Recent Advances in Carbon Dioxide Hydrogenation to M Catalysis

Chemical Reviews 120, 7984-8034

DOI: 10.1021/acs.chemrev.9b00723

Citation Report

#	Article	IF	CITATIONS
1	Experimental and Kinetic Modeling Studies of Methanol Transformation to Hydrocarbons Using Zeolite-Based Catalysts: A Review. Energy & Fuels, 2020, 34, 13225-13246.	5.1	23
2	Oxygen-atom vacancy formation and reactivity in polyoxovanadate clusters. Chemical Communications, 2020, 56, 13477-13490.	4.1	22
3	CO2-free conversion of CH4 to syngas using chemical looping. Applied Catalysis B: Environmental, 2020, 278, 119328.	20.2	48
4	Selective CO2 adsorption over functionalized Zr-based metal organic framework under atmospheric or lower pressure: Contribution of functional groups to adsorption. Chemical Engineering Journal, 2020, 402, 126254.	12.7	58
5	Copper-zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO2 to methanol. Nature Communications, 2020, 11, 5849.	12.8	86
6	Advances in the Design of Heterogeneous Catalysts and Thermocatalytic Processes for CO ₂ Utilization. ACS Catalysis, 2020, 10, 14147-14185.	11.2	181
7	Review of Catalyst Design and Mechanistic Studies for the Production of Olefins from Anthropogenic CO ₂ . ACS Catalysis, 2020, 10, 14258-14282.	11.2	66
8	A Highly Active Au/In2O3-ZrO2 Catalyst for Selective Hydrogenation of CO2 to Methanol. Catalysts, 2020, 10, 1360.	3.5	34
9	Poly(imidazolium-methylene)-Assisted Grinding Strategy to Prepare Nanocarbon-Embedded Network Monoliths for Carbocatalysis. ACS Catalysis, 2020, 10, 14604-14614.	11.2	9
10	Advances in Single-Atom Catalysts for Lignin Conversion. ACS Symposium Series, 2020, , 93-125.	0.5	2
11	Stabilizing Cu ⁺ in Cu/SiO ₂ Catalysts with a Shattuckite-Like Structure Boosts CO ₂ Hydrogenation into Methanol. ACS Catalysis, 2020, 10, 14694-14706.	11.2	129
13	Single-Site Heterogeneous Catalysts and Photocatalysts for Emerging Applications. ACS Symposium Series, 2020, , 151-188.	0.5	3
14	New Kind of Thermoplastic Polyurea Elastomers Synthesized from CO ₂ and with Self-Healing Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 12677-12685.	6.7	18
15	CO2 adsorption at low pressure over polymers-loaded mesoporous metal organic framework PCN-777: effect of basic site and porosity on adsorption. Journal of CO2 Utilization, 2020, 42, 101332.	6.8	14
16	Transition Metalâ€Free Synthesis of Carbamates Using CO ₂ as the Carbon Source. ChemSusChem, 2020, 13, 6246-6258.	6.8	46
17	Density functional theoretical study of Au4/In2O3 catalyst for CO2 hydrogenation to methanol: The strong metal-support interaction and its effect. Journal of CO2 Utilization, 2020, 42, 101313.	6.8	39
18	Computational screening of homo and hetero transition metal dimer catalysts for reduction of CO ₂ to C ₂ products with high activity and low limiting potential. Journal of Materials Chemistry A, 2020, 8, 21241-21254.	10.3	51
19	Novel Heterogeneous Catalysts for CO ₂ Hydrogenation to Liquid Fuels. ACS Central Science, 2020, 6, 1657-1670.	11.3	182

#	Article	IF	CITATIONS
20	Insights into the Influence of CeO ₂ Crystal Facet on CO ₂ Hydrogenation to Methanol over Pd/CeO ₂ Catalysts. ACS Catalysis, 2020, 10, 11493-11509.	11.2	391
21	Research Progress in Conversion of CO2 to Valuable Fuels. Molecules, 2020, 25, 3653.	3.8	64
22	Tuning Adsorption Energies and Reaction Pathways by Alloying: PdZn versus Pd for CO ₂ Hydrogenation to Methanol. Journal of Physical Chemistry Letters, 2020, 11, 7672-7678.	4.6	24
23	Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives. ACS Catalysis, 2020, 10, 11318-11345.	11.2	215
24	Surface Orientation and Pressure Dependence of CO ₂ Activation on Cu Surfaces. Journal of Physical Chemistry C, 2020, 124, 27511-27518.	3.1	20
25	Cyclic oligourea synthesized from CO2: Purification, characterization and properties. Green Energy and Environment, 2022, 7, 477-484.	8.7	3
26	Synthesis of Polyurea Thermoplastics through a Nonisocyanate Route Using CO2 and Aliphatic Diamines. ACS Sustainable Chemistry and Engineering, 2020, 8, 18626-18635.	6.7	14
27	Single-Atom Catalysis: An Analogy between Heterogeneous and Homogeneous Catalysts. ACS Symposium Series, 2020, , 1-15.	0.5	1
28	Recent Advances of Heterogeneous Nanosized Hybrid Catalysts for Water Treatment Application. ACS Symposium Series, 2020, , 227-240.	0.5	0
29	Supported Metal Nanoparticles and Single-Atoms for Catalytic CO ₂ Utilization. ACS Symposium Series, 2020, , 241-266.	0.5	Ο
30	Advances in Metal Phthalocyanine based Carbon Composites for Electrocatalytic CO ₂ Reduction. ChemCatChem, 2020, 12, 6103-6130.	3.7	38
31	Hydrogenation of Carbon Dioxide to Methanol over Nonâ^'Cuâ€based Heterogeneous Catalysts. ChemSusChem, 2020, 13, 6160-6181.	6.8	90
32	Realizing efficient carbon dioxide hydrogenation to liquid hydrocarbons by tandem catalysis design. EnergyChem, 2020, 2, 100038.	19.1	20
33	Adsorption and activation of CO ₂ on Zr _n (<i>n</i> = 2–7) clusters. Physical Chemistry Chemical Physics, 2020, 22, 16877-16886.	2.8	11
34	A DFT study for CO ₂ hydrogenation on W(111) and Ni-doped W(111) surfaces. Physical Chemistry Chemical Physics, 2020, 22, 17106-17116.	2.8	8
35	Lanthanum-Modified MCF-Derived Nickel Phyllosilicate Catalyst for Enhanced CO ₂ Methanation: A Comprehensive Study. ACS Applied Materials & Interfaces, 2020, 12, 19587-19600.	8.0	39
36	Advances in higher alcohol synthesis from CO2 hydrogenation. CheM, 2021, 7, 849-881.	11.7	129
37	Unveiling the Activity Origin of Iron Nitride as Catalytic Material for Efficient Hydrogenation of CO ₂ to C ₂₊ Hydrocarbons, Angewandte Chemie, 2021, 133, 4546-4550.	2.0	11

#	Article	IF	CITATIONS
38	Unveiling the Activity Origin of Iron Nitride as Catalytic Material for Efficient Hydrogenation of CO ₂ to C ₂₊ Hydrocarbons. Angewandte Chemie - International Edition, 2021, 60, 4496-4500.	13.8	67
39	Challenges and Opportunities in Utilizing MXenes of Carbides and Nitrides as Electrocatalysts. Advanced Energy Materials, 2021, 11, 2002967.	19.5	94
40	Catalytic conversion of C1 molecules under mild conditions. EnergyChem, 2021, 3, 100050.	19.1	42
41	Photocatalytic and electrocatalytic transformations of C1 molecules involving C–C coupling. Energy and Environmental Science, 2021, 14, 37-89.	30.8	110
42	Electrocatalysts for direct methanol fuel cells to demonstrate China's renewable energy renewable portfolio standards within the framework of the 13th five-year plan. Catalysis Today, 2021, 374, 135-153.	4.4	12
43	Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Metals, 2021, 40, 1412-1430.	7.1	61
44	Greener and facile synthesis of Cu/ZnO catalysts for CO2 hydrogenation to methanol by urea hydrolysis of acetates. RSC Advances, 2021, 11, 14323-14333.	3.6	6
45	Towards the development of the emerging process of CO ₂ heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chemical Society Reviews, 2021, 50, 10764-10805.	38.1	161
46	Shedding light on <scp>CO₂</scp> : Catalytic synthesis of solar methanol. EcoMat, 2021, 3, e12078.	11.9	13
47	Catalytic hydrogenation of CO ₂ from air <i>via</i> porous silica-supported Au nanoparticles in aqueous solution. Green Chemistry, 2021, 23, 3740-3749.	9.0	13
48	First-principles microkinetic simulations revealing the scaling relations and structure sensitivity of CO ₂ hydrogenation to C ₁ & C ₂ oxygenates on Pd surfaces. Catalysis Science and Technology, 2021, 11, 4866-4881.	4.1	5
49	Flame-made Cu/ZrO ₂ catalysts with metastable phase and strengthened interactions for CO ₂ hydrogenation to methanol. Chemical Communications, 2021, 57, 7509-7512.	4.1	25
50	Homogeneous and heterogeneous catalysts for hydrogenation of CO ₂ to methanol under mild conditions. Chemical Society Reviews, 2021, 50, 4259-4298.	38.1	167
51	Chemisorption of CO ₂ by diamine-tetraamido macrocyclic motifs: a theoretical study. Organic and Biomolecular Chemistry, 2021, 19, 3873-3881.	2.8	5
52	Mechanistic and multiscale aspects of thermo-catalytic CO ₂ conversion to C ₁ products. Catalysis Science and Technology, 2021, 11, 6601-6629.	4.1	27
53	Hydrogen production from bioinspired methanol reforming at room temperature. Green Chemistry, 2021, 23, 5618-5624.	9.0	14
54	Pd/C-catalyzed transfer hydrogenation of aromatic nitro compounds using methanol as a hydrogen source. Journal of the Indian Chemical Society, 2021, 98, 100014.	2.8	9
55	CO ₂ Hydrogenation to Methanol over In ₂ O ₃ -Based Catalysts: From Mechanism to Catalyst Development. ACS Catalysis, 2021, 11, 1406-1423.	11.2	198

#	Article	IF	CITATIONS
56	Hybridization of MOFs and ionic POFs: a new strategy for the construction of bifunctional catalysts for CO ₂ cycloaddition. Green Chemistry, 2021, 23, 1766-1771.	9.0	26
57	Reverse water-gas shift reaction over Pt/MoO _x /TiO ₂ : reverse Mars–van Krevelen mechanism <i>via</i> redox of supported MoO _x . Catalysis Science and Technology, 2021, 11, 4172-4180.	4.1	20
58	Selective synthesis of <i>para</i> -xylene and light olefins from CO ₂ /H ₂ in the presence of toluene. Catalysis Science and Technology, 2021, 11, 4521-4528.	4.1	18
59	Recent Advances in Metal Catalyst Design for CO2 Hydroboration to C1 Derivatives. Catalysts, 2021, 11, 58.	3.5	32
60	Anisotropic growth of ZnO nanoparticles driven by the structure of amine surfactants: the role of surface dynamics in nanocrystal growth. Nanoscale Advances, 2021, 3, 6088-6099.	4.6	4
61	Tailoring the Physicochemical Properties of Mg Promoted Catalysts via One Pot Non-ionic Surfactant Assisted Co-precipitation Route for CO2 Co-feeding Syngas to Methanol. Topics in Catalysis, 2021, 64, 395-413.	2.8	10
62	Synthesis of amino alcohols, cyclic urea, urethanes, and cyclic carbonates and tandem one-pot conversion of an epoxide to urethanes using a Zn–Zr bimetallic oxide catalyst. Sustainable Energy and Fuels, 2021, 5, 1498-1510.	4.9	7
63	Bimetallic-Derived Catalysts and Their Application in Simultaneous Upgrading of CO2 and Ethane. Matter, 2021, 4, 408-440.	10.0	26
64	Catalytic Conversion of Carbon Dioxide to Methanol: Current Status and Future Perspective. Frontiers in Energy Research, 2021, 8, .	2.3	36
65	Mixed-Phase Indium Oxide as a Highly Active and Stable Catalyst for the Hydrogenation of CO ₂ to CH ₃ OH. Industrial & Engineering Chemistry Research, 2021, 60, 3532-3542.	3.7	14
66	Carbon-Based Materials for Electrochemical Reduction of CO ₂ to C ₂₊ Oxygenates: Recent Progress and Remaining Challenges. ACS Catalysis, 2021, 11, 2076-2097.	11.2	116
67	A study on highly active Cu-Zn-Al-K catalyst for CO2 hydrogenation to methanol. Arabian Journal of Chemistry, 2021, 14, 102951.	4.9	5
68	Investigation of a hydrogen generator with the heat management module utilizing liquidâ€gas organic phase change material. International Journal of Energy Research, 2021, 45, 10378-10392.	4.5	6
69	Simple RuCl ₃ â€catalyzed <i>N</i> â€Methylation of Amines and Transfer Hydrogenation of Nitroarenes using Methanol. ChemCatChem, 2021, 13, 1722-1729.	3.7	41
70	Pd–Cu Alloy Nanoparticles Confined within Mesoporous Hollow Carbon Spheres for the Hydrogenation of CO ₂ to Formate. Journal of Physical Chemistry C, 2021, 125, 3961-3971.	3.1	25
71	CO ₂ Footprint of Thermal Versus Photothermal CO ₂ Catalysis. Small, 2021, 17, e2007025.	10.0	35
72	Highly Active Ir/In ₂ O ₃ Catalysts for Selective Hydrogenation of CO ₂ to Methanol: Experimental and Theoretical Studies. ACS Catalysis, 2021, 11, 4036-4046.	11.2	108
73	Boosting CO ₂ Capture and Its Photochemical Conversion on Bismuth Surface. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000671.	1.8	4

#	Article	IF	CITATIONS
74	BiVO ₄ Microplates with Oxygen Vacancies Decorated with Metallic Cu and Bi Nanoparticles for CO ₂ Photoreduction. ACS Applied Nano Materials, 2021, 4, 3576-3585.	5.0	43
75	Optimizing network pathways of CO2 conversion processes. Journal of CO2 Utilization, 2021, 45, 101433.	6.8	9
76	Insight into Acetic Acid Synthesis from the Reaction of CH ₄ and CO ₂ . ACS Catalysis, 2021, 11, 3384-3401.	11.2	53
77	Silica-Supported PdGa Nanoparticles: Metal Synergy for Highly Active and Selective CO ₂ -to-CH ₃ OH Hydrogenation. Jacs Au, 2021, 1, 450-458.	7.9	31
78	Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis. Journal of CO2 Utilization, 2021, 45, 101405.	6.8	51
79	Hydrogen dissociation sites on indium-based ZrO2-supported catalysts for hydrogenation of CO2 to methanol. Catalysis Today, 2022, 387, 38-46.	4.4	11
80	CO ₂ Hydrogenation to Higher Alcohols over K-Promoted Bimetallic Fe–In Catalysts on a Ce–ZrO ₂ Support. ACS Sustainable Chemistry and Engineering, 2021, 9, 6235-6249.	6.7	32
81	Solvothermal preparation of CuO-ZnO-ZrO2 catalysts for methanol synthesis via CO2 hydrogenation. Journal of the Taiwan Institute of Chemical Engineers, 2021, 121, 81-91.	5.3	24
82	Spin State Tuning of the Octahedral Sites in Ni–Co-Based Spinel toward Highly Efficient Urea Oxidation Reaction. Journal of Physical Chemistry C, 2021, 125, 9190-9199.	3.1	25
83	Zeolite-Encapsulated Ultrasmall Cu/ZnO <i>_x</i> Nanoparticles for the Hydrogenation of CO ₂ to Methanol. ACS Applied Materials & Interfaces, 2021, 13, 18693-18703.	8.0	46
84	Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Research, 2021, 14, 4828-4832.	10.4	62
85	Insights into Bimetallic Oxide Synergy during Carbon Dioxide Hydrogenation to Methanol and Dimethyl Ether over GaZrO _{<i>x</i>} Oxide Catalysts. ACS Catalysis, 2021, 11, 4704-4711.	11.2	60
86	Catalytic Methylation of <i>m</i> -Xylene, Toluene, and Benzene Using CO ₂ and H ₂ over TiO ₂ -Supported Re and Zeolite Catalysts: Machine-Learning-Assisted Catalyst Optimization. ACS Catalysis, 2021, 11, 5829-5838.	11.2	25
87	Engineering Silverâ€Enriched Copper Coreâ€Shell Electrocatalysts to Enhance the Production of Ethylene and C ₂₊ Chemicals from Carbon Dioxide at Low Cell Potentials. Advanced Functional Materials, 2021, 31, 2101668.	14.9	36
88	Recent Advances for Selective Catalysis in Benzene Methylation: Reactions, Shape-Selectivity and Perspectives. Catalysis Surveys From Asia, 2021, 25, 347-361.	2.6	8
89	Impact of hybrid CO2-CO feeds on methanol synthesis over In2O3-based catalysts. Applied Catalysis B: Environmental, 2021, 285, 119878.	20.2	30
90	Cu-ZnO@Al2O3 hybrid nanoparticle with enhanced activity for catalytic CO2 conversion to methanol. Advanced Powder Technology, 2021, 32, 1785-1792.	4.1	19
91	Two Co(II)-Based MOFs Constructed from Resorcin[4]Arene Ligand: Syntheses, Structures, and Heterogeneous Catalyst for Conversion of CO2. Crystals, 2021, 11, 574.	2.2	2

