Burn injury

Nature Reviews Disease Primers

6,11

DOI: 10.1038/s41572-020-0145-5

Citation Report

#	Article	IF	CITATIONS
1	Characterization of a Topically Testable Model of Burn Injury on Human Skin Explants. International Journal of Molecular Sciences, 2020, 21, 6956.	4.1	10
2	Emergence of Heptazine-Based Graphitic Carbon Nitride within Hydrogel Nanocomposites for Scarless Healing of Burn Wounds. ACS Applied Polymer Materials, 2020, 2, 5743-5755.	4.4	8
3	Adipose Tissue Metabolic Function and Dysfunction: Impact of Burn Injury. Frontiers in Cell and Developmental Biology, 2020, 8, 599576.	3.7	13
4	Management of Thermal Injuries in Donkeys: A Case Report. Animals, 2020, 10, 2131.	2.3	0
5	Protective Effects of Melatonin against Severe Burn-Induced Distant Organ Injury: A Systematic Review and Meta-Analysis of Experimental Studies. Antioxidants, 2020, 9, 1196.	5.1	8
6	6-Formylindolo (3, 2-b) Carbazole (FICZ)–mediated protection of gut barrier is dependent on T cells in a mouse model of alcohol combined with burn injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165901.	3.8	6
7	<p>Identification of Key Genes Associated with Changes in the Host Response to Severe Burn Shock: A Bioinformatics Analysis with Data from the Gene Expression Omnibus (GEO) Database</p> . Journal of Inflammation Research, 2020, Volume 13, 1029-1041.	3.5	19
8	Safety and efficacy of basic fibroblast growth factors for deep second–degree burn patients. Burns, 2020, 46, 1857-1866.	1.9	5
9	Viral Infections in Burns. Surgical Infections, 2021, 22, 88-94.	1.4	10
10	A Bioactive Living Hydrogel: Photosynthetic Bacteria Mediated Hypoxia Elimination and Bacteriaâ€Killing to Promote Infected Wound Healing. Advanced Therapeutics, 2021, 4, .	3.2	39
11	Neutrophil-derived heparin binding protein triggers vascular leakage and synergizes with myeloperoxidase at the early stage of severe burns (With video). Burns and Trauma, 2021, 9, tkab030.	4.9	6
12	Gut Microbial Changes and their Contribution to Post-Burn Pathology. Shock, 2021, 56, 329-344.	2.1	13
13	SUBMICROSCOPIC CHANGES OF HEMOCAPILLARIES OF THE CEREBELLAR CORTEX IN EXPERIMENTAL THERMAL INJURY AND UNDER CONDITIONS OF APPLICATION OF LYOPHILIZED XENOGRAFT SKIN SUBSTRATE. Bulletin of Problems Biology and Medicine, 2021, 1, 236.	0.1	0
14	The pathogenesis and diagnosis of sepsis post burn injury. Burns and Trauma, 2021, 9, tkaa047.	4.9	63
15	Bioabsorbable poly(4-hydroxybutyrate) (P4HB) fibrous membranes as a potential dermal substitute. Journal of Materials Chemistry B, 2021, 9, 8074-8080.	5.8	7
16	HISTOLOGICAL CHANGES OF THE ADRENAL GLAND IN DYNAMIC AFTER EXPERIMENTAL THERMAL INJURY. Bulletin of Problems Biology and Medicine, 2021, 1, 220.	0.1	1
17	Persistent Systemic Inflammation in Patients With Severe Burn Injury Is Accompanied by Influx of Immature Neutrophils and Shifts in T Cell Subsets and Cytokine Profiles. Frontiers in Immunology, 2020, 11, 621222.	4.8	41
18	Study of Wound-Healing Ointment Composition based on Highly Dispersed Zinc Oxide Modified with Nanoscale Silver. International Journal of Pharmaceutical and Phytopharmacological Research, 2021, 11, 134-142.	0.2	3

#	Article	IF	CITATIONS
19	Application of Critical Care Scores in Severely Burned Patients. Journal of Burn Care and Research, 2021, 42, 1176-1180.	0.4	2
20	Investigation and assessment of neutrophil dysfunction early after severe burn injury. Burns, 2021, 47, 1851-1862.	1.9	14
21	A Framework for Automatic Burn Image Segmentation and Burn Depth Diagnosis Using Deep Learning. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-12.	1.3	9
22	Historical Evolution of Skin Grafting—A Journey through Time. Medicina (Lithuania), 2021, 57, 348.	2.0	29
23	3D bioprinting of integral ADSCs-NO hydrogel scaffolds to promote severe burn wound healing. International Journal of Energy Production and Management, 2021, 8, rbab014.	3.7	25
24	Burn-induced hypermetabolism and skeletal muscle dysfunction. American Journal of Physiology - Cell Physiology, 2021, 321, C58-C71.	4.6	19
25	Development of an Experimental Ex Vivo Wound Model to Evaluate Antimicrobial Efficacy of Topical Formulations. International Journal of Molecular Sciences, 2021, 22, 5045.	4.1	23
26	Healing status of burn wound healing: ATR-FTIR study. , 2021, , .		1
27	High Risk of Failed Skin Graft on Major Burn Patients with Complication of Hypernatremia. Folia Medica Indonesiana, 2021, 57, 166.	0.1	0
28	Non-Thermal Atmospheric Pressure Argon-Sourced Plasma Flux Promotes Wound Healing of Burn Wounds and Burn Wounds with Infection in Mice through the Anti-Inflammatory Macrophages. Applied Sciences (Switzerland), 2021, 11, 5343.	2.5	6
29	Adiposeâ€specific ATGL ablation reduces burn injuryâ€induced metabolic derangements in mice. Clinical and Translational Medicine, 2021, 11, e417.	4.0	16
30	Different Infection Profiles and Antimicrobial Resistance Patterns Between Burn ICU and Common Wards. Frontiers in Cellular and Infection Microbiology, 2021, 11, 681731.	3.9	13
31	PHENOTYPIC AND GENOTYPIC CHARACTERIZATION OF FIVE ANTIMICROBIAL RESISTANCE GENES ASSOCIATED WITH KLEBSIELLA PNEUMONIAE ISOLATED FROM BURN INFECTION PATIENTS. Journal of Experimental Biology and Agricultural Sciences, 2021, 9, 378-387.	0.4	2
32	Histological Studies on a Newly Isolated Bacillus subtilis D10 Protease in the Debridement of Burn Wound Eschars Using Mouse Model. Pharmaceutics, 2021, 13, 923.	4.5	6
33	The Role of DAMPS in Burns and Hemorrhagic Shock Immune Response: Pathophysiology and Clinical Issues. Review. International Journal of Molecular Sciences, 2021, 22, 7020.	4.1	17
34	Burn-induced heterotopic ossification from incidence to therapy: key signaling pathways underlying ectopic bone formation. Cellular and Molecular Biology Letters, 2021, 26, 34.	7.0	19
35	Fabrication and Characterization of Saffron Stamen Aqueous Extract Controlled Release System as Potential Topical Treatment of Thermal Burn Wounds. ChemistrySelect, 2021, 6, 6579-6585.	1.5	1
36	Papaya Latex for Healing the Second Degree of Burn Wound in Male Mice. , 2021, , .		0

#	Article	IF	CITATIONS
37	AB569, a Novel, Topical Bactericidal Gel Formulation, Kills Pseudomonas aeruginosa and Promotes Wound Healing in a Murine Model of Burn Wound Infection. Infection and Immunity, 2021, 89, e0033621.	2.2	3
38	Rehabilitative Exercise Training for Burn Injury. Sports Medicine, 2021, 51, 2469-2482.	6.5	14
39	The morbidity associated with paediatric burn wound escharotomies. ANZ Journal of Surgery, 2021, 91, 2139-2144.	0.7	1
40	3D Printing Personalized, Photocrosslinkable Hydrogel Wound Dressings for the Treatment of Thermal Burns. Advanced Functional Materials, 2021, 31, 2105932.	14.9	60
41	Investigation of the relationship between social appearance anxiety and perceived social support in patients with burns. Burns, 2022, 48, 816-823.	1.9	4
42	Calcium Channels: Noteworthy Regulators and Therapeutic Targets in Dermatological Diseases. Frontiers in Pharmacology, 2021, 12, 702264.	3.5	12
43	Microwave Enabled Physically Cross Linked Sodium Alginate and Pectin Film and Their Application in Combination with Modified Chitosan-Curcumin Nanoparticles. A Novel Strategy for 2nd Degree Burns Wound Healing in Animals. Polymers, 2021, 13, 2716.	4.5	14
44	TPPU treatment of burned mice dampens inflammation and generation of bioactive DHET which impairs neutrophil function. Scientific Reports, 2021, 11, 16555.	3.3	8
45	Lipid engineered nanoparticle therapy for burn wound treatment. Current Pharmaceutical Biotechnology, 2021, 22, .	1.6	1
46	Stem Cell Therapy for Burns: Story so Far. Biologics: Targets and Therapy, 2021, Volume 15, 379-397.	3.2	18
48	Preclinical efficacy study of a porous biopolymeric scaffold based on gelatin-hyaluronic acid-chondroitin sulfate in a porcine burn injury model: role of critical molecular markers (VEGFA,) Tj ETQq0 0 0 rş Biomedical Materials (Bristol), 2021, 16, 055020.	gB <u>T</u> /Overlo	ock 10 Tf 50
49	CNS-Spleen Axis – a Close Interplay in Mediating Inflammatory Responses in Burn Patients and a Key to Novel Burn Therapeutics. Frontiers in Immunology, 2021, 12, 720221.	4.8	4
50	Evaluating an urban pediatric hospital's scald burn prevention program. Injury Epidemiology, 2021, 8, 20.	1.8	5
51	Characteristics and prognosis of Herpesviridae-related pneumonia in critically ill burn patients. Burns, 2022, 48, 1155-1165.	1.9	4
52	The Efficacy of Silver-Based Electrospun Antimicrobial Dressing in Accelerating the Regeneration of Partial Thickness Burn Wounds Using a Porcine Model. Polymers, 2021, 13, 3116.	4.5	2
53	A Nonlethal Murine Flame Burn Model Leads to a Transient Reduction in Host Defenses and Enhanced Susceptibility to Lethal Pseudomonas aeruginosa Infection. Infection and Immunity, 2021, 89, e0009121.	2.2	4
54	State of the Art: An Update on Adult Burn Resuscitation. European Journal of Burn Care, 2021, 2, 152-167.	0.8	6
55	Nursing Care for the Initial Resuscitation of Burn Patients. Critical Care Nursing Clinics of North America, 2021, 33, 275-285.	0.8	1

