High-nickel layered oxide cathodes for lithium-based an

Nature Energy 5, 26-34 DOI: 10.1038/s41560-019-0513-0

Citation Report

#	Article	IF	CITATIONS
1	On the Sensitivity of the Ni-rich Layered Cathode Materials for Li-ion Batteries to the Different Calcination Conditions. Nanomaterials, 2020, 10, 2018.	1.9	33
2	Effect of micro-patterning on electrochemical performances of Ni-rich LiNi0·91Co0·06Mn0·03O2 cathode for superior of LIBs. International Journal of Hydrogen Energy, 2020, 45, 33871-33875.	3.8	1
3	High-Energy, Single-Ion-Mediated Nonaqueous Zinc-TEMPO Redox Flow Battery. ACS Applied Materials & Interfaces, 2020, 12, 48654-48661.	4.0	13
4	Optimizing Redox Reactions in Aprotic Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2002180.	10.2	112
5	From LiNiO ₂ to Li ₂ NiO ₃ : Synthesis, Structures and Electrochemical Mechanisms in Li-Rich Nickel Oxides. Chemistry of Materials, 2020, 32, 9211-9227.	3.2	28
6	Lithium-conductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability. Green Energy and Environment, 2022, 7, 266-274.	4.7	41
7	Towards more environmentally and socially responsible batteries. Energy and Environmental Science, 2020, 13, 4087-4097.	15.6	74
8	Industrialization of Layered Oxide Cathodes for Lithiumâ€lon and Sodiumâ€lon Batteries: A Comparative Perspective. Energy Technology, 2020, 8, 2000723.	1.8	36
9	A Review of the Design of Advanced Binders for Highâ€Performance Batteries. Advanced Energy Materials, 2020, 10, 2002508.	10.2	202
10	Stable surface construction of the Ni-rich LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ cathode material for high performance lithium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 21649-21660.	5.2	54
11	Controlling Residual Lithium in Highâ€Nickel (>90 %) Lithium Layered Oxides for Cathodes in Lithiumâ€ion Batteries. Angewandte Chemie, 2020, 132, 18821-18828.	1.6	2
12	Controlling Residual Lithium in Highâ€Nickel (>90 %) Lithium Layered Oxides for Cathodes in Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 18662-18669.	7.2	81
13	Lithium Iron Aluminum Nickelate, LiNi <i>_x</i> Fe <i>_y</i> Al <i>_z</i> O ₂ —New Sustainable Cathodes for Nextâ€Generation Cobaltâ€Free Liâ€Ion Batteries. Advanced Materials, 2020, 32, e2002960.	11.1	77
14	An Effective Way to Stabilize Ni-Rich Layered Cathodes. CheM, 2020, 6, 3165-3167.	5.8	8
15	Enhancing nanostructured nickel-rich lithium-ion battery cathodes via surface stabilization. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 063210.	0.9	8
16	Direct Regeneration of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode from Spent Lithium-Ion Batteries by the Molten Salts Method. ACS Sustainable Chemistry and Engineering, 2020, 8, 18138-18147.	3.2	69
17	Impact of Residual Lithium on the Adoption of High-Nickel Layered Oxide Cathodes for Lithium-Ion Batteries. Chemistry of Materials, 2020, 32, 9479-9489.	3.2	81
18	Tailoring Ion-Conducting Interphases on Magnesium Metals for High-Efficiency Rechargeable Magnesium Metal Batteries. ACS Energy Letters, 2020, 5, 3733-3740.	8.8	30

#	Article	IF	CITATIONS
19	Effect of Anode Slippage on Cathode Cutoff Potential and Degradation Mechanisms in Ni-Rich Li-Ion Batteries. Cell Reports Physical Science, 2020, 1, 100253.	2.8	42
20	Synthesis of LiNiO ₂ at Moderate Oxygen Pressure and Long-Term Cyclability in Lithium-Ion Full Cells. ACS Applied Materials & Interfaces, 2020, 12, 52826-52835.	4.0	51
21	Xanthogen Polysulfides as a New Class of Electrode Material for Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 2001658.	10.2	36
22	Recent Developments of Nanomaterials and Nanostructures for Highâ€Rate Lithium Ion Batteries. ChemSusChem, 2020, 13, 5361-5407.	3.6	46
23	A redox-active organic cation for safer high energy density Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 17156-17162.	5.2	9
24	Riveting Dislocation Motion: The Inspiring Role of Oxygen Vacancies in the Structural Stability of Ni-Rich Cathode Materials. ACS Applied Materials & Interfaces, 2020, 12, 37208-37217.	4.0	49
25	Long-Life, Ultrahigh-Nickel Cathodes with Excellent Air Storage Stability for High-Energy Density Lithium-Based Batteries. Chemistry of Materials, 2020, 32, 7413-7424.	3.2	49
26	Solutionâ€Processed Allâ€V ₂ O ₅ Battery. Small, 2020, 16, e2003816.	5.2	4
27	Recent advances in Ni-rich layered oxide particle materials for lithium-ion batteries. Particuology, 2020, 53, 1-11.	2.0	60
28	A Pathway to Understand NMC Cathodes. Joule, 2020, 4, 1632-1633.	11.7	13
29	Complementary Effects of Mg and Cu Incorporation in Stabilizing the Cobalt-Free LiNiO ₂ Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 43653-43664.	4.0	46
30	Synthesis Control of Layered Oxide Cathodes for Sodium-Ion Batteries: A Necessary Step Toward Practicality. Chemistry of Materials, 2020, 32, 8431-8441.	3.2	31
31	Suppressing H2–H3 phase transition in high Ni–low Co layered oxide cathode material by dual modification. Journal of Materials Chemistry A, 2020, 8, 21306-21316.	5.2	112
32	Long-Term Cyclability of NCM-811 at High Voltages in Lithium-Ion Batteries: an In-Depth Diagnostic Study. Chemistry of Materials, 2020, 32, 7796-7804.	3.2	152
33	Recent Advances in Lithium–Carbon Dioxide Batteries. Small Structures, 2020, 1, 2000027.	6.9	57
34	Challenges and Strategies to Advance Highâ€Energy Nickelâ€Rich Layered Lithium Transition Metal Oxide Cathodes for Harsh Operation. Advanced Functional Materials, 2020, 30, 2004748.	7.8	146
35	Engineering a Hierarchical Microtubular NiCoO2 Architecture for Electrochemical Energy Storage Applications. International Journal of Electrochemical Science, 2020, 15, 8086-8095.	0.5	2
36	Pseudoâ€Bonding and Electricâ€Field Harmony for Liâ€Rich Mnâ€Based Oxide Cathode. Advanced Functional Materials, 2020, 30, 2004302.	7.8	149

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
37	A Progress Report on Metal–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2004084.	7.8	78
38	Boosting Reaction Homogeneity in Highâ€Energy Lithiumâ€Ion Battery Cathode Materials. Advanced Materials, 2020, 32, e2003040.	11.1	130
39	Delineating the Capacity Fading Mechanisms of Na(Ni _{0.3} Fe _{0.4} Mn _{0.3})O ₂ at Higher Operating Voltages in Sodium-Ion Cells. Chemistry of Materials, 2020, 32, 7389-7396.	3.2	25
40	Controlling Particle Size and Phase Purity of "Single-Crystal―LiNi0.5Mn1.5O4 in Molten-Salt-Assisted Synthesis. Journal of Physical Chemistry C, 2020, 124, 27937-27945.	1.5	11
41	Ni-Rich Layered Oxide with Preferred Orientation (110) Plane as a Stable Cathode Material for High-Energy Lithium-Ion Batteries. Nanomaterials, 2020, 10, 2495.	1.9	19
42	Proton-Induced Disproportionation of Jahn–Teller-Active Transition-Metal Ions in Oxides Due to Electronically Driven Lattice Instability. Journal of the American Chemical Society, 2020, 142, 21122-21130.	6.6	35
43	Constructing Gradient Porous Structure in Thick Li ₄ Ti ₅ O ₁₂ Electrode for High-Energy and Stable Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 17062-17068.	3.2	17
44	Identifying the Origins of Microstructural Defects Such as Cracking within Niâ€Rich NMC811 Cathode Particles for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2002655.	10.2	119
45	Implanting an electrolyte additive on a single crystal Ni-rich cathode surface for improved cycleability and safety. Journal of Materials Chemistry A, 2020, 8, 24579-24589.	5.2	31
46	Al-doping induced superior lithium ion storage capability of LiNiO2 spheres. Ceramics International, 2020, 46, 20050-20060.	2.3	26
47	Operando Differential Electrochemical Pressiometry for Probing Electrochemoâ€Mechanics in Allâ€Solidâ€State Batteries. Advanced Functional Materials, 2020, 30, 2002535.	7.8	41
48	Charge/discharge cycling of Li1+x(Ni0.6Co0.2Mn0.2)1â^'xO2 primary particles performed in a liquid microcell for transmission electron microscopy studies. JPhys Energy, 2020, 2, 034007.	2.3	12
49	A reflection on lithium-ion battery cathode chemistry. Nature Communications, 2020, 11, 1550.	5.8	1,398
50	Improving LiNi _x Co _y Mn _{1â^'xâ^'y} O ₂ cathode electrolyte interface under high voltage in lithium ion batteries. Nano Select, 2020, 1, 111-134.	1.9	36
51	FeOF/TiO ₂ Hetero-Nanostructures for High-Areal-Capacity Fluoride Cathodes. ACS Applied Materials & Interfaces, 2020, 12, 33803-33809.	4.0	12
52	Lithium degradation in lithium–sulfur batteries: insights into inventory depletion and interphasial evolution with cycling. Energy and Environmental Science, 2020, 13, 2501-2514.	15.6	88
53	Highâ€Nickel NMA: A Cobaltâ€Free Alternative to NMC and NCA Cathodes for Lithiumâ€ion Batteries. Advanced Materials, 2020, 32, e2002718.	11.1	205
54	Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries. Batteries, 2020, 6, 8.	2.1	73

#	Article	IF	CITATIONS
55	Toward Green Battery Cells: Perspective on Materials and Technologies. Small Methods, 2020, 4, 2000039.	4.6	177
56	Battery plant location considering the balance between knowledge and cost: A comparative study of the EU-28 countries. Journal of Cleaner Production, 2020, 264, 121428.	4.6	13
57	A Comparison of the Performance of Different Morphologies of LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Using Isothermal Microcalorimetry, Ultra-High Precision Coulometry, and Long-Term Cycling. Journal of the Electrochemical Society, 2020, 167, 060530.	1.3	37
58	Anodeâ€Free Full Cells: A Pathway to Highâ€Energy Density Lithiumâ€Metal Batteries. Advanced Energy Materials, 2021, 11, 2000804.	10.2	232
59	Finding the sweet spot: Li/Mn-rich cathode materials with fine-tuned core–shell particle design for high-energy lithium ion batteries. Electrochimica Acta, 2021, 366, 137413.	2.6	14
60	A novel low-cobalt long-life LiNi0.88Co0.06Mn0.03Al0.03O2 cathode material for lithium ion batteries. Chemical Engineering Journal, 2021, 407, 126301.	6.6	43
61	An in-depth understanding of the effect of aluminum doping in high-nickel cathodes for lithium-ion batteries. Energy Storage Materials, 2021, 34, 229-240.	9.5	120
62	Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives. Energy Storage Materials, 2021, 34, 250-259.	9.5	145
63	A review of composite polymer-ceramic electrolytes for lithium batteries. Energy Storage Materials, 2021, 34, 282-300.	9.5	233
64	Mgâ€Pillared LiCoO ₂ : Towards Stable Cycling at 4.6â€V. Angewandte Chemie - International Edition, 2021, 60, 4682-4688.	7.2	135
65	Insight into cathode surface to boost the performance of solid-state batteries. Energy Storage Materials, 2021, 35, 661-668.	9.5	59
66	General Liquidâ€Driven Coaxial Flow Focusing Preparation of Novel Microcapsules for Rechargeable Magnesium Batteries. Advanced Science, 2021, 8, 2002298.	5.6	20
67	Recent breakthroughs and perspectives of high-energy layered oxide cathode materials for lithium ion batteries. Materials Today, 2021, 43, 132-165.	8.3	174
68	Kinetic Limitations in Singleâ€Crystal Highâ€Nickel Cathodes. Angewandte Chemie - International Edition, 2021, 60, 17350-17355.	7.2	84
69	Mgâ€Pillared LiCoO ₂ : Towards Stable Cycling at 4.6â€V. Angewandte Chemie, 2021, 133, 4732-4738.	1.6	47
70	Phase Behavior during Electrochemical Cycling of Niâ€Rich Cathode Materials for Liâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2003404.	10.2	153
71	Evoking High-Donor-Number-Assisted and Organosulfur-Mediated Conversion in Lithium–Sulfur Batteries. ACS Energy Letters, 2021, 6, 224-231.	8.8	51
72	Titanium–oxo cluster reinforced gel polymer electrolyte enabling lithium–sulfur batteries with high gravimetric energy densities. Energy and Environmental Science, 2021, 14, 975-985.	15.6	69

#	Article	IF	CITATIONS
73	Allâ€Solidâ€State Sodium Batteries with a Polyethylene Glycol Diacrylate–Na ₃ Zr ₂ Si ₂ PO ₁₂ Composite Electrolyte. Advanced Energy and Sustainability Research, 2021, 2, 2000061.	2.8	19
74	Kinetic Limitations in Singleâ€Crystal Highâ€Nickel Cathodes. Angewandte Chemie, 2021, 133, 17490-17495.	1.6	2
75	Exploiting the Degradation Mechanism of NCM523Graphite Lithiumâ€Ion Full Cells Operated at High Voltage. ChemSusChem, 2021, 14, 595-613.	3.6	56
76	(Oxalato)borate: The key ingredient for polyethylene oxide based composite electrolyte to achieve ultra-stable performance of high voltage solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal battery. Nano Energy, 2021, 80, 105562.	8.2	58
77	Interfacial Degradation and Optimization of Liâ€rich Cathode Materials ^{â€} . Chinese Journal of Chemistry, 2021, 39, 402-420.	2.6	11
78	Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nature Sustainability, 2021, 4, 71-79.	11.5	234
79	Monoclinic αâ€NaVOPO 4 as cathode materials for sodiumâ€ions batteries: Experimental and DFT investigation. International Journal of Energy Research, 2021, 45, 1703-1719.	2.2	11
80	Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nature Materials, 2021, 20, 84-92.	13.3	349
81	Advanced liquid electrolytes enable practical applications of high-voltage lithium–metal full batteries. Chemical Communications, 2021, 57, 840-858.	2.2	27
82	High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chemical Society Reviews, 2021, 50, 10486-10566.	18.7	391
83	Insight into the Coprecipitation-Controlled Crystallization Reaction for Preparing Lithium-Layered Oxide Cathodes. ACS Applied Materials & amp; Interfaces, 2021, 13, 717-726.	4.0	34
84	The role of polymers in lithium solid-state batteries with inorganic solid electrolytes. Journal of Materials Chemistry A, 2021, 9, 18701-18732.	5.2	47
85	Metal Oxide Composite Cathode Material for High Energy Density Batteries. , 2021, , 509-530.		1
86	Revisiting the role of Zr doping in Ni-rich layered cathodes for lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 17415-17424.	5.2	56
87	First-principles study of effect of Mg doping on structural stability and electronic structure of LiCoO ₂ cathode material. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 138201-138201.	0.2	1
88	A renewable future: a comprehensive perspective from materials to systems for next-generation batteries. Materials Chemistry Frontiers, 2021, 5, 3344-3377.	3.2	11
89	Oxide-based Cathode Materials for Li- and Na-ion Batteries. New Developments in NMR, 2021, , 159-210.	0.1	0
90	Temperature-Swing Synthesis of Large-Size Single-Crystal LiNi _{0.6} Mn _{0.2} Co _{0.2} O _{O₂ Cathode Materials. Journal of the Electrochemical Society, 2021, 168, 010534.}	1.3	36

