materials Interfaces, 2023, 10, .	3.7	3
515	Inâ€situ Sacrificial Positive Additive Strategy for the Construction of a Stable Negative Interface in Dual Graphite Batteries. ChemElectroChem, 2022, 9, .	3.4	1
516	Recent Advances in Polymers for Potassium Ion Batteries. Polymers, 2022, 14, 5538.	4.5	5
517	Sulfur-Doped Carbon for Potassium-Ion Battery Anode: Insight into the Doping and Potassium Storage Mechanism of Sulfur. ACS Nano, 2022, 16, 21443-21451.	14.6	38
518	Regulating potassium ion receptivity by structure engineering in constructing carbon nano-network with optimized nitrogen species. Materials Today Energy, 2022, , 101223.	4.7	2
519	Confine, Defect, and Interface Manipulation of Fe ₃ Se ₄ /3D Graphene TargetingÂFast and Stable Potassiumâ€lon Storage. Small, 2023, 19, .	10.0	11
521	Designing better electrolytes. Science, 2022, 378, .	12.6	146
522	High-donor electrolyte endows graphite with anion-derived interphase to achieve stable K-storage. Science China Materials, 2023, 66, 932-943.	6.3	1
523	Emerging 2D Copperâ€Based Materials for Energy Storage and Conversion: A Review and Perspective. Small, 2023, 19, .	10.0	21
524	Manipulating K-Storage Mechanism of Soft Carbon via Molecular Design-Driven Structure Transformation. ACS Applied Materials & Interfaces, 2022, 14, 54698-54707.	8.0	1
525	Conductive C ₃ NS Monolayer with Superior Properties for K Ion Batteries. Journal of Physical Chemistry Letters, 2022, 13, 12055-12060.	4.6	4

#	Article	IF	CITATIONS
526	Folic acid-based supramolecules for enhanced stability in potassium ion batteries. Chinese Chemical Letters, 2023, 34, 108095.	9.0	0
527	Regulating solid electrolyte interphases on phosphorus/carbon anodes via localized high-concentration electrolytes for potassium-ion batteries. Journal of Energy Chemistry, 2023, 78, 589-605.	12.9	12
528	Uniform P2-K _{0.6} CoO ₂ Microcubes as a High-Energy Cathode Material for Potassium-Ion Batteries. Nano Letters, 2023, 23, 694-700.	9.1	25
529	A tailored electrolyte for safe and durable potassium ion batteries. Energy and Environmental Science, 2023, 16, 305-315.	30.8	90
530	Origin of Vanadium Site Sequential Oxidation in K _{<i>x</i>} VPO ₄ F _{1–<i>y</i>} O _{<i>y</i>} . Chemistry of Materials, 2023, 35, 617-627.	6.7	2
531	Emerging organic electrodes for Na-ion and K-ion batteries. Energy Storage Materials, 2023, 56, 267-299.	18.0	41
532	Escape of lattice water in potassium iron hexacyanoferrate for cyclic optimization in potassiumâ€ion batteries. , 2023, 2, .		7
533	Controllable engineering of intrinsic defects on carbon nanosheets enables fast and stable potassium storage performance. Carbon, 2023, 204, 507-515.	10.3	6
534	Constructing graphene conductive networks in manganese vanadate as high-performance cathode for aqueous zinc-ion batteries. Electrochimica Acta, 2023, 441, 141856.	5.2	4
535	Electrochemical extraction of rubidium from salt lake by using cupric ferrocyanide based on potassium shuttle. Desalination, 2023, 549, 116331.	8.2	3
536	Symmetric Cells as an Analytical Tool for Battery Research: Assembly, Operation, and Data Analysis Strategies. Journal of the Electrochemical Society, 2023, 170, 020521.	2.9	6
537	Surface-dominated potassium storage enabled by single-atomic sulfur for high-performance K-ion battery anodes. Energy and Environmental Science, 2023, 16, 1540-1547.	30.8	19
538	P3 type layered oxide frameworks: An appealing family of insertion materials for K-ion batteries. Current Opinion in Electrochemistry, 2023, 38, 101216.	4.8	0
539	Comprehensively Understanding the Role of Anion Vacancies on Kâ€lon Storage: A Case Study of Seâ€Vacancyâ€Engineered VSe ₂ . Advanced Materials, 0, , 2211311.	21.0	20
540	Enhanced electrochemical and environmental stability of black phosphorus-derived phosphorus composite anode for safe potassium-ion battery using amorphous zinc phosphate as a multi-functional additive. Energy Storage Materials, 2023, 57, 400-410.	18.0	8
541	First-principles approach to the structural, physical, electronic, magnetic and optical properties of honeycomb ordered antimonates Na3Fe2SbO6. Journal of Physics and Chemistry of Solids, 2023, 176, 111258.	4.0	1
542	A comprehensive review of cathode materials for Na–air batteries. Energy Advances, 2023, 2, 465-502.	3.3	1
543	Development of a high-rate-capable O3-structured â€~layered' Na transition metal oxide by tuning the cation–oxygen bond covalency. Chemical Communications, 2023, 59, 4332-4335.	4.1	2