#	Article	IF	CITATIONS
56	Stigma and illness uncertainty among patients with visible burn scars: A cross-sectional study. Burns, 2022, 48, 1190-1197.	1.9	1
57	Multifunctional Nanofibrous Dressing with Antimicrobial and Anti-Inflammatory Properties Prepared by Needle-Free Electrospinning. Pharmaceutics, 2021, 13, 1527.	4.5	11
58	Potential wound dressings from electrospun medicated poly(butylene-adipate-co-terephthalate)/poly-(ε-caprolactone) microfibers. Journal of Molecular Liquids, 2021, 339, 116694.	4.9	10
59	An ultrasmall infinite coordination polymer nanomedicine-composited biomimetic hydrogel for programmed dressing-chemo-low level laser combination therapy of burn wounds. Chemical Engineering Journal, 2021, 426, 130610.	12.7	49
60	Carboxymethyl chitosan hydrogel formulations enhance the healing process in experimental partial-thickness (second-degree) burn wound healing. Acta Cirurgica Brasileira, 2021, 36, e360303.	0.7	11
61	Physically crosslinked PVA/graphene-based materials/aloe vera hydrogel with antibacterial activity. RSC Advances, 2021, 11, 29029-29041.	3.6	25
62	Role of metabolomics to investigate combined effect of radiation and burn. , 2021, , 401-420.		0
63	Heater-Associated Erythema Ab Igne: Case Report and Review of Thermal-Related Skin Conditions. Cureus, 2020, 12, e8057.	0.5	5
64	Microscopic changes of the pancreas vessels in the dynamics after experimental thermal injury. Biomedical and Biosocial Anthropology, 2021, , 23-28.	0.2	0
65	Histological changes of the adrenal glands vessels after experimental thermal trauma and under the conditions of lyophilized xenoskin use. Biomedical and Biosocial Anthropology, 2021, , 12-17.	0.2	0
66	Application of mNGS to describe the clinical and microbial characteristics of severe burn a tanker explosion at a tertiary medical center: a retrospective study patients following. BMC Infectious Diseases, 2021, 21, 1086.	2.9	3
68	Examination of Health Information Needs of Caregivers of and Individuals with Burn Injuries. Journal of Burn Care and Research, 2022, 43, 846-851.	0.4	3
69	A deep learning model for burn depth classification using ultrasound imaging. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104930.	3.1	5
70	Efficacy of stromal vascular fraction and enzyme-free mechanical isolation therapy in experimental full thickness burn wounds. Journal of Plastic Surgery and Hand Surgery, 2023, 57, 78-94.	0.8	3
71	Lactate dehydrogenase activity staining demonstrates time-dependent immune cell infiltration in human ex-vivo burn-injured skin. Scientific Reports, 2021, 11, 21249.	3.3	6
72	SUBMICROSCOPIC CHANGES IN THE HEMOCAPILLARIES OF THE CEREBRAL HEMISCLE CAUSES CAUSED BY THERMAL BURN. Bulletin of Problems Biology and Medicine, 2021, 3, 268.	0.1	0
73	Oxymatrine promotes hypertrophic scar repair through reduced human scar fibroblast viability, collagen and induced apoptosis via autophagy inhibition. International Wound Journal, 2022, 19, 1221-1231.	2.9	9
74	Edward F. Adolph Distinguished Lecture. It's more than skin deep: thermoregulatory and cardiovascular consequences of severe burn injuries in humans. Journal of Applied Physiology, 2021, 131, 1852-1866.	2.5	3

#	Article	IF	CITATIONS
75	Physicians based emergency medical services for the management of burn injuries in trauma centers of the center region of Saudi Arabia: evaluation of physicians' knowledge and experience. International Journal of Burns and Trauma, 2021, 11, 184-190.	0.2	0
76	Acute ethanol exposure stimulates microvesicle particle generation in keratinocytes. Toxicology Letters, 2022, 355, 100-105.	0.8	4
77	Multifunctional antimicrobial materials: From rational design to biomedical applications. Progress in Materials Science, 2022, 125, 100887.	32.8	108
78	Extracellular matrixâ€based combination scaffold for guided regeneration of largeâ€area fullâ€ŧhickness rabbit burn wounds upon a single application. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, , .	3.4	3
79	Early Transcriptomic Response to Burn Injury: Severe Burns Are Associated With Immune Pathway Shutdown. Journal of Burn Care and Research, 2022, 43, 306-314.	0.4	7
80	Physical Rehabilitation and Mental Health Care After Burn Injury: A Multinational Study. Journal of Burn Care and Research, 2022, 43, 868-879.	0.4	3
81	Pharmacological Effects of Centella asiatica on Skin Diseases: Evidence and Possible Mechanisms. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-8.	1.2	17
82	SUBMICROSCOPIC CHANGES OF THE HEMOCAPILLARIES IN THE ADRENAL GLAND CORTEX IN DYNAMICS AFTER EXPERIMENTAL THERMAL INJURY. World of Medicine and Biology, 2021, 17, 224.	0.5	1
83	Effectiveness of green tea cream in comparison with silver sulfadiazine cream in the treatment of second degree burn in human subjects. Journal of Herbal Medicine, 2022, 32, 100533.	2.0	1
84	Third-degree burn mouse treatment using recombinant human fibroblast growth factor 2. Growth Factors, 2020, 38, 282-290.	1.7	5
85	BURN WOUND – THE PROCESSES OF ITS DEVELOPMENT AND SELECTED ETIOLOGICAL FACTORS OF INFECTION. Postepy Mikrobiologii, 2021, 60, 281-298.	0.1	0
86	Äặc Äʿiểm và kết quả Äʿiá»u trị bá»ng lá»a gas , 2021, , 13-18.		0
87	Healing Mechanisms in Cutaneous Wounds: Tipping the Balance. Tissue Engineering - Part B: Reviews, 2022, 28, 1151-1167.	4.8	29
88	Technical Note: Novel Use of CytoSorbâ,,¢ Haemadsorption to Provide Wound Healing Support in Case of Severe Burn Trauma via Reduction of Hyperbilirubinaemia. Frontiers in Surgery, 2021, 8, 743571.	1.4	3
89	Management of non-severe burn wounds in children and adolescents: optimising outcomes through all stages of the patient journey. The Lancet Child and Adolescent Health, 2022, 6, 269-278.	5.6	10
90	Burn Injuries in People Who Used Drug, 2009 to 2017: A Case–Control Study in Shiraz, Southern Iran. Journal of Burn Care and Research, 2022, 43, 1170-1174.	0.4	5
91	The Use of Intact Fish Skin as a Novel Treatment Method for Deep Dermal Burns Following Enzymatic Debridement: A Retrospective Case-Control Study. European Journal of Burn Care, 2022, 3, 43-55.	0.8	9
92	Nanobiomaterials for wound healing. , 2022, , 109-139.		1

#	Article	IF	CITATIONS
93	Identifying changes in immune cells and constructing prognostic models using immune-related genes in post-burn immunosuppression. PeerJ, 2022, 10, e12680.	2.0	3
94	Evolution of a concept with enzymatic debridement and autologous in situ cell and platelet-rich fibrin therapy (BroKerF). Scars, Burns & Healing, 2022, 8, 205951312110523.	0.9	1
95	Fifteen-minute consultation: Management of paediatric minor burns. Archives of Disease in Childhood: Education and Practice Edition, 2023, 108, 242-247.	0.5	1
96	The Superior Outcome of Collagen Nanosilver in Increasing Macrophage and Collagen on Deep Dermal Burn Wound Healing. Open Access Macedonian Journal of Medical Sciences, 2022, 10, 31-35.	0.2	0
97	Single-Cell Transcriptome Profiling Reveals Neutrophil Heterogeneity and Functional Multiplicity in the Early Stage of Severe Burn Patients. Frontiers in Immunology, 2021, 12, 792122.	4.8	10
98	Age and Injury Size Influence the Magnitude of Fecal Dysbiosis in Adult Burn Patients. Journal of Burn Care and Research, 2022, , .	0.4	6
99	Severity of thermal burn injury is associated with systemic neutrophil activation. Scientific Reports, 2022, 12, 1654.	3.3	22
101	The Impact of Initial Surgical Management on Outcome in Patients With Severe Burns: A 9-Year Retrospective Analysis. Journal of Burn Care and Research, 2022, , .	0.4	0
102	Long-term mental health outcomes of severe burn injury: A 5-year follow-up of the 2015 Formosa Fun Coast Water Park fire disaster. General Hospital Psychiatry, 2022, 75, 10-16.	2.4	3
103	Candida albicans Infections: a novel porcine wound model to evaluate treatment efficacy. BMC Microbiology, 2022, 22, 45.	3.3	10
104	Survival From Ninety-Five Percent Total Body Surface Area Burn: A Case Report and Literature Review. Cureus, 2022, 14, e21903.	0.5	1
105	Rescuing the negative effects of aging in burn wounds using tacrolimus applied via microcapillary hydrogel dressing. Burns, 2022, , .	1.9	1
106	Skin-like wound dressings with on-demand administration based on <i>in situ</i> peptide self-assembly for skin regeneration. Journal of Materials Chemistry B, 2022, 10, 3624-3636.	5.8	11
107	Liver Dysfunction in Sternness Burn Injury in Association to Age Estimate: A Conceivable Role of Antioxidant Biomarker and Tumor Necrosis Factor Alpha. Journal of Biosciences and Medicines, 2022, 10, 111-123.	0.2	0
108	Effects of functional poly(ethylene terephthalate) nanofibers modified with sericin-capped silver nanoparticles on histopathological changes in parenchymal organs and oxidative stress in a rat burn wound model. Ankara Universitesi Veteriner Fakultesi Dergisi, 2023, 70, 131-140.	1.0	3
109	Socio-demographic features and quality of life post burn injury. Journal of Family Medicine and Primary Care, 2022, 11, 1032.	0.9	4
110	Infection and Burn Injury. European Journal of Burn Care, 2022, 3, 165-179.	0.8	11
111	Development of a reproducible porcine model of infected burn wounds. Journal of Biological Methods, 2022, 9, e158.	0.6	0

#	Article	IF	CITATIONS
112	Knowledge, Attitudes, and Practices toward First Aid Management of Skin Burns in Saudi Arabia. Clinics and Practice, 2022, 12, 97-105.	1.4	7
113	Emerging treatment strategies in wound care. International Wound Journal, 2022, 19, 1934-1954.	2.9	61
114	Prescribing of Gabapentinoids with or without opioids after burn injury in the US, 2012–2018. Burns, 2022, 48, 293-302.	1.9	1
115	Tranexamic acid reduced blood transfusions in acute burn surgery: A retrospective case-controlled trial. Burns, 2022, 48, 522-528.	1.9	8
116	The Future of Burn Care From a Complexity Science Perspective. Journal of Burn Care and Research, 2022, 43, 1312-1321.	0.4	6
117	Emergency management for severe burn (EMSB) course for the nurses in Bangladesh: opportunity and way forward. Heliyon, 2022, 8, e09156.	3.2	1
118	Prevalence and Related Factors of Electrical Burns in Patients Referred to Iranian Medical Centers: A Systematic Review and Meta-Analysis. World Journal of Plastic Surgery, 2022, 11, 3-11.	0.6	19
119	Pakistan plans to launch a National Burns Control Programme. Burns, 2022, , .	1.9	0
120	Medicinal Herbs from Phyto-informatics: An aid for Skin Burn Management. Current Pharmaceutical Biotechnology, 2022, 23, .	1.6	0
121	Seasonal effects on the mechanisms of burn injuries. Turkish Journal of Surgery, 2022, 38, 5-10.	0.5	2
122	Recent Advances in Bioengineered Scaffolds for Cutaneous Wound Healing. Frontiers in Bioengineering and Biotechnology, 2022, 10, 841583.	4.1	23
123	Identification of Novel Biomarkers With Diagnostic Value and Immune Infiltration in Burn Injury. Frontiers in Genetics, 2022, 13, 829841.	2.3	2
124	A Modified Burn Comb Model With a New Dorsal Frame That Allows for Local Treatment in Partial-Thickness Burns in Rats. Journal of Burn Care and Research, 2022, , .	0.4	1
125	Comparative Transcriptome Analysis of Superficial and Deep Partial-Thickness Burn Wounds in Yorkshire vs Red Duroc Pigs. Journal of Burn Care and Research, 2022, 43, 1299-1311.	0.4	4
126	A scoping review of the role of ascorbic acid in modifying fluid requirements in the resuscitation phase in burn patients. Annals of Medicine and Surgery, 2022, 75, 103460.	1.1	2
127	sEH-derived metabolites of linoleic acid drive pathologic inflammation while impairing key innate immune cell function in burn injury. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120691119.	7.1	23
128	Polydopamine modified acellular dermal matrix sponge scaffold loaded with a-FGF: Promoting wound healing of autologous skin grafts. , 2022, 136, 212790.		6
129	Injectable Self-Healing First-Aid Tissue Adhesives with Outstanding Hemostatic and Antibacterial Performances for Trauma Emergency Care. ACS Applied Materials & Interfaces, 2022, 14, 16006-16017.	8.0	30