#	Article	IF	CITATIONS
91	Microwave-assisted Synthesis and Co, Al Co-modification of Ni-rich LiNi _{0.8} Mn _{0.2} O ₂ Materials for Li-ion Battery Electrode. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 718.	0.6	8
92	Advances of the top-down synthesis approach for high-performance silicon anodes in Li-ion batteries. Journal of Materials Chemistry A, 2021, 9, 18906-18926.	5.2	52
93	On the Beneficial Impact of Li ₂ CO ₃ as Electrolyte Additive in NCM523 â^¥ Graphite Lithium Ion Cells Under Highâ€Voltage Conditions. Advanced Energy Materials, 2021, 11, 2003756.	10.2	59
94	Unifying the clustering kinetics of lithium polysulfides with the nucleation behavior of Li ₂ S in lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 13242-13251.	5.2	28
95	New insights in Alâ€doping effects on the <scp> LiNiO ₂ </scp> positive electrode material by a solâ€gel method. International Journal of Energy Research, 2021, 45, 10489-10499.	2.2	11
96	Carbon Nitride-Supported Nickel Oxide Nanoparticles for Resistive Memory Application. ACS Applied Nano Materials, 2021, 4, 2496-2502.	2.4	8
97	Advances and Prospects of Highâ€Voltage Spinel Cathodes for Lithiumâ€Based Batteries. Small Methods, 2021, 5, e2001196.	4.6	63
98	Yttrium Surface Gradient Doping for Enhancing Structure and Thermal Stability of High-Ni Layered Oxide as Cathode for Li–Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 7343-7354.	4.0	51
99	Recent developments in materials design for all-solid-state Li–S batteries. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 283-308.	6.8	15
100	New Insight into Microstructure Engineering of Niâ€Rich Layered Oxide Cathode for High Performance Lithium Ion Batteries. Advanced Functional Materials, 2021, 31, 2010095.	7.8	113
101	Structural origin of the high-voltage instability of lithium cobalt oxide. Nature Nanotechnology, 2021, 16, 599-605.	15.6	148
102	Robust Surface Reconstruction Induced by Subsurface Ni/Li Antisites in Niâ€Rich Cathodes. Advanced Functional Materials, 2021, 31, 2010291.	7.8	36
103	Crossover Effects in Batteries with Highâ€Nickel Cathodes and Lithiumâ€Metal Anodes. Advanced Functional Materials, 2021, 31, 2010267.	7.8	65
104	Unraveling the Intricacies of Residual Lithium in High-Ni Cathodes for Lithium-Ion Batteries. ACS Energy Letters, 2021, 6, 941-948.	8.8	86
105	A perspective on sustainable energy materials for lithium batteries. SusMat, 2021, 1, 38-50.	7.8	208
106	Latticeâ€Oxygenâ€Stabilized Li―and Mnâ€Rich Cathodes with Subâ€Micrometer Particles by Modifying the Excessâ€Li Distribution. Advanced Materials, 2021, 33, e2100352.	11.1	32
107	Highâ€Energy Nickelâ€Cobaltâ€Aluminium Oxide (NCA) Cells on Idle: Anode―versus Cathodeâ€Driven Side Reactions. Batteries and Supercaps, 2021, 4, 934-947.	2.4	36
108	Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nature Energy, 2021, 6, 362-371.	19.8	274

#	Article	IF	CITATIONS
109	Sustainable Battery Materials for Nextâ€Generation Electrical Energy Storage. Advanced Energy and Sustainability Research, 2021, 2, 2000102.	2.8	52
110	Cellulose and Vanadium Plasmonic Sensor to Measure Ni2+ Ions. Applied Sciences (Switzerland), 2021, 11, 2963.	1.3	6
111	Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nature Energy, 2021, 6, 495-505.	19.8	323
112	Interface crystal domain regulation via TiO2 surface modification enhancing stability of layered LiNi0.5Co0.2Mn0.3O2 for lithium-ion batteries. Ionics, 2021, 27, 1871-1880.	1.2	2
113	Facilitated Coating of Li ₃ PO ₄ on the Rough Surface of LiNi _{0.85} Co _{0.1} Mn _{0.05} O ₂ Cathodes by Synchronous Lithiation. ACS Applied Energy Materials, 2021, 4, 2257-2265.	2.5	14
114	Zinc-Doped High-Nickel, Low-Cobalt Layered Oxide Cathodes for High-Energy-Density Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 15324-15332.	4.0	84
115	Electrolyte Regulating toward Stabilization of Cobalt-Free Ultrahigh-Nickel Layered Oxide Cathode in Lithium-Ion Batteries. ACS Energy Letters, 2021, 6, 1324-1332.	8.8	53
116	Layered lithium cobalt oxide cathodes. Nature Energy, 2021, 6, 323-323.	19.8	75
117	Tungsten and phosphate polyanion co-doping of Ni-ultrahigh cathodes greatly enhancing crystal structure and interface stability. Chinese Journal of Chemical Engineering, 2021, 37, 144-151.	1.7	10
118	Studies of Nickel-Rich LiNi0.85Co0.10Mn0.05O2 Cathode Materials Doped with Molybdenum Ions for Lithium-Ion Batteries. Materials, 2021, 14, 2070.	1.3	18
119	Promising Electrode and Electrolyte Materials for Highâ€Energyâ€Density Thinâ€Film Lithium Batteries. Energy and Environmental Materials, 2022, 5, 133-156.	7.3	25
120	Enhancing the Electrochemical Performance and Structural Stability of Ni-Rich Layered Cathode Materials via Dual-Site Doping. ACS Applied Materials & Interfaces, 2021, 13, 19950-19958.	4.0	49
121	Atomic-Scale Observation of O1 Faulted Phase-Induced Deactivation of LiNiO ₂ at High Voltage. Nano Letters, 2021, 21, 3657-3663.	4.5	43
122	Demystifying the Lattice Oxygen Redox in Layered Oxide Cathode Materials of Lithium-Ion Batteries. ACS Nano, 2021, 15, 6061-6104.	7.3	77
123	Graphene/PVDF Composites for Ni-rich Oxide Cathodes toward High-Energy Density Li-ion Batteries. Materials, 2021, 14, 2271.	1.3	7
124	Performance of Commercial Li-Ion Cells for Future NASA Missions and Aerospace Applications. Journal of the Electrochemical Society, 2021, 168, 040504.	1.3	34
125	Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 538-552.	2.4	21
126	Stabilizing ultrahigh-nickel layered oxide cathodes for high-voltage lithium metal batteries. Materials Today, 2021, 44, 15-24.	8.3	53

#	Article	IF	CITATIONS
127	Tailoring Lithium Polysulfide Coordination and Clustering Behavior through Cationic Electrostatic Competition. Chemistry of Materials, 2021, 33, 3457-3466.	3.2	31
128	Interface cation migration kinetics induced oxygen release heterogeneity in layered lithium cathodes. Energy Storage Materials, 2021, 36, 115-122.	9.5	23
129	Graphene collage on Ni-rich layered oxide cathodes for advanced lithium-ion batteries. Nature Communications, 2021, 12, 2145.	5.8	54
130	Stabilized Cathode Interphase for Enhancing Electrochemical Performance of LiNi _{0.5} Mn _{1.5} O ₄ -Based Lithium-Ion Battery via <i>cis</i> -1,2,3,6-Tetrahydrophthalic Anhydride. ACS Applied Materials & Interfaces, 2021, 13, 18314-18323.	4.0	21
131	A Comparative Study of Structural Changes during Long-Term Cycling of NCM-811 at Ambient and Elevated Temperatures. Journal of the Electrochemical Society, 2021, 168, 050512.	1.3	28
132	A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Storage Materials, 2021, 37, 143-160.	9.5	210
133	The role of tungsten-related elements for improving the electrochemical performances of cathode materials in lithium ion batteries. Tungsten, 2021, 3, 245-259.	2.0	35
134	The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li ⁺ transportation. , 2021, 3, 482-508.		68
135	Tailoring the Al distribution in secondary particles for optimizing the electrochemical performance of LiNi0.8Co0.1Mn0.1O2. Ceramics International, 2021, 47, 12981-12991.	2.3	9
136	Recent trends in batteries and lubricants for electric vehicles. Advances in Mechanical Engineering, 2021, 13, 168781402110217.	0.8	16
137	Al Substitution for Mn during Co-Precipitation Boosts the Electrochemical Performance of LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ . Journal of the Electrochemical Society, 2021, 168, 050532.	1.3	8
138	Bulk Mg-doping and surface polypyrrole-coating enable high-rate and long-life for Ni-rich layered cathodes. Chemical Engineering Journal, 2021, 412, 128625.	6.6	48
139	Morphological effect on high compaction density nickel-rich layered oxide cathodes during electrochemical lithiation and delithiation. Electrochimica Acta, 2021, 377, 138118.	2.6	6
140	Natural Self-Confined Structure Effectively Suppressing Volume Expansion toward Advanced Lithium Storage. ACS Applied Materials & amp; Interfaces, 2021, 13, 24634-24642.	4.0	5
141	Zirconium disulfides as an electrode material alternative for Li-ion batteries. Applied Surface Science, 2021, 547, 149029.	3.1	12
142	Ammonia-low coprecipitation synthesis of lithium layered oxide cathode material for high-performance battery. Chemical Engineering Journal, 2021, 411, 128487.	6.6	31
143	Layered oxides with solid-solution reaction for high voltage potassium-ion batteries cathode. Chemical Engineering Journal, 2021, 412, 128735.	6.6	30
144	Stabilization of a 4.7â€V Highâ€Voltage Nickelâ€Rich Layered Oxide Cathode for Lithiumâ€Ion Batteries througl Boronâ€Based Surface Residual Lithiumâ€Tuned Interface Modification Engineering. ChemElectroChem, 2021, 8, 2014-2021.	า 1.7	11

#	Article	IF	CITATIONS
145	Dynamic spin fluctuations in the frustrated spin chain compound Li3Cu2SbO6. Physical Review B, 2021, 103, .	1.1	4
146	Ionic Liquid (IL) Laden Metal–Organic Framework (IL-MOF) Electrolyte for Quasi-Solid-State Sodium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 24662-24669.	4.0	42
147	A Universal Method for Enhancing the Structural Stability of Ni-Rich Cathodes Via the Synergistic Effect of Dual-Element Cosubstitution. ACS Applied Materials & Interfaces, 2021, 13, 24925-24936.	4.0	43
148	Effect of Residual Trace Amounts of Fe and Al in Li[Ni1/3Mn1/3Co1/3]O2 Cathode Active Material for the Sustainable Recycling of Lithium-Ion Batteries. Materials, 2021, 14, 2464.	1.3	15
149	Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy, 2021, 83, 105854.	8.2	264
150	Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nature Reviews Materials, 2021, 6, 1003-1019.	23.3	409
151	Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials, 2021, 37, 77-86.	9.5	78
152	Selective dopant segregation modulates mesoscale reaction kinetics in layered transition metal oxide. Nano Energy, 2021, 84, 105926.	8.2	42
153	Direct Elimination of Detrimental Surface Phases Parasitic to LiNi <i>_x</i> Co _{1â~'} <i>_x</i> O ₂ (<i>x</i> Â = ÂO.8 and) 2100392.	Tj ₁ .9Qq0	0 g rgBT /Ov
154	Wet-CO ₂ Pretreatment Process for Reducing Residual Lithium in High-Nickel Layered Oxides for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 27096-27105.	4.0	23
155	Transition Metal Dissolution and Degradation in NMC811-Graphite Electrochemical Cells. Journal of the Electrochemical Society, 2021, 168, 060518.	1.3	42
156	A bottom-up performance and cost assessment of lithium-ion battery pouch cells utilizing nickel-rich cathode active materials and silicon-graphite composite anodes. Journal of Power Sources Advances, 2021, 9, 100055.	2.6	33
157	A review on the stability and surface modification of layered transition-metal oxide cathodes. Materials Today, 2021, 46, 155-182.	8.3	132
158	Inâ€Depth Analysis of the Degradation Mechanisms of Highâ€Nickel, Low/Noâ€Cobalt Layered Oxide Cathodes for Lithiumâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2100858.	10.2	79
159	Grain boundaries contribute to highly efficient lithiumâ€ion transport in advanced LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ secondary sphere with compact structure. SusMat, 2021, 1, 255-265.	7.8	20
160	Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter, 2021, 4, 2013-2026.	5.0	69
161	Rationally Designed PEGDA–LLZTO Composite Electrolyte for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 30703-30711.	4.0	51
162	Synthesis of Ni-rich NMC cathode material by redox-assisted deposition method for lithium ion batteries. Electrochimica Acta, 2021, 381, 138244.	2.6	5

#	Article	IF	CITATIONS
163	Unveiling micro internal short circuit mechanism in a 60ÂAh high-energy-density Li-ion pouch cell. Nano Energy, 2021, 84, 105908.	8.2	15
164	Enhanced Electrochemical Performance of 5V LiNi 0.5 Mn 1.5â€x Zr x O 4 Cathode Material for Lithiumâ€ion Batteries. ChemistrySelect, 2021, 6, 7202-7212.	0.7	3
165	Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes. Nano Letters, 2021, 21, 5896-5904.	4.5	66
166	Elemental Foil Anodes for Lithium-Ion Batteries. ACS Energy Letters, 2021, 6, 2666-2672.	8.8	55
167	Economic Control for a Residential Photovoltaic-Battery System by Combining Stochastic Model Predictive Control and Improved Correction Strategy. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	1.4	5
168	Surface enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode toward Li-ion batteries. Nature Communications, 2021, 12, 4564.	5.8	153
169	Probing Mechanistic Insights into Highly Efficient Lithium Storage of C ₆₀ Fullerene Enabled via Threeâ€Electronâ€Redox Chemistry. Advanced Science, 2021, 8, e2101759.	5.6	10
170	Online Monitoring of Transition-Metal Dissolution from a High-Ni-Content Cathode Material. ACS Applied Materials & Interfaces, 2021, 13, 33075-33082.	4.0	43
171	Dual cationic modified high Ni-low co layered oxide cathode with a heteroepitaxial interface for high energy-density lithium-ion batteries. Chemical Engineering Journal, 2021, 416, 129118.	6.6	47
172	Unveiling the Stabilities of Nickelâ€Based Layered Oxide Cathodes at an Identical Degree of Delithiation in Lithiumâ€Based Batteries. Advanced Materials, 2021, 33, e2100804.	11.1	62
173	Deep surface modification with silicon improves the cycling stability of nickel-rich LiNi0.83Co0.06Mn0.11O2 cathode. Applied Physics Letters, 2021, 119, .	1.5	6
174	Synthesis of pompon-like ZnO microspheres as host materials and the catalytic effects of nonconductive metal oxides for lithium-sulfur batteries. Journal of Industrial and Engineering Chemistry, 2021, 99, 309-316.	2.9	15
175	Enhanced eletrochemical performances of LiCoO2 at high cut-off voltage by introducing LiF additive. Solid State Ionics, 2021, 365, 115654.	1.3	16
176	GeS2 nanocomposite space-confined in an interconnected spherical graphene framework as advanced anodes for lithium storage. Applied Surface Science, 2021, 554, 149596.	3.1	6
177	Unlocking the self-supported thermal runaway of high-energy lithium-ion batteries. Energy Storage Materials, 2021, 39, 395-402.	9.5	74
178	Conditioning the Surface and Bulk of High-Nickel Cathodes with a Nb Coating: An <i>In Situ</i> X-ray Study. Journal of Physical Chemistry Letters, 2021, 12, 7908-7913.	2.1	16
179	Surface reinforcement doping to suppress oxygen release of Li-rich layered oxides. Journal of Power Sources, 2021, 503, 230048.	4.0	20
180	Tuning Solvation Behavior of Ester-Based Electrolytes toward Highly Stable Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 40582-40589.	4.0	9