#	Article	IF	CITATIONS
544	Dilute Aqueous Hybrid Electrolyte with Regulated Coreâ€Shellâ€Solvation Structure Endows Safe and Lowâ€Cost Potassiumâ€Ion Energy Storage Devices. Advanced Functional Materials, 2023, 33, .	14.9	12
545	Biocompatible and Long-Term Monitoring Strategies of Wearable, Ingestible and Implantable Biosensors: Reform the Next Generation Healthcare. Sensors, 2023, 23, 2991.	3.8	18
546	Influence of Potassium Metalâ€6upport Interactions on Dendrite Growth. Angewandte Chemie, 2023, 135,	2.0	2
547	2023 roadmap for potassium-ion batteries. JPhys Energy, 2023, 5, 021502.	5.3	15
548	Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems. Journal of Energy Chemistry, 2023, 81, 221-259.	12.9	27
549	Screen-printed water-in-salt Al ion battery for wearable electronics. Journal of Energy Storage, 2023, 63, 106983.	8.1	7
550	SnTe nanoparticles physicochemically encapsulated by double carbon as conversion-alloying anode materials for superior potassium-ion batteries. Journal of Materials Science and Technology, 2023, 158, 86-95.	10.7	9
551	Recent electrochemical-energy-storage applications of metal–organic frameworks featuring iron-series elements (Fe, Co, and Ni). Journal of Energy Storage, 2023, 65, 107217.	8.1	5
552	Lithium-metal, Lithium-ion and Other Batteries. , 2023, , 292-372.		0
553	From lithium to potassium: Comparison of cations in poly(ethylene oxide)-based block copolymer electrolytes for solid-state alkali metal batteries. Electrochimica Acta, 2023, 454, 142421.	5.2	4
554	Facet-dependent electrocatalysis and surface electrochemical processes on polycrystalline platinum. Electrochimica Acta, 2023, 450, 142223.	5.2	6
555	Diglyme-based gel polymer electrolytes for K-ion capacitors. Energy Storage Materials, 2023, 56, 342-350.	18.0	6
556	Comparative Study on Charge–Discharge Behavior of Graphite Positive Electrode in FSA- and FTA-Based Ionic Liquid Electrolytes with Different Alkali Metal Cations. Journal of the Electrochemical Society, 2023, 170, 020526.	2.9	3
557	Electrolytes in Organic Batteries. Chemical Reviews, 2023, 123, 1712-1773.	47.7	57
558	Xâ€Ray Microscopy: A Nonâ€Destructive Multiâ€5cale Imaging to Study the Inner Workings of Batteries. ChemElectroChem, 2023, 10, .	3.4	4
559	Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)–Sulfur Batteries. Batteries, 2023, 9, 110.	4.5	4
560	Bagasse-Derived Hard Carbon Anode with an Adsorption–Intercalation Mechanism for High-Rate Potassium Storage. ACS Applied Energy Materials, 2023, 6, 2370-2377.	5.1	5
561	Tailoring stress-relieved structure for ternary cobalt Phosphoselenide@N/P codoped carbon towards high-performance potassium-ion hybrid capacitors and potassium-ion batteries. Energy Storage Materials, 2023, 57, 180-194.	18.0	11

#	Article	IF	CITATIONS
562	Bond modulation of MoSe _{2+<i>x</i>} driving combined intercalation and conversion reactions for high-performance K cathodes. Chemical Science, 2023, 14, 2528-2536.	7.4	23
563	Building K–C Anode with Ultrahigh Selfâ€Diffusion Coefficient for Solid State Potassium Metal Batteries Operating at â^20 to 120°C. Advanced Materials, 2023, 35, .	21.0	12
564	<i>In situ</i> formed uniform and elastic SEI for high-performance batteries. Energy and Environmental Science, 2023, 16, 1166-1175.	30.8	67
565	Application of Potassium Ion Conducting KTiOPO ₄ as Effective Inner Solid-Contact Layer in All-Solid-State Potassium Ion-Selective Electrode. Journal of the Electrochemical Society, 2023, 170, 027507.	2.9	3
566	Multiple Accessible Redox-Active Sites in a Robust Covalent Organic Framework for High-Performance Potassium Storage. Journal of the American Chemical Society, 2023, 145, 5105-5113.	13.7	28
567	Guest Ionâ€Dependent Reaction Mechanisms of New Pseudocapacitive Mg ₃ V ₄ (PO ₄) ₆ /Carbon Composite as Negative Electrode for Monovalentâ€ion Batteries. Advanced Science, 2023, 10, .	11.2	3
568	Sodium alginate-based gel electrodes without binder for high-performance supercapacitors. International Journal of Biological Macromolecules, 2023, 234, 123699.	7.5	3
569	Thermopressure Coupling Effect Mimicking Natural Graphite Formation to Enhance the Storage K–Ion Performance of Carbonaceous Heterostructures. Research, 2023, 6, .	5.7	2
570	Research progress towards the corrosion and protection of electrodes in energy-storage batteries. Energy Storage Materials, 2023, 57, 371-399.	18.0	12
571	Edge Coordination of Ni Single Atoms on Hard Carbon Promotes the Potassium Storage and Reversibility. Small, 2023, 19, .	10.0	1
572	Flower-like K1+ÎVOPO4F crystallite with a layered framework structure as a robust cathode for potassium-ion batteries. Journal of Power Sources, 2023, 564, 232862.	7.8	1
573	Recent progress in block copo lymer s oft-template-assisted synthesis of versatile mesoporous materials for energy storage systems. Journal of Materials Chemistry A, 2023, 11, 7358-7386.	10.3	8
574	Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie - International Edition, 2023, 62, .	13.8	32
575	Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie, 2023, 135, .	2.0	2
576	Efficient Kâ€Storage of Feâ€Coupled Organic Molecule Anode in Etherâ€Based Electrolytes. Chemistry - A European Journal, 2023, 29, .	3.3	2
577	Exploring Optimal Li-ion Substitution for High Na-content P2-Na _{0.67+a} [Li _{x } Ni _{0.33â~y} Mn _{0.67â~z}]O ₂ Cathodes for Sodium-ion Batteries. Journal of the Electrochemical Society, 2023, 170, 030538.	2.9	3
578	Materials and structural design for preferable Zn deposition behavior towardÂstable Zn anodes. SmartMat, 2024, 5, .	10.7	7
579	Influence of Potassium Metal‣upport Interactions on Dendrite Growth. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6