#	Article	IF	CITATIONS
92	The feasibility study of the indium oxide supported silver catalyst for selective hydrogenation of CO2 to methanol. Green Energy and Environment, 2022, 7, 807-817.	8.7	45
93	Transformation of CO2 into liquid fuels and synthetic natural gas using green hydrogen: A comparative analysis. Fuel, 2021, 291, 120111.	6.4	32
94	Size-Controlled Synthesis of Pd Nanocatalysts on Defect-Engineered CeO ₂ for CO ₂ Hydrogenation. ACS Applied Materials & Interfaces, 2021, 13, 24957-24965.	8.0	33
95	Cu-Based Nanocatalysts for CO ₂ Hydrogenation to Methanol. Energy & Fuels, 2021, 35, 8558-8584.	5.1	74
96	The role of lattice oxygen in CO2 hydrogenation to methanol over La1-xSrxCuO catalysts. Journal of CO2 Utilization, 2021, 47, 101498.	6.8	22
97	Deciphering Metal–Oxide and Metal–Metal Interplay via Surface Organometallic Chemistry: A Case Study with CO ₂ Hydrogenation to Methanol. Journal of the American Chemical Society, 2021, 143, 6767-6780.	13.7	48
98	Architectural Design for Enhanced C ₂ Product Selectivity in Electrochemical CO ₂ Reduction Using Cu-Based Catalysts: A Review. ACS Nano, 2021, 15, 7975-8000.	14.6	183
99	Yttria-doped Cu/ZnO catalyst with excellent performance for CO2 hydrogenation to methanol. Molecular Catalysis, 2021, 509, 111641.	2.0	11
100	Recent advances in nanostructured catalysts for photo-assisted dry reforming of methane. Materials Today Nano, 2021, 14, 100113.	4.6	11
101	Fabrication Methodâ€Engineered Cu–ZnO/SiO ₂ Catalysts with Highly Dispersed Metal Nanoparticles toward Efficient Utilization of Methanol as a Hydrogen Carrier. Advanced Energy and Sustainability Research, 2021, 2, 2100082.	5.8	6
102	Methanol Synthesis by Hydrogenation of Hybrid CO ₂ â^'CO Feeds. ChemSusChem, 2021, 14, 2914-2923.	6.8	8
103	Selective Hydrogenation of CO ₂ to Hydrocarbons: Effects of Fe ₃ O ₄ Particle Size on Reduction, Carburization, and Catalytic Performance. Energy & Fuels, 2021, 35, 10703-10709.	5.1	27
104	Influence of Phase Composition and Pretreatment on the Conversion of Iron Oxides into Iron Carbides in Syngas Atmospheres. Catalysts, 2021, 11, 773.	3.5	4
105	Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nature Reviews Chemistry, 2021, 5, 564-579.	30.2	253
106	Tunable Carbon Dioxide Activation Pathway over Iron Oxide Catalysts: Effects of Potassium. Industrial & Engineering Chemistry Research, 2021, 60, 8705-8713.	3.7	18
107	CoCo-PBA/tetrabutylammonium bromide as highly efficient catalyst for CO2 and epoxides coupling reaction under mild conditions. Chinese Chemical Letters, 2022, 33, 1081-1086.	9.0	12
108	Theoretical new insights into hydrogen interaction with single-atom Zn- and co-doped copper metal catalysts. Applied Surface Science, 2021, 551, 149365.	6.1	2
109	One-pot synthesis of spiro[indoline-3,2′-pyrrolidin]-ones catalyzed by mesoporous molecular sieve MCM-41. Tetrahedron, 2021, 93, 132283.	1.9	5

#	Article	IF	CITATIONS
110	Pt, Ir, Ru, and Rh Nanoparticles Supported on ZIF-67 Nanocubes for Evaluation of Hydrogen Spillover Ability of Noble Metals. ACS Applied Nano Materials, 2021, 4, 6030-6044.	5.0	17
111	Highly Selective Synthesis of Ethanol via CO ₂ Hydrogenation over CoMoC _x Catalysts. ChemCatChem, 2021, 13, 3333-3339.	3.7	17
112	Porous catalytic membranes for CO2 conversion. Journal of Energy Chemistry, 2021, 63, 74-86.	12.9	14
113	Aromatics Production via Methanol-Mediated Transformation Routes. ACS Catalysis, 2021, 11, 7780-7819.	11.2	92
114	Efficient Activation of CO ₂ over Ce-MOF-derived CeO ₂ for the Synthesis of Cyclic Urea, Urethane, and Carbamate. Industrial & Engineering Chemistry Research, 2021, 60, 12492-12504.	3.7	30
115	Organic Electrosynthesis in CO ₂ -eXpanded Electrolytes: Enabling Selective Acetophenone Carboxylation to Atrolatic Acid. ACS Sustainable Chemistry and Engineering, 2021, 9, 10431-10436.	6.7	11
116	Recent advances in CO2 hydrogenation to value-added products — Current challenges and future directions. Progress in Energy and Combustion Science, 2021, 85, 100905.	31.2	134
117	The exploration of deoxygenation reactions for alcohols and derivatives using earth-abundant reagents. Pure and Applied Chemistry, 2021, 93, 799-810.	1.9	1
118	Revamping SiO ₂ Spheres by Core–Shell Porosity Endowment to Construct a Mazelike Nanoreactor for Enhanced Catalysis in CO ₂ Hydrogenation to Methanol. Advanced Functional Materials, 2021, 31, 2102896.	14.9	21
119	Recent advances in light olefins production from catalytic hydrogenation of carbon dioxide. Chemical Engineering Research and Design, 2021, 151, 401-427.	5.6	39
120	The Critical Importance of Adopting Whole-of-Life Strategies for Polymers and Plastics. Sustainability, 2021, 13, 8218.	3.2	10
121	Effect of Sm Doping on CO ₂ -to-Methanol Hydrogenation of Cu/Amorphous-ZrO ₂ Catalysts. Journal of Physical Chemistry C, 2021, 125, 15899-15909.	3.1	8
122	Catalytic Hydrogenation of CO2 to Methanol over Cu/MgO Catalysts in a Semi-Continuous Reactor. Energies, 2021, 14, 4319.	3.1	7
123	Cesium-Induced Active Sites for C–C Coupling and Ethanol Synthesis from CO ₂ Hydrogenation on Cu/ZnO(00011) Surfaces. Journal of the American Chemical Society, 2021, 143, 13103-13112.	13.7	47
124	Efficient responsive ionic liquids with multiple active centers for the transformation of CO2 under mild conditions: Integrated experimental and theoretical study. Journal of CO2 Utilization, 2021, 49, 101573.	6.8	14
125	Theoretical investigation on conversion of CO2 with epoxides to cyclic carbonates by bifunctional metal-salen complexes bearing ionic liquid substsituents. Molecular Catalysis, 2021, 511, 111733.	2.0	5
126	Ni–In Synergy in CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2021, 11, 11371-11384.	11.2	79
127	Facet effect of In2O3 for methanol synthesis by CO2 hydrogenation: A mechanistic and kinetic study. Surfaces and Interfaces, 2021, 25, 101244.	3.0	9

#	Article	IF	CITATIONS
128	CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol. Applied Catalysis B: Environmental, 2021, 291, 120122.	20.2	88
129	Catalysts design for higher alcohols synthesis by CO2 hydrogenation: Trends and future perspectives. Applied Catalysis B: Environmental, 2021, 291, 120073.	20.2	90
130	Promoting Methanol Synthesis and Inhibiting CO ₂ Methanation with Bimetallic In–Ru Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 11891-11902.	6.7	17
131	Catalytic Formation of Cyclic Carbonates using Gallium Aminotrisphenolate Compounds and Comparison to their Aluminium Congeners: A Combined Experimental and Computational Study. ChemCatChem, 2021, 13, 4099-4110.	3.7	14
132	Pd atomic layer coating enhances CO2 hydrogenation to CH3OH fuel on Cu@Pd(111) core-shell structure catalyst. Journal of Environmental Chemical Engineering, 2021, 9, 105749.	6.7	3
133	Highly selective synthesis of LPG from CO2 hydrogenation over In2O3/SSZ-13 binfunctional catalyst. Journal of Fuel Chemistry and Technology, 2021, 49, 1132-1139.	2.0	6
134	Non-Noble-Metal Metal–Organic-Framework-Catalyzed Carboxylative Cyclization of Propargylic Amines with Atmospheric Carbon Dioxide under Ambient Conditions. Inorganic Chemistry, 2021, 60, 13425-13433.	4.0	22
135	Ru complex and N, P-containing polymers confined within mesoporous hollow carbon spheres for hydrogenation of CO2 to formate. Nano Research, 2023, 16, 4515-4523.	10.4	8
136	Unique Dualâ€ S ites Boosting Overall CO ₂ Photoconversion by Hierarchical Electron Harvesters. Small, 2021, 17, e2103796.	10.0	38
137	Surface structure of mass-selected niobium oxide nanoclusters on Au(111). Nanotechnology, 2021, 32, 475601.	2.6	7
138	Oxygen-deficient metal oxides supported nano-intermetallic InNi ₃ C _{0.5} toward efficient CO ₂ hydrogenation to methanol. Science Advances, 2021, 7, .	10.3	72
139	Heterogeneous catalysis at metal-oxide interfaces using in situ and operando spectroscopy: From nanoparticles to single-atom sites. Applied Catalysis A: General, 2021, 624, 118330.	4.3	13
140	Bimetallic phthalocyanine heterostructure used for highly selective electrocatalytic CO2 reduction. Science China Materials, 2022, 65, 155-162.	6.3	32
141	Photoinduced Reaction Pathway Change for Boosting CO ₂ Hydrogenation over a MnO-Co Catalyst. ACS Catalysis, 2021, 11, 10316-10323.	11.2	17
142	Catalytic Reductive Alcohol Etherifications with Carbonylâ€Based Compounds or CO ₂ and Related Transformations for the Synthesis of Ether Derivatives. ChemSusChem, 2021, 14, 3744-3784.	6.8	18
143	Promotion effect of iron addition on the structure and CO2 hydrogenation performance of Attapulgite/Ce0.75Zr0.25O2 nanocomposite supported Cu-ZnO based catalyst. Molecular Catalysis, 2021, 513, 111820.	2.0	2
144	N-Formylation of Amines with Carbon Dioxide and Hydrogen Catalyzed by Ionic Liquid-Assisted Ru Complexes. ACS Sustainable Chemistry and Engineering, 2021, 9, 13256-13267.	6.7	7
145	Ab Initio Study of CO2 Activation on Pristine and Fe-Decorated WS2 Nanoflakes. Journal of Physical Chemistry A, 2021, 125, 7769-7777.	2.5	5

ARTICLE IF CITATIONS # Structureâ€"Activity Relationships of Copper- and Potassium-Modified Iron Oxide Catalysts during 11.2 48 146 Reverse Water–Gas Shift Reaction. ACS Catalysis, 2021, 11, 12609-12619. Catalytic valorization of CO₂ by hydrogenation: current status and future trends. Catalysis Reviews - Science and Engineering, 2023, 65, 698-772. Revealing the dependence of CO₂ activation on hydrogen dissociation ability over 148 9 3.6 supported nickel catalysts. AICHE Journal, 2022, 68, e17458. Recent advances in carbon dioxide hydrogenation to produce olefins and aromatics. CheM, 2021, 7, 149 2277-2311. Experimentally unveiling the origin of tunable selectivity for CO2 hydrogenation over Ni-based 150 20.2 66 catalysts. Applied Catalysis B: Environmental, 2021, 292, 120191. Singleâ€Atom Catalystsâ€Enabled Reductive Upgrading of CO₂. ChemCatChem, 2021, 13, 4859-4877. 3.7 A roadmap towards the development of superior photocatalysts for solar- driven CO2-to-fuels 152 16.4 31 production. Renewable and Sustainable Energy Reviews, 2021, 148, 111298. Bimetallic metal organic framework-templated synthesis of a Cu-ZnO/Al2O3 catalyst with superior 153 2.0 19 methanol selectivity for CO2 hydrogenation. Molecular Catalysis, 2021, 514, 111870. Green liquid fuel and synthetic natural gas production via CO2 hydrogenation combined with reverse 154 6.8 26 water-gas-shift and Co-based Fischer-Tropsch synthesis. Journal of CO2 Utilization, 2021, 51, 101619. High Temperature Water Permeable Membrane Reactors for CO2 Utilization. Chemical Engineering 12.7 Journal, 2021, 420, 129834. Understanding and Application of Strong Metalâ€"Support Interactions in Conversion of 156 5.140 CO₂ to Methanol: A Review. Energy & amp; Fuels, 2021, 35, 19012-19023. Current and future perspectives on catalytic-based integrated carbon capture and utilization. Science 8.0 of the Total Environment, 2021, 790, 148081. Acceptorless Dehydrogenation of Methanol to Carbon Monoxide and Hydrogen using Molecular 158 13.8 13 Catalysts. Angewandte Chemie - International Edition, 2021, 60, 26500-26505. Suppressing Dormant Ru States in the Presence of Conventional Metal Oxides Promotes the Ru-MACHO-BH-Catalyzed Integration of CO₂ Capture and Hydrogenation to Methanol. ACS Catalysis, 2021, 11, 12682-12691. 159 11.2 Inside the reaction mechanism of direct CO2 conversion to DME over zeolite-based hybrid catalysts. 160 20.2 34 Applied Catalysis B: Environmental, 2021, 294, 120255. Enhanced CO2 hydrogenation to methanol over La oxide-modified Cu nanoparticles socketed on Cu 6.8 phyllosilicate nanotubes. Journal of CO2 Utilization, 2021, 52, 101699. Acceptorless dehydrogenation of methanol to carbon monoxide and hydrogen using molecular 162 2.0 1 catalysts. Angewandte Chemie, 0, , . Investigating the role of oxygen vacancies and basic site density in tuning methanol selectivity over 6.4 Cu/CeO2 catalyst during CO2 hydrogenation. Fuel, 2021, 303, 121289.

#	Article	IF	CITATIONS
164	Effect of In2O3 particle size on CO2 hydrogenation to lower olefins over bifunctional catalysts. Chinese Journal of Catalysis, 2021, 42, 2038-2048.	14.0	39
165	Experimental and theoretical studies of CO2 hydrogenation to methanol on Ru/In2O3. Journal of CO2 Utilization, 2021, 53, 101720.	6.8	54
166	Post modification of Oxo-clusters in robust Zirconium-Based metal organic framework for durable SO2 capture from flue gas. Separation and Purification Technology, 2021, 276, 119349.	7.9	22
167	Enhanced catalytic activity and stability of bismuth nanosheets decorated by 3-aminopropyltriethoxysilane for efficient electrochemical reduction of CO2. Applied Catalysis B: Environmental, 2021, 298, 120602.	20.2	19
168	MoCS@NSC with interfacial heterojunction nanostructure: A highly selective catalyst for synthesizing methanol from CO2 at low temperature. Journal of Environmental Chemical Engineering, 2021, 9, 106354.	6.7	3
169	Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 298, 120519.	20.2	55
170	A superb water permeable membrane for potential applications in CO2 to liquid fuel process. Journal of Membrane Science, 2021, 639, 119682.	8.2	8
171	Plasmonic metal/semiconductor hybrid nanomaterials for solar to chemical energy conversion. Journal of Energy Chemistry, 2021, 63, 40-53.	12.9	13
172	Effect of operating parameters on H2/CO2 conversion to methanol over Cu-Zn oxide supported on ZrO2 polymorph catalysts: Characterization and kinetics. Chemical Engineering Journal, 2022, 427, 130947.	12.7	29
173	Synergistic effect of the metal-support interaction and interfacial oxygen vacancy for CO2 hydrogenation to methanol over Ni/In2O3 catalyst: A theoretical study. Journal of Energy Chemistry, 2022, 65, 623-629.	12.9	51
174	Mo-O-Bi Bonds as interfacial electron transport bridges to fuel CO2 photoreduction via in-situ reconstruction of black Bi2MoO6/BiO2-x heterojunction. Chemical Engineering Journal, 2022, 429, 132204.	12.7	83
175	A State-of-the-art review on action mechanism of photothermal catalytic reduction of CO2 in full solar spectrum. Chemical Engineering Journal, 2022, 429, 132322.	12.7	56
176	Ultrahigh surface density of Co-N2C single-atom-sites for boosting photocatalytic CO2 reduction to methanol. Applied Catalysis B: Environmental, 2022, 300, 120695.	20.2	80
177	Catalytic Technologies for the Conversion and Reuse of CO2. , 2021, , 1-50.		0
178	Photothermal CO ₂ hydrogenation to hydrocarbons over trimetallic Co–Cu–Mn catalysts. Green Chemistry, 2021, 23, 5775-5785.	9.0	24
179	Sorption enhanced dimethyl ether synthesis under industrially relevant conditions: experimental validation of pressure swing regeneration. Reaction Chemistry and Engineering, 2021, 6, 244-257.	3.7	12
180	Dual active sites fabricated through atomic layer deposition of TiO ₂ on MoS ₂ nanosheet arrays for highly efficient electroreduction of CO ₂ to ethanol. Journal of Materials Chemistry A, 2021, 9, 6790-6796.	10.3	22
181	Understanding Selectivity in CO2 Hydrogenation to Methanol for MoP Nanoparticle Catalysts Using In Situ Techniques. Catalysts, 2021, 11, 143.	3.5	11