#	Article	IF	CITATIONS
181	Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques. National Science Review, 2022, 9, nwab146.	4.6	27
182	Re-evaluating common electrolyte additives for high-voltage lithium ion batteries. Cell Reports Physical Science, 2021, 2, 100521.	2.8	32
183	Role of Residual Li and Oxygen Vacancies in Ni-rich Cathode Materials. ACS Applied Materials & Interfaces, 2021, 13, 42554-42563.	4.0	56
184	Engineering Single Atom Catalysts to Tune Properties for Electrochemical Reduction and Evolution Reactions. Advanced Energy Materials, 2021, 11, 2101670.	10.2	42
185	Oxalic Acid as a Cathode Additive Increasing Rate Capability of Ni-Rich Layered Cathode Materials. Journal of the Electrochemical Society, 2021, 168, 080512.	1.3	5
186	Utilizing the Intrinsic Thermal Instability of Swedenborgite Structured YBaCo4O7+δ as an Opportunity for Material Engineering in Lithium-Ion Batteries by Er and Ga Co-Doping Processes. Materials, 2021, 14, 4565.	1.3	0
187	Rational Design of Coating Ions via Advantageous Surface Reconstruction in Highâ€Nickel Layered Oxide Cathodes for Lithiumâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2101112.	10.2	58
188	Critical Barriers to Successful Implementation of Earth-Abundant, Mn-Rich Cathodes for Vehicle Applications and Beyond: A Detailed Study of Low SOC Impedance. Journal of the Electrochemical Society, 2021, 168, 080506.	1.3	9
189	Electrochemically-Matched and Nonflammable Janus Solid Electrolyte for Lithium–Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 39271-39281.	4.0	16
190	Moderately Concentrated Acetonitrileâ€containing Electrolytes with High Ionic Conductivity for Durabilityâ€oriented Lithiumâ€ion Batteries. ChemElectroChem, 2021, 8, 3095-3104.	1.7	6
191	Comprehensive review of the morphological, linear and nonlinear optical characterization of spin-coated NiO thin films for optoelectronic applications. Optical Materials, 2021, 118, 111294.	1.7	25
192	Surface Modification of Nickelâ€Rich Cathode Materials by Ionically Conductive Materials at Room Temperature. Energy Technology, 2021, 9, 2100422.	1.8	4
193	Silicon Anodes with Improved Calendar Life Enabled By Multivalent Additives. Advanced Energy Materials, 2021, 11, 2101820.	10.2	17
194	Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries. Joule, 2021, 5, 2177-2194.	11.7	83
195	Accessing a highâ€voltage nonaqueous hybrid flow battery with a sodiumâ€methylphenothiazine chemistry and a sodiumâ€ion solid electrolyte. Energy Storage, 2022, 4, e281.	2.3	4
196	Elucidation of the influence of operating temperature in LiNi0.8Co0.15Al0.05O2/silicon and LiNi0.8Co0.15Al0.05O2/graphite pouch cells batteries cycle-life degradation. Journal of Energy Storage, 2021, 41, 102989.	3.9	7
197	Engineering a Robust Interface on Ni-Rich Cathodes via a Novel Dry Doping Process toward Advanced High-Voltage Performance. ACS Applied Materials & Interfaces, 2021, 13, 45068-45076.	4.0	15
198	Environmental life cycle implications of upscaling lithium-ion battery production. International Journal of Life Cycle Assessment, 2021, 26, 2024-2039.	2.2	53

#	Article	IF	CITATIONS
199	Rice Husk Valorization into NiO@SiO2/Carbon Nanocomposites for Low-Temperature CO Oxidation: Effect of Surface Area and Ni3+ Cations. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	1
200	New Insights into Structural Evolution of LiNiO ₂ Revealed by Operando Neutron Diffraction. Batteries and Supercaps, 2021, 4, 1701-1707.	2.4	8
201	Probing the electrolyte/electrode interface with vibrational sum frequency generation spectroscopy: A review. Journal of Power Sources, 2021, 506, 230173.	4.0	12
202	A universal etching method for synthesizing high-performance single crystal cathode materials. Nano Energy, 2021, 87, 106194.	8.2	28
203	Building the Stable Oxygen Framework in Highâ€Ni Layered Oxide Cathode for Highâ€Energyâ€Density Liâ€Ion Batteries. Energy and Environmental Materials, 2022, 5, 1260-1269.	7.3	15
204	A Perspective on the Sustainability of Cathode Materials used in Lithiumâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2102028.	10.2	133
205	Crystallographicâ€Siteâ€Specific Structural Engineering Enables Extraordinary Electrochemical Performance of Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Spinel Cathodes for Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2101413.	11.1	52
206	Elucidating and Mitigating High-Voltage Interfacial Chemomechanical Degradation of Nickel-Rich Lithium-Ion Battery Cathodes via Conformal Graphene Coating. ACS Applied Energy Materials, 2021, 4, 11069-11079.	2.5	13
207	Effect of TiO <i>_x</i> Surface Modification on the Electrochemical Performances of Ni-Rich (NMC-622) Cathode Material for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 10493-10504.	2.5	9
208	Y-doped P2-type Na0.67Ni0.33Mn0.67O2: A sodium-ion battery cathode with fast charging and enhanced cyclic performance. Journal of Alloys and Compounds, 2021, 874, 160027.	2.8	16
209	Dual-Element-Modified Single-Crystal LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ as a Highly Stable Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 43039-43050.	4.0	44
210	A review: Modification strategies of nickel-rich layer structure cathode (NiÂ≥Â0.8) materials for lithium ion power batteries. Journal of Energy Chemistry, 2021, 60, 435-450.	7.1	60
211	Enhancing surface and internal structural stability of LiNi0.8Co0.1Mn0.1O2 by yttrium phosphate dual effects. Journal of Alloys and Compounds, 2022, 894, 162155.	2.8	8
212	Improved Lithium-Ion Transport Within the LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Secondary Cathode Particles Through a Template-Assisted Synthesis Route. ACS Sustainable Chemistry and Engineering, 2021, 9, 12560-12574.	3.2	4
213	Long-life LiNi0.5Mn1.5O4/graphite lithium-ion cells with an artificial graphite-electrolyte interface. Energy Storage Materials, 2021, 43, 499-508.	9.5	22
214	Degradation Mechanism of Monocrystalline Ni-Rich Li[Ni _x Mn _y Co _{z }]O ₂ (NMC) Active Material in Lithium Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 090532.	1.3	13
215	FeCo Nanoparticles Encapsulated in Nâ€Doped Carbon Nanotubes Coupled with Layered Double (Co, Fe) Hydroxide as an Efficient Bifunctional Catalyst for Rechargeable Zinc–Air Batteries. Small, 2021, 17, e2103737.	5.2	62
216	Lithium-rich manganese-based cathode materials with highly stable lattice and surface enabled by perovskite-type phase-compatible layer. Nano Energy, 2021, 88, 106288.	8.2	85

#	Article	IF	CITATIONS
217	High-voltage and high-safety nickel-rich layered cathode enabled by a self-reconstructive cathode/electrolyte interphase layer. Energy Storage Materials, 2021, 41, 495-504.	9.5	87
218	Inherent inhibition of oxygen loss by regulating superstructural motifs in anionic redox cathodes. Nano Energy, 2021, 88, 106252.	8.2	32
219	Recent advance in structure regulation of highâ€capacity Niâ€rich layered oxide cathodes. EcoMat, 2021, 3, e12141.	6.8	38
220	Achieving dendrite-free lithium deposition on the anode of Lithium–Sulfur battery by LiF-rich regulation layer. Electrochimica Acta, 2021, 393, 138981.	2.6	16
221	Surface-Modified Na(Ni _{0.3} Fe _{0.4} Mn _{0.3})O ₂ Cathodes with Enhanced Cycle Life and Air Stability for Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 11735-11742.	2.5	31
222	Manganese recycling of spent lithium-ion batteries via solvent extraction. Separation and Purification Technology, 2021, 275, 119166.	3.9	24
223	Dual-salt-additive electrolyte enables high-voltage lithium metal full batteries capable of fast-charging ability. Nano Energy, 2021, 89, 106353.	8.2	90
224	Boron doped Ni-rich LiNi0.85Co0.10Mn0.05O2 cathode materials studied by structural analysis, solid state NMR, computational modeling, and electrochemical performance. Energy Storage Materials, 2021, 42, 594-607.	9.5	42
225	Li-ion battery technology for grid application. Journal of Power Sources, 2021, 511, 230419.	4.0	87
226	In-built ultraconformal interphases enable high-safety practical lithium batteries. Energy Storage Materials, 2021, 43, 248-257.	9.5	49
227	The impact of climate policy implementation on lithium, cobalt and nickel demand: The case of the Dutch automotive sector up to 2040. Resources Policy, 2021, 74, 102351.	4.2	17
228	In-situ construction protective layer and phosphate doping synergistically improve the long-term cycle stability of LiNi0.6Co0.1Mn0.3O2. Chemical Engineering Journal, 2021, 426, 131359.	6.6	10
229	Heat treatment protocol for modulating ionic conductivity via structural evolution of Li3-xYb1-xMxCl6 (MÂ=ÂHf4+, Zr4+) new halide superionic conductors for all-solid-state batteries. Chemical Engineering Journal, 2021, 425, 130630.	6.6	71
230	Grain size regulation for balancing cycle performance and rate capability of LiNi0.9Co0.055Mn0.045O2 single crystal nickel-rich cathode materials. Journal of Energy Chemistry, 2022, 65, 681-687.	7.1	35
231	Single-crystal high-nickel layered cathodes for lithium-ion batteries: advantages, mechanism, challenges and approaches. Current Opinion in Electrochemistry, 2022, 31, 100831.	2.5	20
232	(S)TEM-EELS as an advanced characterization technique for lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 5186-5193.	3.2	20
233	Element substitution of a spinel LiMn ₂ O ₄ cathode. Journal of Materials Chemistry A, 2021, 9, 21532-21550.	5.2	51
234	Battery cost forecasting: a review of methods and results with an outlook to 2050. Energy and Environmental Science, 2021, 14, 4712-4739.	15.6	189

#	Article	IF	CITATIONS
235	LT-LiMn _{0.5} Ni _{0.5} O ₂ : a unique co-free cathode for high energy Li-ion cells. Chemical Communications, 2021, 57, 11009-11012.	2.2	8
236	Synchronous Extraction of Valuable Metals from Low-Nickel Matte Using Ammonium Sulfate Roasting-Water Leaching Process. Minerals, Metals and Materials Series, 2021, , 561-568.	0.3	0
237	Prelithiated Li-Enriched Gradient Interphase toward Practical High-Energy NMC–Silicon Full Cell. ACS Energy Letters, 2021, 6, 320-328.	8.8	50
238	Developing high-voltage spinel LiNi _{0.5} Mn _{1.5} O ₄ cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects. Journal of Materials Chemistry A, 2020, 8, 15373-15398.	5.2	186
239	In Situ Analysis of NMCâ^£graphite Li-Ion Batteries by Means of Complementary Electrochemical Methods. Journal of the Electrochemical Society, 2020, 167, 090528.	1.3	17
240	Implications of Aqueous Processing for High Energy Density Cathode Materials: Part I. Ni-Rich Layered Oxides. Journal of the Electrochemical Society, 2020, 167, 140512.	1.3	22
241	Implications of Aqueous Processing for High Energy Density Cathode Materials: Part II. Water-Induced Surface Species on LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ . Journal of the Electrochemical Society, 2020, 167, 140535.	1.3	20
242	Systematic Study of the Cathode Compositional Dependency of Cross-Talk Behavior in Li-Ion Battery. Journal of the Electrochemical Society, 2020, 167, 160508.	1.3	12
243	Mechanical failures in solid-state lithium batteries and their solution. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 226201.	0.2	5
244	The influence of electrochemical cycling protocols on capacity loss in nickel-rich lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 23582-23596.	5.2	17
245	Anionic redox induced anomalous structural transition in Ni-rich cathodes. Energy and Environmental Science, 2021, 14, 6441-6454.	15.6	33
246	Perspectives for next generation lithium-ion battery cathode materials. APL Materials, 2021, 9, .	2.2	44
247	Comprehensive understanding of Li/Ni intermixing in layered transition metal oxides. Materials Today, 2021, 51, 365-392.	8.3	102
248	Suppressing High urrentâ€Induced Phase Separation in Niâ€Rich Layered Oxides by Electrochemically Manipulating Dynamic Lithium Distribution. Advanced Materials, 2021, 33, e2105337.	11.1	26
249	Structure and Charge Regulation Strategy Enabling Superior Cyclability for Niâ€Rich Layered Cathode Materials. Small, 2021, 17, e2104282.	5.2	36
250	A Cobalt―and Manganeseâ€Free Highâ€Nickel Layered Oxide Cathode for Longâ€Life, Safer Lithiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, .	10.2	79
251	Environmental Impacts of Graphite Recycling from Spent Lithium-Ion Batteries Based on Life Cycle Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 14488-14501.	3.2	60
252	Understanding the formation of antiphase boundaries in layered oxide cathode materials and their evolution upon electrochemical cycling. Matter, 2021, 4, 3953-3966.	5.0	20

#	Article	IF	CITATIONS
253	Degradation by Kinking in Layered Cathode Materials. ACS Energy Letters, 2021, 6, 3960-3969.	8.8	33
254	Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nature Energy, 2021, 6, 951-960.	19.8	237
255	Design Parameters for Enhanced Performance of Li _{1+x} Ni _{0.6} Co _{0.2} Mn _{0.2} O ₂ at High Voltage: A Phase Transformation Study by In Situ XRD. Journal of the Electrochemical Society, 2021, 168, 100526.	1.3	7
256	Improving interfacial stability of ultrahigh-voltage lithium metal batteries with single-crystal Ni-rich cathode via a multifunctional additive strategy. Journal of Colloid and Interface Science, 2022, 608, 1471-1480.	5.0	25
257	Role of Filler Content and Morphology in LLZO/PEO Membranes. Frontiers in Energy Research, 2021, 9, .	1.2	11
258	Role of Electrolyte in Overcoming the Challenges of LiNiO ₂ Cathode in Lithium Batteries. ACS Energy Letters, 2021, 6, 3809-3816.	8.8	34
259	Enhanced electrochemical performance of Li1.2(Ni0.17Co0.07Mn0.56)O2 via constructing double protection layers by facile phytic acid treatment. Ceramics International, 2022, 48, 3374-3382.	2.3	12
260	Aluminum–Silicon Alloy Foils as Low-Cost, Environmentally Friendly Anodes for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 14515-14524.	3.2	17
261	Revealing Roles of Co and Ni in Mnâ \in Rich Layered Cathodes. Advanced Energy Materials, 2021, 11, .	10.2	24
262	The LiNiO ₂ Cathode Active Material: A Comprehensive Study of Calcination Conditions and their Correlation with Physicochemical Properties. Part I. Structural Chemistry. Journal of the Electrochemical Society, 2021, 168, 110518.	1.3	34
263	Highâ€Voltage and Highâ€Safety Practical Lithium Batteries with Ethylene Carbonateâ€Free Electrolyte. Advanced Energy Materials, 2021, 11, 2102299.	10.2	59
264	Exploiting the Degradation Mechanism of NCM523   Graphite Lithiumâ€ŀon Full Cells Operated at High Voltage. ChemSusChem, 2021, 14, 491-491.	3.6	2
265	Novel graphitic sheets with ripple-like folds as an NCA cathode coating layer for high-energy-density lithium-ion batteries. Nanotechnology, 2021, 32, 08LT01.	1.3	6
266	Nonaqueous hybrid redox flow energy storage with a sodium–TEMPO chemistry and a single-ion solid electrolyte separator. Energy Advances, 2022, 1, 21-27.	1.4	3
267	Self-assembly of two-dimensional supramolecular as flame-retardant electrode for lithium-ion battery. Chemical Engineering Journal, 2022, 430, 132873.	6.6	14
268	Layered Transition Metal Oxides as Ca Intercalation Cathodes: A Systematic Firstâ€Principles Evaluation. Advanced Energy Materials, 2021, 11, 2101698.	10.2	8
269	Elucidating and Mitigating Highâ€Voltage Degradation Cascades in Cobaltâ€Free LiNiO ₂ Lithiumâ€Ion Battery Cathodes. Advanced Materials, 2022, 34, e2106402.	11.1	44
270	Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Science Advances, 2021, 7, eabi7633.	4.7	94