#	Article	IF	CITATIONS
130	Early expression of IL-10, IL-12, ARG1, and NOS2 genes in peripheral blood mononuclear cells synergistically correlate with patient outcome after burn injury. Journal of Trauma and Acute Care Surgery, 2022, 93, 702-711.	2.1	6
131	Small-Molecule Inhibitors Targeting Lipolysis in Human Adipocytes. Journal of the American Chemical Society, 2022, 144, 6237-6250.	13.7	16
132	Immunomodulatory Treatment of Lyell's Syndrome: A Simultaneous Plasmapheresis and Intravenous Immunoglobulins Therapy. Journal of Burn Care and Research, 2022, 43, 1394-1398.	0.4	1
133	Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn?. Environmental Toxicology and Pharmacology, 2022, 92, 103836.	4.0	5
134	Photodynamic therapy for treatment of infected burns. Photodiagnosis and Photodynamic Therapy, 2022, 38, 102831.	2.6	7
135	The effect of hyperoxia on the hemostasiological status of severely burned patients. Klinichescheskaya Laboratornaya Diagnostika, 2021, 66, 666-672.	0.5	1
136	Controlled and Local Delivery of Antibiotics by 3D Core/Shell Printed Hydrogel Scaffolds to Treat Soft Tissue Infections. Pharmaceutics, 2021, 13, 2151.	4.5	12
137	é‡ç—‡ç†±å,·ã«ãŠã'ã,‹ä°^後䰰æ,¬å>åã®ææë'Č(Analysis of prognostic factors for mortality in severe burn patie 2021, 32, 295-302.	nts). Nihor	n Kyukyu Iga
139	Advances in electrospinning of aligned nanofiber scaffolds used for wound dressings. Current Opinion in Biomedical Engineering, 2022, 22, 100393.	3.4	25
140	The Potential of Snail (Achatina Fulica) Mucus Gel as a Phythopharmaca to Accelerate the Inflammation Process during Wound Healing. World Journal of Dentistry, 2022, 13, 224-227.	0.3	3
141	Techniques to Assess Long-Term Outcomes after Burn Injuries. European Journal of Burn Care, 2022, 3, 328-339.	0.8	1
142	Curcumin-Polyethylene Glycol Loaded on Chitosan-Gelatin Nanoparticles Enhances Burn Wound Healing in Rat. Journal of Burn Care and Research, 2022, 43, 1399-1409.	0.4	5
143	The Role of the Immune System in Pediatric Burns: A Systematic Review. Journal of Clinical Medicine, 2022, 11, 2262.	2.4	5
144	Passive Millimeter-Wave Imaging for Burns Diagnostics under Dressing Materials. Sensors, 2022, 22, 2428.	3.8	3
145	The role of macrophages in thermal injury International Journal of Burns and Trauma, 2022, 12, 1-12.	0.2	0
146	Bioactive hydrogels based on polysaccharides and peptides for soft tissue wound management. Journal of Materials Chemistry B, 2022, 10, 7148-7160.	5.8	13
147	Life after Burn, Part I: Health-Related Quality of Life, Employment and Life Satisfaction. Medicina (Lithuania), 2022, 58, 599.	2.0	4
148	Cutaneous Wound Healing: A Review about Innate Immune Response and Current Therapeutic Applications. Mediators of Inflammation, 2022, 2022, 1-16.	3.0	28

ARTICLE IF CITATIONS Clinical Evaluation of the Efficacy and Tolerability of Rigenase® and Polyhexanide (Fitostimoline®) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 149 **2.**4 8 Skin Wounds: A Randomized Trial. Journal of Clinical Medicine, 2022, 11, 2518. Role, Development, and Value of Enzymatic Debridement as Integral Component in Initial Treatment of Burn Injuries Exemplified by NexoBrid®. European Journal of Burn Care, 2022, 3, 340-354. 0.8 Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: application to deep full-thickness burn wound healing. 151 21.1 40 Advanced Composites and Hybrid Materials, 2022, 5, 2847-2872. Hippophae rhamnoides L. leaf extract diminishes oxidative stress, inflammation and ameliorates 2.0 bioenergetic activation in full-thickness burn wound healing. Phytomedicine Plus, 2022, 2, 100292. Elevated Serum Procalcitonin to Predict Severity and Prognosis of Extensive Burns. Journal of 153 1.34 Investigative Surgery, 2022, 35, 1510-1518. Scalp and hair burns have high admission rates and disproportionally affect females and children in a crossâ€sectional analysis of <scp>NEISS</scp> 2000â€"2018. International Journal of Dermatology, 2022, , . 1.0 Efficacy of Silk Sericin and <i>Jasminum grandiflorum</i> L. Leaf Extract on Skin Injuries Induced by 155 0.4 2 Burn in Mice. Journal of Burn Care and Research, 2023, 44, 58-64. Comparison of Patterns of Burn Severity and Clinical Characteristics of Pediatric Patients in a 0.4 Referral Burn Center: Retrospective Analysis. Mustafa Kemal Üniversitesi Tıp Dergisi, 0, , . Burn Injury-Induced Extracellular Vesicle Production and Characteristics. Shock, O, Publish Ahead of 157 2.1 2 Print, . Referral of Burn Patients in the Absence of Guidelines: A Rwandan Study. Journal of Surgical 1.6 Research, 2022, 278, 216-222. Lipolysis-Derived Linoleic Acid Drives Beige Fat Progenitor Cell Proliferation via CD36. SSRN 159 0 0.4 Electronic Journal, 0, , . Results of protease inhibitor instructions in patients in acute burning disease. Modern Medical 0.2 Technologies, 2022, , 56-61. Immune reactivity features in post-burn dynamics. RUDN Journal of Medicine, 2022, 26, 194-202. 161 0.2 0 Platelet distribution width associated with shortâ€term prognosis and cost in paediatrics with partialâ€thickness thermal burns: A retrospective comparative study. International Wound Journal, 0, , . Topical and oral applications of <i>Aloe vera</i> improve healing of deep second-degree burns in rats 164 3 1.9 via modulation of growth factors. Biomarkers, 2022, 27, 608-617. Exosomes from human induced pluripotent stem cells-derived keratinocytes accelerate burn wound healing through miR-762 mediated promotion of keratinocytes and endothelial cells migration. 9.1 14 Journal of Nanobiotechnology, 2022, 20, . Ulvan/gelatin-based nanofibrous patches as a promising treatment for burn wounds. Journal of Drug 166 3.011 Delivery Science and Technology, 2022, 74, 103535. Prediction of Mortality in Acute Thermal Burn Patients Using the Abbreviated Burn Severity Index Score: A Single-Center Experience. Cureus, 2022, , .

#	Article	IF	CITATIONS
168	Regulation of Key Immune-Related Genes in the Heart Following Burn Injury. Journal of Personalized Medicine, 2022, 12, 1007.	2.5	3
169	Core–shell alum-borneol fiber for high bioavailability. Progress in Biomaterials, 2022, 11, 253-261.	4.5	1
170	MICROSCOPIC AND MORPHOMETRIC CHANGES OF THE ADRENAL GLANDS IN DYNAMICS AFTER EXPERIMENTAL THERMAL INJURY. Bulletin of Problems Biology and Medicine, 2022, 2, 89.	0.1	0
171	Hydrogel-based dressings in the treatment of partial thickness experimentally induced burn wounds in rats. Acta Cirurgica Brasileira, 2022, 37, .	0.7	2
172	MORPHOLOGICAL AND MORPHOMETRIC CHANGES OF THE EXOCRINE PANCREAS AFTER EXPERIMENTAL THERMAL INJURY OF THE SKIN. Bulletin of Problems Biology and Medicine, 2022, 2, 59.	0.1	0
173	STRUCTURAL AND FUNCTIONAL CHANGES OF RAT KIDNEY DAMAGE IN THE EXPERIMENTAL BURN DISEASE. Bulletin of Problems Biology and Medicine, 2022, 2, 175.	0.1	0
174	Heat-killed probiotic Lactobacillus plantarum affects the function of neutrophils but does not improve survival in murine burn injury. Burns, 2023, 49, 877-888.	1.9	2
175	Growth Factor and Cytokine Delivery Systems for Wound Healing. Cold Spring Harbor Perspectives in Biology, 2022, 14, a041234.	5.5	18
176	The relationships between routine admission blood tests and burn size, and length of stay in intensive care unit. Journal of the Formosan Medical Association, 2022, , .	1.7	1
177	A Narrative Review of the Potential Roles of Lipid-Based Vesicles (Vesiculosomes) in Burn Management. Scientia Pharmaceutica, 2022, 90, 39.	2.0	6
178	The immunometabolite S-2-hydroxyglutarate exacerbates perioperative ischemic brain injury and cognitive dysfunction by enhancing CD8+ T lymphocyte-mediated neurotoxicity. Journal of Neuroinflammation, 2022, 19, .	7.2	9
179	Biomimetic Asymmetric Composite Dressing by Electrospinning with Aligned Nanofibrous and Micropatterned Structures for Severe Burn Wound Healing. ACS Applied Materials & Interfaces, 2022, 14, 32799-32812.	8.0	38
180	Temporal trends, predictors of blood transfusion and inâ€hospital outcomes among patients with severe burn injury in the United States—A national databaseâ€based analysis. Transfusion, 0, , .	1.6	0
181	QUEMADURAS., 0,, .		0
182	A deep convolutional neural network-based approach for detecting burn severity from skin burn images. Machine Learning With Applications, 2022, 9, 100371.	4.4	8
183	Advancements in Extracellular Matrix-Based Biomaterials and Biofabrication of 3D Organotypic Skin Models. ACS Biomaterials Science and Engineering, 2022, 8, 3220-3241.	5.2	12
184	Use of Composite Acellular Dermal Matrix-Ultrathin Split-Thickness Skin in Hand Hot-Crush Injuries: A One-Step Grafting Procedure. BioMed Research International, 2022, 2022, 1-12.	1.9	2
185	Assessing Skin Healing and Angiogenesis of Deep Burns in Vivo Using Two-Photon Microscopy in Mice. Frontiers in Physics, 0, 10, .	2.1	1

#	Article	IF	CITATIONS
186	Early detection of soluble CD27, BTLA, and TIM-3 predicts the development of nosocomial infection in pediatric burn patients. Frontiers in Immunology, 0, 13, .	4.8	6
187	Radio Electric Asymmetric Conveyer (REAC) Reparative Effects on Pressure Ulcer (PU) and Burn Injury (BI): A Report of Two Cases. Cureus, 2022, , .	0.5	0
188	Deciphering the therapeutic mechanism of topical WS2 nanosheets for the effective therapy of burn injuries. Applied Materials Today, 2022, 29, 101591.	4.3	2
189	Epidemiology, Geographical Distribution, and Outcome Analysis of Patients with Electrical Burns Referred To Shiraz Burn Center, Shiraz, Iran during 2008-2019. World Journal of Plastic Surgery, 2022, 11, 102-109.	0.6	1
190	Pooled safety analysis of STRATA2011 and STRATA2016 clinical trials evaluating the use of StrataGraft® in patients with deep partial-thickness thermal burns. Burns, 2022, 48, 1816-1824.	1.9	3
192	Application of nanomedicine and mesenchymal stem cells in burn injuries for the elderly patients. Smart Materials in Medicine, 2023, 4, 78-90.	6.7	3
193	Therapeutic Efficacy of Great Plantain (Plantago major L.) in the Treatment of Second-Degree Burn Wounds: A Case-Control Study. International Journal of Clinical Practice, 2022, 2022, 1-7.	1.7	5
194	Multiplexed Human Gene Expression Analysis Reveals a Central Role of the TLR/mTOR/PPARÎ ³ and NFkB Axes in Burn and Inhalation Injury-Induced Changes in Systemic Immunometabolism and Long-Term Patient Outcomes. International Journal of Molecular Sciences, 2022, 23, 9418.	4.1	4
195	Stem cell-based therapy for human diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	209
196	Bioinspired gelatin based sticky hydrogel for diverse surfaces in burn wound care. Scientific Reports, 2022, 12, .	3.3	12
197	The Trend of Burn Injury Patients in Ningbo between 2012 and 2021: A Clinical Study. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-6.	1.2	1
198	EVALUATING SEPSIS CRITERIA IN DETECTING ALTERATIONS IN CLINICAL, METABOLIC, AND INFLAMMATORY PARAMETERS IN BURN PATIENTS. Shock, 2022, 58, 103-110.	2.1	1
200	The epidemiological characteristic and trends of burns globally. BMC Public Health, 2022, 22, .	2.9	47
201	Silk Fibroin-Based Bioengineered Scaffold for Enabling Hemostasis and Skin Regeneration of Critical-Size Full-Thickness Heat-Induced Burn Wounds. ACS Biomaterials Science and Engineering, 2022, 8, 3856-3870.	5.2	10
201 202	Critical-Size Full-Thickness Heat-Induced Burn Wounds. ACS Biomaterials Science and Engineering,	5.2 4.1	10 3
	Critical-Size Full-Thickness Heat-Induced Burn Wounds. ACS Biomaterials Science and Engineering, 2022, 8, 3856-3870. Characterization of the Basal and mTOR-Dependent Acute Pulmonary and Systemic Immune Response in a Murine Model of Combined Burn and Inhalation Injury. International Journal of Molecular Sciences,		
202	Critical-Size Full-Thickness Heat-Induced Burn Wounds. ACS Biomaterials Science and Engineering, 2022, 8, 3856-3870. Characterization of the Basal and mTOR-Dependent Acute Pulmonary and Systemic Immune Response in a Murine Model of Combined Burn and Inhalation Injury. International Journal of Molecular Sciences, 2022, 23, 8779. Implementation of a nursing rehabilitation model to improve quality of life of patients with hand	4.1	3