#	Article	IF	CITATIONS
580	Double-layer phosphates coated Mn-based oxide cathodes for highly stable potassium-ion batteries. Energy Storage Materials, 2023, 58, 101-109.	18.0	18
581	Designing an Al-Rich In Situ Coating for Stabilizing High-Energy-Density Li Metal Battery Electrodes via Electrolyte Modulation. ACS Applied Energy Materials, 2023, 6, 3452-3459.	5.1	0
582	Interlayer-Expanded MoS2 Enabled by Sandwiched Monolayer Carbon for High Performance Potassium Storage. Molecules, 2023, 28, 2608.	3.8	2
583	A comprehensive review of carbon anode materials for potassium-ion batteries based on specific optimization strategies. Inorganic Chemistry Frontiers, 2023, 10, 2547-2573.	6.0	7
584	Enabling highly-efficient and stable potassium-ion storage by exposing atomic-dispersed super-coordinated antimony O ₂ Sb ₁ N ₄ sites on N-doped carbon nanosheets. Energy and Environmental Science, 2023, 16, 2153-2166.	30.8	17
585	State-of-art progress and perspectives on alloy-type anode materials for potassium-ion batteries. Materials Chemistry Frontiers, 2023, 7, 3011-3036.	5.9	9
586	Review of Materials for Electrodes and Electrolytes of Lithium Batteries. Reviews on Advanced Materials and Technologies, 2022, 4, 39-61.	0.3	1
587	Revealing the evolution of doping anions and their impact on K-Ion storage: A case study of Se-doped In2S3. Energy Storage Materials, 2023, 58, 165-175.	18.0	9
588	Understanding the Highly Reversible Potassium Storage of Hollow Ternary (Bi-Sb) ₂ S ₃ @N-C Nanocube. ACS Nano, 2023, 17, 6754-6769.	14.6	13
589	Bi ₂ S ₃ Nanorods Deposited on Reduced Graphene Oxide for Potassium-Ion Batteries. ACS Applied Nano Materials, 2023, 6, 6121-6132.	5.0	3
590	Scanning Electrochemical Microscopy for Chemical Imaging and Understanding Redox Activities of Battery Materials. , 2023, 1, 110-120.		1
591	Electrolyte Solvation Structure Manipulation and Synthetic Optimization for Enhanced Potassium Storage of Tin Phosphide/Carbon Alloy-Based Electrode. Metals, 2023, 13, 658.	2.3	2
592	Regulating the Wettability of Hard Carbon through Open Mesochannels for Enhanced K ⁺ Storage. Small, 2023, 19, .	10.0	6
593	Antimony Oxidesâ€Based Anode Materials for Alkali Metalâ€lon Storage. Chemistry - A European Journal, 0, , .	3.3	2
594	Cation–Oxygen Bond Covalency: A Common Thread and a Major Influence toward Air/Waterâ€Stability and Electrochemical Behavior of "Layered―Na–Transitionâ€Metalâ€Oxideâ€Based Cathode Materials. Advanced Energy Materials, 2023, 13, .	19.5	5
595	Enhanced Performance of KVPO ₄ F _{0.5} O _{0.5} in Potassium Batteries by Carbon Coating Interfaces. ACS Applied Materials & amp; Interfaces, 2023, 15, 18992-19001.	8.0	4
596	Achieving Fast and Reversible Sulfur Redox by Proper Interaction of Electrolyte in Potassium Batteries. ACS Energy Letters, 2023, 8, 2169-2176.	17.4	3
597	Interphases. , 2023, , 602-713.		0

#	Article	IF	CITATIONS
598	Pillar effect boosting the electrochemical stability of Prussian blue-polypyrrole for potassium ion batteries. Nano Research, 2023, 16, 6326-6333.	10.4	7
599	Research progress on vanadium oxides for potassium-ion batteries. Journal of Semiconductors, 2023, 44, 041701.	3.7	14
600	Screening Topological Quantum Cathode Materials for K-Ion Batteries by Graph Neural Network and First-Principles Calculations. ACS Applied Energy Materials, 0, , .	5.1	0
601	Constructing high K+ concentration layer to expedite K+ intercalation in graphite: towards superior rate capability without trading off power density of potassium-ion batteries. Materials Today Energy, 2023, 34, 101315.	4.7	0
602	Co-activation for enhanced K-ion storage in battery anodes. National Science Review, 2023, 10, .	9.5	37
603	A MOF-to-MOF conversion assisted formation of hierarchical hollow Zn–Co1–S/C@C composite for efficient potassium-ion storage. , 2023, 42, 100092.		2
604	Structureâ€Engineered Low ost Carbon Microbelt Hosts for Highly Robust Potassium Metal Anode. Advanced Functional Materials, 2023, 33, .	14.9	6
605	Boosting the fast electrochemical kinetics of Na ₄ Fe ₃ (PO ₄) ₂ (P ₂ O ₇) <i>via</i> a 3D graphene network as a cathode material for potassium-ion batteries. New Journal of Chemistry, 2023, 47, 10153-10161.	2.8	7
606	Optimization of Sodium Storage Performance by Structure Engineering in Nickel obalt‧ulfide. ChemSusChem, 0, , .	6.8	0
607	Internal interface engineering of yolk-shell structure toward fast and robust potassium storage. Energy Storage Materials, 2023, 59, 102794.	18.0	2
608	Dual-salt assisted synergistic synthesis of Prussian white cathode towards high-capacity and long cycle potassium ion battery. Journal of Energy Chemistry, 2023, 83, 16-23.	12.9	15
609	Multi-element doping induced transition metal disordered layered oxide for rapid and stable potassium storage. Chemical Engineering Journal, 2023, 466, 143331.	12.7	3
610	Polyimide-engineered sodium titanate anode for sodium storage with improved structure and interface stability. Chemical Engineering Journal, 2023, 467, 143356.	12.7	0
611	Carbon anode from carbon dots-regulated polypyrrole for enhanced potassium storage. Journal of Alloys and Compounds, 2023, 958, 170481.	5.5	8
612	å°†Cu2Sè¶ç»†çº³ç±³ç2'åå ‡ 匀æ ¤ ¥ç¢³çº³ç±³çº¿ä»¥å®žçްé«~æ•^钾离å电æ±èŸæž• Science China Mate	ria 6 ;32023	3, 656, 2613-20
613	Sustainable development of anode materials for non-aqueous potassium ion batteries. Journal of Energy Storage, 2023, 68, 107691.	8.1	0
614	An aliovalentâ€substituted inorganic-open-framework anode for high-performance potassium-ion batteries. Materials Letters, 2023, 347, 134627.	2.6	1
615	In-situ growth of nitrogen-doped carbon nanotubes on MXene nanosheets for efficient sodium/potassium-ion storage. Frontiers in Materials, 0, 10, .	2.4	1