#	Article	IF	CITATIONS
271	The Effect of Excessive Sulfate in the Li-Ion Battery Leachate on the Properties of Resynthesized Li[Ni1/3Co1/3Mn1/3]O2. Materials, 2021, 14, 6672.	1.3	6
272	Design of a Dual-Electrolyte Battery System Based on a High-Energy NCM811-Si/C Full Battery Electrode-Compatible Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 54069-54078.	4.0	16
273	Improved Li-storage performance of Mg2+-doped LiVPO4F@C cathode material synthesized by a fast carbothermal reduction reaction. Materials Research Bulletin, 2022, 147, 111635.	2.7	4
274	Effect of Nb5+ Doping and LiNbO3 Coating on the Structure and Surface of a LiNi0.8Mn0.2O2 Cathode Material for Lithium-Ion Batteries. Journal of the Electrochemical Society, 0, , .	1.3	3
275	Knitting a sweater with UV-induced in situ polymerization of poly(pyrrole-co-citral nitrile) on Ni-rich layer oxide cathode materials for lithium ion batteries. Journal of Power Sources, 2022, 520, 230768.	4.0	16
276	From coating to doping: Effect of post-annealing temperature on the alumina coating of LiNi0.5Mn1.5O4 cathode material. Journal of Solid State Chemistry, 2022, 306, 122765.	1.4	11
277	Thermal Runaway of Lithiumâ€lon Batteries Employing Flameâ€Retardant Fluorinated Electrolytes. Energy and Environmental Materials, 2023, 6, .	7.3	19
278	Pushing the boundaries of lithium battery research with atomistic modelling on different scales. Progress in Energy, 2022, 4, 012002.	4.6	12
279	Demonstrating Apparently Inconspicuous but Sensitive Impacts on the Rollover Failure of Lithium-Ion Batteries at a High Voltage. ACS Applied Materials & Interfaces, 2021, 13, 57241-57251.	4.0	21
220	A Review of Degradation Mechanisms and Recent Achievements for Niâ€Rich Cathodeâ€Based Liâ€lon		
280	Batteries. Advanced Energy Materials, 2021, 11, 2103005.	10.2	206
280	Batteries. Advanced Energy Materials, 2021, 11, 2103005. Long-Term Cycling of a Mn-Rich High-Voltage Spinel Cathode by Stabilizing the Surface with a Small Dose of Iron. ACS Applied Energy Materials, 2021, 4, 13297-13306.	10.2 2.5	206 7
	Batteries. Advanced Energy Materials, 2021, 11, 2103005. Long-Term Cycling of a Mn-Rich High-Voltage Spinel Cathode by Stabilizing the Surface with a Small		
281	Batteries. Advanced Energy Materials, 2021, 11, 2103005. Long-Term Cycling of a Mn-Rich High-Voltage Spinel Cathode by Stabilizing the Surface with a Small Dose of Iron. ACS Applied Energy Materials, 2021, 4, 13297-13306.	2.5	7
281 282	Batteries. Advanced Energy Materials, 2021, 11, 2103005. Long-Term Cycling of a Mn-Rich High-Voltage Spinel Cathode by Stabilizing the Surface with a Small Dose of Iron. ACS Applied Energy Materials, 2021, 4, 13297-13306. Fibers to power the future. Joule, 2021, 5, 2764-2765. Stable Electrode/Electrolyte Interface for High-Voltage NCM 523 Cathode Constructed by Synergistic	2.5 11.7	7 3
281 282 283	 Batteries. Advanced Energy Materials, 2021, 11, 2103005. Long-Term Cycling of a Mn-Rich High-Voltage Spinel Cathode by Stabilizing the Surface with a Small Dose of Iron. ACS Applied Energy Materials, 2021, 4, 13297-13306. Fibers to power the future. Joule, 2021, 5, 2764-2765. Stable Electrode/Electrolyte Interface for High-Voltage NCM 523 Cathode Constructed by Synergistic Positive and Passive Approaches. ACS Applied Materials & amp; Interfaces, 2021, 13, 57107-57117. Chemomechanically Stable Ultrahigh-Ni Single-Crystalline Cathodes with Improved Oxygen Retention 	2.5 11.7 4.0	7 3 23
281 282 283 283	Batteries. Advanced Energy Materials, 2021, 11, 2103005. Long-Term Cycling of a Mn-Rich High-Voltage Spinel Cathode by Stabilizing the Surface with a Small Dose of Iron. ACS Applied Energy Materials, 2021, 4, 13297-13306. Fibers to power the future. Joule, 2021, 5, 2764-2765. Stable Electrode/Electrolyte Interface for High-Voltage NCM 523 Cathode Constructed by Synergistic Positive and Passive Approaches. ACS Applied Materials & amp; Interfaces, 2021, 13, 57107-57117. Chemomechanically Stable Ultrahigh-Ni Single-Crystalline Cathodes with Improved Oxygen Retention and Delayed Phase Degradations. Nano Letters, 2021, 21, 9797-9804. Spontaneous Strain Buffer Enables Superior Cycling Stability in Single-Crystal Nickel-Rich NCM	2.5 11.7 4.0 4.5	7 3 23 38
281 282 283 284 285	Batteries. Advanced Energy Materials, 2021, 11, 2103005. Long-Term Cycling of a Mn-Rich High-Voltage Spinel Cathode by Stabilizing the Surface with a Small Dose of Iron. ACS Applied Energy Materials, 2021, 4, 13297-13306. Fibers to power the future. Joule, 2021, 5, 2764-2765. Stable Electrode/Electrolyte Interface for High-Voltage NCM 523 Cathode Constructed by Synergistic Positive and Passive Approaches. ACS Applied Materials & amp; Interfaces, 2021, 13, 57107-57117. Chemomechanically Stable Ultrahigh-Ni Single-Crystalline Cathodes with Improved Oxygen Retention and Delayed Phase Degradations. Nano Letters, 2021, 21, 9797-9804. Spontaneous Strain Buffer Enables Superior Cycling Stability in Single-Crystal Nickel-Rich NCM Cathode. Nano Letters, 2021, 21, 9997-10005. The interplay between (electro)chemical and (chemo)mechanical effects in the cycling performance of	2.5 111.7 4.0 4.5 4.5	7 3 23 38 58

#	Article	IF	CITATIONS
289	Multiâ€Element Surface Coating of Layered Niâ€Rich Oxide Cathode Materials and Their Longâ€Term Cycling Performance in Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2022, 9, 2101100.	1.9	10
290	Advances of Organosulfur Materials for Rechargeable Metal Batteries. Advanced Science, 2022, 9, e2103989.	5.6	36
291	Interfacial nitrogen engineering of robust silicon/MXene anode toward high energy solid-state lithium-ion batteries. Journal of Energy Chemistry, 2022, 67, 727-735.	7.1	46
292	Synergistic Effects of Surface Coating and Bulk Doping in Niâ€Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for Highâ€Energy Lithium Ion Batteries. ChemSusChem, 2022, 15, .	3.6	9
293	Understanding the Role of Commercial Separators and Their Reactivity toward LiPF ₆ on the Failure Mechanism of Highâ€Voltage NCM523 Graphite Lithium Ion Cells. Advanced Energy Materials, 2022, 12, 2102599.	10.2	35
294	High Nickel and No Cobalt─The Pursuit of Next-Generation Layered Oxide Cathodes. ACS Applied Materials & Interfaces, 2022, 14, 23056-23065.	4.0	30
295	Organic skin layer with carboxyl and electron-withdrawing nitro groups to chemically bind with residual Li and Ni cations on single-crystal LiNi0.8Co0.1Mn0.1O2. Electrochimica Acta, 2022, 404, 139743.	2.6	6
296	Removing lithium residues via H3BO3 washing and concurrent in-situ formation of a lithium reactive coating on Ni-rich cathode materials toward enhanced electrochemical performance. Electrochimica Acta, 2022, 406, 139879.	2.6	8
297	Electrochemo-mechanical effects as a critical design factor for all-solid-state batteries. Current Opinion in Solid State and Materials Science, 2022, 26, 100977.	5.6	32
298	Cost-effective technology choice in a decarbonized and diversified long-haul truck transportation sector: A U.S. case study. Journal of Energy Storage, 2022, 46, 103891.	3.9	21
299	Unlocking the origin of triggering hysteretic oxygen capacity in divalent species incorporated O-type sodium layered-oxide cathodes. Energy Storage Materials, 2022, 45, 432-441.	9.5	7
300	A polymeric separator membrane with chemoresistance and high Li-ion flux for high-energy-density lithium metal batteries. Energy Storage Materials, 2022, 45, 941-951.	9.5	39
301	Protective and ion conductive: High-Rate Ni-Rich cathode with enhanced cyclic stability via One-Step bifunctional dual-layer coating. Chemical Engineering Journal, 2022, 431, 134031.	6.6	13
302	Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage. Nano Energy, 2022, 94, 106900.	8.2	57
303	Native lattice strain induced structural earthquake in sodium layered oxide cathodes. Nature Communications, 2022, 13, 436.	5.8	29
304	Single rystal LiNi <i>_x</i> Mn <i>_y</i> Co _{1â~} <i>_x</i> _{a^<} <i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<i>_{a^}<isub>a^<isub>a^<isub>a^<isub>a^<isub>a^<isub>a^<isub>a^<isub>a^<isub>a^<isub>a^<isub>a^<isub>a^</isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></isub></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	ubæyz/sub)>< å ≱O <sub< td=""></sub<>
305	Nextâ€Generation Cobaltâ€Free Cathodes – A Prospective Solution to the Battery Industry's Cobalt Problem. Advanced Energy Materials, 2022, 12, .	10.2	71
306	Principles and Challenges of Lithium–Sulfur Batteries. Modern Aspects of Electrochemistry, 2022, , 1-18.	0.2	1

#	Article	IF	CITATIONS
307	Diphenyl diselenide as a bifunctional electrolyte additive in a high-voltage LiNi0.8Mn0.1Co0.1O2/graphite battery. Electrochimica Acta, 2022, 409, 139984.	2.6	7
308	An Air‣table Highâ€Nickel Cathode with Reinforced Electrochemical Performance Enabled by Convertible Amorphous Li ₂ CO ₃ Modification. Advanced Materials, 2022, 34, e2108947.	11.1	83
309	Enhanced Electrochemical and Structural Stability of Niâ€rich Cathode Material by Lithium Metaborate Coating for Lithiumâ€lon Batteries. ChemElectroChem, 2022, 9, .	1.7	7
310	Spatially Resolved Operando Synchrotron-Based X-Ray Diffraction Measurements of Ni-Rich Cathodes for Li-Ion Batteries. Frontiers in Chemical Engineering, 2022, 3, .	1.3	9
311	Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Research, 2022, 15, 4091-4099.	5.8	96
312	Precise surface control of cathode materials for stable lithium-ion batteries. Chemical Communications, 2022, 58, 1454-1467.	2.2	6
313	Design of Polymeric Zwitterionic Solid Electrolytes with Superionic Lithium Transport. ACS Central Science, 2022, 8, 169-175.	5.3	54
314	Oxygen Loss in Layered Oxide Cathodes for Li-Ion Batteries: Mechanisms, Effects, and Mitigation. Chemical Reviews, 2022, 122, 5641-5681.	23.0	108
315	Improving the cycle stability and rate performance of LiNi0.91Co0.06Mn0.03O2 Ni-rich cathode material by La2O3 coating for Lithium-ion batteries. Current Applied Physics, 2022, 36, 176-182.	1.1	17
316	Probing heat generation and release in a 57.5 A h high-energy-density Li-ion pouch cell with a nickel-rich cathode and SiO _{<i>x</i>} /graphite anode. Journal of Materials Chemistry A, 2022, 10, 1227-1235.	5.2	6
317	Magnesium Substitution in Niâ€Rich NMC Layered Cathodes for Highâ€Energy Lithium Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	63
318	Delineating the Roles of Mn, Al, and Co by Comparing Three Layered Oxide Cathodes with the Same Nickel Content of 70% for Lithium-Ion Batteries. Chemistry of Materials, 2022, 34, 629-642.	3.2	38
319	Coordination-Assisted Precise Construction of Metal Oxide Nanofilms for High-Performance Solid-State Batteries. Journal of the American Chemical Society, 2022, 144, 2179-2188.	6.6	38
320	Technological innovation <i>vs.</i> tightening raw material markets: falling battery costs put at risk. Energy Advances, 2022, 1, 136-145.	1.4	21
321	Toward high-energy Mn-based disordered-rocksalt Li-ion cathodes. Joule, 2022, 6, 53-91.	11.7	38
322	Review–From LiMn ₂ O ₄ to Partially-Disordered Li ₂ MnNiO ₄ : The Evolution of Lithiated-Spinel Cathodes for Li-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 020535.	1.3	14
323	Improvement of electrochemical performance of nickel-rich LiNi0.88Co0.09Al0.03O2 through calcination regulation of primary grains. Journal of Power Sources, 2022, 523, 231044.	4.0	1
324	Controls of oxygen-partial pressure to accelerate the electrochemical activation in Co-free Li-rich layered oxide cathodes. Journal of Power Sources, 2022, 523, 231022.	4.0	14