#	Article	IF	Citations
206	Ameliorative effect of bone marrow-derived mesenchymal stem cells on burn-induced hepatic and metabolic derangements in rats. Life Sciences, 2022, 307, 120891.	4.3	1
207	Maximizing Micrograft Take in Extensive Back Burns. Journal of Burn Care and Research, 0, , .	0.4	0
208	Current understanding of thermo(dys)regulation in severe burn injury and the pathophysiological influence of hypermetabolism, adrenergic stress and hypothalamic regulation—a systematic review. Burns and Trauma, 2022, 10, .	4.9	1
209	Epidemiology and clinical characteristics of burns in mainland China from 2009 to 2018. Burns and Trauma, 2022, 10, .	4.9	5
210	Natural polymers for wound dressing applications. Studies in Natural Products Chemistry, 2022, , 367-441.	1.8	6
211	Nanocosmeceuticals: Concept, opportunities, and challenges. , 2022, , 31-69.		2
212	Current challenges and future applications of antibacterial nanomaterials and chitosan hydrogel in burn wound healing. Materials Advances, 2022, 3, 6707-6727.	5.4	10
213	The Yin and Yang dualistic features of autophagy in thermal burn wound healing. International Journal of Immunopathology and Pharmacology, 2022, 36, 039463202211250.	2.1	2
214	Physical need assessment of recovery among patients with burn injuries: nursing implications. Egyptian Nursing Journal, 2022, 19, 130.	0.0	0
215	Epidemiology Of Thermal Hand Injury In Children And Youths In Russia And Abroad. Russian Open Medical Journal, 2022, 11, .	0.3	0
216	U-Net based Mapping from Digital Images to Laser Doppler Imaging for Burn Assessment. , 2022, , .		1
217	Correlation between Bacterial Wound Colonization and Skin-Graft Loss in Burn Patients. Journal of Burn Care and Research, 0, , .	0.4	0
218	Farnesysltransferase Inhibitor Prevents Burn Injury-Induced Metabolome Changes in Muscle. Metabolites, 2022, 12, 800.	2.9	3
219	ϴϼͺϴͺϴͺϴͺϴͺϴͺϴͺϴͺϴͺϴͺϴͺϴͺϴͺϴͺϴͺϴͺϴͺϴͺϴͺ	Ď, Ø ,0Đ"Đ _∞	Ð Ð МІÐ
220	Use of Virtual Reality in Burn Rehabilitation: A Systematic Review and Meta-analysis. Archives of Physical Medicine and Rehabilitation, 2023, 104, 502-513.	0.9	5
221	A natural history study of coagulopathy in a porcine 40% total body surface area burn model reveals the time-dependent significance of functional assays. Burns, 2022, , .	1.9	0
222	Protocol for a Global Burns Research Priority Setting Partnership to agree the most important unanswered questions in international burns care. BMJ Open, 2022, 12, e065120.	1.9	2
223	Skin neuropathy and immunomodulation in diseases. Fundamental Research, 2024, 4, 218-225.	3.3	1

	Сітатіо	n Report	
#	Article	IF	CITATIONS
224	Biocontrol treatment: Application of Bdellovibrio bacteriovorus HD100 against burn wound infection caused by Pseudomonas aeroginosa in mice. Burns, 2023, 49, 1181-1195.	1.9	6
225	Study of the Effectiveness of Drugs Based on Molecular Complexes of Adenosine-polymer on the Model of Thermal Burn. Drug Development and Registration, 2022, 11, 209-219.	0.6	2
226	Burn Wound Bed Management. Journal of Burn Care and Research, 0, , .	0.4	1
227	A Retrospective Cohort Study of Burn Casualties Transported by the US Army Burn Flight Team and US Air Force Critical Care Air Transport Teams. Military Medicine, 2024, 189, 813-819.	0.8	4
228	The Immune and Regenerative Response to Burn Injury. Cells, 2022, 11, 3073.	4.1	27
229	Wound Care Self-Efficacy Assessment of Italian Registered Nurses and Wound Care Education in Italian Nursing Education System: A Cross-Sectional Study. Nursing Reports, 2022, 12, 674-684.	2.1	2
230	The effects of different stress on intestinal mucosal barrier and intestinal microecology were discussed based on three typical animal models. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	4
231	Synergistic Use of Novel Technological Advances in Burn Care Significantly Reduces Hospital Length of Stay Below Predicted: A Case Series. Journal of Burn Care and Research, 0, , .	0.4	0
232	Burn injury management in academic medical center with periodic transfer siege due to acts of war: A retrospective analysis of 3085 burn patients. Burns Open, 2022, 6, 177-180.	0.5	1
233	Effectiveness of four topical treatment methods in a rat model of superficial partial-thickness burn injury: the advantages of combining zinc-hyaluronan gel with silver foam dressing. Injury, 2022, 53, 3912-3919.	1.7	3
234	Glycerolised skin allografts for extensive burns in low- and middle-income countries. Journal of the West African Colleges of Surgeons, 2021, 11, 35.	0.2	2
235	Burn Care in a Low-Resource Setting. , 2022, , 275-285.		1
236	Pioglitazone Modifies Kupffer Cell Function and Protects against Escherichia coli-Induced Bacteremia in Burned Mice. International Journal of Molecular Sciences, 2022, 23, 12746.	4.1	2
237	miR-181c, a potential mediator for acute kidney injury in a burn rat model with following sepsis. European Journal of Trauma and Emergency Surgery, 0, , .	1.7	0
238	Histopathological Evaluation of the Healing Process of Standardized Skin Burns in Rabbits: Assessment of a Natural Product with Honey and Essential Oils. Journal of Clinical Medicine, 2022, 11, 6417.	2.4	1
239	A Systematic Review and Meta-analysis of Sleep Disturbances in Pediatric Burn Survivors. Current Sleep Medicine Reports, 0, , .	1.4	0
240	Accuracy of SCORTEN in predicting mortality in toxic epidermal necrolysis. BMC Medical Informatics and Decision Making, 2022, 22, .	3.0	2
241	An Introduction to Burns. Physical Medicine and Rehabilitation Clinics of North America, 2022, 33, 871-883.	1.3	1

#	Article	IF	CITATIONS
242	PRP8-Induced CircMaml2 Facilitates the Healing of the Intestinal Mucosa via Recruiting PTBP1 and Regulating Sec62. Cells, 2022, 11, 3460.	4.1	3
243	Bioscaffold developed with decellularized human amniotic membrane seeded with mesenchymal stromal cells: assessment of efficacy and safety profiles in a second-degree burn preclinical model. Biofabrication, 2023, 15, 015012.	7.1	4
244	Hyaluronic Acid-Modified ZIF-8 Nano-Vehicle for Self-Adaption Release of Curcumin for the Treatment of Burns. ACS Applied Nano Materials, 2022, 5, 16094-16107.	5.0	7
245	Physical Therapy Interventions of an Electrical Burn Injury-Afflicted Patient: A Case Report. Cureus, 2022, , .	0.5	0
246	Burn-injured skin is marked by a prolonged local acute inflammatory response of innate immune cells and pro-inflammatory cytokines. Frontiers in Immunology, 0, 13, .	4.8	13
247	Analysis of curative effect of insulin external application on burn wounds of diabetic patients with different depths. International Wound Journal, 2023, 20, 1393-1401.	2.9	4
248	Plateletâ€activating factor and microvesicle particles as potential mediators for the toxicity associated with intoxicated thermal burn injury. BioFactors, 0, , .	5.4	2
249	The role and therapeutic potential of gut microbiome in severe burn. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	1
250	A multifunctional black phosphorus-based adhesive patch intrinsically induces partial EMT for effective burn wound healing. Biomaterials Science, 2022, 11, 235-247.	5.4	6
251	Biomimetic multifunctional hybrid sponge via enzymatic cross-linking to accelerate infected burn wound healing. International Journal of Biological Macromolecules, 2023, 225, 90-102.	7.5	5
253	PATHOPHYSIOLOGICAL MECHANISMS OF THYROID GLAND HORMONAL DYSREGULATION DURING EXPERIMENTAL THERMAL EXPOSURE. World of Medicine and Biology, 2022, 18, 246.	0.5	9
254	Satisfaction and Functional Outcome of Surgical Treatment in Patients with Brachial Plexus Injury: A Decade of Retrospective Comparative Study. World Journal of Plastic Surgery, 2022, 11, 28-37.	0.6	2
255	Topical Antimicrobial Agents for the Prevention of Burn-Wound Infection. What Do International Guidelines Recommend? A Systematic Review. World Journal of Plastic Surgery, 2022, 11, 3-12.	0.6	3
256	Chitosan-Dextran-Glycerol Hydrogels Loaded with Iron Oxide Nanoparticles for Wound Dressing Applications. Pharmaceutics, 2022, 14, 2620.	4.5	10
257	Understanding the approach to animals with thermal burns. The Veterinary Nurse, 2022, 13, 411-416.	0.1	0
258	CLASSIC IL-6 SIGNALING IS ASSOCIATED WITH POOR OUTCOMES IN BURN PATIENTS. Shock, 2023, 59, 155-160.	2.1	0
259	Pediatric First-Degree Burn Management With Honey and 1% Silver Sulfadiazine (Ag-SD): Comparison and Contrast. Cureus, 2022, , .	0.5	0
260	Reoxygenation Modulates the Adverse Effects of Hypoxia on Wound Repair. International Journal of Molecular Sciences, 2022, 23, 15832.	4.1	4

#	Article	IF	CITATIONS
261	In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings. Pharmaceutics, 2023, 15, 42.	4.5	13
262	Amino acid buffered hypochlorite facilitates debridement of porcine infected burn wounds. Burns, 2023, 49, 1363-1371.	1.9	0
263	Therapeutic and pro-healing potential of advanced wound dressings loaded with bioactive agents. Future Microbiology, 2023, 18, 43-63.	2.0	6
264	Silk Fibroin Biomaterials and Their Beneficial Role in Skin Wound Healing. Biomolecules, 2022, 12, 1852.	4.0	32
265	Spinal Irisin Gene Delivery Attenuates Burn Injury-Induced Muscle Atrophy by Promoting Axonal Myelination and Innervation of Neuromuscular Junctions. International Journal of Molecular Sciences, 2022, 23, 15899.	4.1	0
266	Twoâ€Dimensional Mg ₂ Si Nanosheetâ€Enabled Sustained Hydrogen Generation for Improved Repair and Regeneration of Deeply Burned Skin. Advanced Healthcare Materials, 2023, 12, .	7.6	8
267	Abordaje clÃnico y quirúrgico de las quemaduras en atención primaria. , 0, 2, 157.		0
268	Metformin Improves Burn Wound Healing by Modulating Microenvironmental Fibroblasts and Macrophages. Cells, 2022, 11, 4094.	4.1	7
269	Triage of in vivo burn injuries and prediction of wound healing outcome using neural networks and modeling of the terahertz permittivity based on the double Debye dielectric parameters. Biomedical Optics Express, 2023, 14, 918.	2.9	3
270	Effect of CytoSorb Coupled with Hemodialysis on Interleukin-6 and Hemodynamic Parameters in Patients with Systemic Inflammatory Response Syndrome: A Retrospective Cohort Study. Journal of Clinical Medicine, 2022, 11, 7500.	2.4	3
271	Fine‶uning the Endcap Chemistry of Acrylated Poly(Ethylene Glycol)â€Based Hydrogels for Efficient Burn Wound Exudate Management. Macromolecular Bioscience, 2023, 23, .	4.1	0
272	Lipolysis-derived linoleic acid drives beige fat progenitor cell proliferation. Developmental Cell, 2022, 57, 2623-2637.e8.	7.0	7
273	State and Future Science of Opioids and Potential of Biased-ligand Technology in The Management Of Acute Pain After Burn Injury. Journal of Burn Care and Research, 0, , .	0.4	1
274	Full Skin Equivalent Models for Simulation of Burn Wound Healing, Exploring Skin Regeneration and Cytokine Response. Journal of Functional Biomaterials, 2023, 14, 29.	4.4	1
275	Chitosan/Alginate Nanoparticles with Sustained Release of Esculentoside A for Burn Wound Healing. ACS Applied Nano Materials, 2023, 6, 573-587.	5.0	7
276	The clinical characteristics and microbiological investigation of pediatric burn patients with wound infections in a tertiary hospital in Ningbo, China: A ten-year retrospective study. Frontiers in Microbiology, 0, 13, .	3.5	1
277	Novel Collagen-Polyphenols-Loaded Silica Composites for Topical Application. Pharmaceutics, 2023, 15, 312.	4.5	2
278	Retrospective Evaluation of Characteristics of Patients with Burn Injuries Treated at the Largest Reference Hospital in Brazil. , 2023, 43, 22-28.		2