#	Article	IF	CITATIONS
182	Controllable selfâ€assembly from homonuclear Mn (II)â€MOF to heteronuclear Mn (II)â€K(I)â€MOF by alkaliâ€regulation: A novel mode of structural and luminescent regulation for off–on sensing ascorbic acid. Applied Organometallic Chemistry, 2021, 35, e6160.	3.5	0
183	Hollow Carbon Spheres Encapsulating Metal Nanoparticles for CO2 Hydrogenation Reactions. Nanostructure Science and Technology, 2021, , 425-440.	0.1	0
184	HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes. Chemical Science, 2021, 12, 13101-13119.	7.4	11
185	Exploring the feasibility of liquid fuel synthesis from CO ₂ under cold plasma discharge: role of plasma discharge in binary metal oxide surface modification. RSC Advances, 2021, 11, 27757-27766.	3.6	7
186	Direct synthesis of polycarbonate diols from atmospheric flow CO ₂ and diols without using dehydrating agents. Green Chemistry, 2021, 23, 5786-5796.	9.0	21
187	The role of site coordination on the CO ₂ electroreduction pathway on stepped and defective copper surfaces. Catalysis Science and Technology, 2021, 11, 2770-2781.	4.1	10
188	Tuning product selectivity in CO ₂ hydrogenation over metal-based catalysts. Chemical Science, 2021, 12, 14660-14673.	7.4	38
189	Heterogeneous catalysts for CO ₂ hydrogenation to formic acid/formate: from nanoscale to single atom. Energy and Environmental Science, 2021, 14, 1247-1285.	30.8	152
190	Effective Screening Route for Highly Active and Selective Metalâ^'Nitrogenâ€Doped Carbon Catalysts in CO ₂ Electrochemical Reduction. Small, 2021, 17, e2103705.	10.0	12
191	The promoting role of Ga in ZnZrOx solid solution catalyst for CO2 hydrogenation to methanol. Journal of Catalysis, 2021, 404, 383-392.	6.2	45
192	Selective Catalytic Frustrated Lewis Pair Hydrogenation of CO ₂ in the Presence of Silylhalides. Angewandte Chemie - International Edition, 2021, 60, 25771-25775.	13.8	26
193	Insights into the alloy-support synergistic effects for the CO2 hydrogenation towards methanol on oxide-supported Ni5Ga3 catalysts: An experimental and DFT study. Applied Catalysis B: Environmental, 2022, 302, 120842.	20.2	29
194	Cobalt Catalysts Enable Selective Hydrogenation of CO ₂ toward Diverse Products: Recent Progress and Perspective. Journal of Physical Chemistry Letters, 2021, 12, 10486-10496.	4.6	40
195	Selective Hydrogenation of CO ₂ to Ethanol over Sodium-Modified Rhodium Nanoparticles Embedded in Zeolite Silicalite-1. Journal of Physical Chemistry C, 2021, 125, 24429-24439.	3.1	31
196	Selective catalytic Frustrated Lewis Pair Hydrogenation of CO2 in the Presence of Silylhalides. Angewandte Chemie, 2021, 133, 25975.	2.0	7
197	Advances in Catalytic Applications of Zeolite‧upported Metal Catalysts. Advanced Materials, 2021, 33, e2104442.	21.0	113
198	Preparation of supported In2O3/Pd nanocatalysts using natural pollen as bio-templates for CO2 hydrogenation to methanol: Effect of acid-etching on template. Molecular Catalysis, 2021, 516, 111945.	2.0	3
199	Direct synthesis of cyclic carbonates from olefins and CO2: Single- or multi-component catalytic systems via epoxide or halohydrin intermediate. Journal of CO2 Utilization, 2021, 53, 101742.	6.8	11

#	Article	IF	CITATIONS
200	Nanostructure and functional group engineering of black phosphorus via plasma treatment for CO2 photoreduction. Journal of CO2 Utilization, 2021, 54, 101745.	6.8	13
201	Roles of Coordination Geometry in Single-Atom Catalysts. ACS Symposium Series, 2020, , 37-76.	0.5	4
202	Glycol assisted efficient conversion of CO2 captured from air to methanol with a heterogeneous Cu/ZnO/Al2O3 catalyst. Journal of CO2 Utilization, 2021, 54, 101762.	6.8	15
203	Hydrogenation of CO2 Promoted by Silicon-Activated H2S: Origin and Implications. Molecules, 2021, 26, 50.	3.8	2
204	MOF-Derived Nanoparticles and Single Atoms for Electrochemical Reactions. ACS Symposium Series, 2020, , 127-149.	0.5	0
205	Water Purification Using Subnanostructured Photocatalysts. ACS Symposium Series, 2020, , 189-225.	0.5	0
207	Targeted Catalyst Design to Combat Deactivation in the Liquid Phase. ACS Symposium Series, 2020, , 267-293.	0.5	0
210	From Subnanometric Clusters toward Single-Atom Catalysts. ACS Symposium Series, 2020, , 17-36.	0.5	2
211	Reductive Upgrading of Bio-Based Furanic Compounds over Subnanometer Catalysts. ACS Symposium Series, 2020, , 77-92.	0.5	0
213	Recent Advances on Electrolysis for Simultaneous Generation of Valuable Chemicals at both Anode and Cathode. Advanced Energy Materials, 2021, 11, 2102292.	19.5	129
214	Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO ₂ Valorization. Advanced Energy Materials, 2021, 11, 2102767.	19.5	35
215	Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chemical Reviews, 2022, 122, 385-441.	47.7	223
216	Conditions for the Joint Conversion of CO ₂ and Syngas in the Direct Synthesis of Light Olefins Using In ₂ O ₃ –ZrO ₂ /SAPO-34 Catalyst. Industrial & Engineering Chemistry Research, 2022, 61, 10365-10376.	3.7	14
217	Fabrication of Zr–Ce Oxide Solid Solution Surrounded Cu-Based Catalyst Assisted by a Microliquid Film Reactor for Efficient CO ₂ Hydrogenation to Produce Methanol. Industrial & Engineering Chemistry Research, 2021, 60, 16188-16200.	3.7	15
218	Enhanced methanol production by two-stage reaction of CO2 hydrogenation at atmospheric pressure. Catalysis Communications, 2022, 162, 106373.	3.3	0
219	Tracking the phase changes in micelle-based NiGa nanocatalysts for methanol synthesis under activation and working conditions. Journal of Catalysis, 2022, 405, 183-198.	6.2	7
220	Influence of the zeolite surface properties and potassium modification on the Zn-catalyzed CO2-assisted oxidative dehydrogenation of ethane. Applied Catalysis B: Environmental, 2022, 304, 120947.	20.2	21
221	Novel and Sustainable Solventâ€Free Synthesis of 2â€Oxazolidinones Using Periodic Mesoporous Organosilica‧upported Triazolium Ionic Liquids as Highly Active Catalysts. ChemistrySelect, 2021, 6, 12466-12471.	1.5	1

		on Report	
#	Article	IF	CITATIONS
222	PdCu supported on dendritic mesoporous CexZr1-xO2 as superior catalysts to boost CO2 hydrogenation to methanol. Journal of Colloid and Interface Science, 2022, 611, 739-751.	9.4	18
223	Synthesis of Mesoporous Pd _{<i>x</i>} Cu _{1–<i>x</i>} /Al ₂ O ₃ - <i>y</i> Bimetallic Catalysts Via Mechanochemistry for Selective <i>N</i> -Formylation of Amines with CO ₂ and H ₂ . ACS Sustainable Chemistry and Engineering, 2021, 9, 16153-16162.	6.7	9
224	Dihydrolevoglucosenone as a bio-based catalytic solvent for efficient reductive-transformation of CO2 with amines into formamides and benzothiazoles. Chemical Engineering Journal, 2022, 431, 133397.	12.7	8
225	Recent progress and understanding on In2O3-based composite catalysts for boosting CO2 hydrogenation. Journal of CO2 Utilization, 2022, 55, 101844.	6.8	38
226	Photoelectrochemical technology for solar fuel generation, from single photoelectrodes to unassisted cells: a review. Environmental Chemistry Letters, 2022, 20, 1169-1192.	16.2	13
227	Pt-modulated Cu/SiO2 catalysts for efficient hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol. Chinese Journal of Chemical Engineering, 2022, 41, 366-373.	3.5	9
228	Plasma-Catalytic Methanol Synthesis from CO ₂ Hydrogenation over a Supported Cu Cluster Catalyst: Insights into the Reaction Mechanism. ACS Catalysis, 2022, 12, 1326-1337.	11.2	50
229	Design of CO2 hydrogenation catalysts based on phosphane/borane frustrated Lewis pairs and xanthene-derived scaffolds. Catalysis Communications, 2022, 162, 106385.	3.3	2
230	A review on CO2 hydrogenation to ethanol: Reaction mechanism and experimental studies. Journal of Environmental Chemical Engineering, 2022, 10, 106962.	6.7	27
231	CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts: Effects of ZnO morphology and oxygen vacancy. Fuel, 2022, 314, 123035.	6.4	57
232	Current advances in bimetallic catalysts for carbon dioxide hydrogenation to methanol. Fuel, 2022, 313, 122963.	6.4	6
233	A Feasibility Study of the Conversion of Petrochemical Off-Gas Streams to Methanol Over CuO/ZnO/Al2O3 Catalyst. Topics in Catalysis, 0, , 1.	2.8	2
234	"Spring-loaded―mechanism for chemical fixation of carbon dioxide with epoxides. Chem Catalysis, 2022, 2, 519-530.	6.1	25
236	Boosting CO ₂ electroreduction over Co nanoparticles supported on N,B-co-doped graphitic carbon. Green Chemistry, 2022, 24, 1488-1493.	9.0	18
237	Surface Molecular Functionalization of Unusual Phase Metal Nanomaterials for Highly Efficient Electrochemical Carbon Dioxide Reduction under Industryâ€Relevant Current Density. Small, 2022, 18, e2106766.	10.0	30
238	Lightâ€Assisted CO ₂ Hydrogenation over Pd ₃ Cu@UiOâ€66 Promoted by Active Sites in Close Proximity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	89
239	Noble-metal based single-atom catalysts for the water-gas shift reaction. Chemical Communications, 2021, 58, 208-222.	4.1	13
240	Probing the morphological effects of ReO _{<i>x</i>} /CeO ₂ catalysts on the CO ₂ hydrogenation reaction. Catalysis Science and Technology, 2022, 12, 1159-1172.	4.1	13

#	Article	IF	CITATIONS
241	Iron anodeâ€based aqueous electrochemical energy storage devices: Recent advances and future perspectives. , 2022, 1, 116-139.		73
242	Efficient Role of Nanosheet-Like Pr ₂ O ₃ Induced Surface-Interface Synergistic Structures over Cu-Based Catalysts for Enhanced Methanol Production from CO ₂ Hydrogenation. ACS Applied Materials & Interfaces, 2022, 14, 2768-2781.	8.0	9
243	Single-atom catalysts for thermal- and electro-catalytic hydrogenation reactions. Journal of Materials Chemistry A, 2022, 10, 5743-5757.	10.3	22
244	Dependence of copper particle size and interface on methanol and CO formation in CO ₂ hydrogenation over Cu@ZnO catalysts. Catalysis Science and Technology, 2022, 12, 551-564.	4.1	33
245	Lightâ€Assisted CO 2 Hydrogenation over Pd 3 Cu@UiOâ€66 Promoted by Active Sites in Close Proximity. Angewandte Chemie, 0, , .	2.0	11
246	Advances in studies of the structural effects of supported Ni catalysts for CO ₂ hydrogenation: from nanoparticle to single atom catalyst. Journal of Materials Chemistry A, 2022, 10, 5792-5812.	10.3	42
247	Kinetically relevant variation triggered by hydrogen pressure: A mechanistic case study of CO2 hydrogenation to methanol over Cu/ZnO. Journal of Catalysis, 2022, 406, 145-156.	6.2	11
248	Deciphering Mn modulated structure-activity interplay and rational statistical analysis for CO2 rich syngas hydrogenation to clean methanol. Journal of Cleaner Production, 2022, 340, 130794.	9.3	3
249	Recent advances in application of iron-based catalysts for CO hydrogenation to value-added hydrocarbons. Chinese Journal of Catalysis, 2022, 43, 731-754.	14.0	35
250	Negative CO2 emissions from flexible biofuel synthesis: Concepts, potentials, technologies. Renewable and Sustainable Energy Reviews, 2022, 158, 112120.	16.4	15
251	CO2 hydrogenation to methanol on tungsten-doped Cu/CeO2 catalysts. Applied Catalysis B: Environmental, 2022, 306, 121098.	20.2	50
252	Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO ₂ hydrogenation. Science Advances, 2022, 8, eabm3629.	10.3	92
253	Recent Progress in Direct DME Synthesis and Potential of Bifunctional Catalysts. Chemie-Ingenieur-Technik, 2022, 94, 240-255.	0.8	17
254	Highly dispersed Cd cluster supported on TiO2 as an efficient catalyst for CO2 hydrogenation to methanol. Chinese Journal of Catalysis, 2022, 43, 761-770.	14.0	24
255	Nanostructured Photothermal Materials for Environmental and Catalytic Applications. Molecules, 2021, 26, 7552.	3.8	12
256	Rational Design of Zeolite Y Supported Oxalate and Borohydride Ligands Functionalized Cu Catalysts for Co2 Conversion to Specialty Chemicals. SSRN Electronic Journal, 0, , .	0.4	0
257	Design of 3d transition metal anchored B ₅ N ₃ catalysts for electrochemical CO ₂ reduction to methane. Journal of Materials Chemistry A, 2022, 10, 9737-9745.	10.3	31
258	A review on the synthesis and applications of sustainable copper-based nanomaterials. Green Chemistry, 2022, 24, 3502-3573.	9.0	23

#	Article	IF	Citations
259	Ammonium-, phosphonium- and sulfonium-based 2-cyanopyrrolidine ionic liquids for carbon dioxide fixation. Physical Chemistry Chemical Physics, 2022, 24, 9659-9672.	2.8	11
260	CO2 hydrogenation to methanol by organometallic catalysts. Chem Catalysis, 2022, 2, 242-252.	6.1	14
261	Synthesis and Characterization of Mesoporous Carbon Supported Ni-Ga Catalyst for Low-Pressure CO2 Hydrogenation. Bulletin of Chemical Reaction Engineering and Catalysis, 2022, 17, 278-285.	1.1	0
262	Evaluation of Au/ZrO2 Catalysts Prepared via Postsynthesis Methods in CO2 Hydrogenation to Methanol. Catalysts, 2022, 12, 218.	3.5	13
263	Metal-Coordinating Single-Boron Sites Confined in Antiperovskite Borides for N ₂ -to-NH ₃ Catalytic Conversion. ACS Catalysis, 2022, 12, 2967-2978.	11.2	11
264	Multi-field driven hybrid catalysts for CO2 reduction: Progress, mechanism and perspective. Materials Today, 2022, 54, 225-246.	14.2	14
265	Hollow structured Cu@ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol. Journal of Energy Chemistry, 2022, 71, 277-287.	12.9	44
266	Bestimmung von Performanceâ€Deskriptoren für die CO ₂ â€Hydrierung an alkalimetallpromotierten Katalysatoren auf Eisenbasis. Angewandte Chemie, 0, , .	2.0	0
267	The application of nonthermal plasma in methanol synthesis via CO ₂ hydrogenation. Energy Science and Engineering, 2022, 10, 1572-1583.	4.0	7
268	Emerging Trends in Sustainable CO ₂ â€Management Materials. Advanced Materials, 2022, 34, e2201547.	21.0	52
269	Size-Dependent Pt Nanoparticle/Carbon-Catalyzed Hydrogenation of 6-Chloroquinoline. ACS Applied Nano Materials, 2022, 5, 4252-4259.	5.0	4
270	Effect of flue gas impurities in carbon dioxide from power plants in the synthesis of isopropyl N-phenylcarbamate from CO2, aniline, and 2-propanol using CeO2 and 2-cyanopyridine. Catalysis Today, 2023, 410, 19-35.	4.4	7
271	Identifying Performance Descriptors in CO ₂ Hydrogenation over Ironâ€Based Catalysts Promoted with Alkali Metals. Angewandte Chemie - International Edition, 2022, 61, .	13.8	32
272	Support Effect and Surface Reconstruction in In ₂ O ₃ / <i>m-</i> ZrO ₂ Catalyzed CO ₂ Hydrogenation. ACS Catalysis, 2022, 12, 3868-3880.	11.2	20
273	New black indium oxide—tandem photothermal CO2-H2 methanol selective catalyst. Nature Communications, 2022, 13, 1512.	12.8	47
274	Exovinylene Cyclic Carbonates: Multifaceted CO ₂ â€Based Building Blocks for Modern Chemistry and Polymer Science. Angewandte Chemie - International Edition, 2022, 61, .	13.8	39
275	In Situ Spectroscopic Characterization and Theoretical Calculations Identify Partially Reduced ZnO _{1â''<i>x</i>} /Cu Interfaces for Methanol Synthesis from CO ₂ . Angewandte Chemie, 2022, 134, .	2.0	6
276	Heterolytic Dissociation of H ₂ in Heterogeneous Catalysis. ACS Catalysis, 2022, 12, 4707-4723.	11.2	80