#	Article	IF	CITATIONS
325	Impact of electrolyte-permeable microcracks in secondary particles on performance of high nickel layered oxides: negative or positive?. Materials Today Energy, 2022, 24, 100942.	2.5	4
326	Worldwide ubiquitous utilization of lithium-ion batteries: What we have done, are doing, and could do safely once they are dead?. Journal of Power Sources, 2022, 523, 231015.	4.0	24
327	Realizing ultrahigh-voltage performance of single-crystalline LiNi0.55Co0.15Mn0.3O2 cathode materials by simultaneous Zr-doping and B2O3-coating. Journal of Alloys and Compounds, 2022, 903, 163999.	2.8	19
328	Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives. Journal of Hazardous Materials, 2022, 429, 128312.	6.5	83
329	Cooling of a lithium-ion battery using microchannel heatsink with wavy microtubes in the presence of nanofluid. Journal of Energy Storage, 2022, 49, 104128.	3.9	31
330	Enhanced homogeneity of electrochemical reaction via low tortuosity enabling high-voltage nickel-rich layered oxide thick-electrode. Energy Storage Materials, 2022, 46, 443-451.	9.5	23
331	Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes. Nature Communications, 2022, 13, 704.	5.8	33
332	Enhancing Surface and Crystal Stability of the Ni-High NCA Cathode for High-Energy and Durable Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 2817-2824.	1.8	10
333	Challenges, interface engineering, and processing strategies toward practical <scp>sulfideâ€based allâ€solidâ€state</scp> lithium batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	92
334	Amorphous fluorine glaze for crack-free nickel-rich layered cathode grains under electrochemical cycling. Chemical Engineering Journal, 2022, 436, 135227.	6.6	7
335	Multi-Functional Modification of Nickel-Rich Lithium Cathode Materials Using Na ₂ PO ₃ F. SSRN Electronic Journal, 0, , .	0.4	0
336	Controls of Oxygen-Partial Pressure to Accelerate the Electrochemical Activation in Co-Free Li-Rich Layered Oxide Cathodes. SSRN Electronic Journal, 0, , .	0.4	0
337	Amorphous Fluorine Glaze Protected Nickel-Rich Layered Cathode Grains and No Cracks Under Electrochemical Long Cycle. SSRN Electronic Journal, 0, , .	0.4	0
338	Reducing Intrinsic Property Issues of Ni-Rich NMC811 with Novel Coating Concept of Quasi-Solid Materials Towards High-Safety Li-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
339	Mitigating Twin Boundary Induced Cracking for Enhanced Cycling Stability of Layered Cathodes. SSRN Electronic Journal, 0, , .	0.4	0
340	Artificial Cathode Electrolyte Interphase for Improving High Voltage Cycling Stability of Thick Electrode with Co-Free 5 V Spinel Oxides. SSRN Electronic Journal, 0, , .	0.4	0
341	Development of Magnetite/Graphene Oxide Hydrogels from Agricultural Wastes for Water Treatment. Journal of Renewable Materials, 2022, 10, 1889-1909.	1.1	21
342	Effect of Precursor Structure Transformation on Synthesis and Performance of Lini0.5co0.2mn0.3o2 Cathode Material. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
343	N-doped engineering of a high-voltage LiNi _{0.5} Mn _{1.5} O ₄ cathode with superior cycling capability for wide temperature lithium–ion batteries. Physical Chemistry Chemical Physics, 2022, 24, 12214-12225.	1.3	6
344	Effective Stabilization of Ncm622 Cathodes in Aqueous/Non-Aqueous Hybrid Electrolytes by Adding a Phosphazene Derivate as Co-Solvent. SSRN Electronic Journal, 0, , .	0.4	0
345	Challenges and advances in wide-temperature rechargeable lithium batteries. Energy and Environmental Science, 2022, 15, 1711-1759.	15.6	138
346	Synergistic Dual-Salt Electrolyte for Safe and High-Voltage LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ //Graphite Pouch Cells. ACS Applied Materials & Interfaces, 2022, 14, 10467-10477.	4.0	14
347	Importance of Chemical Distortion on the Hysteretic Oxygen Capacity in Li-Excess Layered Oxides. ACS Applied Materials & Interfaces, 2022, 14, 9057-9065.	4.0	5
348	Characterizing and Mitigating Chemomechanical Degradation in High-Energy Lithium-Ion Battery Cathode Materials. Accounts of Materials Research, 2022, 3, 511-524.	5.9	11
349	Molten‣alt Synthesis of O3â€Type Layered Oxide Single Crystal Cathodes with Controlled Morphology towards Longâ€Life Sodiumâ€Ion Batteries. Small, 2022, 18, e2106927.	5.2	24
350	Outsideâ€In Nanostructure Fabricated on LiCoO ₂ Surface for Highâ€Voltage Lithiumâ€Ion Batteries. Advanced Science, 2022, 9, e2104841.	5.6	51
351	Understanding Lithium Local Environments in LiMn _{0.5} Ni _{0.5} O ₂ Cathodes: A DFT-Supported ⁶ Li Solid-State NMR Study. Journal of Physical Chemistry C, 2022, 126, 4276-4285.	1.5	2
352	Insights into the Crossover Effects in Cells with Highâ€Nickel Layered Oxide Cathodes and Silicon/Graphite Composite Anodes. Advanced Energy Materials, 2022, 12, .	10.2	32
353	Nanostructured Composite Foils Produced Via Accumulative Roll Bonding as Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2022, 14, 11408-11414.	4.0	5
354	Anion Doping for Layered Oxides with a Solid-Solution Reaction for Potassium-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2022, 14, 13379-13387.	4.0	11
355	One Stone for Multiple Birds: A Versatile Cross-Linked Poly(dimethyl siloxane) Binder Boosts Cycling Life and Rate Capability of an NCM 523 Cathode at 4.6 V. ACS Applied Materials & Interfaces, 2022, 14, 16245-16257.	4.0	10
356	Seamless alloying stabilizes solid-electrolyte interphase for highly reversible lithium metal anode. Cell Reports Physical Science, 2022, 3, 100785.	2.8	21
357	Interfacial Reviving of the Degraded LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode by LiPO ₃ Repair Strategy. Small, 2022, 18, e2107346.	5.2	11
358	Elucidating the Implications of Morphology on Fundamental Characteristics of Nickel-Rich NCMs: Cracking, Gassing, Rate Capability, and Thermal Stability of Poly- and Single-Crystalline NCM622. Journal of the Electrochemical Society, 2022, 169, 050501.	1.3	11
359	Probing the Air Storage Failure Mechanism of Ni-Rich Layered Cathode Materials. Chinese Physics Letters, 2022, 39, 038201.	1.3	1
360	Structural Reconstruction Driven by Oxygen Vacancies in Layered Niâ€Rich Cathodes. Advanced Energy Materials, 2022, 12, .	10.2	53

#	Article	IF	CITATIONS
361	Reduction of Capacity Fading in High-Voltage NMC Batteries with the Addition of Reduced Graphene Oxide. Materials, 2022, 15, 2146.	1.3	7
362	Stepwise Dopant Selection Process for Highâ€Nickel Layered Oxide Cathodes. Advanced Energy Materials, 2022, 12, .	10.2	35
363	An organosulfide-based energetic liquid as the catholyte in high-energy density lithium metal batteries for large-scale grid energy storage. Nano Research, 2022, 15, 6138-6147.	5.8	5
364	Effect of Electrolytes on the Cathode-Electrolyte Interfacial Stability of Fe-Based Layered Cathodes for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 030536.	1.3	10
365	Controversy on necessity of cobalt in nickel-rich cathode materials for lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2022, 110, 120-130.	2.9	13
366	Tracing Low Amounts of Mg in the Doped Cathode Active Material LiNiO ₂ . Journal of the Electrochemical Society, 2022, 169, 030540.	1.3	15
367	Building Practical Highâ€Voltage Cathode Materials for Lithiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2200912.	11.1	86
368	Elucidating the Humidity-Induced Degradation of Ni-Rich Layered Cathodes for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 13240-13249.	4.0	9
369	Understanding the Effect of Cathode Composition on the Interface and Crosstalk in NMC/Si Full Cells. ACS Applied Materials & Interfaces, 2022, 14, 15103-15111.	4.0	15
370	The Puzzles in Fast Charging of Liâ€lon Batteries. Energy and Environmental Materials, 2022, 5, 1005-1007.	7.3	12
371	Ethylene Carbonateâ€Free Electrolytes for Stable, Safer Highâ€Nickel Lithiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	27
372	Interface Engineering of a Ceramic Electrolyte by Ta ₂ O ₅ Nanofilms for Ultrastable Lithium Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	22
373	Investigation of Lithium Polyacrylate Binders for Aqueous Processing of Niâ€Rich Lithium Layered Oxide Cathodes for Lithiumâ€ion Batteries. ChemSusChem, 2022, 15, .	3.6	5
374	Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages. Nature Communications, 2022, 13, 1341.	5.8	107
375	Multi-scale boron penetration toward stabilizing nickel-rich cathode. Fundamental Research, 2023, 3, 618-626.	1.6	6
376	Effect of Niobium Doping on Structural Stability and Electrochemical Properties of LiNiO ₂ Cathode for Li-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 040533.	1.3	14
377	Concealed Cathode Degradation in Lithium-Ion Cells with a Ni-Rich Oxide. Journal of the Electrochemical Society, 2022, 169, 040539.	1.3	9
378	Mg,Ti-base surface integrated layer and bulk doping to suppress lattice oxygen evolution of Ni-rich cathode material at a high cut-off voltage. Journal of Energy Chemistry, 2022, 71, 434-444.	7.1	23

#	Article	IF	CITATIONS
379	Improved Capacity Retention for a Disordered Rocksalt Cathode via Solvate Ionic Liquid Electrolytes. Batteries and Supercaps, 0, , .	2.4	2
380	A Bifunctional Chemomechanics Strategy To Suppress Electrochemo-Mechanical Failure of Ni-Rich Cathodes for All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17674-17681.	4.0	23
381	Raising the Intrinsic Safety of Layered Oxide Cathodes by Surface Reâ€Lithiation with LLZTO Garnetâ€Type Solid Electrolytes. Advanced Materials, 2022, 34, e2200655.	11.1	30
382	Dual functions of three-dimensional hierarchical architecture on improving the rate capability and cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion battery. Ceramics International, 2022, 48, 9124-9133.	2.3	3
383	Sulfone-based electrolytes for high energy density lithium-ion batteries. Journal of Power Sources, 2022, 527, 231171.	4.0	21
384	Facile Dual-Protection Layer and Advanced Electrolyte Enhancing Performances of Cobalt-free/Nickel-rich Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 17405-17414.	4.0	8
386	Artificial cathode electrolyte interphase for improving high voltage cycling stability of thick electrode with Co-free 5 V spinel oxides. Energy Storage Materials, 2022, 49, 77-84.	9.5	22
387	Mathematical Modeling of Energy-Dense NMC Electrodes: I. Determination of Input Parameters. Journal of the Electrochemical Society, 2022, 169, 040546.	1.3	3
388	Understanding high-temperature cycling-induced crack evolution and associated atomic-scale structure in a Ni-rich LiNi0.8Co0.1Mn0.1O2 layered cathode material. Nano Energy, 2022, 98, 107222.	8.2	23
389	Preparation and characterization of fluorine-substituted LiFeBO3 with carbon coating to enhance electrochemical performance and stability as a cathode material for Li-ion batteries. Journal of Power Sources, 2022, 533, 231395.	4.0	7
390	Re-source, re-scale: Finer data scales and changed resource availability perceptions. Environmental Science and Policy, 2022, 132, 214-223.	2.4	1
391	Revealing the critical effect of solid electrolyte interphase on the deposition and detriment of Co(â¡) ions to graphite anode. Journal of Energy Chemistry, 2022, 69, 389-396.	7.1	13
392	Probing intraparticle heterogeneity in Ni-rich layered cathodes with different carbon black contents using scanning probe microscopy. Journal of Energy Storage, 2022, 51, 104395.	3.9	6
393	A fluorinated electrolyte stabilizing high-voltage graphite/NCM811 batteries with an inorganic-rich electrode-electrolyte interface. Chemical Engineering Journal, 2022, 440, 135939.	6.6	19
394	Challenges and prospects of nickel-rich layered oxide cathode material. Journal of Alloys and Compounds, 2022, 909, 164727.	2.8	32
395	Enhanced rate capability and high-voltage cycling stability of single-crystal nickel-rich cathode by surface anchoring dielectric BaTiO3. Journal of Colloid and Interface Science, 2022, 619, 65-74.	5.0	8
396	Restriction of voltage decay by limiting low-voltage reduction in Li-rich oxide materials. Journal of Colloid and Interface Science, 2022, 620, 57-66.	5.0	5
397	Overview of batteries and battery management for electric vehicles. Energy Reports, 2022, 8, 4058-4084.	2.5	184

#	Article	IF	CITATIONS
398	A New Co-Free Ni-Rich LiNi _{0.8} Fe _{0.1} Mn _{0.1} O ₂ Cathode for Low-Cost Li-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 57341-57349.	4.0	13
399	Unveiling the Role of Transitionâ€Metal Ions in the Thermal Degradation of Layered Ni–Co–Mn Cathodes for Lithium Rechargeable Batteries. Advanced Functional Materials, 2022, 32, .	7.8	21
400	New Insights into Lithium Hopping and Ordering in LiNiO ₂ Cathodes during Li (De)intercalation. Chemistry of Materials, 2021, 33, 9546-9559.	3.2	28
401	An In-Depth Analysis of the Transformation of Tin Foil Anodes during Electrochemical Cycling in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2021, 168, 120544.	1.3	4
402	Novel Method for Monitoring the Electrochemical Capacitance by In Situ Impedance Spectroscopy as Indicator for Particle Cracking of Nickel-Rich NCMs: Part II. Effect of Oxygen Release Dependent on Particle Morphology. Journal of the Electrochemical Society, 2021, 168, 120501.	1.3	19
403	Long-Life and High-Rate-Charging Lithium Metal Batteries Enabled by a Flexible Active Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 2021, 13, 60678-60688.	4.0	9
404	High-Efficiency Hybrid Sulfur Cathode Based on Electroactive Niobium Tungsten Oxide and Conductive Carbon Nanotubes for All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 1212-1221.	4.0	15
405	Prussian Blue Nanolayer-Embedded Separator for Selective Segregation of Nickel Dissolution in High Nickel Cathodes. Nano Letters, 2022, 22, 1804-1811.	4.5	10
406	Effect of Magnesium Doping on Voltage Decay of Nickelâ€Rich Cathode Materials. ChemistrySelect, 2021, 6, 13301-13308.	0.7	5
407	Recent Development of Nickel-Rich and Cobalt-Free Cathode Materials for Lithium-Ion Batteries. Batteries, 2021, 7, 84.	2.1	27
408	Synthesis of Single-Crystal LiNi _{0.7} Co _{0.15} Mn _{0.15} O ₂ Materials for Li-Ion Batteries by a Sol–Gel Method. ACS Applied Energy Materials, 2022, 5, 397-406.	2.5	17
409	New Insight into High-Rate Performance Lithium-Rich Cathode Synthesis through Controlling the Reaction Pathways by Low-Temperature Intermediates. Industrial & Engineering Chemistry Research, 2022, 61, 453-463.	1.8	4
410	Gospel for Improving the Lithium Storage Performance of High-Voltage High-Nickel Low-Cobalt Layered Oxide Cathode Materials. ACS Applied Materials & Interfaces, 2021, 13, 58871-58884.	4.0	26
411	Novel Method for Monitoring the Electrochemical Capacitance by In Situ Impedance Spectroscopy as Indicator for Particle Cracking of Nickel-Rich NCMs: Part III. Development of a Simplified Measurement Setup. Journal of the Electrochemical Society, 2022, 169, 040552.	1.3	4
412	Critical review of life cycle assessment of lithium-ion batteries for electric vehicles: A lifespan perspective. ETransportation, 2022, 12, 100169.	6.8	151
413	Investigation and Suppression of Oxygen Release by LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode under Overcharge Conditions. Advanced Energy Materials, 2022, 12, .	10.2	40
414	Stabilizing surface chemistry and texture of single-crystal Ni-rich cathodes for Li-ion batteries. Journal of Materials Science and Technology, 2022, 125, 192-197.	5.6	12
415	Synergistic effect of Al–B co-doping to boost the LiNi0.9Co0.05Mn0.05O2 properties in lithium-ion batteries. Ceramics International, 2022, 48, 20605-20611.	2.3	6