		CITATION REPORT		
#	Article		IF	CITATIONS
616	Low-Strain KVPO4F@C as Hyperstable Anode for Potassium-Ion Batteries. Metals, 2023, 13,	1038.	2.3	0
617	Blickpunkt Anorganik: Anorganische Batteriematerialien. Nachrichten Aus Der Chemie, 2023	71, 54-57.	0.0	Ο
618	Heterostructures Regulating Lithium Polysulfides for Advanced Lithiumâ€Sulfur Batteries. Ad Materials, 2023, 35, .	vanced	21.0	25
619	Unveiling the role of oxygen doping in activated carbon cathode for potassium-ion capacitor Journal of Power Sources, 2023, 579, 233289.	5.	7.8	2
620	Two-dimensional SnSe material for solar cells and rechargeable batteries. Journal of Energy S 2023, 69, 107958.	:orage,	8.1	5
621	Mesoporous N,Sâ€Rich Carbon Hollow Nanospheres Controllably Prepared From Poly(2â€an with Ultrafast and Highly Durable Potassium Storage. Advanced Functional Materials, 2024,	inothiazole) 34, .	14.9	8
622	Operando Raman Spectroscopy for Evaluating Concentration Changes in Li- and Na-Based So Polymer Electrolytes. Journal of Physical Chemistry C, 2023, 127, 11864-11874.	lid	3.1	2
623	Durable Integrated Kâ€Metal Anode with Enhanced Mass Transport through Potassiphilic Po Interconnected Mediator. Advanced Functional Materials, 2023, 33, .	rous	14.9	4
625	Enhanced K-storage performance in ultralong cycle-life potassium-ion batteries achieved via carbothermal-reduction-synthesized KVOPO4 cathode. Energy Storage Materials, 2023, 61, 7	102852.	18.0	1
626	Tough, anticorrosive hydrogel consisting of bio-friendly resources for conductive and electromagnetic shielding materials. New Journal of Chemistry, 0, , .		2.8	1
629	Fundamental investigations on the ionic transport and thermodynamic properties of non-aqu potassium-ion electrolytes. Nature Communications, 2023, 14, .	Ieous	12.8	7
630	Coal-based hierarchical porous carbon for lithium/potassium storage. Materials Chemistry an Physics, 2023, 303, 127835.	d	4.0	6
631	Polymer-derived carbon materials for energy storage devices: A mini review. Carbon, 2023, 2	10, 118066.	10.3	14
632	Zincâ€Doping Strategy on P2â€Type Mnâ€Based Layered Oxide Cathode for Highâ€Perform Batteries. Small, 2023, 19, .	ance Potassiumâ€ion.	10.0	10
633	A Review of Nb ₂ CT _{<i>x</i>} MXene as an Emerging 2D Material: Sy Applications in Rechargeable Batteries and Supercapacitors, Progress, and Outlook. Energy & Fuels, 2023, 37, 7555-7576.	nthesis, .amp;	5.1	8
634	"Dual―Engineering―Strategy to Regulate NH ₄ V ₄ O _{10 for Highâ€Performance Aqueous Zinc Ion Batteries. Small, 2023, 19, .}	as Cathodes	10.0	10
635	High sulfur-doped microporous carbon for high-rate potassium ion storage: Interspace design solvent effect. Carbon, 2023, 213, 118261.	1 and	10.3	6
636	Bimetallic-based composites for potassium-ion storage: challenges and perspectives. Inorgan Chemistry Frontiers, 2023, 10, 4668-4694.	ic	6.0	1

#	Article	IF	CITATIONS
637	On the synthesis and potential benefit of Na-rich P-type layered oxides for high power Na-ion batteries. Journal of Solid State Chemistry, 2023, 326, 124190.	2.9	1
638	Nanocarbon in Sodiumâ€ion Batteries – A Review. Part 1: Zeroâ€dimensional Carbon Dots. ChemBioEng Reviews, 2023, 10, 628-646.	4.4	1
639	Sulfur-doped hollow porous carbon spheres as high-performance anode materials for potassium ion batteries. Journal of Energy Storage, 2023, 72, 108297.	8.1	5
640	A Dilute Fluorinated Phosphate Electrolyte Enables 4.9ÂVâ€Class Potassium Ion Full Batteries. Advanced Functional Materials, 2023, 33, .	14.9	7
641	Edge-nitrogen synergize with micropores to realize fast and durable potassium storage for carbon anode. Carbon, 2023, 213, 118291.	10.3	3
642	Progress of Prussian Blue and Its Analogues as Cathode Materials for Potassium Ion Batteries. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	2
643	Impact of electrolyte decomposition products on the electrochemical performance of 4 V class K-ion batteries. Chemical Science, 2023, 14, 8860-8868.	7.4	2
644	Advanced Electrode Materials for Potassiumâ€lon Hybrid Capacitors. Batteries and Supercaps, 2023, 6, .	4.7	5
645	Regulating cathode surface hydroxyl chemistry enables superior potassium storage. Proceedings of the United States of America, 2023, 120, .	7.1	8
646	Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chemical Society Reviews, 2023, 52, 5388-5484.	38.1	9
647	Customized Electrolyte and Host Structures Enabling High-Energy-Density Anode-Free Potassium–Metal Batteries. ACS Energy Letters, 2023, 8, 3467-3475.	17.4	5
648	Homogeneous Intercalation Chemistry and Ultralow Strain of 1T''' MoS ₂ for Stable Potassium Storage. Advanced Functional Materials, 2023, 33, .	14.9	2
649	Releasing the power of co-activation for battery ion storage. National Science Review, 0, , .	9.5	0
650	The Role of Transition Metals on Chemoâ€Mechanical Instabilities in Prussian Blue Analogues For Kâ€Ion Batteries: The Case Study on KNHCF Versus KMHCF. Advanced Energy Materials, 2023, 13, .	19.5	5
651	Effect of Cations on the Electrochemical Properties of Insertion Reactions Using Prussian Blue Analogues. Journal of Physical Chemistry C, O, , .	3.1	0
652	Cobalt-doping-induced ultrathin solid-electrolyte interphase construction and shuttle effect inhibition in Cu3PS4-carbon nanotube hybrid enabling superior potassium-ion storage. Journal of Power Sources, 2023, 580, 233440.	7.8	0
653	A host potassiophilicity strategy for unprecedentedly stable and safe K metal batteries. Chemical Science, 2023, 14, 9114-9122.	7.4	7
654	Advanced anode materials for potassium batteries: Sorting out opportunities and challenges by potassium storage mechanisms. Matter, 2023, 6, 3220-3273.	10.0	7