ARTICLE IF CITATIONS Metal-organic framework (MOF-808) functionalized with ethyleneamines: Selective adsorbent to 6.8 36 277 capture ČO2 under low pressure. Journal of CO2 Utilization, 2022, 58, 101932. Bifunctional catalysts composed of low siliconâ€content SAPOâ€34 nanosheets and In ₂ O ₃/ZrO ₂ with improved performance for CO ₂ hydrogenation., 0, 278 In Situ Spectroscopic Characterization and Theoretical Calculations Identify Partially Reduced 279 ZnO_{1â[^]<i>x</i>}/Cu Interfaces for Methanol Synthesis from CO₂. Angewandte 13.8 34 Chemie - International Edition, 2022, 61, . Promoting transfer of endogenous electrons well increases the carbon and energy efficiency of lignocellulosic biomass conversion to fuels and chemicals. Energy Conversion and Management, 2022, 280 258, 115552. Dinitrogen Cleavage and Functionalization with Carbon Dioxide in a Dititanium Dihydride Framework. 281 13.7 19 Journal of the American Chemical Society, 2022, 144, 6972-6980. Exovinylene Cyclic Carbonates: Multifaceted CO₂â€Based Building Blocks for Modern Chemistry and Polymer Science. Angewandte Chemie, 2022, 134, . Rational design of zeolite Y supported oxalate and borohydride ligands functionalized Cu catalysts 283 20.2 7 for CO2 conversion to specialty chemicals. Applied Catalysis B: Environmental, 2022, 312, 121381. Novel layered triple hydroxide sphere CO2 adsorbent supported copper nanocluster catalyst for 284 6.2 efficient methanol synthesis via CO2 hydrogenation. Journal of Catalysis, 2022, 409, 24-32. Unravelling synergetic interaction over tandem Cu-ZnO-ZrO2/hierarchical ZSM5 catalyst for CO2 285 6.4 25 hydrogenation to methanol and DME. Fuel, 2022, 318, 123641. Efficient production of renewable hydrocarbon fuels using waste CO2 and green H2 by integrating 8.8 Fe-based Fischer-Tropsch synthesis and olefin oligomerization. Energy, 2022, 248, 123616. Conversion of carbon dioxide to methanol: A comprehensive review. Chemosphere, 2022, 298, 134299. 287 8.2 45 Highly efficient CO2 hydrogenation to methanol via in-situ condensation and sorption in a novel 288 12.7 multi-stage circulating fast fluidized bed reactor. Chemical Engineering Journal, 2022, 439, 135628. Kinetic Model for High-Pressure Methanol Oxidation in Gas Phase and Supercritical Water. Energy 289 5.1 8 & Fuels, 2022, 36, 575-588. Z-Scheme Cu₂O/Bi/BiVO₄ Nanocomposite Photocatalysts: Synthesis, Characterization, and Application for CO₂ Photoreduction. Industrial & amp; Engineering 3.7 24 Chemistry Research, 2021, 60, 18384-18396. Structureâ€"Activity Relationship of Ni-Based Catalysts toward CO₂ Methanation: Recent 291 5.144 Advances and Future Perspectives. Energy & amp; Fuels, 2022, 36, 156-169. CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A 292 23 Short Review. Catalysts, 2022, 12, 452. Engineered Chemical Utilization of CO₂ to Methanol via Direct and Indirect 293 Hydrogenation Pathways: A Review. Industrial & amp; Engineering Chemistry Research, 2022, 61, 3.7 12 10319-10335. Plastering Sponge with Nanocarbon-Containing Slurry to Construct Mechanically Robust 294 Macroporous Monolithic Catalysts for Direct Dehydrogenation of Ethylbenzene. ACS Applied Materials & amp; Interfaces, 2022, , .

#	ARTICLE Evaluating the Stability of Single Atom Catalysta Using the Dansity Evantional Theory Pasad Clabel	IF	CITATIONS
295	Optimization Method: H ₂ Formation on VO <i>_x</i> /i³-Al ₂ O ₃ (100). Journal of Physical Chemistry C, 2022, 126, 6973-6981.	3.1	7
296	Transition metal-based catalysts for CO2 methanation and hydrogenation. , 2022, , 59-93.		Ο
297	High Selective Methanol Synthesis from Co2 Hydrogenation Over Mo-Co-C-N Catalyst. SSRN Electronic Journal, 0, , .	0.4	0
298	Effects of B-Site Al Doping on Microstructure Characteristics and Hydrogen Production Performance of Novel Lanixal1-Xo3-1" Perovskite in Methanol Steam Reforming. SSRN Electronic Journal, 0, , .	0.4	0
299	Role of Zro2 and Ceo2 Support on the In2o3 Catalyst Activity for Co2 Hydrogenation. SSRN Electronic Journal, 0, , .	0.4	0
300	Steering CO2 hydrogenation coupled with benzene alkylation toward ethylbenzene and propylbenzene using a dual-bed catalyst system. Chem Catalysis, 2022, 2, 1223-1240.	6.1	12
301	Effects of zinc on χ-Fe5C2 for carbon dioxide hydrogenation to olefins: Insights from experimental and density function theory calculations. Chinese Journal of Chemical Engineering, 2023, 54, 206-214.	3.5	4
302	Adsorption, Desorption, and Decomposition of Formic Acid on Cu(977): The Importance of Facet of the Step. Journal of Physical Chemistry C, 2022, 126, 8354-8363.	3.1	4
303	Exploring the Effects of the Interaction of Carbon and MoS2 Catalyst on CO2 Hydrogenation to Methanol. International Journal of Molecular Sciences, 2022, 23, 5220.	4.1	3
304	Water coordinated on Cu(I)-based catalysts is the oxygen source in CO2 reduction to CO. Nature Communications, 2022, 13, 2577.	12.8	5
305	Dynamic Metal–Iodide Bonds in a Tetracoordinated Cadmium-Based Metal–Organic Framework Boosting Efficient CO ₂ Cycloaddition under Solvent- and Cocatalyst-Free Conditions. Inorganic Chemistry, 2022, 61, 7484-7496.	4.0	11
306	Insight into the Role of Cu–ZrO ₂ Interaction in Methanol Synthesis from CO ₂ Hydrogenation. Industrial & Engineering Chemistry Research, 2022, 61, 6872-6883.	3.7	15
307	Converting CO ₂ Hydrogenation Products from Paraffins to Olefins: Modification of Zeolite Surface Properties by a UIO- <i>n</i> Membrane. ACS Catalysis, 2022, 12, 5894-5902.	11.2	10
308	Insight into the activation of CO2 and H2 on K2O-adsorbed Fe5C2(110) for olefins production: A density functional theory study. Molecular Catalysis, 2022, 524, 112323.	2.0	4
309	Catalytic roles of In2O3 in ZrO2-based binary oxides for CO2 hydrogenation to methanol. Molecular Catalysis, 2022, 525, 112354.	2.0	11
310	Feasibility assessment of small-scale methanol production via power-to-X. Journal of Cleaner Production, 2022, 359, 132071.	9.3	8
311	Porous materials for capture and catalytic conversion of CO2 at low concentration. Coordination Chemistry Reviews, 2022, 465, 214576.	18.8	74
312	Valorization of steel-work off-gases: Influence of impurities on the performance of Cu-based methanol synthesis catalyst. Chemical Engineering Journal, 2022, 444, 136571.	12.7	4

#	Article	IF	CITATIONS
313	Single Solid Precursor-Derived Three-Dimensional Nanowire Networks of CuZn-Silicate for CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2022, 12, 5750-5765.	11.2	24
314	Electronic Metal-Support Interactions Between CuxO and ZnO for CuxO/ZnO Catalysts With Enhanced CO Oxidation Activity. Frontiers in Chemistry, 2022, 10, .	3.6	3
315	A review on the valorization of CO2. Focusing on the thermodynamics and catalyst design studies of the direct synthesis of dimethyl ether. Fuel Processing Technology, 2022, 233, 107310.	7.2	36
316	<i>Ab initio</i> study of the adsorption properties of CO2 reduction intermediates: The effect of Ni5Ca3 alloy and the Ni5Ca3/ZrO2 interface. Journal of Chemical Physics, 2022, 156, .	3.0	1
317	Reverse water–gas shift reaction catalyzed by diatomic rhodium anions. Physical Chemistry Chemical Physics, 2022, 24, 14616-14622.	2.8	3
318	Hydrogenated Molybdenum Oxide Overlayers Formed on Mo Nitride Nanosheets in Ambient-Pressure CO ₂ /H ₂ Gases. ACS Applied Materials & Interfaces, 2022, 14, 26194-26203.	8.0	4
319	Aerosol-Assisted Synthesis of Metal–Organic Framework-Derived Hybrid Nanomaterials for Reverse Water–Gas Shift Reaction. ACS Applied Nano Materials, 2022, 5, 8883-8893.	5.0	6
320	A generalized machine learning framework to predict the space-time yield of methanol from thermocatalytic CO2 hydrogenation. Applied Catalysis B: Environmental, 2022, 315, 121530.	20.2	53
321	Eco-Techno-Economic Analysis of Methanol Production from Biogas and Power-to-X. Industrial & Engineering Chemistry Research, 2022, 61, 7335-7348.	3.7	12
322	Electroplating sludge-derived metal and sulfur co-doping catalyst and its application in methanol production by CO2 catalytic hydrogenation. Science of the Total Environment, 2022, 838, 156032.	8.0	7
323	Towards High Co2 Conversions Using Cu-Zno Catalysts Supported on Aluminium Fumarate Metal-Organic Framework for Methanol Synthesis. SSRN Electronic Journal, 0, , .	0.4	4
324	Catalytic Technologies for the Conversion and Reuse of CO2. , 2022, , 1803-1852.		1
325	Oxygen Vacancies in Cu/Tio2 Boost Strong Metal–Support Interaction and Improve the Catalyst's Activity, Selectivity, and Stability in Co2 Hydrogenation to Methanol. SSRN Electronic Journal, 0, , .	0.4	0
326	Catalytic Activity for CO ₂ Hydrogenation is Linearly Dependent on Generated Oxygen Vacancies over CeO ₂ ‣upported Pd Catalysts. ChemCatChem, 2022, 14, .	3.7	13
327	Understanding the structure of Cu-doped MgAl2O4 for CO2 hydrogenation catalyst precursor using experimental and computational approaches. International Journal of Hydrogen Energy, 2022, 47, 21369-21374.	7.1	2
328	Tuning Reaction Pathways of Electrochemical Conversion of CO ₂ by Growing Pd Shells on Ag Nanocubes. Nano Letters, 2022, 22, 4576-4582.	9.1	17
329	Unraveling the Role of H2O on Cu-Based Catalyst in CO2 Hydrogenation to Methanol. Catalysis Letters, 2023, 153, 1046-1056.	2.6	1
330	DFT Study of CO2 Reduction to CH3OH and Oxygen Reduction Reaction on Surface of Carbon and Silicon Catalysts. Silicon, 0, , .	3.3	1

#	Article	IF	CITATIONS
331	Boosting CO2 hydrogenation to methanol via Cu-Zn synergy over highly dispersed Cu,Zn-codoped ZrO2 catalysts. Catalysis Today, 2023, 410, 205-214.	4.4	4
332	Cucurbit[7]uril as Nanoreactor for the Fixation of CO ₂ with Oxirane: A Density Functional Theory Investigation. ChemistrySelect, 2022, 7, .	1.5	2
333	Bimetallic Cu/Fe MOF-Based Nanosheet Film via Binder-Free Drop-Casting Route: A Highly Efficient Urea-Electrolysis Catalyst. Nanomaterials, 2022, 12, 1916.	4.1	33
334	Activation reconstructing CuZnO/SiO2 catalyst for CO2 hydrogenation. Journal of Catalysis, 2022, 412, 10-20.	6.2	21
335	Direct CO2 hydrogenation to light olefins over ZnZrOx mixed with hierarchically hollow SAPO-34 with rice husk as green silicon source and template. Applied Catalysis B: Environmental, 2022, 315, 121572.	20.2	29
336	Ultrasmall bimetallic Cu/ZnOx nanoparticles encapsulated in UiO-66 by deposition–precipitation method for CO2 hydrogenation to methanol. Fuel, 2022, 324, 124694.	6.4	16
337	High-efficiency photoreduction of CO2 to solar fuel on alkali intercalated Ultra-thin g-C3N4 nanosheets and enhancement mechanism investigation. Applied Surface Science, 2022, 598, 153848.	6.1	15
338	Methanol synthesis from CO ₂ and H ₂ using supported Pd alloy catalysts. Faraday Discussions, 0, 242, 193-211.	3.2	6
339	Reaction-driven selective CO ₂ hydrogenation to formic acid on Pd(111). Physical Chemistry Chemical Physics, 2022, 24, 16997-17003.	2.8	5
340	Insights into the Selectivity Determinant and Rate-Determining Step of CO ₂ Hydrogenation to Methanol. Journal of Physical Chemistry C, 2022, 126, 10399-10407.	3.1	21
341	Advances and Perspectives of Photopromoted CO ₂ Hydrogenation for Methane Production: Catalyst Development and Mechanism Investigations. Energy & Fuels, 2022, 36, 6711-6735.	5.1	16
342	Oxygen vacancies in Cu/TiO2 boost strong metal-support interaction and CO2 hydrogenation to methanol. Journal of Catalysis, 2022, 413, 284-296.	6.2	54
343	Towards sustainable CO2 electrochemical transformation via coupling design strategy. Materials Today Sustainability, 2022, 19, 100179.	4.1	8
344	<i>N</i> -Methylation of Aniline Derivatives with CO ₂ and Phenylsilane Catalyzed by Lanthanum Hydridotriarylborate Complexes bearing a Nitrogen Tridentate Ligand. ACS Catalysis, 2022, 12, 8220-8228.	11.2	6
345	Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis. Chinese Journal of Catalysis, 2022, 43, 2045-2056.	14.0	39
346	Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts. Chinese Journal of Catalysis, 2022, 43, 2001-2009.	14.0	4
347	High selective methanol synthesis from CO2 hydrogenation over Mo-Co-C-N catalyst. Fuel, 2022, 325, 124854.	6.4	10
348	Catalytic and pseudocapacitive energy storage performance of metal (Co, Ni, Cu and Mn) ferrite nanostructures and nanocomposites. Progress in Materials Science, 2022, 130, 100995.	32.8	25

#	Article	IF	CITATIONS
349	Elucidating the Promoting Role of Ca on Pdzn/Ceo2catalyst for Co2 Valorization to Methanol. SSRN Electronic Journal, 0, , .	0.4	0
350	Recent advances in CO ₂ capture and reduction. Nanoscale, 2022, 14, 11869-11891.	5.6	30
351	Effect of Reaction Media on Photoreduction of Co2 into Methanol Using Au- and Cu-Decorated Zeolitic Imidazolate Framework-8. SSRN Electronic Journal, 0, , .	0.4	0
352	Multiple CO ₂ reduction mediated by heteronuclear metal carbide cluster anions RhTaC ₂ ^{â^'} . Dalton Transactions, 0, , .	3.3	3
353	Computational Study of Zn Single-Atom Catalysts on In ₂ O ₃ Nanomaterials for Direct Synthesis of Acetic Acid from CH ₄ and CO ₂ . ACS Applied Nano Materials, 0, , .	5.0	5
354	Novel and sustainable carboxylation of terminal alkynes and CO2 to alkynyl carboxylic acids using triazolium ionic liquid-modified PMO-supported transition metal acetylacetonate as effective cooperative catalysts. Environmental Science and Pollution Research, 2022, 29, 83247-83261.	5.3	2
355	A mini review on recent advances in thermocatalytic hydrogenation of carbon dioxide to value-added chemicals and fuels. , 2022, 1, 230-248.		4
356	Recent advances in the electrochemical CO reduction reaction towards highly selective formation of Cx products (XÂ= 1–3). Chem Catalysis, 2022, 2, 1961-1988.	6.1	7
357	Homogeneous Firstâ€row Transitionâ€metalâ€catalyzed Carbon Dioxide Hydrogenation to Formic Acid/Formate, and Methanol. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	10
358	Synthesis of Bifunctional Phosphonium Salts Bearing Perfluorinated Side Chains and Their Application in the Synthesis of Cyclic Carbonates from Epoxides and CO ₂ . Asian Journal of Organic Chemistry, 2022, 11, .	2.7	3
359	Methanol-tolerant yeast for biofuel production. Nature Metabolism, 2022, 4, 800-801.	11.9	1
360	Effect of support and reduction temperature in the hydrogenation of CO2 over the Cu–Pd bimetallic catalyst with high Cu/Pd ratio. International Journal of Hydrogen Energy, 2022, 47, 27973-27985.	7.1	6
361	Carbon Dioxide Chemisorption by Ammonium and Phosphonium Ionic Liquids: Quantum Chemistry Calculations. Journal of Physical Chemistry B, 2022, 126, 5497-5506.	2.6	10
362	A novel alkylation process of benzene with CO2 and H2 over bifunctional ZnxCeyZrzO/Z5 catalyst. Fuel, 2022, 326, 125023.	6.4	2
363	Electronic modulation of InNi3C0.5/Fe3O4 by support precursor toward efficient CO2 hydrogenation to methanol. Applied Catalysis B: Environmental, 2022, 316, 121699.	20.2	22
364	Direct conversion of CO ₂ into aromatics over multifunctional heterogeneous catalysts. Catalysis Reviews - Science and Engineering, 0, , 1-60.	12.9	9
365	Cooperative Catalysis of Vibrationally Excited CO ₂ and Alloy Catalyst Breaks the Thermodynamic Equilibrium Limitation. Journal of the American Chemical Society, 2022, 144, 14140-14149.	13.7	24
366	Singleâ€Atom Molybdenumâ€N ₃ Sites for Selective Hydrogenation of CO ₂ to CO. Angewandte Chemie - International Edition, 2022, 61, .	13.8	24