#	Article	IF	Citations
" 279	Analysis of Potential Risk Factors for Multidrug-Resistance at a Burn Unit. European Journal of Burn Care, 2023, 4, 9-17.	0.8	0
280	The Complexity of the Post-Burn Immune Response: An Overview of the Associated Local and Systemic Complications. Cells, 2023, 12, 345.	4.1	17
281	Prospective study and validation of early warning marker discovery based on integrating multi-omics analysis in severe burn patients with sepsis. Burns and Trauma, 2023, 11, .	4.9	1
282	Identification of ferroptosis-related genes and predicted overall survival in patients with burns. Frontiers in Surgery, 0, 9, .	1.4	1
283	Effect of Polarized Light on Post Burn Hypertrophic Scars. , 2021, 21, 116-121.		0
284	Rats' thyroid gland histological and ultrastructural changes 30 days after the experimental thermal injury on the background of NaCl injection. Reports of Morphology, 2022, 28, 70-76.	0.2	3
285	Development and evaluation of deep learning algorithms for assessment of acute burns and the need for surgery. Scientific Reports, 2023, 13, .	3.3	2
286	Skin 11β-hydroxysteroid dehydrogenase type 1 enzyme expression regulates burn wound healing and can be targeted to modify scar characteristics. Burns and Trauma, 2023, 11, .	4.9	2
287	Aesthetic treatment of acute burns of the face using electro-photobiomodulation. Journal of Burn Care and Research, 0, , .	0.4	1
288	Optimization Preparation and Evaluation of Chitosan Grafted Norfloxacin as a Hemostatic Sponge. Polymers, 2023, 15, 672.	4.5	0
289	Artificial Skin Therapies; Strategy for Product Development. Advances in Wound Care, 2023, 12, 574-600.	5.1	0
290	Enzymatic Debridement in Severe Burn COVID-19 Patients: A Case Series. Plastic and Reconstructive Surgery - Global Open, 2023, 11, e4808.	0.6	1
291	Excess KLHL24 Impairs Skin Wound Healing through the Degradation of Vimentin. Journal of Investigative Dermatology, 2023, 143, 1289-1298.e15.	0.7	1
292	Multidisciplinary Treatment in Toxic Epidermal Necrolysis. International Journal of Environmental Research and Public Health, 2023, 20, 2217.	2.6	1
293	Murine scald models characterize the role of neutrophils and neutrophil extracellular traps in severe burns. Frontiers in Immunology, 0, 14, .	4.8	2
294	VARIABLES INFLUENCING THE DIFFERENTIAL HOST RESPONSE TO BURNS IN PEDIATRIC AND ADULT PATIENTS. Shock, 2023, 59, 145-154.	2.1	2
295	Energy Poverty, Burns and Health Risks in the Port Harcourt Metropolis, Nigeria. , 2022, 20, .		0
296	Predicting Bum Injury Intensity from Skin Bum Images with Hybrid Machine Learning Technique. , 2022, ,		0

#	Article	IF	CITATIONS
297	Scoping Review: Effects of Probiotics against The Immune System in Burn patients. Research Journal of Pharmacy and Technology, 2023, , 345-353.	0.8	0
298	Targeted multi-omic analysis of human skin tissue identifies alterations of conventional and unconventional T cells associated with burn injury. ELife, 0, 12, .	6.0	4
299	Collagen fiber anisotropy characterization by polarized photoacoustic imaging for just-in-time quantitative evaluation of burn severity. Photonics Research, 2023, 11, 817.	7.0	2
300	Bioinformatics-Led Identification of Potential Biomarkers and Inflammatory Infiltrates in Burn Injury. Journal of Burn Care and Research, 2023, 44, 1382-1392.	0.4	1
301	A therapeutic role of exosomal IncRNA H19 from adipose mesenchymal stem cells in cutaneous wound healing by triggering macrophage M2 polarization. Cytokine, 2023, 165, 156175.	3.2	4
302	Bioactive Lavandula angustifolia essential oil-loaded nanoemulsion dressing for burn wound healing. In vitro and in vivo studies. , 2023, 148, 213362.		2
303	Aberrant inflammatory responses in intoxicated burn-injured patients parallel impaired cognitive function. Alcohol, 2023, 109, 35-41.	1.7	0
304	Inflammatory response: The target for treating hyperpigmentation during the repair of a burn wound. Frontiers in Immunology, 0, 14, .	4.8	1
305	Antiâ€Dehydration and Rapid Triggerâ€Detachable Multifunctional Hydrogels Promote Scarless Therapeutics of Deep Burn. Advanced Functional Materials, 2023, 33, .	14.9	20
306	DEMOGRAPHICS TO DEFINE PEDIATRIC BURN PATIENTS AT RISK OF ADVERSE OUTCOMES. Shock, 2023, 59, 135-144.	2.1	1
307	The Effect of Burns on Children's Growth Trajectory: A Nationwide Cohort Study. Journal of Burn Care and Research, 2023, 44, 1083-1091.	0.4	1
308	NUCLEAR FACTOR-ERYTHROID-2–RELATED FACTOR REGULATES SYSTEMIC AND PULMONARY BARRIER FUNCTION AND IMMUNE PROGRAMMING AFTER BURN AND INHALATION INJURY. Shock, 2023, 59, 300-310.	2.1	0
309	Baseline factors associated with split-thickness skin graft failure in burn patients: a retrospective observational analysis of a cohort of 69 burn patients. European Journal of Plastic Surgery, 0, , .	0.6	0
311	Combined Silver Sulfadiazine Nanosuspension with Thermosensitive Hydrogel: An Effective Antibacterial Treatment for Wound Healing in an Animal Model. International Journal of Nanomedicine, 0, Volume 18, 679-691.	6.7	7
312	The Potential of Medicinal Plants and Natural Products in the Treatment of Burns and Sunburn—A Review. Pharmaceutics, 2023, 15, 633.	4.5	5
314	Validation of the Burn Survivor Fear-Avoidance Questionnaire and Its Association With Pain Intensity, Catastrophizing, and Disability. Journal of Burn Care and Research, 0, , .	0.4	0
315	Epidemiological and clinical features of paediatric inpatients for scars: A retrospective study. Burns, 2023, , .	1.9	0
316	Changes in coagulation and temperature management in burn patients – A survey of burn centers in Switzerland, Austria and Germany. Burns, 2023, , .	1.9	0

#	Article	IF	CITATIONS
317	An integrated management (Ayurveda and Modern medicine) of accidental burn injury: A case study. Journal of Ayurveda and Integrative Medicine, 2023, 14, 100691.	1.7	0
318	Study of radiation-thermal damage in white rats. E3S Web of Conferences, 2023, 371, 02046.	0.5	0
319	Effects of Aerobic Exercise in the Intensive Care Unit on Patient-Reported Physical Function and Mental Health Outcomes in Severely Burned Children—A Multicenter Prospective Randomized Trial. Journal of Personalized Medicine, 2023, 13, 455.	2.5	1
320	Treatment of Severe Road Rash with ReCell® Autologous Skin Cell Suspension. Journal of Burn Care and Research, 0, , .	0.4	0
321	Evaluation and Critical Care Management of the Burn Patient. , 2023, , 65-76.		0
322	An overview of current research on nutritional support for burn patients: A bibliometric analysis from 1983 to 2022. Nutrition, 2023, 111, 112027.	2.4	1
324	Burn, Inhalation, and Electrical Injuries. , 2023, , 529-567.		0
325	The Burn Wound. Surgical Clinics of North America, 2023, , .	1.5	0
326	Metabolic and Nutritional Support. Surgical Clinics of North America, 2023, 103, 473-482.	1.5	1
327	The First 24 Hours. Surgical Clinics of North America, 2023, 103, 403-413.	1.5	3
328	Morphometric analysis of lungs parameters under conditions of simulated burn injury. Reports of Morphology, 2023, 29, 34-38.	0.2	1
329	Impact of humanized care on perioperative stress response and complications of burn-injured patients. Minerva Surgery, 2023, 78, .	0.6	1
330	WHITE RATS' THYROID GLAND MORPHOLOGICAL CHANGES THROUGHOUT THE EXPERIMENTAL THERMAL INJURY IN CONDITIONS OF LACTOPROTEIN WITH SORBITOL HYPEROSMOLAR SOLUTIONS ADMINISTRATION. World of Medicine and Biology, 2023, 19, 233.	0.5	3
331	Inflammation and Organ Injury the Role of Substance P and Its Receptors. International Journal of Molecular Sciences, 2023, 24, 6140.	4.1	4
332	Physicochemical Characterization of Silver Sulfadiazine in Polymeric Wound Dressings. Current Pharmaceutical Design, 2023, 29, 865-882.	1.9	0
333	EGF, a veteran of wound healing: highlights on its mode of action, clinical applications with focus on wound treatment, and recent drug delivery strategies. Archives of Pharmacal Research, 2023, 46, 299-322.	6.3	7
335	An Allâ€inâ€One "4A Hydrogelâ€ı through Firstâ€Aid Hemostatic, Antibacterial, Antioxidant, and Angiogenic to Promoting Infected Wound Healing. Small, 2023, 19, .	10.0	15
336	Clinical application of functional near-infrared spectroscopy for burn assessment. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	1