#	Article	IF	Citations
655	Anchoring Ï€â€d Conjugated Metal–Organic Frameworks with Dualâ€Active Centers on Carbon Nanotubes for Advanced Potassiumâ€Ion Batteries. Advanced Materials, 2024, 36, .	21.0	4
656	Exploration of aqueous electrolyte on the interconnected petal-like structure of Co-MOFs for high-performance paper-soaked supercapacitors. Electrochimica Acta, 2023, 467, 143027.	5.2	8
657	Flexible Backbone Effects on the Redox Properties of Perylenediimide-Based Polymers. ACS Applied Materials & amp; Interfaces, 0, , .	8.0	2
658	<pre><mmi:math xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>irow><mr ></mr </td><td>nl:mrow><m 2</m </td></mmi:math></pre>	irow> <mr ></mr 	nl:mrow> <m 2</m
659	Anode for Potassium on Batteries. , 2023, 2, . Wide-temperature-range sodium-metal batteries: from fundamentals and obstacles to optimization. Energy and Environmental Science, 2023, 16, 4759-4811.	30.8	7
660	Theoretical prediction of metallic R12-graphene as a promising anode material for potassium-ion batteries with high ion mobility, high capacity, and excellent electrolyte wettability. Applied Physics Letters, 2023, 123, .	3.3	3
661	Cathode materials for calciumâ€ion batteries: Current status and prospects. , 2023, 2, 551-573.		9
662	Small-molecule organic electrode materials for rechargeable batteries. Science China Chemistry, 2023, 66, 3070-3104.	8.2	6
664	Ultrastable Graphiteâ€Potassium Anode through Binder Chemistry. Small, 2023, 19, .	10.0	2
665	MnFe Prussian blue analogue-derived P3-K0.5Mn0.67Fe0.33O1.95N0.05 cathode material for high-performance potassium-ion batteries. Energy Storage Materials, 2023, 62, 102950.	18.0	3
666	Thiophene-sulfur doping in nitrogen-rich porous carbon enabling high-ICE/rate anode materials for potassium-ion storage. Journal of Materials Chemistry A, 2023, 11, 22187-22197.	10.3	1
667	Nonaqueous Liquid Electrolytes for Sodiumâ€lon Batteries: Fundamentals, Progress and Perspectives. Advanced Energy Materials, 2023, 13, .	19.5	9
668	Challenges and Prospects of Sodiumâ€ion and Potassiumâ€ion Batteries for Mass Production. Advanced Energy Materials, 2023, 13, .	19.5	14
669	Delocalized Cî€5 decorates a 3D sp ² -hybridized carbon skeleton for superior charge transfer kinetics of anodes. Energy and Environmental Science, 0, , .	30.8	0
670	Molecular carbon skeleton with selfâ^'regulating ionâ^'transport channels for longâ^'life potassium ion batteries. Energy Storage Materials, 2023, 63, 102975.	18.0	2
671	Advanced and sustainable functional materials for potassium-ion batteries. , 0, 3, .		2
672	An organic cathode in non-flammable phosphate electrolyte for K-ion batteries. Journal of Energy Storage, 2023, 73, 108901.	8.1	1
673	A new Mn-based layered cathode with enlarged interlayer spacing for potassium ion batteries. Journal of Colloid and Interface Science, 2023, 652, 231-239.	9.4	0

#	Article	IF	CITATIONS
674	Recent Advances in Aqueous Nonâ€Metallic Ion Batteries with Organic Electrodes. Small Methods, 0, , .	8.6	0
675	Development of sustainable and efficient recycling technology for spent Li-ion batteries: Traditional and transformation go hand in hand. Green Energy and Environment, 2023, , .	8.7	1
676	Potassium-based dual-carbon battery with pure ionic liquid electrolyte. Journal of Power Sources, 2023, 585, 233628.	7.8	1
677	Metal Selenides Find Plenty of Space in Architecting Advanced Sodium/Potassium Ion Batteries. Small, 2024, 20, .	10.0	2
678	Prussian Blue Analogues Cathodes for Nonaqueous Potassiumâ€lon Batteries: Past, Present, and Future. Advanced Functional Materials, 2024, 34, .	14.9	3
679	Dendrite-free and gasless potassium metal anodes assisted by the mechanical-electrochemical enhancing solid K-electrode and electrolyte interface. Chemical Engineering Science, 2023, 282, 119295.	3.8	2
680	Bioinspired designs in active metal-based batteries. Nano Research, 2024, 17, 587-601.	10.4	1
684	Tungsten chalcogenides as anodes for potassium-ion batteries. Tungsten, 0, , .	4.8	1
685	Evaluating a Dualâ€ion Battery with an Antimony arbon Composite Anode. ChemSusChem, 0, , .	6.8	0
686	Sodium/Potassium Intercalation on the Cu ₄ S ₄ Nanosheet Accompanied by a Surface Phase Transition and Their Competition with Protons. ACS Applied Energy Materials, 2023, 6, 10048-10060.	5.1	5
687	Nonfluorinated Antisolvents for Ultrastable Potassium-Ion Batteries. ACS Nano, 2023, 17, 16135-16146.	14.6	5
688	Electrochemical intercalation of rubidium into graphite, hard carbon, and soft carbon. Chemical Science, 2023, 14, 11056-11066.	7.4	1
689	Low-temperature anode-free potassium metal batteries. Nature Communications, 2023, 14, .	12.8	10
690	Evaluation of P3-Type Layered Oxides as K-Ion Battery Cathodes. Inorganic Chemistry, 2023, 62, 14971-14979.	4.0	1
691	Solvent modulation strategy for Sb-based anode to achieve stable potassium storage. Chemical Engineering Journal, 2023, 473, 145399.	12.7	1
692	Improvement of electrolytes for aluminum ion batteries: A molecular dynamics study. Journal of Chemical Physics, 2023, 159, .	3.0	0
693	Assessing the Suitability of α-SiS Nanosheet as an Anode Material for Multivalent Metal-Ion Batteries. Energy & Fuels, 2023, 37, 15116-15126.	5.1	1
694	Exploring the potential of T-Graphene-like BC ₂ N monolayer as an anode material for Na/K-Ion batteries. Materials Research Express, 2023, 10, 085007.	1.6	0

ARTICLE

695 å...∙有å...±ä»·é"®ç‰¹å¾çš"金属-有机基团äįfèį›é«~性èf½é'¾ç¦»åç"µæ±. Science China Materia&32023, &, 3827-38