#	Article	IF	CITATIONS
367	Engineering the crystal facets of Pt/In2O3 catalysts for high-efficiency methanol synthesis from CO2 hydrogenation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129782.	4.7	10
368	Tuning the hybridization and charge polarization in metal nanoparticles dispersed over Schiff base functionalized SBA-15 enhances CO ₂ capture and conversion to formic acid. Journal of Materials Chemistry A, 2022, 10, 18354-18362.	10.3	3
369	Differentiating the Reactivity of ZrO2-Bound Formates Formed on Cu/ZrO2 during CO2 Hydrogenation. Catalysts, 2022, 12, 793.	3.5	10
370	Boxlike Assemblages of Few-Layer MoS ₂ Nanosheets with Edge Blockage for High-Efficiency Hydrogenation of CO ₂ to Methanol. ACS Catalysis, 2022, 12, 9872-9886.	11.2	18
371	Ga-Promoted CuCo-Based Catalysts for Efficient CO ₂ Hydrogenation to Ethanol: The Key Synergistic Role of Cu-CoGaO _{<i>x</i>} Interfacial Sites. ACS Applied Materials & Interfaces, 2022, 14, 35569-35580.	8.0	13
372	Unraveling the Catalytic Performance of the Nonprecious Metal Single-Atom-Embedded Graphitic <i>s</i> -Triazine-Based C ₃ N ₄ for CO ₂ Hydrogenation. ACS Applied Materials & Interfaces, 2022, 14, 35844-35853.	8.0	11
373	Homogeneous Hydrogenation of CO ₂ and CO to Methanol: The Renaissance of Low‶emperature Catalysis in the Context of the Methanol Economy. Angewandte Chemie, 2022, 134, .	2.0	3
374	Mechanistic Insight into Hydrocarbon Synthesis via CO ₂ Hydrogenation on χ-Fe ₅ C ₂ Catalysts. ACS Applied Materials & Interfaces, 2022, 14, 37637-37651.	8.0	14
375	Z-Scheme Cu ₂ O/Cu/Cu ₃ V ₂ O ₇ (OH) ₂ ·2H ₂ O Heterostructures for Efficient Visible-Light Photocatalytic CO ₂ Reduction. ACS Applied Energy Materials, 2022, 5, 10542-10552.	5.1	11
376	Copperâ€Zinc Oxide Catalysts for Aldehyde Hydrogenation by Direct Reductive Activation of Precursors. Chemie-Ingenieur-Technik, 0, , .	0.8	1
377	Green Carbon Science: Keeping the Pace in Practice. Angewandte Chemie - International Edition, 2022, 61, .	13.8	34
378	Singleâ€Atom Molybdenumâ€N ₃ Sites for Selective Hydrogenation of CO ₂ to CO. Angewandte Chemie, 2022, 134, .	2.0	6
379	CO ₂ Hydrogenation to Methanol over Inverse ZrO ₂ /Cu(111) Catalysts: The Fate of Methoxy under Dry and Wet Conditions. Journal of Physical Chemistry C, 2022, 126, 14479-14486.	3.1	8
380	The regulation of Cu-ZnO interface by Cu-Zn bimetallic metal organic framework-templated strategy for enhanced CO2 hydrogenation to methanol. Applied Catalysis A: General, 2022, 643, 118805.	4.3	16
381	Hydrogenation of CO and CO2: Contributions of IR operando studies. Catalysis Today, 2023, 423, 113863.	4.4	5
382	Catalytic Conversion of CO ₂ over Atomically Precise Gold-Based Cluster Catalysts. ACS Catalysis, 2022, 12, 10638-10653.	11.2	32
383	Recent Advances in Photothermal CO _{<i>x</i>} Conversion. Solar Rrl, 2022, 6, .	5.8	14
384	Green Carbon Science: Keeping the Pace in Practice. Angewandte Chemie, 0, , .	2.0	0

#	Article	IF	CITATIONS
385	Metal–organic framework derived single-atom catalysts for CO2 conversion to methanol. Current Opinion in Green and Sustainable Chemistry, 2022, 37, 100660.	5.9	12
386	Homogeneous Hydrogenation of CO ₂ and CO to Methanol: The Renaissance of Lowâ€Temperature Catalysis in the Context of the Methanol Economy. Angewandte Chemie - International Edition, 2022, 61, .	13.8	36
387	Effect of Missing-Linker Defects on CO ₂ Hydrogenation to Methanol by Cu Nanoparticles in UiO-66. Journal of Physical Chemistry C, 2022, 126, 13157-13167.	3.1	9
388	Process intensification and energy transition: A necessary coupling?. Chemical Engineering and Processing: Process Intensification, 2022, 179, 109097.	3.6	11
389	Highly dispersed Pd nanoparticles supported on dendritic mesoporous CeZrZnOx for efficient CO2 hydrogenation to methanol. Journal of Catalysis, 2022, 413, 751-761.	6.2	11
390	Developments of the heterogeneous and homogeneous CO2 hydrogenation to value-added C2+-based hydrocarbons and oxygenated products. Coordination Chemistry Reviews, 2022, 471, 214737.	18.8	20
391	Kinetic modeling and reactor design of the direct synthesis of dimethyl ether for CO2 valorization. A review. Fuel, 2022, 327, 125148.	6.4	13
392	The effect of different reaction media on photocatalytic activity of Au- and Cu-decorated zeolitic imidazolate Framework-8 toward CO2 photoreduction to methanol. Journal of Solid State Chemistry, 2022, 315, 123514.	2.9	2
393	Boosting CO2 hydrogenation efficiency for methanol synthesis over Pd/In2O3/ZrO2 catalysts by crystalline phase effect. Applied Surface Science, 2022, 603, 154420.	6.1	12
394	Homogeneous catalysts for CO2 hydrogenation to methanol and methanol dehydrogenation to hydrogen generation. Coordination Chemistry Reviews, 2022, 472, 214767.	18.8	19
395	Precursor engineering of hydrotalcite-derived redox sorbents for reversible and stable thermochemical oxygen storage. Nature Communications, 2022, 13, .	12.8	19
396	Towards High CO2 Conversions Using Cu/Zn Catalysts Supported on Aluminum Fumarate Metal-Organic Framework for Methanol Synthesis. Catalysts, 2022, 12, 1104.	3.5	8
397	Thermocatalytic and solar thermochemical carbon dioxide utilization to solar fuels and chemicals: A review. International Journal of Energy Research, 2022, 46, 19929-19960.	4.5	5
398	Recent Advances in Carbon Dioxide Adsorption, Activation and Hydrogenation to Methanol using Transition Metal Carbides. ChemSusChem, 2022, 15, .	6.8	8
399	Methanol Synthesis Over PdIn, In ₂ O ₃ , and CuZn From First-Principles Microkinetics: Similarities and Differences. Journal of Physical Chemistry C, 2022, 126, 15235-15246.	3.1	5
400	Liquid Sunshine: Formic Acid. Journal of Physical Chemistry Letters, 2022, 13, 8586-8600.	4.6	25
401	Progress on methanol reforming technologies for highly efficient hydrogen production and applications. International Journal of Hydrogen Energy, 2022, 47, 35757-35777.	7.1	39
402	Operando DRIFT and In situ Raman Spectroscopic Studies on Aspects of CO ₂ Fischerâ€Tropsch Synthesis Catalyzed by Bulk Iron Oxideâ€Based Catalysts. ChemCatChem, 2022, 14, .	3.7	5

#	Article	IF	CITATIONS
403	A highly efficient Cu/ZnOx/ZrO2 catalyst for selective CO2 hydrogenation to methanol. Journal of Catalysis, 2022, 414, 236-244.	6.2	15
404	Influence of oxygen vacancies of CeO2 on reverse water gas shift reaction. Journal of Catalysis, 2022, 414, 25-32.	6.2	27
405	The Co-In2O3 interaction concerning the effect of amorphous Co metal on CO2 hydrogenation to methanol. Journal of CO2 Utilization, 2022, 65, 102209.	6.8	6
406	Highly effective hydrogenation of CO2 to methanol over Cu/ZnO/Al2O3 catalyst: A process economy & environmental aspects. Fuel, 2023, 332, 126027.	6.4	25
407	Role of ZrO2 and CeO2 support on the In2O3 catalyst activity for CO2 hydrogenation. Fuel, 2023, 331, 125878.	6.4	13
408	Highly active Pt/In2O3-ZrO2 catalyst for CO2 hydrogenation to methanol with enhanced CO tolerance: The effects of ZrO2. Applied Catalysis B: Environmental, 2023, 320, 122018.	20.2	32
409	Switching of Co2 Hydrogenation Selectivity Via Chlorine Poisoning Over Ru/Tio2 Catalyst. SSRN Electronic Journal, 0, , .	0.4	0
410	BCC-Cu nanoparticles: from a transient to a stable allotrope by tuning size and reaction conditions. Physical Chemistry Chemical Physics, 2022, 24, 24429-24438.	2.8	3
411	Boosting Co2 Hydrogenation to Methanol by Adding Trace Amount of AU into Cu/Zno Catalysts. SSRN Electronic Journal, 0, , .	0.4	0
412	The synergetic effect of Pd, In and Zr on the mechanism of Pd/In ₂ O ₃ –ZrO ₂ for CO ₂ hydrogenation to methanol. Reaction Chemistry and Engineering, 0, , .	3.7	0
413	A critical review of technologies, costs, and projects for production of carbon-neutral liquid e-fuels from hydrogen and captured CO ₂ . Energy Advances, 2022, 1, 580-605.	3.3	17
414	Coking and decoking chemistry for resource utilization of polycyclic aromatic hydrocarbons (PAHs) and low-carbon process. Journal of Energy Chemistry, 2023, 76, 105-116.	12.9	9
415	The role of copper crystallization and segregation toward enhanced methanol synthesis via CO2 hydrogenation over CuZrO2 catalysts: A combined experimental and computational study. Chemical Engineering Journal, 2023, 452, 139519.	12.7	10
416	Effect of preparation methods of ZnO/ZrO2 catalysts for methanol synthesis from CO2	1.7	3
	nyurogenation. Reaction Rinetics, Mechanisms and Catalysis, 2022, 155, 2995-5005.		
417	Synthesis of Enamines, Aldehydes, and Nitriles from CO ₂ : Scope of the One-Pot Strategy via Formamides. Journal of Organic Chemistry, 0, , .	3.2	2
417 418	Synthesis of Enamines, Aldehydes, and Nitriles from CO ₂ : Scope of the One-Pot Strategy via Formamides. Journal of Organic Chemistry, 0, , . Electrocatalytic Reduction of Carbon Dioxide to High-Value Multicarbon Products with Metal–Organic Frameworks and Their Derived Materials. , 2022, 4, 2058-2079.	3.2	2 35
417 418 419	Synthesis of Enamines, Aldehydes, and Nitriles from CO ₂ : Scope of the One-Pot Strategy via Formamides. Journal of Organic Chemistry, 0, , . Electrocatalytic Reduction of Carbon Dioxide to High-Value Multicarbon Products with Metalâ€"Organic Frameworks and Their Derived Materials. , 2022, 4, 2058-2079. Comparative CO ₂ Hydrogenation Catalysis with MACHO-type Manganese Complexes. Organometallics, 2022, 41, 3332-3340.	3.2 2.3	2 35 9

#	Article	IF	CITATIONS
421	Metal Sites in Zeolites: Synthesis, Characterization, and Catalysis. Chemical Reviews, 2023, 123, 6039-6106.	47.7	95
422	Fractal-like Hierarchical CuO Nano/Microstructures for Large-Surface-to-Volume-Ratio Dip Catalysts. ACS Applied Nano Materials, 2022, 5, 14591-14601.	5.0	3
423	Recent Advances in Non-Precious Metal–Nitrogen–Carbon Single-Site Catalysts for CO2 Electroreduction Reaction to CO. Electrochemical Energy Reviews, 2022, 5, .	25.5	18
424	Direct Detection of Reactive Gallium-Hydride Species on the Ga ₂ O ₃ Surface <i>via</i> Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2022, 144, 17365-17375.	13.7	9
425	Inverse Oxide/Metal Catalysts for CO ₂ Hydrogenation to Methanol. Energy & Fuels, 2022, 36, 11691-11711.	5.1	8
426	Recent Advances in Upgrading of Low ost Oxidants to Valueâ€Added Products by Electrocatalytic Reduction Reaction. Advanced Functional Materials, 2022, 32, .	14.9	20
427	Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions. Chemical Research in Chinese Universities, 2022, 38, 1309-1323.	2.6	9
428	Effect of atomic layer deposited zinc promoter on the activity of copper-on-zirconia catalysts in the hydrogenation of carbon dioxide to methanol. Applied Catalysis B: Environmental, 2023, 321, 122046.	20.2	16
429	Challenges for Applications of the Electrochemical Promotion of Catalysis. Modern Aspects of Electrochemistry, 2023, , 335-377.	0.2	0
430	CO ₂ Hydrogenation to Methanol on Indium Oxide-Supported Rhenium Catalysts: The Effects of Size. ACS Catalysis, 2022, 12, 12658-12669.	11.2	36
431	Low-Temperature Methanol Synthesis by a Cu-Loaded LaH _{2+<i>x</i>} Electride. ACS Catalysis, 2022, 12, 12572-12581.	11.2	4
432	Investigations on molybdenum phosphide surfaces for CO2 adsorption and activation. Journal of CO2 Utilization, 2022, 65, 102246.	6.8	0
433	Alternative acid catalysts for the stable and selective direct conversion of CO2/CO mixtures into light olefins. Fuel Processing Technology, 2022, 238, 107513.	7.2	6
434	Catalysis Chemistry of Crystalline Complex Metal Oxide Catalysts. , 2022, , 53-81.		0
435	Opening the pathway towards a scalable electrochemical semi-hydrogenation of alkynols <i>via</i> earth-abundant metal chalcogenides. Chemical Science, 2022, 13, 12461-12468.	7.4	8
436	Thermodynamics regulated organic hydride/acid pairs as novel organic hydrogen reductants. Organic Chemistry Frontiers, 2022, 9, 6833-6848.	4.5	3
437	EXAFS studies of inorganic catalytic materials. , 2023, , 108-148.		0
438	Targeted H ₂ O activation to manipulate the selective photocatalytic reduction of CO ₂ to CH ₃ OH over carbon nitride-supported cobalt sulfide. Green Chemistry, 2022, 24, 8791-8799.	9.0	11

#	Article	IF	CITATIONS
439	Effect of Preparation Method on the Performance of Cuâ^'Mnâ^'(La)â^'Zr Catalysts for CO ₂ Hydrogenation to Methanol. ChemCatChem, 2022, 14, .	3.7	9
440	Synthesis of Alkene and Ethanol in CO ₂ Hydrogenation on a Highly Active Sputtering CuNaFe Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 14972-14979.	6.7	8
441	Parametric investigations on plasmaâ€activated conversion of CH ₄ –CH ₃ OH to C2–C4 alcohols by nanosecond pulsed discharge. Plasma Processes and Polymers, 2023, 20, .	3.0	4
442	Single-Atom Catalysts on Covalent Organic Frameworks for CO ₂ Reduction. ACS Materials Au, 2023, 3, 28-36.	6.0	7
443	Bismuth-based materials for CO2 photoreduction. Current Opinion in Green and Sustainable Chemistry, 2023, 39, 100718.	5.9	3
444	A review of catalytic hydrogenation of carbon dioxide: From waste to hydrocarbons. Frontiers in Chemistry, 0, 10, .	3.6	9
445	Dual active sites over Cu-ZnO-ZrO2 catalysts for carbon dioxide hydrogenation to methanol. Journal of Environmental Sciences, 2023, 131, 162-172.	6.1	10
446	Visualizing Structural and Chemical Transformations of an Industrial Cu/ZnO/Al ₂ O ₃ Preâ€catalyst during Activation and CO ₂ Reduction. ChemCatChem, 2022, 14, .	3.7	7
447	DFT Investigation of Single Metal Atom-Doped 2D MA ₂ Z ₄ Materials for NO Electrocatalytic Reduction to NH ₃ . Journal of Physical Chemistry C, 2022, 126, 17598-17607.	3.1	7
448	ZrO2–ZnO–CeO2 integrated with nano-sized SAPO-34 zeolite for CO2 hydrogenation to light olefins. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 2959-2972.	1.7	2
449	Promotional Role of Oxygen Vacancy Defects and Cuâ^'Ce Interfacial Sites on the Activity of Cu/CeO ₂ Catalyst for CO ₂ Hydrogenation to Methanol. ChemCatChem, 2022, 14, .	3.7	5
450	Investigation of In Promotion on Cu/ZrO2 Catalysts and Application in CO2 Hydrogenation to Methanol. Catalysis Letters, 2023, 153, 2728-2744.	2.6	5
451	Mechanochemical Synthesis of Bimetallic NiCo Supported on a CeO ₂ Catalyst with Less Metal Loading for Non-Thermal Plasma Catalytic CO ₂ Hydrogenation. ACS Engineering Au, 2023, 3, 7-16.	5.1	4
452	Lactic acid production by catalytic conversion of glucose: An experimental and techno-economic evaluation. Catalysis Today, 2023, 408, 2-8.	4.4	4
453	Methanol synthesis from CO2: A mechanistic overview. Results in Engineering, 2022, 16, 100711.	5.1	19
454	Advanced electrochemical energy storage and conversion on graphdiyne interface. , 2022, 1, e9120036.		24
456	On the Role of Hydroxyl Groups on Cu/Al ₂ O ₃ in CO ₂ Hydrogenation. ACS Catalysis, 2022, 12, 14162-14172.	11.2	19
458	Hybrid MOF Templateâ€Directed Construction of Hollowâ€Structured In ₂ O ₃ @ZrO ₂ Heterostructure for Enhancing Hydrogenation of CO ₂ to Methanol. Small, 2023, 19, .	10.0	15