#	Article	IF	CITATIONS
416	New insight on correlation between the electrochemical stability and the thermal stability of high nickel cathode materials. Journal of Energy Chemistry, 2022, 72, 265-275.	7.1	10
417	Direct production of lithium nitrate from the primary lithium salt by electrodialysis metathesis. Journal of Membrane Science, 2022, 654, 120555.	4.1	11
418	Periodically aligned channels in Li[Ni0.5Co0.2Mn0.3]O2 cathodes designed by laser ablation for high power Li ion batteries. Journal of Energy Storage, 2022, 50, 104551.	3.9	2
419	Gradient doping Mg and Al to stabilize Ni-rich cathode materials for rechargeable lithium-ion batteries. Journal of Power Sources, 2022, 535, 231445.	4.0	33
420	Accelerated Degradation in a Quasi-Single-Crystalline Layered Oxide Cathode for Lithium-Ion Batteries Caused by Residual Grain Boundaries. Nano Letters, 2022, 22, 3818-3824.	4.5	31
421	In situ multiscale probing of the synthesis of a Ni-rich layered oxide cathode reveals reaction heterogeneity driven by competing kinetic pathways. Nature Chemistry, 2022, 14, 614-622.	6.6	52
422	Multi-functional modification of nickel-rich lithium cathode materials using Na ₂ PO ₃ F. Journal of Materials Chemistry A, 2022, 10, 11437-11448.	5.2	4
423	Evaluation of the Electrochemical Stability, Interfacial Reaction, and Molecular Behavior of Ether-Functionalized Pyrrolidinium as Novel Electrolyte for Lithium Metal Battery by Quantum and Molecular Dynamics Simulations. SSRN Electronic Journal, 0, , .	0.4	0
424	A critical review on nickel-based cathodes in rechargeable batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 925-941.	2.4	22
425	Modulating precursor nanosheets for stabilized Ni-rich cathode material for Li-ion batteries. Rare Metals, 2022, 41, 2552-2559.	3.6	19
426	Dynamics of particle network in composite battery cathodes. Science, 2022, 376, 517-521.	6.0	86
427	Surface Coupling between Mechanical and Electric Fields Empowering Niâ€Rich Cathodes with Superior Cyclabilities for Lithiumâ€Ion Batteries. Advanced Science, 2022, 9, e2200622.	5.6	30
428	Sustainable LiCoO ₂ by collective glide of CoO ₆ slabs upon charge/discharge. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120060119.	3.3	19
429	Deeper Understanding of the Lithiation Reaction during the Synthesis of LiNiO ₂ Towards an Increased Production Throughput. Journal of the Electrochemical Society, 0, , .	1.3	5
430	Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries. Nature Communications, 2022, 13, 2541.	5.8	22
431	Realizing Two-Electron Transfer in Ni(OH) ₂ Nanosheets for Energy Storage. Journal of the American Chemical Society, 2022, 144, 8969-8976.	6.6	116
432	Anionic redox reaction and structural evolution of Ni-rich layered oxide cathode material. Nano Energy, 2022, 98, 107335.	8.2	27
433	One-step calcination reaction to synthesize Li2MnO3 coating layers for LiNi0.8Co0.1Mn0.1O2 to improve cycling performances under high-voltage for Li-ion batteries. Applied Surface Science, 2022, 595, 153479.	3.1	7

#	Article	IF	CITATIONS
434	Nickel-rich and cobalt-free layered oxide cathode materials for lithium ion batteries. Energy Storage Materials, 2022, 50, 274-307.	9.5	72
435	Enabling Scalable Polymer Electrolyte with Synergetic Ion Conductive Channels via a Two Stage Rheology Tuning UV Polymerization Strategy. Small, 2022, 18, e2202013.	5.2	9
436	Kinetic stabilization of a topotactically transformed texture morphology <i>via</i> doping in Ni-rich lithium layered oxides. Journal of Materials Chemistry A, 2022, 10, 13735-13743.	5.2	3
437	Coating of a Novel Lithium-Containing Hybrid Oligomer Additive on Nickel-Rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Materials for High-Stability and High-Safety Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10. 7394-7408.	3.2	14
438	Difluorobenzeneâ€Based Locally Concentrated Ionic Liquid Electrolyte Enabling Stable Cycling of Lithium Metal Batteries with Nickelâ€Rich Cathode. Advanced Energy Materials, 2022, 12, .	10.2	31
439	Both Interface and Bulk Stable LiNi _{0.5} Mn _{1.5} O ₄ Cathodes for High-Energy Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 7582-7589.	2.5	2
440	Ultra-high temperature reaction mechanism of LiNi0.8Co0.1Mn0.1O2 electrode. Journal of Energy Storage, 2022, 52, 104870.	3.9	8
441	Extensive comparison of doping and coating strategies for Ni-rich positive electrode materials. Journal of Power Sources, 2022, 540, 231633.	4.0	47
442	Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility. Renewable and Sustainable Energy Reviews, 2022, 165, 112474.	8.2	40
443	Microstructure and Surface Engineering Through Indium Modification on Ni-Rich Layered Cathode Materials for Enhanced Electrochemical Performance of Lithium-Ion Batteries. SSRN Electronic Journal, O, , .	0.4	0
444	Structural Origin of Suppressed Voltage Decay in Singleâ€Crystalline Liâ€Rich Layered Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ Cathodes. Small, 2022, 18, .	5.2	18
446	A greyscale erosion algorithm for tomography (GREAT) to rapidly detect battery particle defects. Npj Materials Degradation, 2022, 6, .	2.6	3
447	All-Fluorinated Electrolyte Enables Safe LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Graphite Pouch Cells with Stable High-Voltage Operation. Energy & Fuels, 2022, 36, 6511-6519.	2.5	3
448	Protection of Cobalt-Free LiNiO ₂ from Degradation with Localized Saturated Electrolytes in Lithium-Metal Batteries. ACS Energy Letters, 2022, 7, 2165-2172.	8.8	37
449	2,5 <scp>â€Dimercapto</scp> â€1,3,4â€Thiadiazole (<scp>DMCT</scp>)â€Based Polymers for Rechargeable Metal–Sulfur Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	2
450	Effective stabilization of NCM622 cathodes in aqueous/non-aqueous hybrid electrolytes by adding a phosphazene derivate as Co-solvent. Journal of Power Sources, 2022, 541, 231670.	4.0	3
451	Electronic and Chemical Properties of Nickel Oxide Thin Films and the Intrinsic Defects Compensation Mechanism. ACS Applied Electronic Materials, 2022, 4, 2718-2728.	2.0	9
452	Design of a hydrolysisâ€supported coating layer on the surface of Niâ€rich cathodes in secondary batteries. International Journal of Energy Research, 2022, 46, 15027-15042.	2.2	2

#	Article	IF	CITATIONS
453	Thermal-electrochemical parameters of a high energy lithium-ion cylindrical battery. Electrochimica Acta, 2022, 425, 140700.	2.6	8
454	Computational Elucidation of Mechanical Degradation in NMC Cathodes: Impact on Cell Performance. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	1
455	Effect of precursor structure transformation on synthesis and performance of LiNi0.5Co0.2Mn0.3O2 cathode material. Solid State Sciences, 2022, 131, 106954.	1.5	3
456	A Moltenâ€Salt Method to Synthesize Ultrahighâ€Nickel Singleâ€Crystalline LiNi _{0.92} Co _{0.06} Mn _{0.02} O ₂ with Superior Electrochemical Performance as Cathode Material for Lithiumâ€Ion Batteries. Small, 2022, 18, .	5.2	20
457	Kinetic Origin of Planar Gliding in Single-Crystalline Ni-Rich Cathodes . Journal of the American Chemical Society, 2022, 144, 11338-11347.	6.6	63
458	Carbon <scp>nanotubesâ€coated Niâ€rich</scp> cathodes for the green manufacturing process of <scp>lithiumâ€ion</scp> batteries. International Journal of Energy Research, 2022, 46, 16061-16074.	2.2	10
459	Stable Sodium-Based Batteries with Advanced Electrolytes and Layered-Oxide Cathodes. ACS Applied Materials & Interfaces, 2022, 14, 28865-28872.	4.0	11
460	Thermochemical Cyclization Constructs Bridged Dual-Coating of Ni-Rich Layered Oxide Cathodes for High-Energy Li-Ion Batteries. Nano Letters, 2022, 22, 5221-5229.	4.5	19
461	Origin of structural degradation in Li-rich layered oxide cathode. Nature, 2022, 606, 305-312.	13.7	206
462	Compressible battery foams to prevent cascading thermal runaway in Li-ion pouch batteries. Journal of Power Sources, 2022, 541, 231666.	4.0	13
463	Investigation of Water-Washing Effect on Electrochemical Properties of Ni-Rich NCA Cathode Material for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 060543.	1.3	2
464	Layered Perovskite Lithium Yttrium Titanate as a Lowâ€Potential and Ultrahighâ€Rate Anode for Lithiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	17
465	Simultaneous Near‧urface Trace Doping and Surface Modifications by Gas–Solid Reactions during Oneâ€Pot Synthesis Enable Stable Highâ€Voltage Performance of LiCoO ₂ . Advanced Energy Materials, 2022, 12, .	10.2	20
466	Paving Pathways Toward Longâ€Life Graphite/LiNi _{0.5} Mn _{1.5} O ₄ Full Cells: Electrochemical and Interphasial Points of View. Advanced Functional Materials, 2022, 32, .	7.8	19
467	Chemical synthesis and materials discovery. , 2022, 1, 514-520.		15
468	Simulation of microalgae oil spray characteristics for mechanical fuel injection and CRDI systems. Biomass Conversion and Biorefinery, 0, , .	2.9	4
469	Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries. Journal of Energy Chemistry, 2022, 74, 283-308.	7.1	33
470	Dual Design of the Surface via an Ion Conductor Coating and In Situ Electrochemical Diffusion Enabling a Long Life for a Ni-Rich Cathode. ACS Applied Energy Materials, 2022, 5, 9181-9188.	2.5	5

#	Article	IF	CITATIONS
471	On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review. Batteries, 2022, 8, 70.	2.1	64
472	Electrochemical Protocols to Assess the Effects of Dissolved Transition Metal in Graphite/LiNiO ₂ Cells Performance. Journal of the Electrochemical Society, 2022, 169, 070506.	1.3	6
473	Design and Development of Cathode Materials for Rechargeable Batteries. Batteries, 2022, 8, 68.	2.1	0
474	Enhanced structure and surface stability of high-nickel cathode materials by AlPO4 modification. Ionics, 0, , .	1.2	0
475	Microwave-Assisted Hydrothermal Synthesis of Space Fillers to Enhance Volumetric Energy Density of NMC811 Cathode Material for Li-Ion Batteries. Batteries, 2022, 8, 67.	2.1	3
476	Challenges and Strategies towards Singleâ€Crystalline Niâ€Rich Layered Cathodes. Advanced Energy Materials, 2022, 12, .	10.2	81
477	Synergistic Effects of Ni ²⁺ and Mn ³⁺ on the Electrochemical Activation of Li ₂ MnO ₃ in Co-Free and Ni-Poor Li-Rich Layered Cathodes. ACS Applied Energy Materials, 2022, 5, 9079-9089.	2.5	7
478	The structure-activity relationship between precursor fine structure and cathode performance in ultra-high Ni layered oxide. Chemical Engineering Science, 2022, 260, 117865.	1.9	9
479	Evaluation of the electrochemical stability, interfacial reaction, and molecular behavior of ether-functionalized pyrrolidinium as novel electrolyte for lithium metal battery by quantum and molecular dynamics simulations. Applied Surface Science, 2022, 600, 154077.	3.1	1
480	Novel (100-x-y)Li3PS4-xLiBF4-yLiCl amorphous solid electrolytes for all-solid-state Li ion battery. Journal of Non-Crystalline Solids, 2022, 593, 121768.	1.5	2
481	Environmental Impact Assessment of LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ Hydrometallurgical Cathode Recycling from Spent Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 9798-9810.	3.2	26
482	Ion-Permselective Polyphenylene Sulfide-Based Solid-State Separator for High Voltage LiNi _{0.5} Mn _{1.5} O ₄ Battery. Journal of the Electrochemical Society, 2022, 169, 070532.	1.3	1
483	Heuristic Design of Cathode Hybrid Coating for Power‣imited Sulfideâ€Based Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2022, 12, .	10.2	23
484	Synthesis and characterization of Nickel-rich layered LiNi1-xMnxO2 (x=0.02,0.05) cathodes for lithium-ion batteries. Electrochimica Acta, 2022, 427, 140891.	2.6	9
486	Rational Design of Mwcnts@Amorphous Carbon@Mos2: Towards High Performance Cathode for Aqueous Zinc-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
487	Complementary dual-doping of LiNi0.8Co0.1Mn0.1O2 cathode enhances ion-diffusion and stability for Li-ion batteries. Chinese Chemical Letters, 2023, 34, 107718.	4.8	11
488	Recent Developments and Future Prospects of Transition Metal Compounds as Electrode Materials for Potassiumâ€Ion Hybrid Capacitors. Advanced Materials Technologies, 2023, 8, .	3.0	11
489	<i>In-Situ</i> TEM Study of Chemo-Mechanical Degradation Pathways of LiNiO2-Derived Layered Oxide Cathodes for Lithium-Ion Batteries. Microscopy and Microanalysis, 2022, 28, 172-174.	0.2	2

#	Article	IF	Citations
π 490	Influence of the Ambient Storage of LiNi0.8Mn0.1Co0.1O2 Powder and Electrodes on the Electrochemical Performance in Li-ion Technology. Batteries, 2022, 8, 79.	2.1	2
491	Enhanced cyclic stability of LiNi0.8Co0.1Mn0.1O2 (NCM811) by AlF3 coating via atomic layer deposition. Ionics, 2022, 28, 4547-4554.	1.2	10
492	Achieving high-energy-density lithium-ion batteries through oxygen redox of cathode: From fundamentals to applications. Applied Physics Letters, 2022, 121, .	1.5	4
493	Insights into the Electrochemical Performance of 1.8 Ah Pouch and 18650 Cylindrical NMC:LFP Si:C Blend Li-ion Cells. Batteries, 2022, 8, 97.	2.1	2
494	Highly Sensitive Detection and Mapping of Incipient and Steady-State Oxygen Evolution from Operating Li-Ion Battery Cathodes via Scanning Electrochemical Microscopy. Journal of the Electrochemical Society, 2022, 169, 086501.	1.3	9
495	Location choice for largeâ€scale battery manufacturing plants: Exploring the role of clean energy, costs, and knowledge on location decisions in Europe. Journal of Industrial Ecology, 2022, 26, 1514-1527.	2.8	4
496	Priority and Prospect of Sulfideâ€Based Solidâ€Electrolyte Membrane. Advanced Materials, 2023, 35, .	11.1	15
497	Chemical and structural evolution during solid-state synthesis of cobalt-free nickel-rich layered oxide cathode. Materials Today Energy, 2022, , 101114.	2.5	2
498	Restraining the escape of lattice oxygen enables superior cyclic performance towards high-voltage Ni-rich cathodes. National Science Review, 2023, 10, .	4.6	37
499	Will <scp>lithiumâ€sulfur</scp> batteries be the next <scp>beyondâ€lithium</scp> ion batteries and even much better?. InformaÄnÃ-Materiály, 2022, 4, .	8.5	48
500	In-situ construction of a thermodynamically stabilized interface on the surface of single crystalline Ni-rich cathode materials via a one-step molten-salt route. Nano Research, 2023, 16, 6771-6779.	5.8	6
501	Can Cobalt Be Eliminated from Lithium-Ion Batteries?. ACS Energy Letters, 2022, 7, 3058-3063.	8.8	42
502	Understanding the Stability of NMC811 in Lithium-Ion Batteries with Water-in-Salt Electrolytes. ACS Applied Energy Materials, 2022, 5, 11133-11141.	2.5	5
503	Operando Monitoring of Local pH Value Changes at the Carbon Electrode Surface in Neutral Sulfate-Based Aqueous Electrochemical Capacitors. ACS Applied Materials & Interfaces, 2022, 14, 37782-37792.	4.0	8
504	Human- and machine-centred designs of molecules and materials for sustainability and decarbonization. Nature Reviews Materials, 2022, 7, 991-1009.	23.3	30
505	Cobalt in high-energy-density layered cathode materials for lithium ion batteries. Journal of Power Sources, 2022, 544, 231873.	4.0	27
506	The surface double-coupling on single-crystal LiNi0.8Co0.1Mn0.1O2 for inhibiting the formation of intragranular cracks and oxygen vacancies. Energy Storage Materials, 2022, 52, 534-546.	9.5	83
507	Industrial modification comparison of Ni-Rich cathode materials towards enhanced surface chemical stability against ambient air for advanced lithium-ion batteries. Chemical Engineering Journal, 2022, 450, 138382.	6.6	19