#	Article	IF	CITATIONS
337	Prehospital and Emergency Management. Surgical Clinics of North America, 2023, , .	1.5	1
338	An enhanced fractal self-pumping dressing with continuous drainage for accelerated burn wound healing. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	3
340	ATP-induced hypothermia improves burn injury and relieves burn pain in mice. Journal of Thermal Biology, 2023, 114, 103563.	2.5	0
342	TNF-R1 Cellular Nanovesicles Loaded on the Thermosensitive F-127 Hydrogel Enhance the Repair of Scalded Skin. ACS Biomaterials Science and Engineering, 0, , .	5.2	0
343	Nanoarchitectonics of a Skin-Adhesive Hydrogel Based on the Gelatin Resuscitation Fluid Gelatinol®. Gels, 2023, 9, 330.	4.5	3
344	Treatment of burn hypertrophic scar with fractional ablative laserâ€assisted drug delivery can decrease levels of hyperpigmentation. Lasers in Surgery and Medicine, 2023, 55, 471-479.	2.1	1
345	Single-nuclei RNA Profiling Reveals Disruption of Adipokine and Inflammatory Signaling in Adipose Tissue of Burn Patients. Annals of Surgery, 2023, 278, e1267-e1276.	4.2	5
346	Rare association of thermal burns of the knee and ankle with wounds of the patellar and achilles tendons. Burns Open, 2023, 7, 64-67.	0.5	0
347	A Deep Learning Image-to-Image Translation Approach for a More Accessible Estimator of the Healing Time of Burns. IEEE Transactions on Biomedical Engineering, 2023, 70, 2886-2894.	4.2	1
349	Evaluation of the Wound Healing Potential of Cynara humilis Extracts in the Treatment of Skin Burns. Evidence-based Complementary and Alternative Medicine, 2023, 2023, 1-12.	1.2	3
351	Clinical Investigation of a Rapid Non-invasive Multispectral Imaging Device Utilizing an Artificial Intelligence Algorithm for Improved Burn Assessment. Journal of Burn Care and Research, 2023, 44, 969-981.	0.4	0
352	Burn wound conversion: clinical implications for the treatment of severe burns. Journal of Wound Care, 2023, 32, S11-S20.	1.2	2
353	Đ"Đ,ÑÑ"ÑƒĐ½ĐºÑ†Ñ–Đ¾Đ½ĐºĐ»ÑŒĐ½Đº Đ°ĐºÑ,Đ,Đ2Đ½Ñ–ÑÑ,ÑŒ ĐµÑ€Đ,Ñ,Ñ€Đ¾Ñ†Đ,Ñ,Ñ–Đ² Đ² ÑĐ≌)¾ Ñ Ð,Ñ—	Đ¾ĐƊ¹⁄₂Đ¾
354	A retrospective analysis of systemic Norepinephrine impact on tangential excision and split thickness skin graft outcomes in burn shock patients. Burns Open, 2023, 7, 68-75.	0.5	0
355	Gambaran Perilaku Masyarakat Terhadap Penanganan Luka Bakar Di Rumah. Jurnal Kesehatan Komunitas (Journal of Community Health), 2023, 9, 21-26.	0.1	0
356	Fluid balance in the resorption stage correlates with outcomes of severe burn patients. Burns, 2023, ,	1.9	0
357	A Potential Resuscitation Route on Battlefield: Immediate Intraperitoneal Fluid Administration Post-burn Shows Satisfactory Fluid Absorption and Anti-shock Effects. Military Medicine, 0, , .	0.8	0
358	Facile synthesis of hydroxypropyl chitosan-egg white hydrogel dressing with antibacterial and antioxidative activities for accelerating the healing of burn wounds. Journal of Materials Chemistry B, 2023, 11, 4330-4345.	5.8	2

#	Article	IF	CITATIONS
359	Sex differences in the skin microbiome of burn scars. Wound Repair and Regeneration, 2023, 31, 547-558.	3.0	2
360	Sustainable Approach of Functional Biomaterials–Tissue Engineering for Skin Burn Treatment: A Comprehensive Review. Pharmaceuticals, 2023, 16, 701.	3.8	5

362	Burn-Induced Apoptosis in the Livers of Aged Mice Is Associated With Caspase Cleavage of Bcl-xL. Journal of Surgical Research, 2023, 290, 147-155.	1.6	0
363	Anti-Biofilm Enzymes-Assisted Antibiotic Therapy against Burn Wound Infection by Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2023, 67, .	3.2	1
364	Evaluation and Optimization of the Wallace Rule of Nines for the Estimation of Total Body Surface Area in Obese and Nonobese Populations. Journal of Emergency Medicine, 2023, 65, e320-e327.	0.7	0
365	Working Towards Holistic Scar Assessment and Improved Shared Decision Making in Global Burn Care. Journal of Burn Care and Research, 2024, 45, 112-119.	0.4	0
366	An analytical study to establish the role of Calendula Q as a topical wound dressing in partial-thickness burn wound. Indian Journal of Burns, 2022, 30, 33.	0.2	0
367	Transcriptome analysis of hepatic injury caused by delayed resuscitation following severe burns in rats. Journal of Trauma and Acute Care Surgery, 0, Publish Ahead of Print, .	2.1	0
368	Exosomes: A Promising Strategy for Repair, Regeneration and Treatment of Skin Disorders. Cells, 2023, 12, 1625.	4.1	5
369	A Rapid Selfâ€Pumping Organohydrogel Dressing with Hydrophilic Fractal Microchannels to Promote Burn Wound Healing. Advanced Materials, 2023, 35, .	21.0	12
370	Manufacture and use of transparent facial orthotic masks for treating facial burn scars: A systematic review. Burns, 2024, 50, 13-22.	1.9	0
371	Use of extracorporeal membrane oxygenation in children with burn injury: Case report and literature review. Medicine (United States), 2023, 102, e34029.	1.0	1
372	Antimicrobial hydrogel with multiple pH-responsiveness for infected burn wound healing. Nano Research, 2023, 16, 11139-11148.	10.4	5

373 ĐŸĐ°Ñ,Đ¾Đ»Đ¾Đ³Ñ−чĐ½Đ° Đ′Đ,ÑÑ,,уĐ½Đ°Ñ†Ñ−Ñ•Đ;аÑ€ĐµĐ½Ñ...Ň−Đ¼Đ°Ñ,Đ¾Đ·Đ½D,...Đ¾Ñ€Đ³Đ½Ñ-Đ² Ñа Đ¹Đ

374	WHITE RATS THYROID GLAND MICRO- AND ULTRA-MICROSCOPIC CHANGES 7 DAYS AFTER THE EXPERIMENTAL THERMAL INJURY IN CONDITIONS OF PHYSIOLOGICAL SALINE ADMINISTRATION. World of Medicine and Biology, 2023, 19, 242.	0.5	0
375	Local delivery systems of drugs/biologicals for the management of burn wounds. Journal of Drug Delivery Science and Technology, 2023, 85, 104556.	3.0	1
376	Development and Characterization of Novel Anisotropic Skin Graft Simulants. Dermato, 2023, 3, 114-130.	0.9	0

#	Article	IF	CITATIONS
377	Electrochemical Lipolysis Induces Adipocyte Death and Fat Necrosis: In Vivo Pilot Study in Pigs. Plastic and Reconstructive Surgery, 2024, 153, 334e-347e.	1.4	0
378	Natural Polymer-Based Thin Film Strategies for Skin Regeneration in Lieu of Regenerative Dentistry. Tissue Engineering - Part C: Methods, 2023, 29, 242-256.	2.1	3
379	The effect of propanolol and metformin on clinical outcomes in burns patients: A systematic review and meta-analysis. Burns Open, 2023, 7, 76-84.	0.5	0
380	Comparison of Type I and Type III Collagen Concentration between Oreochromis mossambicus and Oreochromis niloticus in Relation to Skin Scaffolding. Medicina (Lithuania), 2023, 59, 1002.	2.0	0
382	The Angiopoietin-2/Angiopoietin-1 ratio increases early in burn patients and predicts mortality. Cytokine, 2023, 169, 156266.	3.2	0
383	Surgical Reconstruction of Craniofacial Trauma and Burns. , 2023, , 181-217.		0
384	Multiâ€Bioinspired Functional Conductive Hydrogel Patches for Wound Healing Management. Advanced Science, 2023, 10, .	11.2	11
385	Propranolol normalizes metabolomic signatures thereby improving outcomes after burn. Annals of Surgery, 0, , .	4.2	0
386	Content Quality of Web-Based Short-Form Videos for Fire and Burn Prevention in China: Content Analysis. Journal of Medical Internet Research, 0, 25, e47343.	4.3	1
388	Early cutaneous inflammatory response at different degree of burn and its significance for clinical diagnosis and management. Journal of Tissue Viability, 2023, 32, 550-563.	2.0	1
389	Albumin administration in internal medicine: A journey between effectiveness and futility. European Journal of Internal Medicine, 2023, 117, 28-37.	2.2	6
390	Applications, opportunities, and challenges in using Telehealth for burn injury management: A systematic review. Burns, 2023, 49, 1237-1248.	1.9	2
391	Treatment of Facial Burns. , 2023, , 181-196.		0
392	Macrophage metabolism reprogramming EGCG-Cu coordination capsules delivered in polyzwitterionic hydrogel for burn wound healing and regeneration. Bioactive Materials, 2023, 29, 251-264.	15.6	5
393	Transplantation of human induced pluripotent stem cell derived keratinocytes accelerates deep second-degree burn wound healing. World Journal of Stem Cells, 0, 15, 713-733.	2.8	0
394	A burns and COVID-19 shared stress responding gene network deciphers CD1C-CD141- DCs as the key cellular components in septic prognosis. Cell Death Discovery, 2023, 9, .	4.7	0
395	Prognostic serum biomarker for survival outcome in burn patients. European Journal of Plastic Surgery, 0, , .	0.6	0
396	Dual-NIR wavelength (pulsed 810â€ [−] nm and superpulsed 904â€ [−] nm lasers) photobiomodulation therapy synergistically augments full-thickness burn wound healing: A non-invasive approach. Journal of Photochemistry and Photobiology B: Biology, 2023, , 112761.	3.8	0

ARTICLE IF CITATIONS Ethanol exacerbates pulmonary complications after burn injury in mice, regardless of frequency of 397 1.9 0 ethanol exposures. Burns, 2023, , . Ð**Ð**°Ñ∈маколоÐ3Ň−҇на ĐºÐ¾Ň€Ð⊔Đ⁰҆Ň−Ň•Ň,Ð⊔Ň€Ð¼Ň−҇нD¾Ð3Đ¾ Ň∱Ň€D°Ð¶Ð⊔н**Ð**½Ň•҉**Ð**,Ň,Đ¾ 399 Unforeseen Heat: An Accidental Superficial Partial-Thickness Hand Burn Utilizing a New Convection 400 0.5 0 Oven. Cureus, 2023, , . PLA-HPG based coating enhanced anti-biofilm and wound healing of Shikonin in MRSA-infected burn wound. Frontiers in Bioengineering and Biotechnology, 0, 11, . Outcome of Facial Burn Injuries Treated by a Nanofibrous Temporary Epidermal Layer. Journal of 402 2.4 0 Clinical Medicine, 2023, 12, 5273. Ointment Formulation of Tapak Dara (Catharanthus roseus (L.) G. Don) Flower Ethanol Extract and its Activity in Burn-Healing. Borneo Journal of Pharmacy, 2023, 6, 182-189. 0.2 Outcomes of Patients with Amputation following Electrical Burn Injuries. European Journal of Burn 405 0.8 0 Care, 2023, 4, 318-329. Ultrasonography for Skin and Soft Tissue Infections, Noninfectious Cysts, Foreign Bodies, and Burns 406 1.1 in the Critical Care Setting. AACN Advanced Critical Care, 2023, 34, 228-239. Versatile Hydrogel Dressings That Dynamically Regulate the Healing of Infected Deep Burn Wounds. 407 2 7.6 Advanced Healthcare Materials, 2023, 12, . Finite Element Analysis of Hierarchical Metamaterial-Based Patterns for Generating High Expansion in 408 1.3 Skin Grafting. Mathematical and Computational Applications, 2023, 28, 89. A Robust and Standardized Approach to Quantify Wound Closure Using the Scratch Assay. Methods 409 0 2.0 and Protocols, 2023, 6, 87. Children's growth and motor development following a severe burn: a systematic review. Burns and Trauma, 2023, 11, . Burn documentation in emergency department files and its impact on admission or discharge. Burns 411 0.5 1 Open, 2023, 7, 103-106. Application of Adipose-Tissue Derived Products for Burn Wound Healing. Pharmaceuticals, 2023, 16, 3.8 1302 Simultaneous Administration of Hyperbaric Oxygen Therapy and Antioxidant Supplementation with Filipendula ulmaria Extract in the Treatment of Thermal Skin Injuries Alters Nociceptive Signalling and 413 2.01 Wound Healing. Medicina (Lithuania), 2023, 59, 1676. Crosslinked Collagenâ€Hyaluronic Acid Scaffold Enhances Interleukinâ€10 Under Coâ€Culture of 414 Macrophages And Adiposeâ€Derived Stem Cells. Macromolecular Bioscience, 2024, 24, . Larval therapy vs conventional silver dressings for full-thickness burns: a randomized controlled 415 5.51 trial. BMC Medicine, 2023, 21, . Sustained Endogenous Nitric Oxide Catalytic System Endows Skin Scaffolds with Antibiofilm and 4.4 Antibacterial Activities. ACS Applied Polymer Materials, 2023, 5, 8450-8458.