#	Article	IF	CITATIONS
459	Removing Cost Barriers to Template Carbon Synthesis for High-Performance Supercapacitors by Establishing a Zero-Emission Chemical Cycle from CO ₂ . ACS Energy Letters, 2022, 7, 4381-4388.	17.4	12
460	Advancing Critical Chemical Processes for a Sustainable Future: Challenges for Industry and the Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT). Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
461	Advancing Critical Chemical Processes for a Sustainable Future: Challenges for Industry and the Max Planck–Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT). Angewandte Chemie, 2022, 134, .	2.0	1
462	Degradable and Nanosegregated Elastomers with Multiblock Sequences of Biobased Aromatic Mesogens and Biofunctional Aliphatic Oligocarbonates. Macromolecules, 2022, 55, 10285-10293.	4.8	4
463	Recent progress in photothermal catalyst design for methanol production. Emergent Materials, 2023, 6, 1097-1115.	5.7	1
464	Hydrogen Adsorption on Pd–In Intermetallic Surfaces. Topics in Catalysis, 2023, 66, 1457-1464.	2.8	1
465	Highly selective hydrogenation of CO2 to propane over GaZrOx/H-SSZ-13 composite. Nature Catalysis, 2022, 5, 1038-1050.	34.4	37
466	Effect of microstructure and reaction medium on photocatalytic performance and stability of BiO catalyst for CO2 reduction. Catalysis Communications, 2022, , 106565.	3.3	0
467	Organocatalytic depolymerization of poly(trimethylene carbonate). Journal of Polymer Science, 2022, 60, 3489-3500.	3.8	3
468	Catalytic hydrogenation of CO2 to light olefins by using K-doped FeCx catalysts derived from the Fe-chitosan complex. International Journal of Hydrogen Energy, 2023, 48, 4276-4286.	7.1	8
469	Progress in reaction mechanisms and catalyst development of ceria-based catalysts for low-temperature CO ₂ methanation. Green Chemistry, 2023, 25, 130-152.	9.0	17
470	Organic molecules involved in Cu-based electrocatalysts for selective CO2 reduction to C2+ products. Materials Today Chemistry, 2023, 27, 101328.	3.5	5
471	Application of microimpinging stream reactor coupled with ultrasound in Cu/CeZrOx solid solution catalyst preparation for CO2 hydrogenation to methanol. Renewable Energy, 2023, 202, 834-843.	8.9	9
472	Design strategies and effect comparisons toward efficient piezocatalytic system. Nano Energy, 2023, 107, 108093.	16.0	30
473	Ethanol formation from CO2 hydrogenation at atmospheric pressure using Cu catalysts: Water as a key component. Applied Catalysis B: Environmental, 2023, 324, 122221.	20.2	8
474	Boosting CO2 hydrogenation to methanol by adding trace amount of Au into Cu/ZnO catalysts. Applied Catalysis B: Environmental, 2023, 324, 122233.	20.2	13
475	Direct conversion of carbon dioxide into liquid fuels and chemicals by coupling green hydrogen at high temperature. Applied Catalysis B: Environmental, 2023, 324, 122299.	20.2	19
476	Machine learning models representing catalytic activity for direct catalytic CO2 hydrogenation to methanol. Materials Today: Proceedings, 2023, 72, 524-532.	1.8	3

		CITATION REPORT		
#	Article		IF	CITATIONS
477	Review of Carbon Capture and Methane Production from Carbon Dioxide. Atmosphere,	2022, 13, 1958.	2.3	9
478	Switching of CO2 hydrogenation selectivity via chlorine poisoning over Ru/TiO2 catalys Research, 2023, 16, 4786-4792.	t. Nano	10.4	4
479	Ga and Zn Atom-Doped CuAl ₂ O ₄ (111) Surface-Catalyzed CC Conversion to Dimethyl Ether: Importance of Acidic Sites. Journal of Physical Chemistry 21628-21637.	₂ C, 2022, 126,	3.1	6
480	Effects of B-site Al doping on microstructure characteristics and hydrogen production p of novel LaNixAl1-xO3-δ perovskite in methanol steam reforming. Energy, 2023, 268, 12	erformance 26540.	8.8	8
481	Recent progress in plasma-catalytic conversion of CO2 to chemicals and fuels. Catalysis 423, 113973.	Today, 2023,	4.4	6
482	Electrification of CO2 conversion into chemicals and fuels: Gaps and opportunities in pr systems engineering. Computers and Chemical Engineering, 2023, 170, 108106.	ocess	3.8	4
483	Introduction to Electrocatalysts. ACS Symposium Series, 0, , 1-37.		0.5	6
484	A Review on Green Hydrogen Valorization by Heterogeneous Catalytic Hydrogenation o into Value-Added Products. Catalysts, 2022, 12, 1555.	f Captured CO2	3.5	3
485	Mononuclear Re sites on In2O3 catalyst for highly efficient CO2 hydrogenation to methof Catalysis, 2023, 417, 462-472.	ianol. Journal	6.2	13
486	Ag-Doped CuV ₂ O ₆ Nanowires for Enhanced Visible-Light Pho CO ₂ Reduction. Industrial & Engineering Chemistry Research, 2023, 6	tocatalytic 52, 455-465.	3.7	4
487	Architecture Design and Catalytic Activity: Nonâ€Noble Bimetallic CoFe/fe _{3Core–Shell Structures for CO₂ Hydrogenation. Advanced Science, 2023}	>O ₄ , 10, .	11.2	6
488	Highly Active Catalytic CO2ÂHydrogenation to LowerÂOlefins via Spinel ZnGaOxÂComl Chemistry - an Asian Journal, 0, , .	pined with SAPOâ€34.	3.3	0
489	Probing the Nature of Zinc in Copperâ€Zincâ€Zirconium Catalysts by Operando Spectro CO ₂ Hydrogenation to Methanol. Angewandte Chemie - International Edit	oscopies for ion, 2023, 62, .	13.8	21
490	Probing the Nature of Zinc in Copperâ€Zincâ€Zirconium Catalysts by Operando Spectro CO ₂ Hydrogenation to Methanol. Angewandte Chemie, 2023, 135, .	oscopies for	2.0	2
491	Redox behavior of In–O–Ti interface for selective hydrogenation of CO2 to CO in do catalyst. ChemCatChem, 0, , .	oped In–TiO2	3.7	1
492	Revealing Origins of Methanol Selectivity Loss in CO ₂ Hydrogenation over CuZn-Containing Catalysts. ACS Catalysis, 2023, 13, 60-71.		11.2	12
493	In situ/operando characterization techniques for electrochemical CO2 reduction. Science Chemistry, 2023, 66, 315-323.	e China	8.2	17
494	Formic acid assisted synthesis of Cu-ZnO-Al2O3 catalyst and its performance in CO2 hy methanol. Journal of Fuel Chemistry and Technology, 2023, 51, 120-128.	drogenation to	2.0	2

#	Article	IF	CITATIONS
495	Benzimidazoliumâ€Đecorated Metalloporphyrin Molecule and Polymer: a Reliable Preparation Method and Application in Catalyzing the Cycloaddition Reaction of CO ₂ and Epoxides. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	2
496	Electrocatalysis Mechanism and Structure–Activity Relationship of Atomically Dispersed Metalâ€Nitrogenâ€Carbon Catalysts for Electrocatalytic Reactions. Small Methods, 2023, 7, .	8.6	7
497	Self-assembly of metal–organosilicate on porous silica substrates for efficient CO ₂ hydrogenation to methanol. Journal of Materials Chemistry A, 2023, 11, 2698-2710.	10.3	2
498	Theoretical Screening of CO ₂ Electroreduction over MOF-808-Supported Self-Adaptive Dual-Metal-Site Pairs. Inorganic Chemistry, 2023, 62, 930-941.	4.0	4
499	A sustainable thermochemical conversion of animal biomass to N-heterocycles. Journal of Leather Science and Engineering, 2023, 5, .	6.0	3
500	CO2 utilization in syngas conversion to dimethyl ether and aromatics: Roles and challenges of zeolites-based catalysts. Journal of Energy Chemistry, 2023, 79, 418-449.	12.9	18
501	The role of surface hydroxyls on ZnZrO solid solution catalyst in CO2 hydrogenation to methanol. Chinese Journal of Catalysis, 2023, 45, 162-173.	14.0	17
502	Direct hydrogenation of carbon dioxide to value-added aromatics. Coordination Chemistry Reviews, 2023, 478, 214982.	18.8	12
503	Conversion of Recovered Ammonia and Carbon Dioxide into Urea in the Presence of Catalytically Active Copper Species in Nanospaces of Porous Silica Hollow Spheres. ACS Applied Materials & Interfaces, 2023, 15, 5109-5117.	8.0	4
504	Spontaneous Reduction by One Electron on Water Microdroplets Facilitates Direct Carboxylation with CO ₂ . Journal of the American Chemical Society, 2023, 145, 2647-2652.	13.7	28
505	An investigation on influence of the distance between two catalysts for CO ₂ to DME tandem reaction. Chemical Engineering and Technology, 0, , .	1.5	0
506	The Promoting Role of Ni on In ₂ O ₃ for CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2023, 13, 1875-1892.	11.2	29
507	A review of in situ/operando studies of heterogeneous catalytic hydrogenation of CO2 to methanol. Catalysis Today, 2023, 420, 114029.	4.4	3
508	Boosting methanol production <i>via</i> plasma catalytic CO ₂ hydrogenation over a MnO _{<i>x</i>/sub>/ZrO₂catalyst. Catalysis Science and Technology, 2023, 13, 2529-2539.}	4.1	4
509	Design and operational guidelines of solar-driven catalytic conversion of CO2 and H2 to fuels. Applied Energy, 2023, 334, 120617.	10.1	2
510	A Functionalized Heterogeneous Catalyst from Atomically Precise Pd ₁ Au ₈ Clusters Facilitates Carbon–Carbon Bond Construction. Advanced Materials, 2023, 35, .	21.0	7
511	Correlations between the catalyst properties and catalytic activity of Au on ZrO2-CeO2 in the hydrogenation of CO2. Applied Surface Science, 2023, 619, 156737.	6.1	1
512	Roadmap to the sustainable synthesis of polymers: From the perspective of CO2 upcycling. Progress in Materials Science, 2023, 135, 101103.	32.8	5

#	Article	IF	CITATIONS
513	Material-based generation, storage, and utilisation of hydrogen. Progress in Materials Science, 2023, 135, 101104.	32.8	31
514	Highly efficient and stable photothermal catalytic CO2 hydrogenation to methanol over Ru/In2O3 under atmospheric pressure. Applied Catalysis B: Environmental, 2023, 327, 122471.	20.2	10
515	Synthesis of highly efficient Nano- Ni-Pt catalyst in a rotating packed bed for cinnamaldehyde hydrogenation. Separation and Purification Technology, 2023, 315, 123631.	7.9	3
516	In-situ growing nickel phthalocyanine supramolecular structure on carbon nanotubes for efficient electrochemical CO2 conversion. Applied Catalysis B: Environmental, 2023, 327, 122446.	20.2	5
517	Hydrogenation of CO2 to dimethyl ether over nanosized WOx-ZrO2/Cu-ZnO-ZrO2 catalysts. Journal of Environmental Chemical Engineering, 2023, 11, 109908.	6.7	1
518	Boosting the activity in the direct conversion of CO2/CO mixtures into gasoline using ZnO-ZrO2 catalyst in tandem with HZSM-5 zeolite. Fuel Processing Technology, 2023, 245, 107745.	7.2	6
519	A short overview of Power-to-Methane: Coupling preparation of feed gas with CO2 methanation. Chemical Engineering Science, 2023, 274, 118692.	3.8	3
520	Fast synthesis of highly crystallized LSX zeolite with boosted carbon dioxide hydrogenation activity. Applied Catalysis B: Environmental, 2023, 329, 122576.	20.2	3
521	Catalytic CO2 conversion to C1 value-added products: Review on latest catalytic and process developments. Fuel, 2023, 345, 128178.	6.4	16
522	Silica-modulated Cu-ZnO-Al2O3 catalyst for efficient hydrogenation of CO2 to methanol. Catalysis Today, 2023, 418, 114051.	4.4	7
523	Performance and ANN-based optimization of an advanced process for wet CO2-to-Methanol using a catalytic fluidized bed reactor integrated with separators. Fuel, 2023, 343, 128045.	6.4	5
524	Elucidating the promoting role of Ca on PdZn/CeO2 catalyst for CO2 valorization to methanol. Fuel, 2023, 343, 127927.	6.4	7
525	Zero-added conversion of chicken manure into dual-reaction-center catalyst for pollutant degradation triggered by peroxymonosulfate. Separation and Purification Technology, 2023, 317, 123763.	7.9	2
526	First principles investigations of structural and electronic properties of Ga-doped ZnZrO solid solutions for catalytic reduction of CO2. Molecular Catalysis, 2023, 537, 112941.	2.0	1
527	Highly Ethylene-Selective Electroreduction CO2 Over Cu Phosphate Nanostructures with Tunable Morphology. Topics in Catalysis, 2023, 66, 1527-1538.	2.8	2
528	Nature of Catalytic Behavior of Cobalt Oxides for CO ₂ Hydrogenation. Jacs Au, 2023, 3, 508-515.	7.9	11
529	CO2 hydrogenation to methanol over hydrothermally synthesized Inx-Zry catalysts. Molecular Catalysis, 2023, 538, 112977.	2.0	0
530	A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency. Energies, 2023, 16, 1482.	3.1	6

#	Article	IF	CITATIONS
531	Performance of Cu/ZnO Nanosheets on Electrospun Al2O3 Nanofibers in CO2 Catalytic Hydrogenation to Methanol and Dimethyl Ether. Nanomaterials, 2023, 13, 635.	4.1	1
532	Novel Technological Paradigm of the Application of Carbon Dioxide as a C1 Synthon in Organic Chemistry: I. Synthesis of Hydroxybenzoic Acids, Methanol, and Formic Acid. Russian Journal of Organic Chemistry, 2022, 58, 1681-1711.	0.8	2
533	Tuning CO ₂ Hydrogenation Selectivity through Reaction-Driven Restructuring on Cu–Ni Bimetal Catalysts. ACS Applied Materials & Interfaces, 2023, 15, 9373-9381.	8.0	14
534	Bimetallic Synergy in Single-Atom Alloy Nanocatalysts for CO ₂ Reduction to Ethylene. ACS Applied Nano Materials, 2023, 6, 2394-2402.	5.0	5
535	Mechanochemical effects underlying the mechanically activated catalytic hydrogenation of carbon monoxide. Scientific Reports, 2023, 13, .	3.3	2
536	Engineering nanoscale H supply chain to accelerate methanol synthesis on ZnZrOx. Nature Communications, 2023, 14, .	12.8	19
537	Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO ₂ to chemicals and fuels. Chemical Society Reviews, 2023, 52, 1773-1946.	38.1	57
538	Design and optimization of the flexible poly-generation process for methanol and formic acid from CO2 hydrogenation under uncertain product prices. International Journal of Hydrogen Energy, 2024, 54, 635-651.	7.1	1
539	Design of Cu/ZnO/Al ₂ O ₃ catalysts with a rich Cu–ZnO interface for enhanced CO ₂ hydrogenation to methanol using zinc-malachite as the precursor. New Journal of Chemistry, 2023, 47, 5885-5893.	2.8	2
540	Design of Flameâ€Made ZnZrO <i>_x</i> Catalysts for Sustainable Methanol Synthesis from CO ₂ . Advanced Energy Materials, 2023, 13, .	19.5	7
541	Designing Atomic Interfaces in Chalcogenides for Boosting Photocatalysis. Solar Rrl, 2023, 7, .	5.8	0
542	Conversion of CO2 to Light Hydrocarbons by Using FeCx Catalysts Derived from Iron Nitrate Co-pyrolyzing with Melamine, Bulk g-C3N4, or Defective g-C3N4. Catalysis Surveys From Asia, 2023, 27, 260-269.	2.6	2
543	Confinement Effects in Well-Defined Metal–Organic Frameworks (MOFs) for Selective CO2 Hydrogenation: A Review. International Journal of Molecular Sciences, 2023, 24, 4228.	4.1	2
544	Zeolite-encaged mononuclear copper centers catalyze CO2 selective hydrogenation to methanol. National Science Review, 2023, 10, .	9.5	11
545	Optimizing the Interfacial Environment of Triphasic ZnO-Cu-ZrO ₂ Confined inside Mesoporous Silica Spheres for Enhancing CO ₂ Hydrogenation to Methanol. ACS ES&T Engineering, 0, , .	7.6	1
546	One-Pot Synthesis of Dihydropyrans via CO ₂ Reduction and Domino Knoevenagel/oxa-Diels–Alder Reactions. Organic Letters, 2023, 25, 1370-1374.	4.6	2
547	The Activity and Stability of Promoted Cu/ZnO/Al2O3 Catalyst for CO2 Hydrogenation to Methanol. Processes, 2023, 11, 719.	2.8	0
548	Recent advances in the regulation of the coordination structures and environment of single-atom catalysts for carbon dioxide reduction reaction. Journal of Materials Chemistry A, 2023, 11, 7949-7986.	10.3	6