696	Flexible carbon film with local enlarged interlayer spacing for ultrafast and highly durable potassium storage. Journal of Power Sources, 2023, 584, 233603.	7.8	2
697	Design and Synthesis of Cubic K _{3â~2} <i>_x</i> Ba <i>_x</i> SbSe ₄ Solid Electrolytes for K–O ₂ Batteries. Advanced Materials, 2023, 35, .	21.0	3
698	Recent Advances and Challenges in Ti-Based Oxide Anodes for Superior Potassium Storage. Nanomaterials, 2023, 13, 2539.	4.1	1
700	A dual-carbon structured molybdenum selenide composites controlled via interface engineering and chemical bonding to attain high initial coulombic efficiency and rate capability of potassium-ion batteries. Chemical Engineering Journal, 2023, 475, 146187.	12.7	6
701	Thickness dependent studies on p-type K-doped ZnS nanostructured films grown via colloid-based solution route for ambipolar optoelectronic applications. Physica B: Condensed Matter, 2023, 670, 415375.	2.7	0
702	K2VOP2O7 as a novel high-voltage cathode material for potassium ion batteries. Journal of Power Sources, 2023, 587, 233715.	7.8	1
703	Interface defect induced upgrade of K-storage properties in KFeSO4F cathode: From lowered Fe-3d orbital energy level to advanced potassium-ion batteries. Green Energy and Environment, 2023, , .	8.7	2
704	Elucidation of the Mechanism of Kâ€lon Storage of Hard Carbon and Soft Carbon Anodes in Ether―and Esterâ€Based Electrolytes. Advanced Energy Materials, 2023, 13, .	19.5	3
705	Loss-free pulverization by confining copper oxide inside hierarchical nitrogen-doped carbon nanocages toward superb potassium-ion batteries. Materials Horizons, 0, , .	12.2	0
706	Relaxation of Stress Propagation in Alloyingâ€Type Sn Anodes for Kâ€ion Batteries. Small Methods, 0, , .	8.6	0
707	Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2023, , 109191.	9.0	1
708	Combined Stabilizing of the Solid–Electrolyte Interphase with Suppression of Graphite Exfoliation via Additive-Solvent Optimization in Li-Ion Batteries. ACS Applied Materials & Interfaces, 0, , .	8.0	0
709	Investigating K ⁺ Storage Behavior of Highly Graphitized Carbon Fibers as Anodes for a Potassium-Ion Battery. Nano Letters, 0, , .	9.1	0
710	A review of flexible potassium-ion based energy storage devices. Energy Storage Materials, 2023, 63, 103022.	18.0	0
711	Regulating Electronic Double Layer to Prevent Water Electrolysis for Wet Ionic Liquids with Cheap Salt. Nanoscale, 0, , .	5.6	0
713	A novel K-ion KVPO4F0.5O0.5/graphite full cell: Correlation between XPS SEI studies and electrochemical testing results. Journal of Power Sources, 2023, 588, 233743.	7.8	1
714	lon Dynamics in P2-Na _{<i>x</i>} CoO ₂ Detected with Operando Muon Spin Rotation and Relaxation. ACS Applied Energy Materials, 2023, 6, 8111-8119.	5.1	0

#	Article	IF	CITATIONS
716	Sb2S3 nanorods encapsulated reduced graphene oxide as an anode material for Na/K-ion batteries. Surfaces and Interfaces, 2024, 44, 103630.	3.0	0
717	New Template Synthesis of Anomalously Large Capacity Hard Carbon for Na―and Kâ€ŀon Batteries. Advanced Energy Materials, 2023, 13, .	19.5	4
719	Impact of Nanoâ€sized Inorganic Fillers on PEOâ€based Electrolytes for Potassium Batteries. Batteries and Supercaps, 2024, 7, .	4.7	1
720	Anode Properties of Sb-Based Alloy Electrodes for K-Ion Batteries in an Ionic-Liquid Electrolyte. ACS Applied Energy Materials, 2023, 6, 11583-11591.	5.1	0
721	<i>In situ</i> built nanoconfined Nb ₂ O ₅ particles in a 3D interconnected Nb ₂ C MXene@rGO conductive framework for high-performance potassium-ion batteries. Inorganic Chemistry Frontiers, 0, , .	6.0	0
722	Hierarchically Porous Donut‣ike Fe ₃ Ni ₂ Se ₄ Bimetallic Selenide: An Ultraâ€Highâ€Rate Anode for Potassium Ions Storage. Advanced Functional Materials, 2024, 34, .	14.9	0
723	Regulating the PO ₄ and TiO ₆ Polyhedral Building Blocks in TiP ₂ O ₇ Boosts the Potassium Ion Diffusion Kinetics. ACS Applied Materials & Interfaces, 2023, 15, 54499-54509.	8.0	0
725	Hierarchical FeS2 cathode with suppressed shuttle effect for high performance magnesium-ion batteries. Nano Energy, 2024, 119, 109082.	16.0	4
726	Basic Information of Electrochemical Energy Storage. , 2023, , 17-48.		0
727	A solid-diffusion-free hydronium-ion battery with ultra-long cycle life over 8000 cycles. Energy Storage Materials, 2024, 64, 103076.	18.0	1
728	Threeâ€dimensional Polymers as Organic Cathodes for Affordable and Sustainable Sodium/Potassiumâ€ion Batteries. Batteries and Supercaps, 2024, 7, .	4.7	0
729	Rejuvenating propylene carbonate-based electrolytes by regulating the coordinated structure toward all-climate potassium-ion batteries. Energy and Environmental Science, 2024, 17, 274-283.	30.8	4
730	Dendriteâ€Free and Highâ€Rate Potassium Metal Batteries Sustained by an Inorganicâ€Rich SEI. Advanced Materials, 2024, 36, .	21.0	3
731	Ionic Conductivity of K-ion Glassy Solid Electrolytes of K2S-P2S5-KOTf System. International Journal of Molecular Sciences, 2023, 24, 16855.	4.1	0
732	Layer-Structured Multitransition-Metal Oxide Cathode Materials for Potassium-Ion Batteries with Long Cycling Lifespan and Superior Rate Capability. ACS Applied Materials & Interfaces, 0, , .	8.0	0
733	Advancements in Cathode Materials for Potassium-Ion Batteries:Current Landscape, Obstacles, and Prospects. Energy Advances, 0, , .	3.3	1
734	Highly reversible and long-lived zinc anode assisted by polymer-based hydrophilic coating. Frontiers of Materials Science, 2023, 17, .	2.2	0
735	Advances in Bismuth-Based Anodes for Potassium-Ion Batteries. Journal of Materials Chemistry A, O, , .	10.3	1