#	Article	IF	CITATIONS
508	Simulating key properties of lithium-ion batteries with a fault-tolerant quantum computer. Physical Review A, 2022, 106, .	1.0	12
509	Removal of car battery heavy metals from wastewater by activated carbons: a brief review. Environmental Science and Pollution Research, 2022, 29, 73675-73717.	2.7	1
510	One-step construction of oxygen vacancies and coating to improve lithium storage performance of Li-rich layered oxides. Applied Surface Science, 2022, 605, 154819.	3.1	8
511	Enhanced high-voltage robustness of ultra-high nickel cathodes by constructing lithium-ion conductor buffer layer for highly stable lithium-ion batteries. Applied Surface Science, 2022, 605, 154684.	3.1	5
512	One-Pot K+ and Po43- Co-Doping Enhances Electrochemical Performance of Li-Rich Li1.2ni0.13co0.13mn0.54o2 Cathode for Li-Ion Battery. SSRN Electronic Journal, 0, , .	0.4	0
513	Green and Sustainable Batteries. , 2022, , 1-12.		0
514	A uniform and high-voltage stable LiTMPO ₄ coating layer enabled high performance LiNi _{0.8} Co _{0.15} Mn _{0.05} O ₂ towards boosting lithium storage. Dalton Transactions, 2022, 51, 12532-12539.	1.6	2
515	A Mini Review on Ni-rich Layered Oxide Cathode Materials. , 2022, 2, 197-202.		1
516	Fluorinated co-solvent electrolytes for high-voltage Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) positive electrodes. Frontiers in Energy Research, 0, 10, .	1.2	1
517	Leveraging Advanced X-ray Imaging for Sustainable Battery Design. ACS Energy Letters, 2022, 7, 3151-3176.	8.8	10
518	Process design for calcination of nickel-based cathode materials by in situ characterization and multiscale modeling. Journal of Materials Research, 2022, 37, 3197-3215.	1.2	4
519	Ionic Liquid-Type Additive for Lithium Metal Batteries Operated in LiPF ₆ Based-Electrolyte Containing 2500 ppm H ₂ 0. ACS Applied Materials & Interfaces, 2022, 14, 41103-41113.	4.0	9
520	Roadmap on Li-ion battery manufacturing research. JPhys Energy, 2022, 4, 042006.	2.3	17
521	Current Challenges in Efficient Lithiumâ€lon Batteries' Recycling: A Perspective. Global Challenges, 2022, 6, .	1.8	26
522	Enabling structural and interfacial stability of 5ÂV spinel LiNi0.5Mn1.5O4 cathode by a coherent interface. Journal of Energy Chemistry, 2023, 76, 266-276.	7.1	11
523	Single-Crystal Nickel-Based Cathodes: Fundamentals and Recent Advances. Electrochemical Energy Reviews, 2022, 5, .	13.1	24
524	Lithiumâ€Metal Batteries: From Fundamental Research to Industrialization. Advanced Materials, 2023, 35,	11.1	36
525	Integrated Modification Strategy Enables Remarkable Cyclability and Thermal Stability of Ni-Rich Cathode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 43085-43094.	4.0	4

#	Article	IF	CITATIONS
526	Onset Potential for Electrolyte Oxidation and Ni-Rich Cathode Degradation in Lithium-Ion Batteries. ACS Energy Letters, 2022, 7, 3524-3530.	8.8	28
527	A Singleâ€Pot Coâ€Precipitation Synthesis Route for Niâ€Rich Layered Oxide Materials with High Cycling Stability. ChemElectroChem, 2022, 9, .	1.7	3
528	Enable High-Energy LiNi0.5Co0.2Mn0.3O2 by Ultra-Thin Coating through Wet Impregnation. Batteries, 2022, 8, 136.	2.1	1
529	<i>In Situ</i> Co-modification Strategy for Achieving High-Capacity and Durable Ni-Rich Cathodes for High-Temperature Li-Ion Batteries. Energy & amp; Fuels, 2022, 36, 12319-12326.	2.5	5
530	Thermal Runaway of Nonflammable Localized Highâ€Concentration Electrolytes for Practical LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ Graphiteâ€SiO Pouch Cells. Advanced Science, 2022, 9, .	5.6	15
531	Research Progress of Anode-Free Lithium Metal Batteries. Crystals, 2022, 12, 1241.	1.0	6
532	Enabling Highâ€Stability of Aqueousâ€Processed Nickelâ€Rich Positive Electrodes in Lithium Metal Batteries. Small, 2022, 18, .	5.2	5
533	Sol/Antisolvent Coating for High Initial Coulombic Efficiency and Ultra-stable Mechanical Integrity of Ni-Rich Cathode Materials. ACS Applied Materials & Interfaces, 2022, 14, 45272-45288.	4.0	4
534	Conformal PEDOT Coating Enables Ultra-High-Voltage and High-Temperature Operation for Single-Crystal Ni-Rich Cathodes. ACS Nano, 2022, 16, 14527-14538.	7.3	16
535	High-Energy and Long-Lasting Organic Electrode for a Rechargeable Aqueous Battery. ACS Energy Letters, 2022, 7, 3637-3645.	8.8	10
536	Recent progress in synthesis and surface modification of nickel-rich layered oxide cathode materials for lithium-ion batteries. International Journal of Extreme Manufacturing, 2022, 4, 042004.	6.3	16
537	Pr doped single-crystal LiNi0.5Mn0.3Co0.2O2 cathode enables high rate capability and cycle stability for lithium ion batteries. Journal of Materiomics, 2023, 9, 82-89.	2.8	1
538	Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature, 2022, 610, 67-73.	13.7	176
539	Life Cycle Assessment of the Battery Cell Production: Using a Modular Material and Energy Flow Model to Assess Product and Process Innovations. Energy Technology, 2023, 11, .	1.8	7
540	Stable 4.5 V LiCoO2 cathode material enabled by surface manganese oxides nanoshell. Nano Research, 2023, 16, 2480-2485.	5.8	4
541	Advances and challenges in multiscale characterizations and analyses for battery materials. Journal of Materials Research, 0, , .	1.2	2
542	Enhancing Thermal and High-Voltage Cycling Stability of Ni-Rich Layered Cathodes through a Ti-Doping-Induced Surface-Disordered Structure. ACS Applied Energy Materials, 2022, 5, 12673-12681.	2.5	6
543	Intrinsic Design of Ni-Rich Layered Cathode for Lithium-Ion Batteries. Springer Theses, 2022, , 17-30.	0.0	0

#	Article	IF	CITATIONS
544	Extrinsic Design of Ni-Rich Layered Cathode for Lithium-Ion Batteries. Springer Theses, 2022, , 31-60.	0.0	0
545	Battery materials. , 2023, , 308-363.		0
546	Materials design principles of amorphous cathode coatings for lithium-ion battery applications. Journal of Materials Chemistry A, 2022, 10, 22245-22256.	5.2	10
547	Stretchable separator/current collector composite for superior battery safety. Energy and Environmental Science, 2022, 15, 5313-5323.	15.6	16
548	Effect of Annealing on the Structure, Composition, and Electrochemistry of NMC811 Coated with Al ₂ O ₃ Using an Alkoxide Precursor. Chemistry of Materials, 2022, 34, 9722-9735.	3.2	6
549	Fluorinated Rocksalt Cathode with Ultraâ€high Active Li Content for Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
550	Operando visualization of kinetically induced lithium heterogeneities in single-particle layered Ni-rich cathodes. Joule, 2022, 6, 2535-2546.	11.7	26
551	A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries. Nature Communications, 2022, 13, .	5.8	15
552	The predicted persistence of cobalt in lithium-ion batteries. Nature Energy, 2022, 7, 1132-1143.	19.8	37
553	Synergistic Effect of Bis(2,2,2-trifluoroethyl) Carbonate and Succinonitrile in Suppressing the Dissolution of Nickel for Performance Improvement of Nickel-Rich Lithium Metal Batteries. ACS Applied Energy Materials, 2022, 5, 14201-14210.	2.5	0
554	Concentrated ternary ether electrolyte allows for stable cycling of a lithium metal batteryÂwith commercial mass loading highâ€nickel NMC and thin anodes. , 2023, 5, .		9
555	Size controllable single-crystalline Ni-rich cathodes for high-energy lithium-ion batteries. National Science Review, 2023, 10, .	4.6	26
556	Fluorinated Rocksalt Cathode with Ultraâ€high Active Li Content for Lithiumâ€ion Batteries. Angewandte Chemie, 0, , .	1.6	0
557	Microstructure and surface engineering through indium modification on Ni-rich layered cathode materials for enhanced electrochemical performance of lithium-ion batteries. Journal of Alloys and Compounds, 2023, 934, 167862.	2.8	6
558	Improving electrochemical properties of LiNi0.8Mn0.1Co0.1O2 cathode materials for lithium ion batteries by controlling calcination gas atmosphere. Solid State Ionics, 2022, 386, 116031.	1.3	2
559	Ta induced fine tuning of microstructure and interface enabling Ni-rich cathode with unexpected cyclability in pouch-type full cell. Nano Energy, 2022, 104, 107880.	8.2	15
560	Experimental Investigation on the Impact of Various Cooling Conditions for Fast Charging Cylindrical Lithium-ion Cells. Journal of Energy Storage, 2022, 56, 105942.	3.9	2
561	Comprehensive recycling of lithium-ion batteries: Fundamentals, pretreatment, and perspectives. Energy Storage Materials, 2023, 54, 172-220.	9.5	50

#	Article	IF	CITATIONS
562	Rational design of MWCNTs@amorphous carbon@MoS2: Towards high performance cathode for aqueous zinc-ion batteries. Chemical Engineering Journal, 2023, 453, 139933.	6.6	21
563	Molecular design and post-synthetic vulcanization on two-dimensional covalent organic framework@rGO hybrids towards high-performance sodium-ion battery cathode. Chemical Engineering Journal, 2023, 453, 139607.	6.6	9
564	Stabilization of high-voltage layered oxide cathode by multi-electron rare earth oxide. Chemical Engineering Journal, 2023, 454, 140249.	6.6	13
565	Single-Crystal-like Durable LiNiO ₂ Positive Electrode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 52766-52778.	4.0	5
566	Reducing Intrinsic Drawbacks of Ni-rich Layered Oxide Cathode Materials with a Dry Coating Concept of Quasi-solid Nanomaterials towards High-performance Cylindrical Li-ion Batteries. Journal of the Electrochemical Society, 2022, 169, 110532.	1.3	2
567	Evolution of ternary LixSnyOz artificial cathode-electrolyte interphase (ACEI) through ALD: a surface strengthened NCM811 with enhanced electrochemical performances for Li-ion batteries. Materials Today Energy, 2023, 31, 101207.	2.5	3
568	Highly soluble organic nitrate additives for practical lithium metal batteries. , 2023, 5, .		22
569	Highly Efficient Organosulfur and Lithiumâ€Metal Hosts Enabled by C@Fe3N Sponge. Angewandte Chemie, 0, , .	1.6	0
570	Lithium hexamethyldisilazide as electrolyte additive for efficient cycling of high-voltage non-aqueous lithium metal batteries. Nature Communications, 2022, 13, .	5.8	54
571	Highly Efficient Organosulfur and Lithiumâ€Metal Hosts Enabled by C@Fe ₃ N Sponge. Angewandte Chemie - International Edition, 2023, 62, .	7.2	20
572	Air Instability of Niâ€Rich Layered Oxides–A Roadblock to Large Scale Application. Advanced Energy Materials, 2023, 13, .	10.2	15
573	Oxide Cathodes: Functions, Instabilities, Self Healing, and Degradation Mitigations. Chemical Reviews, 2023, 123, 811-833.	23.0	37
574	Electrolyte design for stable electrode-electrolyte interphase to enable high-safety and high-voltage batteries. ETransportation, 2023, 15, 100216.	6.8	7
575	Reviving the rock-salt phases in Ni-rich layered cathodes by mechano-electrochemistry in all-solid-state batteries. Nano Energy, 2023, 105, 108016.	8.2	10
576	Evaluation of LiNiO2 with minimal cation mixing as a cathode for Li-ion batteries. Chemical Engineering Journal, 2023, 456, 141065.	6.6	3
577	Nickel-rich layered oxide cathodes for lithium-ion batteries: Failure mechanisms and modification strategies. Journal of Energy Storage, 2023, 58, 106405.	3.9	13
578	Directly revealing the structure-property correlation in Na+-doped cathode materials. Applied Surface Science, 2023, 612, 155810.	3.1	6
579	Fundamentals and advances of ligand field theory in understanding structure-electrochemical property relationship of intercalation-type electrode materials for rechargeable batteries. Progress in Materials Science, 2023, 133, 101055.	16.0	16

#	Article	IF	CITATIONS
580	Cathodes Coating Layer with Liâ€lon Diffusion Selectivity Employing Interactive Network of Metalâ€Organic Polyhedras for Liâ€lon Batteries. Small, 2023, 19, .	5.2	6
581	Stabilization of high-voltage layered oxide cathode by utilizing residual lithium to form NASICON-type nanoscale functional coating. Nano Research, 2023, 16, 5973-5982.	5.8	21
582	Strain Engineering of Niâ€Rich Cathode Enables Exceptional Cyclability in Pouchâ€Type Full Cells. Advanced Materials, 2023, 35, .	11.1	29
583	High Value-Added Utilization of Waste Hydrodesulfurization Catalysts: Low-Cost Synthesis of Cathode Materials for Lithium-Ion Batteries. Separations, 2022, 9, 449.	1.1	2
584	Review on Battery Packing Design Strategies for Superior Thermal Management in Electric Vehicles. Batteries, 2022, 8, 287.	2.1	10
585	Deciphering the degradation discrepancy in Niâ€rich cathodes with a diverse proportion of [003] crystallographic textures. , 2023, 5, .		20
586	Degradation Pathways of Cobaltâ€Free LiNiO ₂ Cathode in Lithium Batteries. Advanced Functional Materials, 2023, 33, .	7.8	15
587	Synthesis of Highly Dispersible Functionalized Carbon Nanotubes as Conductive Material through a Facile Drying Process for Highâ€Power Lithiumâ€ion Batteries. ChemSusChem, 2023, 16, .	3.6	2
588	Revisão: Novas tecnologias em materiais e processos de produção para baterias nÃquel-ferro. Brazilian Journal of Technology, 2022, 5, 194-207.	0.1	0
589	Crossover effects of transition metal ions in high-voltage lithium metal batteries. Nano Research, 2023, 16, 8417-8424.	5.8	2
590	Enabling Aqueous Processing of Niâ€Rich Layered Oxide Cathode Materials by Addition of Lithium Sulfate. ChemSusChem, 2023, 16, .	3.6	2
591	Progress of Single-Crystal Nickel-Cobalt-Manganese Cathode Research. Energies, 2022, 15, 9235.	1.6	4
592	Enabling Enhanced Cycling Stability of a LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode by Constructing a Ti-Rich Surface. Journal of Physical Chemistry C, 2022, 126, 20747-20753.	1.5	0
593	Propanediol Cyclic Sulfate as An Electrolyte Additive to Improve the Cyclic Performance of LiNi _{0.6} Co _{0.1} Mn _{0.3} O ₂ /Graphite Pouchâ€Cell at High Voltage. ChemElectroChem, 2023, 10, .	1.7	3
594	Enhanced Electrochemical Performance of the LiNi _{0.5} Mn _{1.5} O ₄ Cathode Material by the Construction of Uniform Lithium Silicate Nanoshells. ACS Applied Materials & Interfaces, 2023, 15, 1418-1431.	4.0	2
595	Mechanical densification synthesis of single-crystalline Ni-rich cathode for high-energy lithium-ion batteries. Journal of Energy Chemistry, 2023, 79, 562-568.	7.1	6
596	On The Efficacy of Cobalt Boride Coating on NMC-811 Cathode Under Vinylene Carbonate Additive, High Temperature and Air Shelving Conditions. Journal of the Electrochemical Society, 2023, 170, 010519.	1.3	5
597	Ionic liquid/poly(ionic liquid)-based electrolytes for lithium batteries. , 2023, 1, 39-59.		25