#	Article	IF	CITATIONS
549	Oneâ€Pot Synthesis of Aldehydes or Alcohols from CO ₂ via Formamides or Silyl Formates. Advanced Synthesis and Catalysis, 2023, 365, 877-883.	4.3	5
550	CO ₂ Hydrogenation to Methanol over a Pt-Loaded Molybdenum Suboxide Nanosheet with Abundant Surface Oxygen Vacancies. Journal of Physical Chemistry C, 2023, 127, 4942-4952.	3.1	1
551	Graphene-Supported Tin Single-Atom Catalysts for CO ₂ Hydrogenation to HCOOH: A Theoretical Investigation of Performance under Different N Coordination Numbers. ACS Applied Nano Materials, 2023, 6, 4489-4498.	5.0	4
552	Thermo―and Photocatalytic Activation of CO ₂ in Ionic Liquids Nanodomains. Angewandte Chemie, 2023, 135, .	2.0	1
553	Thermo―and Photocatalytic Activation of CO ₂ in Ionic Liquids Nanodomains. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
554	Surface conversion of CuO–ZnO to ZIF-8 to enhance CO ₂ adsorption for CO ₂ hydrogenation to methanol. New Journal of Chemistry, 2023, 47, 6700-6707.	2.8	2
555	Asymmetric Coordination Induces Electron Localization at Ca Sites for Robust CO ₂ Electroreduction to CO. Advanced Materials, 2023, 35, .	21.0	29
556	Electrospun Environmentâ€Friendly Poly (L‣actic Acid)/CO ₂ â€Based Polyurea Nanofiber Film for Piezoelectric Sensor. Advanced Sustainable Systems, 2023, 7, .	5.3	6
557	Electrochemical Reduction of Diarylketones and Aryl Alkenes. ChemCatChem, 2023, 15, .	3.7	1
558	Acetic Acid Production from CH ₄ and CO ₂ via Synergistic Catalysis between Pd Particles and Oxygen Vacancies Generated in ZrO ₂ . Journal of Physical Chemistry C, 2023, 127, 5841-5854.	3.1	3
559	Metal catalyst for CO2 capture and conversion into cyclic carbonate: Progress and challenges. Materials Today, 2023, 65, 133-165.	14.2	12
560	Adsorption of Molecules on Defective CeO ₂ for Advanced Catalysis. ACS Catalysis, 2023, 13, 4629-4645.	11.2	15
561	High-performance photothermal catalytic CO2 reduction to CH4 and CO by ABO3 (A = La, Ce; B = Ni, Co,) Tj ETQ	9000 rgt 4.8	3T /Overlock
562	The Role of Carbonate Formation during CO2 Hydrogenation over MgO-Supported Catalysts: A Review on Methane and Methanol Synthesis. Energies, 2023, 16, 2973.	3.1	3
563	Simultaneous Activation of Carbon Dioxide and Epoxides to Produce Cyclic Carbonates by Crossâ€ l inked Epoxy Resin Organocatalysts. ChemCatChem, 0, , .	3.7	0
564	Role of Catalyst Domain Size in the Hydrogenation of CO ₂ to Aromatics over ZnZrO _{<i>x</i>} /ZSM-5 Catalysts. Journal of Physical Chemistry C, 2023, 127, 6356-6370.	3.1	2
565	Tailoring the Reactor Properties in the Small‣cale Sorptionâ€Enhanced Methanol Synthesis. Chemie-Ingenieur-Technik, 0, , .	0.8	1
566	Alkoxide-Decorated Copper Nanoparticles on Amidine-Modified Polymers as Hydrogenation Catalysts for Enabling H ₂ Heterolysis. ACS Catalysis, 2023, 13, 5159-5169.	11.2	1

#	Article	IF	CITATIONS
567	Metalloporphyrin-Based Metal–Organic Frameworks for Photocatalytic Carbon Dioxide Reduction: The Influence of Metal Centers. Processes, 2023, 11, 1042.	2.8	6
568	Room-Temperature CO ₂ Hydrogenation to Methanol over Air-Stable hcp-PdMo Intermetallic Catalyst. Journal of the American Chemical Society, 2023, 145, 9410-9416.	13.7	6
569	Synergistic Catalysis at the Ni/ZrO _{2–<i>x</i>} Interface toward Low-Temperature CO ₂ Methanation. ACS Applied Materials & Interfaces, 2023, 15, 19021-19031.	8.0	8
570	Facile Synthesis of Heterogeneous Indium Nanoparticles for Formate Production via CO2 Electroreduction. Nanomaterials, 2023, 13, 1304.	4.1	0
571	Semi-hollow LTA zeolite membrane for water permeation in simulated CO2 hydrogenation to methanol. Journal of Membrane Science, 2023, 678, 121666.	8.2	7
572	Filtration of the preferred catalyst for reverse water-gas shift among the Rhn- (n = 3-11) clusters by mass spectrometry under variable temperatures. Dalton Transactions, 0, , .	3.3	1
573	The promotional role of Mn in CO ₂ hydrogenation over Rh-based catalysts from a surface organometallic chemistry approach. Chemical Science, 2023, 14, 5379-5385.	7.4	2
574	Zn-CdZrOx solid solution catalysts for hydrogenation of CO2 to methanol. Fuel, 2023, 346, 128376.	6.4	0
575	Enhanced Surface Charge Localization Over Nitrogen-Doped In ₂ O ₃ for CO ₂ Hydrogenation to Methanol with Improved Stability. ACS Catalysis, 2023, 13, 6154-6168.	11.2	11
576	Carboxylation of Acetylene without Salt Waste: Green Synthesis of C ₄ Chemicals Enabled by a CO ₂ â€Pressure Induced Acidity Switch. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
577	Carboxylation of Acetylene without Salt Waste: Green Synthesis of C4 Chemicals Enabled by a CO2â€Pressure Induced Acidity Switch. Angewandte Chemie, 0, , .	2.0	0
578	Combined hydrogenation of CO2 and CO to methanol using Aerosol-Assisted Metal-Organic Framework-Derived hybrid catalysts. Fuel, 2023, 349, 128647.	6.4	4
580	Influence of Cu/Al Ratio on the Performance of Carbon-Supported Cu/ZnO/Al2O3 Catalysts for CO2 Hydrogenation to Methanol. Catalysts, 2023, 13, 800.	3.5	0
581	Super expanded freestanding 3D graphene foam as a versatile platform for CO2 capture and hydrogenation. Chemical Engineering Journal, 2023, 466, 143326.	12.7	7
582	CO2 hydrogenation for the production of higher alcohols: Trends in catalyst developments, challenges and opportunities. Catalysis Today, 2023, 420, 114179.	4.4	10
583	Boosting CO ₂ Activation and Reduction by Engineering the Electronic Structure of Graphitic Carbon Nitride through Transition Metal-Free Single-Atom Functionalization. Journal of Physical Chemistry C, 2023, 127, 11911-11920.	3.1	4
584	Pd-modified CuO-ZnO-Al2O3 catalysts via mixed-phases-containing precursor for methanol synthesis from CO2 hydrogenation under mild conditions. Carbon Resources Conversion, 2024, 7, 100184.	5.9	4
585	Pitfalls for POCOP-Type Palladium Pincer Complexes in Catalytic Reduction of CO ₂ with Catecholborane. Organometallics, 0, , .	2.3	0

#	Article	IF	CITATIONS
587	Recent advances in carbon dioxide selective hydrogenation and biomass valorization via single-atom catalysts. , 2023, 2, 189-207.		2
588	CO2 capture by various nanoparticles: Recent development and prospective. Journal of Cleaner Production, 2023, 414, 137679.	9.3	6
589	Heterogeneous Catalytic Systems for Carbon Dioxide Hydrogenation to Valueâ€Added Chemicals. ChemPlusChem, 2023, 88, .	2.8	2
590	Hot electron chemistry in catalytic reactions. Trends in Chemistry, 2023, 5, 561-571.	8.5	0
591	Role of the structure and morphology of zirconia in ZnO/ZrO2 catalyst for CO2 hydrogenation to methanol. Molecular Catalysis, 2023, 547, 113280.	2.0	0
592	Methanol Synthesis from CO2 Hydrogenation on CuO–ZnO–ZrO2 Prepared by Solvothermal Method: The Influence of Solvent on Catalyst Properties and Catalytic Behavior. Topics in Catalysis, 2023, 66, 1503-1514.	2.8	4
593	Ion-imprinted magnetic adsorbents for the selective capture of Cu(II) and their cascade application as heterogeneous recyclable catalysts for Ullmann and Glaser coupling reactions. Chemical Engineering Journal, 2023, 471, 143893.	12.7	2
594	Insights into the interfacial structure of Cu/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation: Effects of Cu-supported nano-ZrO2 inverse interface. Chemical Engineering Journal, 2023, 470, 144006.	12.7	3
595	Ag as an Electron Mediator in Porous Cu ₂ 0 Nanostructures for Photocatalytic CO ₂ Reduction to CO. ACS Applied Nano Materials, 2023, 6, 10539-10550.	5.0	4
596	Tuning the content of S vacancies in MoS2 by Cu doping for enhancing catalytic hydrogenation of CO2 to methanol. Molecular Catalysis, 2023, 547, 113288.	2.0	3
597	Screened Fe ₃ and Ru ₃ Single-Cluster Catalysts Anchored on MoS ₂ Supports for Selective Hydrogenation of CO ₂ . ACS Catalysis, 2023, 13, 8413-8422.	11.2	11
598	Unveiling the role of adsorbed hydrogen in tuning the catalytic activity of CO2 conversion to methanol at Cu/TiC surfaces. Journal of CO2 Utilization, 2023, 72, 102515.	6.8	1
599	Investigating efficient photothermal conversion towards CO2 reduction. Energy Conversion and Management, 2023, 291, 117246.	9.2	5
600	State of the art and prospectives of heterogeneous photocatalysts based on metal–organic frameworks (MOFs): design, modification strategies, and their applications and mechanisms in photodegradation, water splitting, and CO ₂ reduction. Catalysis Science and Technology, 2023 13 4285-4347	4.1	5
601	A superior strategy for CO2 methanation under atmospheric pressure: Organic acid-assisted Co nanoparticles assembly on diatomite. Fuel, 2023, 351, 128931.	6.4	3
602	Spinel-structured nanocatalysts: New opportunities for CO2 hydrogenation to value-added chemicals. Nano Today, 2023, 51, 101914.	11.9	2
603	Combined capture and reduction of CO2 to methanol using a dual-bed packed reactor. Chemical Engineering Journal, 2023, 470, 144227.	12.7	4
604	Thermodynamic and Mechanistic Analyses of Direct CO ₂ Methylation with Toluene to <i>para</i> -Xylene. ACS Omega, 0, , .	3.5	0

#	Article	IF	CITATIONS
605	Exploring CO ₂ hydrogenation to methanol at a CuZn–ZrO ₂ interface <i>via</i> DFT calculations. Catalysis Science and Technology, 0, , .	4.1	0
606	A versatile hybrid catalyst platform of Na/ZnFe2O4 and zeolite for selective hydrocarbon production from CO2 hydrogenation. Chemical Engineering Journal, 2023, 470, 144335.	12.7	1
607	Bimetallic doped C2N catalyzed CO2 reduction to ethylene: A first–principles study. Separation and Purification Technology, 2023, 323, 124404.	7.9	1
608	Elucidating the Role of Surface Ce4+ and Oxygen Vacancies of CeO2 in the Direct Synthesis of Dimethyl Carbonate from CO2 and Methanol. Molecules, 2023, 28, 3785.	3.8	8
609	LSPR-enhanced carbon-coated In2O3/W18O49 S-scheme heterojunction for efficient CO2 photoreduction. Chinese Journal of Catalysis, 2023, 48, 267-278.	14.0	34
610	Combination of a reaction cell and an ultra-high vacuum system for the in situ preparation and characterization of a model catalyst. Nuclear Science and Techniques/Hewuli, 2023, 34, .	3.4	0
611	Rationally Designed Water Enriched Nano Reactor for Stable CO ₂ Hydrogenation with Near 100% Ethanol Selectivity over Diatomic Palladium Active Sites. ACS Catalysis, 2023, 13, 7110-7121.	11.2	15
612	Flame-assisted hydrolysis synthesis as a green combustion alternative for the preparation of metal oxide photocatalysts: Reactions and opportunities. Journal of Alloys and Compounds, 2023, 959, 170540.	5.5	4
613	The Need for Flexible Chemical Synthesis and How Dual-Function Materials Can Pave the Way. ACS Catalysis, 2023, 13, 7230-7242.	11.2	6
614	DFT-based microkinetic studies on methanol synthesis from CO ₂ hydrogenation over In ₂ O ₃ and Zr–In ₂ O ₃ catalysts. Physical Chemistry Chemical Physics, 2023, 25, 14961-14968.	2.8	0
615	Unraveling the role of GaZrO structure and oxygen vacancy in bifunctional catalyst for highly active and selective conversion of syngas into light olefins. Chemical Engineering Journal, 2023, 467, 143500.	12.7	6
616	Photocatalytic Reduction of Carbon Dioxide to Methanol: Carbonaceous Materials, Kinetics, Industrial Feasibility, and Future Directions. Energy & Fuels, 2023, 37, 7577-7602.	5.1	11
617	Recent advances in catalytic hydrogenation of CO2 into value-added chemicals over oxide–zeolite bifunctional catalysts. Catalysis Today, 2023, 422, 114219.	4.4	3
618	Catalytic hydrogen storage in liquid hydrogen carriers. , 2023, 1, 459-494.		2
619	Cuâ€Bound Formates are Main Reaction Intermediates during CO ₂ Hydrogenation to Methanol over Cu/ZrO ₂ . Angewandte Chemie, 2023, 135, .	2.0	0
620	Cuâ€Bound Formates are Main Reaction Intermediates during CO ₂ Hydrogenation to Methanol over Cu/ZrO ₂ . Angewandte Chemie - International Edition, 2023, 62, .	13.8	12
621	Light-enabled coupling of tandem ethane dehydrogenation and CO2 hydrogenation. Chem Catalysis, 2023, 3, 100644.	6.1	1
622	Optimization of the sol gel synthesis process parameters by orthogonal experiment of novel spinel oxide catalyst CuFe1.2Al0.8O4 with improved performance for methanol steam reforming. Journal of Sol-Gel Science and Technology, 2023, 107, 490-502.	2.4	4

#	Article	IF	CITATIONS
623	Coverage effect of surface oxygen vacancy on In2O3-catalyzed CO2 hydrogenation revealed by first principles-based microkinetic simulations. Computational and Theoretical Chemistry, 2023, 1225, 114174.	2.5	1
624	Switchable tuning selectivity of CO ₂ hydrogenation <i>via</i> anion-modification of the Ru/TiO ₂ catalyst. New Journal of Chemistry, 2023, 47, 11774-11778.	2.8	0
625	Cu/Nb2O5 composite aerogel for CO2 hydrogenation to methanol: Construction of porous structure and abundant active interfaces. Chemical Engineering Journal, 2023, 470, 144289.	12.7	1
626	Metal/metal-oxide interface catalysed thermal and electrochemical CO ₂ conversion: a perspective from DFT-based studies. Chemical Communications, 2023, 59, 8488-8503.	4.1	2
627	Recent progress of dual-site catalysts in emerging electrocatalysis: a review. Catalysis Science and Technology, 2023, 13, 4615-4634.	4.1	3
628	Sn-based electrocatalysts for electrochemical CO ₂ reduction. Chemical Communications, 2023, 59, 9017-9028.	4.1	1
629	Efficient CH ₃ OH formation on H ₂ /Ar plasmaâ€ŧreated CoO sites for CO ₂ + H ₂ + H ₂ O DBD system. Plasma Processes and F	olymers, (), ,?.
630	Simultaneous Defect and Size Control of Metal–Organic Framework Nanostructures for Highly Efficient Carbon Dioxide Electroreduction to Multicarbon Products. , 2023, 5, 2121-2130.		4
631	Optimizing interfacial interaction between Cu and metal oxides boosts methanol yield in CO2 hydrogenation. Research on Chemical Intermediates, 2023, 49, 3933-3950.	2.7	1
632	A new artificial photosynthetic system coupling photovoltaic electrocatalysis with solar heating catalysis. , 2023, , .		0
633	Efficient Generation of Large Collections of Metal–Organic Framework Structures Containing Well-Defined Point Defects. Journal of Physical Chemistry Letters, 2023, 14, 6658-6665.	4.6	4
634	Platinum and Frustrated Lewis Pairs on Ceria as Dualâ€Active Sites for Efficient Reverse Waterâ€Gas Shift Reaction at Low Temperatures. Angewandte Chemie, 2023, 135, .	2.0	2
635	Platinum and Frustrated Lewis Pairs on Ceria as Dualâ€Active Sites for Efficient Reverse Waterâ€Gas Shift Reaction at Low Temperatures. Angewandte Chemie - International Edition, 2023, 62, .	13.8	11
636	A computational study of CO ₂ hydrogenation on single atoms of Pt, Pd, Ni and Rh on In ₂ O ₃ (111). Catalysis Science and Technology, 0, , .	4.1	1
637	Base Metal Catalyst for Indirect Hydrogenation of CO ₂ . ACS Organic & Inorganic Au, 2023, 3, 299-304.	4.0	1
638	Mechanism-Guided Catalyst Design for CO ₂ Hydrogenation to Formate and Methanol. Accounts of Materials Research, 2023, 4, 746-757.	11.7	2
639	Size-Dependent Reactivity of Co _{<i>n</i>} [–] (<i>n</i> = 5–25) Cluster Anions toward Carbon Dioxide. Journal of Physical Chemistry Letters, 0, , 6948-6955.	4.6	1
640	Reduction of CO2 to chemicals and Fuels: Thermocatalysis versus electrocatalysis. Chemical Engineering Journal, 2023, 472, 145033.	12.7	13