#	Article	IF	CITATIONS
736	Component design and regulation to stabilize P3-type Mn-based layered cathodes for potassium-ion batteries. Ceramics International, 2023, , .	4.8	0
737	Electrolyte and Electrode–Electrolyte Interface for Proton Batteries: Insights and Challenges. ChemElectroChem, 0, , .	3.4	0
738	Recent Progress of Potassium Metal Anodes: How to Regulate the Growth of Dendrite. International Journal of Energy Research, 2023, 2023, 1-52.	4.5	0
739	The synthesis and application of crystalline–amorphous hybrid materials. Chemical Society Reviews, 2024, 53, 684-713.	38.1	0
740	A high performance and long-cycling bi-functional carbon electrode derived from <i>Phyllanthus emblica</i> (amla) for potassium ion batteries and supercapacitors. New Journal of Chemistry, 0, , .	2.8	0
741	Acid-base encapsulation prepared N/P co-doped carbon-coated natural graphite for high-performance lithium-ion batteries. Journal of Electroanalytical Chemistry, 2024, 952, 117990.	3.8	0
742	Potassium Selenocyanate (KSeCN) Additive Enabled Stable Cathode Electrolyte Interphase and Iron Dissolution Inhibition toward Long ycling Potassiumâ€lon Batteries. Advanced Functional Materials, 0, , .	14.9	0
743	Confining SnSe particles in nitrogen-doped carbon nanofibers: A free-standing, binder-free anode for potassium-ion batteries. Carbon, 2024, 218, 118741.	10.3	2
744	Proof of Aerobically Autoxidized Self-Charge Concept Based on Single Catechol-Enriched Carbon Cathode Material. Nano-Micro Letters, 2024, 16, .	27.0	0
745	Recent Progress and Prospects of MXene/Celluloseâ€Based Composite Electrodes: A Sustainable Pathway towards Supercapacitor Application. ChemElectroChem, 2024, 11, .	3.4	0
746	Designing Electrolytes with Steric Hindrance and Filmâ€Forming Booster for Highâ€Voltage Potassium Metal Batteries. Advanced Functional Materials, 2024, 34, .	14.9	0
747	Polymer/MOF composites for metal-ion batteries: A mini review. Journal of Energy Storage, 2024, 82, 110487.	8.1	0
748	Nonaqueous potassium-ion full-cells: Mapping the progress and identifying missing puzzle pieces. Journal of Energy Chemistry, 2024, 93, 384-399.	12.9	0
749	Nanopore introduction in graphite to boost the fast and stable potassium storage. Journal of Alloys and Compounds, 2024, 981, 173696.	5.5	0
750	Enabling Highâ€Performance Potassiumâ€lon Batteries by Manipulating Interfacial Chemistry. Advanced Functional Materials, 0, , .	14.9	0
751	First-principle prediction of Penta-NiN2 monolayer as electrode materials for Na and K ion batteries. Chemical Physics Letters, 2024, 837, 141066.	2.6	0
752	Nonmetallic Se/N Coâ€Đoped Amorphous Carbon Anode Collaborates to Realize Ultraâ€High Capacity and Fast Potassium Storage for Potassium Dualâ€ion Batteries. Advanced Functional Materials, 0, , .	14.9	7
753	Mechanochemical Synthesis of K <i>_x</i> Mn[Fe(CN) ₆] and CNT Composite for High-power Potassium-ion Batteries. Electrochemistry, 2024, 92, 027005-027005.	1.4	0

ARTICLE IF CITATIONS # Stable Photoelectrochemical Reactions at Solid/Solid Interfaces toward Solar Energy Conversion 754 9.1 1 and Storage. Nano Letters, 2024, 24, 1916-1922. Defective MoSSe with local-expanded structure for high-rate potassium ion battery. Energy Storage 18.0 Materials, 2024, 65, 103186. Unlocking the potential of ultra-thin two-dimensional antimony materials: Selective growth and 756 12.9 0 carbon coating for efficient potassium-ion storage. Journal of Energy Chemistry, 2024, 92, 440-449. Stability of Ni–Fe‣ayered Double Hydroxide Under Longâ€Term Operation in AEM Water Electrolysis. Small, Ó, , . Biomassâ€Derived Carbon Materials for Electrochemical Energy Storage. Chemistry - A European 758 3.3 0 Journal, 2024, 30, . Advanced Electrochemical Energy Sources for Electric and Hybrid Vehicles. Green Energy and Technology, 2024, , 195-218. Nanopore design of sulfur doped hollow carbon nanospheres for superior potassium-ion battery 760 7.1 0 anodes. Rare Metals, 2024, 43, 2103-2114. Evaluating 3D printed mesh geometries in ceramic LiB electrodes. JPhys Energy, 2024, 6, 025008. 5.3 A rechargeable, non-aqueous manganese metal battery enabled by electrolyte regulation. Joule, 2024, 762 24.0 2 8, 780-798. Building Stable Solidâ€State Potassium Metal Batteries. Advanced Materials, 0, , . 21.0 Biomass-derived carbon-sulfur hybrids boosting electrochemical kinetics to achieve high potassium 764 4 9.4 storage performance. Journal of Colloid and Interface Science, 2024, 661, 598-605. Prediction, interpretation and extrapolation for shear modulus and bulk modulus of solid-state electrolytes based on machine learning. Materials Today Communications, 2024, 38, 108294. Molybdenum-based materials for alkali metal-ion batteries: Recent advances and perspectives. 766 18.8 0 Coordination Chemistry Reviews, 2024, 506, 215725. Co-doped P3 type K0.5Mn1-xCoxO2 (xâ‰**0**.5) cathodes for long cycle life potassium ion battery. Journal of Physics and Chemistry of Solids, 2024, 188, 111924. Strong dâ[~]'Ĩ€ Orbital Coupling of Co–C₄ Atomic Sites on Graphdiyne Boosts Potassiumâ€"Sulfur Battery Electrocatalysis. Journal of the American Chemical Sóciety, 2024, 146, 768 13.7 0 4433-4443. Pre-bonded hybrid carbon materials with stable structure as anode for potassium-ion batteries. 2.2 Journal of Materials Science: Materials in Electronics, 2024, 35, . Molecular-level design for a phosphate-based electrolyte for stable potassium-ion batteries. Applied 770 3.3 0 Physics Letters, 2024, 124, . Surface residual alkali reverse utilization: Stabilizing the lay-structured oxide cathode for high 771 stability potassium ion batteries. Chemical Engineering Journal, 2024, 484, 149574.