#	Article	IF	CITATIONS
598	Surface Stabilization of Cobalt-Free LiNiO ₂ with Niobium for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 1442-1451.	4.0	9
599	A customized strategy to design intercalation-type Li-free cathodes for all-solid-state batteries. National Science Review, 2023, 10, .	4.6	6
600	Stabilizing the Interphase in Cobaltâ€Free, Ultrahighâ€Nickel Cathodes for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	17
601	Solidâ€State Reaction Heterogeneity During Calcination of Lithiumâ€Ion Battery Cathode. Advanced Materials, 2023, 35, .	11.1	10
602	Reversible halogen cathodes for high energy lithium batteries. Joule, 2023, 7, 13-14.	11.7	3
603	Al, Zr dual-doped cobalt-free nickel-rich cathode materials for lithium-ion batteries. Progress in Natural Science: Materials International, 2023, 33, 108-115.	1.8	13
604	Stabilizing Highâ€Nickel Cathodes with Highâ€Voltage Electrolytes. Advanced Functional Materials, 2023, 33, .	7.8	14
605	Co-precipitation of Mg-doped Ni _{0.8} Co _{0.1} Mn _{0.1} (OH) ₂ : effect of magnesium doping and washing on the battery cell performance. Dalton Transactions, 0, , .	1.6	3
606	A universal multifunctional rare earth oxide coating to stabilize high-voltage lithium layered oxide cathodes. Energy Storage Materials, 2023, 56, 155-164.	9.5	21
607	Highly-concentrated bis(fluorosulfonyl)imide-based ternary gel polymer electrolytes for high-voltage lithium metal batteries. Journal of Power Sources, 2023, 557, 232554.	4.0	8
608	A kinetic study on cobalt-free high-nickel layered oxide cathode materials for practical lithium-ion batteries. Journal of Power Sources, 2023, 558, 232633.	4.0	10
609	Enhancing surfaceâ€toâ€bulk stability of layered Coâ€free Niâ€rich cathodes for longâ€life Liâ€ion batteries. , 2023, 2, .		6
610	Laser-Assisted Surface Lithium Fluoride Decoration of a Cobalt-Free High-Voltage Spinel LiNi _{0.5} Mn _{1.5} O ₄ Cathode for Long-Life Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 1247-1255.	4.0	8
611	Profiting the Co-Modifications of Li ₂ SnO ₃ Coating and Sn ⁴⁺ Doping in Co-Free Ni-Rich Cathode Particles for Lithium-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 1248-1258.	2.5	6
612	An Innovative Insight into Performance Degradation of NCM111 Cathode Induced by Suspension of Operation. ACS Applied Materials & amp; Interfaces, 2023, 15, 6612-6620.	4.0	2
613	Constructing "Li-rich Ni-rich―oxide cathodes for high-energy-density Li-ion batteries. Energy and Environmental Science, 2023, 16, 1210-1222.	15.6	27
614	Investigating the effect of pH on the growth of coprecipitated Ni0.8Co0.1Mn0.1(OH)2 agglomerates as precursors of cathode materials for Li-ion batteries. Ceramics International, 2023, 49, 15851-15864.	2.3	5
615	Resolving complex intralayer transition motifs in high-Ni-content layered cathode materials for lithium-ion batteries. Nature Materials, 2023, 22, 235-241.	13.3	35

#	Article	IF	CITATIONS
616	Reductive roasting of cathode powder of spent ternary lithium-ion battery by pyrolysis of invasive plant Crofton weed. Renewable Energy, 2023, 206, 86-96.	4.3	12
617	Probing depth-dependent inhomogeneous lithium concentration in thick LiNi0.88Co0.09Al0.03O2 cathodes for lithium-ion batteries. Journal of Alloys and Compounds, 2023, 943, 169029.	2.8	4
618	High-Performance Layered Ni-Rich Cathode Materials Enabled by Stress-Resistant Nanosheets. ACS Applied Materials & Interfaces, 2023, 15, 8046-8053.	4.0	1
619	Direct observation of chemomechanical stress-induced phase transformation in high-Ni layered cathodes for lithium-ion batteries. Matter, 2023, 6, 1265-1277.	5.0	11
620	Facile synthesis of urchin-like MoNb12O33 microspheres with a superior performance as an anode material for lithium-ion half/full batteries. Journal of Alloys and Compounds, 2023, 941, 168982.	2.8	1
621	Stabilization strategies for high-capacity NCM materials targeting for safety and durability improvements. ETransportation, 2023, 16, 100233.	6.8	4
622	Li ₂ Se as a Cathode Prelithiation Additive for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 18763-18770.	4.0	5
623	Oneâ€Step Calcination Synthesis of Bulkâ€Doped Surfaceâ€Modified Niâ€Rich Cathodes with Superlattice for Long ycling Liâ€lon Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
624	Uncovering the degradation mechanism induced by ion-diffusion kinetics in large-format lithium-ion pouch cells. Journal of Energy Chemistry, 2023, 83, 98-105.	7.1	5
625	Physical vapor deposited coatings on high Ni content NMC811 Li-ion battery cathode powder. Surface and Coatings Technology, 2023, 462, 129472.	2.2	3
626	Enhanced lithium storage capability of Ni-rich LiNi0.9CoxMn0.1â^'xO2(0Â≤Ââ‰Â0.1) cathode by co-operation of Al-doping and V-coating. Journal of Alloys and Compounds, 2023, 946, 169428.	ⁿ 2.8	9
627	Challenges and recent progress in fast-charging lithium-ion battery materials. Journal of Power Sources, 2023, 570, 232965.	4.0	23
628	Revealing structural degradation in layered structure oxides cathode of lithium ion batteries via in-situ transmission electron microscopy. Journal of Materials Science and Technology, 2023, 154, 189-201.	5.6	5
629	Composite electrolytes engineered by anion acceptors for boosted high-voltage solid-state lithium metal batteries. Journal of Colloid and Interface Science, 2023, 642, 330-339.	5.0	1
630	Effect of dual improved electronic and cationic conductivity via W doping on cyclability and rate performance of LiNi0.90Co0.04Mn0.03Al0.03O2 cathode for rechargeable LiBs. Journal of Energy Storage, 2023, 63, 107088.	3.9	6
631	Recent achievements toward the development of Ni-based layered oxide cathodes for fast-charging Li-ion batteries. Nanoscale, 2023, 15, 4195-4218.	2.8	11
632	Iron inactivation by Sporobolomyces ruberrimus and its potential role in plant metal stress protection. An in vitro study. Science of the Total Environment, 2023, 870, 161887.	3.9	4
633	A smart risk-responding polymer membrane for safer batteries. Science Advances, 2023, 9, .	4.7	24

ARTICLE IF CITATIONS Locally Concentrated Ionic Liquid Electrolytes for Lithiumâ€Metal Batteries. Angewandte Chemie, 2023, 634 0 1.6 135, . Locally Concentrated Ionic Liquid Electrolytes for Lithiumâ€Metal Batteries. Angewandte Chemie -7.2 International Edition, 2023, 62, . State of the art of lithium-ion battery material potentials: An analytical evaluations, issues and future 636 4.6 28 research directions. Journal of Cleaner Production, 2023, 394, 136246. Stabilizing cathodes and interphases for next-generation Li-ion batteries. Journal of Power Sources, 4.0 2023, 561, 232738. Probing the Mysterious Behavior of Tungsten as a Dopant Inside Pristine Cobaltâ€Free Nickelâ€Rich 638 10 7.8 Cathode Materials. Advanced Functional Materials, 2023, 33, . Fabricating Heterostructures for Boosting the Structure Stability of Li-Rich Cathodes. ACS Omega, 1.6 2023, 8, 6720-6728. Assessing the Intrinsic Roles of Key Dopant Elements in Highâ€Nickel Layered Oxide Cathodes in 640 10.2 25 Lithiumã€Based Batteries. Advanced Energy Materials, 2023, 13, . Germanium-Free Dense Lithium Superionic Conductor and Interface Re-Engineering for All-Solid-State Lithium Batteries against High-Voltage Cathode. ACS Applied Materials & amp; Interfaces, 2023, 15, 641 4.0 10629-10641. Effect of particle morphology on the fast-charging properties of high-nickel cathode materials. 642 1.2 1 Korean Journal of Chemical Engineering, 2023, 40, 532-538. Durable and Adjustable Interfacial Engineering of Polymeric Electrolytes for Both Stable Niâ€Rich 643 11.1 Cathodes and Highâ€Energy Metal Anodes. Advanced Materials, 2023, 35, . LiF-Rich Interfaces and HF Elimination Achieved by a Multifunctional Additive Enable High-Performance Li/LiNi_{0.8}Co_{0.1}Mn_{0.1}O₂ Batteries. ACS Applied 644 4.06 Materials & amp; Interfaces, 2023, 15, 11777-11786. Origin of oxygen-redox and transition metals dissolution in Ni-rich LixNi0.8Co0.1Mn0.1O2 cathode. 1.2 Journal of Chemical Physics, 2023, 158, . Enhanced Cycling and Structure Stability of an Electron Transfer-Accelerating Polymer Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)-Covered Mn-Based Layered Cathode with 646 1.6 2 Ga³⁺ Doping for a Li-lon Battery. Langmuir, 2023, 39, 4662-4675. Assessing the roles of mechanical cracks in Ni-rich layered cathodes in the capacity decay of liquid and solid-state batteries. Materials Horizons, 2023, 10, 1856-1864. 647 6.4 Enhanced electrochemical performance of LiNi0.83Co0.12Mn0.05O2 cathodes with a fast-ion 648 1.2 1 conductor Li0.33La0.56TiO3 coating layer. Journal of Solid State Electrochemistry, 0, , . Nanoscale control and tri-element co-doping of 4.6 V LiCoO₂ with excellent rate 649 capability and long-cycling stability for lithium-ion batteries. Dalton Transactions, 2023, 52, 3981-3989. Oneâ€Step Calcination Synthesis of Bulkâ€Doped Surfaceâ€Modified Niâ€Rich Cathodes with Superlattice for 650 1.6 0 Longâ€Cycling Liâ€Ion Batteries. Angewandte Chemie, 0, , . Highâ€Energyâ€Density Lithium Metal Batteries with Impressive Li⁺ Transport Dynamic and 5.2 Wideâ€Temperature Performance from â^'60 to 60°C. Small, 2023, 19, .

#	Article	IF	CITATIONS
652	Mechanistic Origin for High Structural Stability of Single Crystalline Nickelâ€Rich Cathode Materials Via Al and Sm Coâ€Đoping. Advanced Functional Materials, 2023, 33, .	7.8	16
653	Ultraâ€Thin Lithium Silicide Interlayer for Solidâ€State Lithiumâ€Metal Batteries. Advanced Materials, 2023, 35, .	11.1	8
654	Stabilizing Ni-rich high energy cathodes for advanced lithium-ion batteries: the case of LiNi _{0.9} Co _{0.1} O ₂ . Journal of Materials Chemistry A, 2023, 11, 12958-12972.	5.2	5
655	All-Solid-State Thin Film Li-Ion Batteries: New Challenges, New Materials, and New Designs. Batteries, 2023, 9, 186.	2.1	8
656	Theory of Cation Solvation and Ionic Association in Nonaqueous Solvent Mixtures. , 2023, 2, .		4
657	Surface Lattice Modulation through Chemical Delithiation toward a Stable Nickel-Rich Layered Oxide Cathode. Journal of the American Chemical Society, 2023, 145, 7397-7407.	6.6	11
658	Recent Advances in Ball-Milling-Based Silicon Anodes for Lithium-Ion Batteries. Energies, 2023, 16, 3099.	1.6	3
659	The role of ceramic composite materials in achieving next-generation electrochemical energy storage devices. , 2023, , 335-370.		0
660	One-pot K+ and PO43â^' co-doping enhances electrochemical performance of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode for Li-ion battery. Electrochimica Acta, 2023, 454, 142390.	2.6	3
661	Electric Vehicle Battery Supply Chain and Critical Materials: A Brief Survey of State of the Art. Energies, 2023, 16, 3369.	1.6	8
662	One-Step Solid-State Synthesis of Ni-Rich Cathode Materials for Lithium-Ion Batteries. Materials, 2023, 16, 3079.	1.3	1
663	Architecting "Li-rich Ni-rich―core-shell layered cathodes for high-energy Li-ion batteries. Energy Storage Materials, 2023, 59, 102775.	9.5	12
664	Materials Towards the Development of Li Rechargeable Thin Film Battery. , 2023, 2, 26-40.		3
665	Manganese and Cobalt-Free Ultrahigh-Ni-Rich Single-Crystal Cathode for High-Performance Lithium Batteries. ACS Applied Materials & Interfaces, 2023, 15, 20843-20853.	4.0	3
666	Elucidating degradation mechanisms of Co-free high-Ni layered oxide cathodes for Li-ion batteries via advanced X-ray-based characterization methods. Ceramist, 2023, 26, 138-157.	0.0	0
667	Quantitative Decoupling of Oxygenâ€Redox and Manganeseâ€Redox Voltage Hysteresis in a Cationâ€Disordered Rock Salt Cathode. Advanced Energy Materials, 2023, 13, .	10.2	5
668	Completeness evaluation of LCI datasets for the environmental assessment of lithium compound production scenarios. Procedia CIRP, 2023, 116, 726-731.	1.0	0
669	Ultra-high voltage solid-state Li metal batteries enabled by in-situ construction of cathode electrolyte interphase through synergistic dual-anion decomposition. Electrochimica Acta, 2023, 457, 142439.	2.6	1

ARTICLE IF CITATIONS Mechanistic understanding of lithium-anode protection by organosulfide-based solid-electrolyte 670 5.2 3 interphases and its implications. Journal of Materials Chemistry A, 2023, 11, 9772-9783. Mitigating Twin Boundary-Induced Cracking for Enhanced Cycling Stability of Layered Cathodes. ACS 671 2.5 Applied Energy Materials, 0, , . Electrostatic Covalent Organic Frameworks as On-Demand Molecular Traps for High-Energy Li Metal 681 8.8 9 Battery Electrodes. ACS Energy Letters, 2023, 8, 2463-2474. Advances in modification methods and the future prospects of high-voltage spinel LiNi_{0.5}Mn_{1.5}O₄â€" a review. Journal of Materials Chemistry A, 2023, 11, 13889-13915. Promotion of the Nucleation of Ultrafine Ni-Rich Layered Oxide Primary Particles by an Atomic 699 4.5 0 Layer-Deposited Thin Film for Enhanced Mechanical Stability. Nano Letters, 2023, 23, 5770-5778. Ni Anchored to Hydrogen-Substituted Graphdiyne for Lithium Sulfide Cathodes in Lithium–Sulfur Batteries. Nano Letters, 2023, 23, 5967-5974. 4.5 Recent progress in nonflammable electrolytes and cell design for safe Li-ion batteries. Journal of 725 5.2 3 Materials Chemistry A, 2023, 11, 15576-15599. Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing 19.8 lithium-ion batteries. Nature Energy, 2023, 8, 921-933. Uranium and lithium extraction from seawater: challenges and opportunities for a sustainable energy 784 5.2 2 future. Journal of Materials Chemistry A, 2023, 11, 22551-22589. Morphology controlled performance of ternary layered oxide cathodes. Communications Materials, 2023, 4, . Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries. 824 18.7 8 Chemical Society Reviews, 2023, 52, 8194-8244. Optimization of nickel (II) oxide thin films for hole transport material of perovskite solar cell. AIP Conference Proceedings, 2024, , . Recent advances in electrolyte molecular design for alkali metal batteries. Chemical Science, 2024, 15, 902 3.7 0 4238-4274.