ARTICLE IF CITATIONS Pathogenetic Mechanisms of Burn Pathology Associated with Oxidative Membrane Damage and 417 0.7 0 Methods of their Correction. Biophysics (Russian Federation), 2023, 68, 129-136. Folium crataegi boosts skin regeneration for burn injury in rats through multiple ways. Biomedicine 5.6 and Pharmacotherapy, 2023, 167, 115457. Synergetic burns treatment by self-adaption release system combined with cold atmospheric plasma. 419 4.0 0 Science China Technological Sciences, 2023, 66, 2808-2823. Unleashing the healing potential: Exploring next-generation regenerative protein nanoscaffolds for 420 9.1 burn wound recovery. Asian Journal of Pharmaceutical Sciences, 2023, 18, 100856. Factors influence the dignity of burns patients: A cross-sectional study. Nursing Ethics, 0, , . 421 3.4 0 Paracrine signalling between keratinocytes and SVF cells results in a new secreted cytokine profile 5.5 during wound closure. Stem Cell Research and Therapy, 2023, 14, . 3D-Printed Auxetic Skin Scaffold for Decreasing Burn Wound Contractures at Joints. Journal of 423 4.4 0 Functional Biomaterials, 2023, 14, 516. 424 Pediatric Burns., 2023, , 233-253. The Impact of Facial Burns on Short- and Long-Term Quality of Life and Psychological Distressâ€"A Prospective Matched Cohort Study. Journal of Clinical Medicine, 2023, 12, 5057. 425 2.4 2 SMOOTH protocol: A pilot randomised prospective intra-patient single-blinded observational study for examining the mechanistic basis of ablative fractional carbon dioxide laser therapy in treating 2.5 hypertrophic scarring. PLoS ONE, 2023, 18, e0285230. Risk Factors and Pathogens of Wound Infection in Burn Inpatients from East China. Antibiotics, 2023, 427 0 3.7 12, 1432. Photographic Evaluation of Burn Depth via Telemedicine: Insights from Iranian Surgeons. Telemedicine 428 Reports, 2023, 4, 266-270. Instant Protection Spray for Antiâ€Infection and Accelerated Healing of Empyrosis. Advanced Materials, 429 21.0 2 2024, 36, . In vivo monitoring of hemoglobin derivative concentrations and saturations in rat burn wounds using a red-green-blue camera., 2023,,. Perception, Awareness, and Practices Related to Burn First Aid Among the General Population in 432 0.5 0 Qassim Region, Saudi Arabia. Cureus, 2023, , . A Review on Centella asiatica: A Potential Herbal Cure. Research Journal of Pharmacognosy and Phytochemistry, 2023, , 235-240. 434 Acute care strategies to reduce burn scarring. Burns Open, 2023, 7, 159-173. 0.5 0 WHITE RATS' THYROID GLAND ULTRASTRUCTURAL CHANGES IN THE DYNAMICS OF EXPERIMENTAL THERMAL INJURY UNDER CONDITIONS OF LACTOPROTEIN WITH SORBITOL HYPEROSMOLAR SOLUTION USING. World of Medicine and Biology, 2023, 19, 243.

#	Article	IF	CITATIONS
436	Accelerated Burn Healing in a Mouse Experimental Model Using α-Gal Nanoparticles. Bioengineering, 2023, 10, 1165.	3.5	0
437	Physiology and pharmacology of wounds. , 2024, , 21-54.		0
438	Wound healing and management. , 2024, , 55-69.		0
439	Kinetics of Inflammatory Mediators in the Immune Response to Burn Injury: Systematic Review and Meta-Analysis of Animal Studies. Journal of Investigative Dermatology, 2024, 144, 669-696.e10.	0.7	1
440	Monocytes and T cells incorporated in full skin equivalents to study innate or adaptive immune reactions after burn injury. Frontiers in Immunology, 0, 14, .	4.8	0
441	Metallicâ€Polyphenolic Nanoparticles Reinforced Cationic Guar Gum Hydrogel for Effectively Treating Burn Wound. Macromolecular Bioscience, 0, , .	4.1	0
442	A Chitosan-Based Biomaterial Combined with Mesenchymal Stem Cell-Conditioned Medium for Wound Healing and Skin Regeneration. International Journal of Molecular Sciences, 2023, 24, 16080.	4.1	0
443	Crosslinked hydrogel loaded with chitosan-supported iron oxide and silver nanoparticles as burn wound dressing. Pharmaceutical Development and Technology, 2023, 28, 962-977.	2.4	0
444	Novel microneedle platforms for the treatment of wounds by drug delivery: A review. Colloids and Surfaces B: Biointerfaces, 2024, 233, 113636.	5.0	0
445	Comparing the antibacterial and healing properties of medical-grade honey and silver-based wound care products in burns. Burns, 2023, , .	1.9	0
446	Effects of Factors Influencing Scar Formation on the Scar Microbiome in Patients with Burns. International Journal of Molecular Sciences, 2023, 24, 15991.	4.1	0
447	Scars. Nature Reviews Disease Primers, 2023, 9, .	30.5	3
448	Detection and classification of skin burns on color images using multi-resolution clustering and the classification of reduced feature subsets. Multimedia Tools and Applications, 0, , .	3.9	0
449	The clinical outcomes of xenografts in the treatment of burn patients: a systematic review and meta-analysis. European Journal of Medical Research, 2023, 28, .	2.2	0
450	Experiences of Nurses Caring for Children Under Five Years with Burns at a Teaching Hospital in Ghana. Nursing & Midwifery Research Journal, 0, , .	0.1	0
451	The effect of topical magnesium on healing of pre-clinical burn wounds. Burns, 2024, 50, 630-640.	1.9	0
452	Consensus on the management of pediatric deep partial-thickness burn wounds (2023 edition). Burns and Trauma, 2023, 11, .	4.9	0
453	An Overview of Recent Developments in the Management of Burn Injuries. International Journal of Molecular Sciences, 2023, 24, 16357.	4.1	1

#	Article	IF	CITATIONS
454	Serum Selenium-Binding Protein 1 (SELENBP1) in Burn Injury: A Potential Biomarker of Disease Severity and Clinical Course. Antioxidants, 2023, 12, 1927.	5.1	0
455	Role of antimicrobial coated allogenic dried amniotic membrane in partial thickness burns. , 0, 3, 174.		0
456	Living in Western Australia induces some physiological adaptations of seasonal acclimatisation in the surgical burns team. Temperature, 0, , 1-13.	3.0	0
457	Therapeutic potential of propolis in alleviating inflammatory response and promoting wound healing in skin burn. Phytotherapy Research, 2024, 38, 856-879.	5.8	1
458	Hydrogel Dressings: Multifunctional Solutions for Chronic Wound Healing; Focusing on In-Vivo Studies. , 2023, 2, 41-50.		0
459	Fragmentation of Care After Admissions for Burn: An Analysis of the National Readmissions Database. Journal of Surgical Research, 2024, 294, 176-182.	1.6	0
460	Evaluation of the Serum Levels of Minerals (Zinc, Selenium, Iron) and Thyroid Hormones (TSH, T3, T4) and Nutritional Intakes and Length of Stay in the Intensive Care Unit Among Burn Patients. Jundishapur Journal of Chronic Disease Care, 2023, 12, .	0.3	0
461	Exudate Absorbing and Antimicrobial Hydrogel Integrated with Multifunctional Curcumin-Loaded Magnesium Polyphenol Network for Facilitating Burn Wound Healing. ACS Nano, 2023, 17, 22355-22370.	14.6	10
463	Neuro-Inspired Biomimetic Microreactor for Sensory Recovery and Hair Follicle Neogenesis under Skin Burns. ACS Nano, 2023, 17, 23115-23131.	14.6	0
464	Commercialization of skin substitutes for third-degree burn wounds. Trends in Biotechnology, 2024, 42, 385-388.	9.3	0
465	Low-level laser for the management of head-and-neck burn wounds. National Journal of Maxillofacial Surgery, 2023, 14, 496-498.	0.5	0
466	Autonomous Multi-modality Burn Wound Characterization using Artificial Intelligence. Military Medicine, 2023, 188, 674-681.	0.8	0
467	Multicomponent decellularized extracellular matrix of caprine small intestine submucosa based bioactive hydrogel promoting full-thickness burn wound healing in rabbits. International Journal of Biological Macromolecules, 2024, 255, 127810.	7.5	0
468	Knowledge and Practices of Public Related to Burns Management in Saudi Arabia: A Cross-Sectional Study. Journal of Burn Care and Research, 2024, 45, 459-467.	0.4	0
469	SINGLE-CELL TRANSCRIPTOME ANALYSIS IN HEALTH AND DISEASE. Shock, 0, , .	2.1	0
470	Investigation of the relationship between nursing students' knowledge level of paediatric emergency practices and paediatric comfort and worry. Journal of Pediatric Nursing, 2023, 73, e612-e617.	1.5	0
471	Effects of photobiomodulation with blue Light Emitting Diode (LED) on the healing of skin burns. Lasers in Medical Science, 2023, 38, .	2.1	0
472	Greenâ€Prepared Magnesium Silicate Sprays Enhance the Repair of Burnâ€6kin Wound and Appendages Regeneration in Rats and Minipigs. Advanced Functional Materials, 2024, 34, .	14.9	0

#	Article	IF	CITATIONS
473	Use of Fluorescence Guidance in Burn Surgery. , 2023, , 275-305.		0
474	Mortality patterns and risk factors in burn patients: A cross-sectional study from Pakistan. Burns Open, 2024, 8, 13-18.	0.5	0
475	Functional Brain Changes Following Burn Injury: A Narrative Review. Neurorehabilitation and Neural Repair, 0, , .	2.9	0
476	Design and fabrication of a wrist splint for burn patient rehabilitation using 3D printing technologies Journal of Physics: Conference Series, 2023, 2643, 012003.	0.4	0
477	Large area fractional laser treatment of mouse skin increases energy expenditure. IScience, 2024, 27, 108677.	4.1	0
478	Massage, laser and shockwave therapy improve pain and scar pruritus after burns: a systematic review. Journal of Physiotherapy, 2023, , .	1.7	0
480	Fluid Resuscitation and Cardiovascular Support in Acute Burn Care. Clinics in Plastic Surgery, 2024, 51, 205-220.	1.5	0
481	Filter lifespan, treatment effect, and influencing factors of continuous renal replacement therapy for severe burn patients. Journal of Burn Care and Research, 0, , .	0.4	0
482	Subcutaneous white adipose tissue independently regulates burn-induced hypermetabolism via immune-adipose crosstalk. Cell Reports, 2024, 43, 113584.	6.4	0
483	EFFECT OF HYPEROSMOLAR COLLOIDAL SOLUTIONS OF LACTOPROTEIN WITH SORBITOL AND HAES-LX 5% ON CHANGES IN THE FUNCTIONAL ACTIVITY OF CELL MEMBRANES IN THERMAL DAMAGE OF THE THYROID GLAND. , 2023, 23, 235-243.	0.2	0
484	Post-Burn and Surgical Scar Reconstruction with Tissue Expanders: Review of the Literature and Our Local Experience. Reports, 2024, 7, 1.	0.5	0
485	The first results of the international multicenter clinical study RheoSTAT-CP0669 on the effectiveness and safety of infusion solution Rheosorbilact® in the complex treatment of patients with burns. Infusion & Chemotherapy, 2023, , 5-12.	0.1	0
486	Exosomal microRNA-Based therapies for skin diseases. Regenerative Therapy, 2024, 25, 101-112.	3.0	0
487	Therapeutic implications of extracorporeal shock waves in burn wound healing. Journal of Tissue Viability, 2023, , .	2.0	0
488	MORPHOMETRIC ANALYSIS OF THE LUNGS PARAMETERS OF WHITE RATS WITH EXPERIMENTAL THERMAL INJURY AND UNDER THE CONDITIONS OF SURFACTANT USE. Bulletin of Problems Biology and Medicine, 2023, 1, 337.	0.1	0
489	RATS' THYROID GLAND HISTOLOGICAL AND ULTRASTRUCTURAL CHANGES THROUGHOUT THE EXPERIMENTA THERMAL INJURY DYNAMICS ON THE BACKGROUND OF HAES-LX 5 % COLLOID-HYPEROSMOLAR SOLUTION INJECTION. Reports of Morphology, 2023, 29, 41-49.	۸L 0.2	0
490	RENAL DYSFUNCTION PATHOGENETICALLY BASED PHARMACOLOGICAL CORRECTION USING LIPOPROTEIN WITH SORBITOL AND HAES-LX-5 % HYPEROSMOLAR COLLOIDAL SOLUTIONS IN CONDITIONS OF THYROID GLAND BURNING. World of Medicine and Biology, 2023, 19, 231.	0.5	0
491	Combat and Operational Stress Control: Application in a Burn Center. European Journal of Burn Care, 2024, 5, 12-22.	0.8	0