#	Article	IF	CITATIONS
772	Building a Long-Lifespan Aqueous K-Ion Battery Operating at â^'35 °C. ACS Energy Letters, 2024, 9, 985-991.	17.4	0
773	Layer-structured K _{0.5} Mn _{0.8} Cu _{0.1} Mg _{0.1} O ₂ for high-performance potassium-ion batteries by alleviating the phase transformation. Journal of Materials Chemistry A. 2024. 12. 6261-6268.	10.3	0
774	Self-discharge in rechargeable electrochemical energy storage devices. Energy Storage Materials, 2024, 67, 103261.	18.0	0
775	Progress on Transition Metal lons Dissolution Suppression Strategies in Prussian Blue Analogs for Aqueous Sodium-/Potassium-Ion Batteries. Nano-Micro Letters, 2024, 16, .	27.0	1
776	A 3D crinkled MXene/TiO ₂ heterostructure with interfacial coupling for ultra-fast and reversible potassium storage. Journal of Materials Chemistry A, 2024, 12, 7598-7604.	10.3	0
777	Decoupling the Kinetic Essence of Ironâ€Based Anodes through Anionic Modulation for Rational Potassium″on Battery Design. Advanced Functional Materials, 0, , .	14.9	0
778	Tightly-connected carbon-coated FeS2 hollow sphere-graphene microstructure for ultrafast and stable potassium ion storage. Journal of Energy Storage, 2024, 84, 110984.	8.1	0
779	Insights into the Jahnâ€Teller Effect in Layered Oxide Cathode Materials for Potassiumâ€Ion Batteries. Advanced Energy Materials, 2024, 14, .	19.5	0
780	Graphyne-based 3D porous structure and its sandwich-type graphene structure for alkali metal ion battery anode materials. Physical Chemistry Chemical Physics, 2024, 26, 8426-8435.	2.8	0
781	Multiphase Riveting Structure for High Power and Long Lifespan Potassiumâ€lon Batteries. Advanced Functional Materials, 0, , .	14.9	0
782	Conductive Metal–Organic Framework with Superior Redox Activity as a Stable High-Capacity Anode for High-Temperature K-Ion Batteries. Journal of the American Chemical Society, 2024, 146, 6753-6762.	13.7	0
783	Unfolding the potassium storage mechanism of tin selenides. Chemical Engineering Journal, 2024, 485, 150037.	12.7	0
784	Strategies for developing layered oxide cathodes, carbon-based anodes, and electrolytes for potassium ion batteries. Materials Horizons, 2024, 11, 2053-2076.	12.2	0
785	Boosting sodium-ion battery performance by anion doping in NASICON Na4MnCr(PO4)3 cathode. Journal of Colloid and Interface Science, 2024, 663, 191-202.	9.4	0
786	Research progresses on metalâ€organic frameworks for sodium/potassiumâ€ion batteries. , 0, , .		0
787	Potentials and hotspots of post-lithium-ion batteries: Environmental impacts and supply risks for sodium- and potassium-ion batteries. Resources, Conservation and Recycling, 2024, 204, 107526.	10.8	0
788	Designing air-stable vanadium tetrasulfides anode materials via C O S bonding for potassium-ion and sodium-ion batteries. Electrochimica Acta, 2024, 484, 144053.	5.2	0
789	Enhanced dielectric properties of ferroelectric polymer composites by surfaceâ€modified <scp>BaTiO₃</scp> particles. Polymer Composites, 0, , .	4.6	0

	CITATION RE	PORT	
#	Article	IF	CITATIONS
790	High-concentration Electrolytes for Rechargeable Batteries. , 2024, , 293-328.		0
791	Review on Layered Manganeseâ€Based Metal Oxides Cathode Materials for Potassiumâ€lon Batteries: From Preparation to Modification. Chemical Record, 2024, 24, .	5.8	0
792	Role of Etherâ€Based Electrolytes in Enhancing Potential of Potassiumâ€ion Batteries. Advanced Energy Materials, 0, , .	19.5	0
793	Activation of Anionic Redox Reactions with Vacancies in Layered Potassium Manganese Oxide. Fundamental Research, 2024, , .	3.3	0
794	Stabilizing Multiâ€Electron NASICONâ€Na _{1.5} V _{0.5} Nb _{1.5} (PO ₄) ₃ Anode via Structural Modulation for Longâ€Life Sodiumâ€Ion Batteries. Advanced Energy Materials, 2024, 14, .	19.5	0
795	Transport and Thermodynamic Properties of KFSI in TEP by Operando Raman Gradient Analysis. ACS Energy Letters, 2024, 9, 1537-1544.	17.4	0
796	Halogen makes manganese metal batteries rechargeable. , 2024, , .		0
798	Encapsulating Bi Nanoparticles in Reduced Graphene Oxide with Strong Interfacial Bonding toward Advanced Potassium Storage. Small, 0, , .	10.0	0
799	Synergistic Effect of Coâ€Mo Pinning in Layâ€Structured Oxide Cathode for Enhancing Stability toward Potassiumâ€Ion Batteries. Small, 0, , .	10.0	0
800	Revealing the Molecular Origin of Anisotropy around Chloride Ions in Bulk Water. Journal of Physical Chemistry Letters, 2024, 15, 3037-3042.	4.6	0
801	In Situ Defect Engineering in Carbon by Atomic Selfâ€Activation to Boost the Accessible Lowâ€Voltage Insertion for Advanced Potassiumâ€Ion Fullâ€Cells. Small, 0, , .	10.0	0
802	Progress and perspectives on iron-based electrode materials for alkali metal-ion batteries: a critical review. Chemical Society Reviews, 2024, 53, 4154-4229.	38.1	0
803	Tailored Cation–Anion Coordination in Carbonate Electrolyte Enabling a Rigidâ€Flexible Compact Solidâ€Electrolyte Interphase for Potassium Batteries. Advanced Functional Materials, 0, , .	14.9	0
804	Short-Chain Sulfur Confined into Nitrogen-Doped Hollow Carbon Nanospheres for High-Capacity Potassium Storage. Nanomaterials, 2024, 14, 550.	4.1	0