#	Article	IF	CITATIONS
492	The efficacy of adipose-derived stem cells in burn injuries: a systematic review. Cellular and Molecular Biology Letters, 2024, 29, .	7.0	0
493	Early Autocalibrated Arterial Waveform Analysis for the Management of Burn Shock—A Cohort Study. Journal of Intensive Care Medicine, 0, , .	2.8	0
494	Polymyxin B-targeted liposomal photosensitizer cures MDR A. baumannii burn infections and accelerates wound healing via M1/M2 macrophage polarization. Journal of Controlled Release, 2024, 366, 297-311.	9.9	1
495	Morphine concentrations in fatalities after palliative treatment of acute burn injury. International Journal of Legal Medicine, 2024, 138, 839-847.	2.2	0
496	Macrostructure and Microenvironment Biomimetic Hydrogel: Design, Properties, and Tissue Engineering Application. Chemistry of Materials, 2024, 36, 1054-1087.	6.7	0
497	Classification of Wound Infections. , 2023, , 369-383.		0
498	Prevalence and Trend of Depression in Burn Survivors: A Single Center Cohort Study. Journal of Burn Care and Research, 0, , .	0.4	0
499	Physiotherapy Approach in Transradial Amputation Following the Sequelae of Electric Burn: A Case Report. Cureus, 2024, , .	0.5	0
500	Photographs in burn patient diaries: A qualitative study of patients' and nurses' experiences. Intensive and Critical Care Nursing, 2024, 82, 103619.	2.9	1
501	Reduced Expression of miR-146a Potentiates Intestinal Inflammation following Alcohol and Burn Injury. Journal of Immunology, 2024, 212, 881-893.	0.8	0
502	Multiwave Locked System LASER photobiomodulation in the multidisciplinary team approach/ management of a 3rd degree burn on the posterior thorax in an 82-year-old woman – a case study. Balneo and PRM Research Journal, 2023, 14, 631.	0.8	0
503	Azilsartan Attenuates Lesion Area of Thermally-Induced Burn in Rats: A Comparative Study with Silver Sulfadiazine. Al-Rafidain Journal of Medical Sciences, 2024, 6, 63-68.	0.0	0
506	Glutamine Supplementation on Burn Patients: A Systematic Review and Meta-analysis. Journal of Burn Care and Research, 2024, 45, 675-684.	0.4	0
507	Knowledge of prevention and first aid in burn injuries among health care workers and non-health care persons in India. Burns, 2024, 50, 1024-1029.	1.9	0
508	Autologous Skin Cell Suspension for Full-Thickness Skin Defect Reconstruction: Current Evidence and Health Economic Expectations. Advances in Therapy, 2024, 41, 891-900.	2.9	0
509	KIDNEYS INVOLVEMENT INTO THE THYROID GLAND BURNING PATHOGENETIC MECHANISMS. Medical Science of Ukraine (MSU), 2023, 19, 91-99.	0.2	0
510	Nonâ€invasive medical imaging technology for the diagnosis of burn depth. International Wound Journal, 2024, 21, .	2.9	0
511	Evaluation of clinical presentation and management outcome of burns, experience at secondary referral hospital in a low-income, sub-Saharan country: A cohort study. Burns Open, 2024, 8, 82-86.	0.5	0

#	Article	IF	CITATIONS
512	Gelatin/carboxymethyl chitosan/aloe juice hydrogels with skin-like endurance and quick recovery: Preparation, characterization, and properties. International Journal of Biological Macromolecules, 2024, 261, 129720.	7.5	0
513	Minimal Invasive Modality (MIMo) in Burn Wound Care. , 2023, , 299-306.		Ο
514	An in silico modeling approach to understanding the dynamics of the post-burn immune response. Frontiers in Immunology, 0, 15, .	4.8	0
515	<i>In silico</i> screening of phytoconstituents as potential anti-inflammatory agents targeting NF-κB p65: an approach to promote burn wound healing. Journal of Biomolecular Structure and Dynamics, 0, , 1-29.	3.5	0
516	Analgesic Efficacy of Oxycodone in Postoperative Dressings after Surgical Treatment of Burn Wounds: A Randomised Controlled Trial. Journal of Clinical Medicine, 2024, 13, 784.	2.4	0
517	The Role of Ketamine as a Component of Multimodal Analgesia in Burns: A Retrospective Observational Study. Journal of Clinical Medicine, 2024, 13, 764.	2.4	0
518	The effect of unidirectional airflow on health care–associated infections in burn intensive care unit: An interrupted time-series analysis. Energy and Buildings, 2024, 307, 113960.	6.7	0
519	Effect of a Nurse-Led Rehabilitation Program: A Quasi-Experimental Study Examining Functional Outcomes in Patients With Hand Burns. Rehabilitation Nursing, 0, , .	0.5	0
520	Evaluation of the Curative Effect of Topical Insulin Application on Burn Wounds of Non-Diabetic Patients with Minor to Moderate Partial Thickness Burns. The Egyptian Journal of Surgery, 2024, 43, 109-115.	0.3	0
521	The impact of burn injury on the central nervous system. Burns and Trauma, 2024, 12, .	4.9	0
522	Topical Noneuphoric Phytocannabinoid Elixir 14 Reduces Inflammation and Mitigates Burn Progression. Journal of Surgical Research, 2024, 296, 447-455.	1.6	0
523	Management of acute-phase burn patients in emergency department. Italian Journal of Medicine, 2024, 18, .	0.3	0
524	Development of PU foam dressings loaded with extract of <i>Plectranthus amboinicus</i> for burn wound healing. Drug Development and Industrial Pharmacy, 2024, 50, 248-261.	2.0	0
525	Glutamine sustains energy metabolism and alleviates liver injury in burn sepsis by promoting the assembly of mitochondrial HSP60-HSP10 complex via SIRT4 dependent protein deacetylation. Redox Report, 2024, 29, .	4.5	0
526	Epidemiologic and clinical characteristics and outcomes of burn patients in Kurdistan Region: a one-decade large retrospective cross-sectional study. Healthcare in Low-resource Settings, 0, , .	0.1	0
527	Development of propolis, hyaluronic acid, and vitamin K nano-emulsion for the treatment of second-degree burns in albino rats. BMC Complementary Medicine and Therapies, 2024, 24, .	2.7	0
528	Advancing burn wound treatment: exploring hydrogel as a transdermal drug delivery system. Drug Delivery, 2024, 31, .	5.7	0
529	Efficacy of transfer form implementation for adult burn patients between institutions to the Israeli National Burn Center. Burns, 2024, , .	1.9	0

#	Article	IF	Citations
530	A global exploration of operating theatre temperatures during severe burn repair. Burns Open, 2024, 8, 101-104.	0.5	0
531	Effect of Spray-Type Alginate Hydrogel Dressing on Burn Wounds. Gels, 2024, 10, 152.	4.5	0
532	Beyond burns: illuminating the unseen battle within – navigating the psychological fallout. International Journal of Surgery Global Health, 2024, 7, .	0.3	0
533	Phage therapy for burn wound infections in the era of antibiotic resistance. Wounds and Wound Infections the Prof B M Kostyuchenok Journal, 2024, 10, 6-14.	0.1	0
534	The Relationship Between Patients' Overall ICU Experiences, Psychological Distress, and Sleep Quality Among Jordanian Burn Patients: A Cross-Sectional Study. Cureus, 2024, , .	0.5	0
535	Demoralization syndrome in burn patients: A cross-sectional study. Burns, 2024, , .	1.9	0
536	LifeFlight Case Studies. Critical Care Nursing Quarterly, 2024, 47, 126-142.	0.8	0
537	NETworking for Health and in Disease: Neutrophil Extracellular Traps in Pediatric Surgical Care. Children, 2024, 11, 295.	1.5	0
538	Inflammatory proteins and neutrophil extracellular traps increase in burn blister fluid 24h after burn. Burns, 2024, , .	1.9	0
539	The incidence of cancer following hospitalisation for a burn injury in Scotland 2009-2019: A retrospective cohort study. Burns, 2024, 50, 866-873.	1.9	0
540	The Development and Usability Assessment of an Augmented Reality Decision Support System to Address Burn Patient Management. BioMedInformatics, 2024, 4, 709-720.	2.0	0
541	Efficacy of hydrosurgical eschar excision following MEEK microskin grafting in patients with massive burns: A retrospective study of a single center. Burns, 2024, , .	1.9	0
542	Luminol-conjugated cyclodextrin biological nanoparticles for the treatment of severe burn-induced intestinal barrier disruption. Burns and Trauma, 2024, 12, .	4.9	0
543	Natural Polymerâ \in Based Materials for Wound Healing Applications. Advanced NanoBiomed Research, 0, , .	3.6	0
544	Coenzyme Q10 supplementation in burn patients: a double-blind placebo-controlled randomized clinical trial. Trials, 2024, 25, .	1.6	0
545	Models predicting mortality risk of patients with burns to ≥â€⁻50% of the total body surface. Burns, 2024, , .	1.9	0
546	Autologous fat grafting and adipose-derived stem cells therapy for acute burns and burn-related scar: A systematic review. Tzu Chi Medical Journal, 2024, 36, 203-211.	1.1	0
547	Effect of quality nursing intervention on wound healing in patients with burns: A metaâ€analysis. International Wound Journal, 2024, 21, .	2.9	0

#	Article	IF	CITATIONS
548	Effects of the prone position on gas exchange and ventilatory mechanics and their correlations with mechanical power in burn patients with ARDS. Journal of Mechanical Ventilation, 2024, 5, 21-29.	0.1	0
549	Complex Hippocampal Response to Thermal Skin Injury and Protocols with Hyperbaric Oxygen Therapy and Filipendula ulmaria Extract in Rats. International Journal of Molecular Sciences, 2024, 25, 3033.	4.1	0
550	Vitamin A resolves lineage plasticity to orchestrate stem cell lineage choices. Science, 2024, 383, .	12.6	0
551	Engineered composite dressing with exudate management capabilities for the process of entire wound healing. Materials Today Communications, 2024, 39, 108557.	1.9	0
552	Unremitting proâ€inflammatory T ell phenotypes, andÂmacrophage activity, following paediatric burn injury. Clinical and Translational Immunology, 2024, 13, .	3.8	0
553	Reported outcomes by using the online patient reported outcome measures. Burns, 2024, , .	1.9	0
554	Therapeutic approach to emotional reactions accompanied with thermal skin injury – from basic to epidemiological research. World Journal of Psychiatry, 0, 14, 199-203.	2.7	0
555	Outpatient superficial partialâ€ŧhickness burn care of an elderly patient successfully treated with Eppikajutsuto. Journal of General and Family Medicine, 2024, 25, 158-161.	0.8	0
556	Associations of urban versus rural patient residence on outcomes after burn: A national inpatient sample database study. Burns, 2024, , .	1.9	0
557	Low-impedance tissue-device interface using homogeneously conductive hydrogels chemically bonded to stretchable bioelectronics. Science Advances, 2024, 10, .	10.3	0
558	Extracorporeal Organ Support for Burn-Injured Patients. European Journal of Burn Care, 2024, 5, 66-76.	0.8	0
559	Analysis of Factors Related to The Accuracy of Triage Assessment at The Emergency Room. Jurnal Ilmiah Kesehatan, 2023, 16, 325-336.	0.1	0
560	Diagnostic and Prognostic Value of Thrombocytopenia in Severe Burn Injuries. Diagnostics, 2024, 14, 582.	2.6	0
561	The efficacy of therapeutic interventions on paediatric burn patients' height, weight, body composition, and muscle strength: A systematic review and meta-analysis. Burns, 2024, , .	1.9	0
562	Timing of surgery in acute deep partial-thickness burns: A study protocol. PLoS ONE, 2024, 19, e0299809.	2.5	0
563	Rehabilitation in adults with burn injury: an overview of systematic reviews. Disability and Rehabilitation, 0, , 1-22.	1.8	0