#	Article	IF	CITATIONS
641	Identifying Catalyst Property Descriptors for CO ₂ Hydrogenation to Methanol via Big-Data Analysis. ACS Catalysis, 2023, 13, 10547-10559.	11.2	3
643	Monolithic fiber/foam-structured catalysts: beyond honeycombs and micro-channels. Catalysis Reviews - Science and Engineering, 0, , 1-81.	12.9	2
644	Organic additive for the selective C ₂ -product formation on Cu(100): a density functional theory mechanistic study. Catalysis Science and Technology, 2023, 13, 5365-5373.	4.1	1
645	Tailoring Zeolite L-Supported-Cu Catalysts for CO ₂ Hydrogenation: Insights into the Mechanism of CH ₃ OH and CO Formation. Inorganic Chemistry, 2023, 62, 13419-13427.	4.0	1
646	Cu Facet-Dependent Elementary Surface Reaction Kinetics of CO ₂ Hydrogenation to Methanol Catalyzed by ZrO ₂ /Cu Inverse Catalysts. Journal of Physical Chemistry Letters, 2023, 14, 7229-7234.	4.6	1
647	Selective CO ₂ hydrogenation over zeolite-based catalysts for targeted high-value products. Journal of Materials Chemistry A, 2023, 11, 17938-17960.	10.3	5
648	CO2 Hydrogenation to Gasoline and Aromatics: Mechanistic and Predictive Insights from DFT, DRIFTS and Machine Learning. ChemPlusChem, 0, , .	2.8	0
649	Iridium Nanoparticles on SPIONs as a Catalyst for Nâ€Heteroarene and Styrene Hydrogenation Reactions and their DFT Studies. Asian Journal of Organic Chemistry, 0, , .	2.7	0
650	Observing the Evolution of Metal Oxides in Liquids. Small, 2023, 19, .	10.0	0
651	Double-Edged Sword Effect of Classical Strong Metal–Support Interaction in Catalysts for CO ₂ Hydrogenation to CO, Methane, and Methanol. , 2023, 5, 2629-2647.		5
652	Enantioselective synthesis of axially chiral carbamates and amides with carbon dioxide <i>via</i> copper catalysis. Organic Chemistry Frontiers, 2023, 10, 5231-5241.	4.5	1
653	On the Genesis of a Catalyst: A Brief Review with an Experimental Case Study. Eng, 2023, 4, 2375-2406.	2.4	0
654	Direct conversion of carbon dioxide into light olefins over ZnZrOx/ZSM-5@n-ZrO2 tandem catalyst. Fuel, 2024, 357, 129727.	6.4	0
655	Core–shell silica@Cu _{<i>x</i>} ZnAl LDH catalysts for efficient CO ₂ hydrogenation to methanol. Chemical Science, 2023, 14, 9814-9819.	7.4	1
656	Effects of metal size on supported catalysts for CO ₂ hydrogenation. Materials Chemistry Frontiers, 0, , .	5.9	0
657	Single B-vacancy enriched α ₁ -borophene sheet: an efficient metal-free electrocatalyst for CO ₂ reduction. Physical Chemistry Chemical Physics, 2023, 25, 25018-25028.	2.8	4
658	Research Advances on Nitrogen-Doped Carbon Materials in COx Hydrogenation. Atmosphere, 2023, 14, 1510.	2.3	0
659	High entropy materials frontier and theoretical insights for logistics CO2 reduction and hydrogenation: Electrocatalysis, photocatalysis and thermo-catalysis. Journal of Alloys and Compounds, 2023, 969, 172232.	5.5	6

#	Article	IF	CITATIONS
660	Strained few-layer MoS2 with atomic copper and selectively exposed in-plane sulfur vacancies for CO2 hydrogenation to methanol. Nature Communications, 2023, 14, .	12.8	5
661	A Review on the Application of In-Situ Raman Spectroelectrochemistry to Understand the Mechanisms of Hydrogen Evolution Reaction. ACS Catalysis, 2023, 13, 10570-10601.	11.2	0
662	Thermodynamic Evaluations of Amines as Hydrides or Two Hydrogen Ions Reductants and Imines as Protons or Two Hydrogen Ions Acceptors, as Well as Their Application in Hydrogenation Reactions. ACS Omega, 2023, 8, 31984-31997.	3.5	1
663	Performance Exploration of Ni-Doped MoS2 in CO2 Hydrogenation to Methanol. Molecules, 2023, 28, 5796.	3.8	1
664	Research progress of nano-catalysts in the catalytic conversion of biomass to biofuels: Synthesis and application. Fuel, 2024, 356, 129594.	6.4	2
665	Tandem catalysts of different crystalline In2O3/sheet HZSM-5 zeolite for CO2 hydrogenation to aromatics. Journal of Colloid and Interface Science, 2024, 653, 1225-1235.	9.4	0
666	ZrO2 promoted Ru/In2O3 catalyst for selective hydrogenation of CO2 to methanol. Chemical Engineering Science, 2023, 282, 119246.	3.8	1
667	Advancement and State-of-art of heterogeneous catalysis for selective CO2 hydrogenation to methanol. Coordination Chemistry Reviews, 2023, 497, 215409.	18.8	2
668	Towards maximizing the In ₂ O ₃ / <i>m</i> -ZrO ₂ interfaces for CO ₂ -to-methanol hydrogenation. Chemical Communications, 2023, 59, 12747-12750.	4.1	2
669	Metal Effect on Cationic [Cp ₂ MH] ⁺ (M = Group 4 and 5)-Mediated CO ₂ Hydrogenation in the Gas Phase. Journal of Physical Chemistry A, 2023, 127, 7094-7100.	2.5	0
670	Essential role of CO coverage in CO ₂ hydrogenation over Pt(111). Catalysis Science and Technology, 2023, 13, 6153-6164.	4.1	1
671	Shifting CO2 hydrogenation from producing CO to CH3OH by engineering defect structures of Cu/ZrO2 and Cu/ZnO catalysts. Chemical Engineering Journal, 2023, 475, 146102.	12.7	2
672	Effect of Reflux Time on the Performance of the Cu/ZrO ₂ Catalyst for CO ₂ Hydrogenation to Methanol. ACS Applied Energy Materials, 2023, 6, 9417-9426.	5.1	2
673	Synthesis of n-butanol-rich C3+ alcohols by direct CO2 hydrogenation over a stable Cu–Co tandem catalyst. Applied Catalysis B: Environmental, 2024, 340, 123201.	20.2	3
674	Catalyst and Parameter Optimization Study for Slurry-Phase Methanol Synthesis Using Ni-Doped Indium-Based Catalysts. ACS Sustainable Chemistry and Engineering, 2023, 11, 14633-14644.	6.7	2
675	Bifunctional catalyst consisting of In-modified GaZrOx ternary solid solution oxide and SAPO-34 for efficiently converting CO2 into light olefins. Applied Catalysis A: General, 2023, 667, 119464.	4.3	0
676	Tuning the CO2 hydrogenation path by moderately phosphating the Co-Al catalyst toward methanol synthesis. Applied Catalysis B: Environmental, 2024, 340, 123257.	20.2	3
677	CO ₂ Hydrogenation to CH ₃ OH over Cuâ€Based Catalysts: Primary and Side Reactions. ChemCatChem, 2023, 15, .	3.7	2

#	Article	IF	CITATIONS
678	Direct CO ₂ to methanol reduction on Zr ₆ -MOF based composite catalysts: a critical review. Materials Advances, 2023, 4, 5479-5495.	5.4	1
679	Elucidating the promotional effect of ultra-low Zn content on Cu for CO2 hydrogenation to methanol. Journal of Catalysis, 2023, 427, 115119.	6.2	1
680	Synergetic Interaction between Single-Atom Cu and Ga ₂ O ₃ Enhances CO ₂ Hydrogenation to Methanol over CuGaZrO _{<i>x</i>} . ACS Catalysis, 2023, 13, 13679-13690.	11.2	3
681	Tuning CO2 hydrogenation selectivity via support interface types on Cu-based catalysts. Fuel, 2024, 357, 129945.	6.4	1
682	Piezo-photocatalysis for efficient charge separation to promote CO2 photoreduction in nanoclusters. Ultrasonics Sonochemistry, 2023, 101, 106653.	8.2	7
683	Strong metal-support interactions between Pt and CeO2 for efficient methanol decomposition. Chemical Engineering Journal, 2023, 475, 146219.	12.7	0
684	The Oxygenate-Mediated Conversion of CO _x to Hydrocarbons─On the Role of Zeolites in Tandem Catalysis. Chemical Reviews, 2023, 123, 11775-11816.	47.7	2
685	Application of Artificial Intelligence in Modeling of Methanol Production From Renewable Sources. , 2023, , .		0
686	Localized surface plasmon resonance effect of V4C3-MXene for enhancing photothermal reduction of CO2 in full solar spectrum. Separation and Purification Technology, 2023, 326, 124726.	7.9	1
687	One-pot methanolysis of poly(ethylene terephthalate) enabled by isopropanol-assisted CO2 hydrogenation. Journal of the Taiwan Institute of Chemical Engineers, 2023, , 105069.	5.3	1
688	CO2Fix: An approach to assess CO2 fixation potential of CCU reaction pathways. Computers and Chemical Engineering, 2023, 178, 108398.	3.8	1
689	Revealing the anti-sintering phenomenon on silica-supported nickel catalysts during CO2 hydrogenation. Journal of Environmental Sciences, 2024, 140, 270-278.	6.1	0
690	Asymmetric reductive carboxylation of N-(2-bromophenyl)-N-methylmethacrylamide with CO2 catalyzed by nickel complex: A theoretical study. Tetrahedron Letters, 2023, 129, 154741.	1.4	0
691	Machine learning molecular dynamics simulation of CO-driven formation of Cu clusters on the Cu(111) surface. Journal of Physics Condensed Matter, 2023, 35, 495001.	1.8	0
693	Biomimetic PVA-PVDF-based triboelectric nanogenerator with MXene doping for self-powered water sterilization. Materials Today Nano, 2023, 24, 100410.	4.6	3
694	Renewable methanol from CO2 over Cu/Zn/Zr/Si oxideÂcatalysts promoted with Mg, Ce, or La. Journal of Porous Materials, 0, , .	2.6	0
695	Poly(ionic liquid)-coated hydroxy-functionalized carbon nanotube nanoarchitectures with boosted catalytic performance for carbon dioxide cycloaddition. Journal of Colloid and Interface Science, 2024, 653, 844-856.	9.4	2
696	Active copper structures in ZnO-Cu interfacial catalysis: CO2 hydrogenation to methanol and reverse water-gas shift reactions. Science China Chemistry, 2024, 67, 715-723.	8.2	2

Cr	ТАТ	RFF	
	IAL		

#	Article	IF	CITATIONS
697	Consecutive sol-gel synthesis of Cu-Zn/Al2O3 catalyst for CO2 Hydrogenation. AIP Conference Proceedings, 2023, , .	0.4	0
699	Uncovering novel liquid organic hydrogen carriers: a systematic exploration of chemical compound space using cheminformatics and quantum chemical methods. , 2023, 2, 1813-1830.		1
700	Recent advancements and perspectives of the CO2 hydrogenation reaction. , 2023, 1, 133-145.		8
701	Cr ₂ O ₃ Promoted In ₂ O ₃ Catalysts for CO ₂ 22 Hydrogenation to Methanol. ChemPhysChem, 2024, 25, .	2.1	0
702	Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35, 109240.	9.0	0
703	Utilising CO2 from manganese plant flue gas for methanol production: System design and optimisation. International Journal of Hydrogen Energy, 2024, 49, 1536-1546.	7.1	0
704	Direct Conversion of CO ₂ into Alcohols Using Cuâ€Based Zeolite Catalysts. ChemPlusChem, 0, , .	2.8	0
705	Catalytic hydrogenation of CO2 to methanol over Cu-based catalysts: Active sites profiling and regulation strategy as well as reaction pathway exploration. Fuel Processing Technology, 2023, 252, 107995.	7.2	2
706	DFT Study of adsorption and diffusion of CO ₂ on bimetallic surfaces. Molecular Simulation, 2024, 50, 75-88.	2.0	0
707	Synergistic Effect of Zinc and Iron in the CO ₂ -Assisted Oxidative Dehydrogenation of Propane. ACS Catalysis, 2023, 13, 14864-14873.	11.2	1
708	Revealing the effect of metal-support interactions at the Ni/In2O3(111) interface on the selective CO2 hydrogenation. Applied Catalysis B: Environmental, 2024, 343, 123508.	20.2	0
709	Efficient reduction of CO2 to high value-added compounds via photo-thermal catalysis: Mechanisms, catalysts and apparatuses. Renewable and Sustainable Energy Reviews, 2024, 189, 114053.	16.4	2
710	Solar light promoted CO2 hydrogenation to CH4 over photo-thermal responsive dispersed Co on defective CeO2 composite derived from MOFs. Separation and Purification Technology, 2024, 332, 125756.	7.9	0
711	Carbon dioxide conversion to value-added products and fuels: opportunities and challenges: a critical review. International Journal of Green Energy, 0, , 1-20.	3.8	0
712	Significant Roles of Surface Hydrides in Enhancing the Performance of Cu/BaTiO _{2.8} H _{0.2} Catalyst for CO ₂ Hydrogenation to Methanol. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
713	Significant Roles of Surface Hydrides in Enhancing the Performance of Cu/BaTiO _{2.8} H _{0.2} Catalyst for CO ₂ Hydrogenation to Methanol. Angewandte Chemie, 2024, 136, .	2.0	0
714	Catalysis for CO2 Hydrogenation—What We Have Learned/Should Learn from the Hydrogenation of Syngas to Methanol. Catalysts, 2023, 13, 1452.	3.5	1
715	Effect of polyhedral oligomeric silsesquioxane (POSS) nanoparticle on the miscibility and hydrogen bonding behavior of CO2 based poly(cyclohexene carbonate) copolymers. Journal of the Taiwan Institute of Chemical Engineers, 2023, 153, 105214.	5.3	0

#	ARTICLE	IF	CITATIONS
716	Tandem Electroâ€Thermoâ€Catalysis for the Oxidative Aminocarbonylation of Arylboronic Acids to Amides from CO ₂ and Water. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
718	Electronic Structure Modulation of Unconventional Phase Metal Nanomaterials for Highly Selective Carbon Dioxide Electroreduction. , 2023, 5, 3212-3221.		1
719	Selective hydrogenation of carbon dioxide to light hydrocarbons over ZnZrO /H-MFI composite catalyst with long-term stability. Applied Catalysis A: General, 2024, 669, 119517.	4.3	0
720	Heterogeneous catalysts, reaction kinetics, and reactor designs for methanol production from carbon dioxide: A critical review. Canadian Journal of Chemical Engineering, 2024, 102, 1592-1629.	1.7	Ο
721	Enhanced system for hydrogen storage and conversion into green methanol in a geothermal environment. International Journal of Hydrogen Energy, 2024, 52, 834-844.	7.1	0
722	CO2 hydrogenation to methanol over ceria-zirconia NiGa alloy catalysts. Applied Catalysis A: General, 2024, 669, 119485.	4.3	1
723	Confining ultrafine Pt nanoparticles on In ₂ O ₃ nanotubes for enhanced selective methanol production by CO ₂ hydrogenation. Journal of Materials Chemistry A, 2023, 11, 26804-26811.	10.3	5
724	Catalysts in Energy Applications. Catalysts, 2023, 13, 1484.	3.5	0
725	Precise Confinement and Position Distribution of Atomic Cu and Zn in ZSM-5 for CO2 Hydrogenation to Methanol. Nanomaterials, 2023, 13, 3053.	4.1	0
726	CO ₂ Hydrogenation to Methanol and Ethanol on In ₂ O ₃ -Based Single-Atom Catalysts and a New Scaling Relation. Journal of Physical Chemistry C, 2023, 127, 22023-22031.	3.1	0
727	Pebax/Modified Cellulose Nanofiber Composite Membranes for Highly Enhanced CO ₂ /CH ₄ Separation. ACS Omega, 2023, 8, 45428-45437.	3.5	0
728	Selective hydrogenation of CO2 into dimethyl ether over hydrophobic and gallium-modified copper catalysts. Chinese Journal of Catalysis, 2023, 54, 178-187.	14.0	2
729	Deactivation and regeneration of the commercial Cu/ZnO/Al2O3 catalyst in low-temperature methanol steam reforming. Science China Chemistry, 2023, 66, 3645-3652.	8.2	3
730	Rates and reversibility of CO2 hydrogenation on Cu-based catalysts. Journal of Catalysis, 2024, 429, 115214.	6.2	0
731	Waterâ€Mediated Selectivity Control of CH ₃ OH versus CO/CH ₄ in CO ₂ Photoreduction on Singleâ€Atom Implanted Nanotube Arrays. Advanced Materials, 2024, 36, .	21.0	1
733	Reinforcing the Efficiency of Photothermal Catalytic CO ₂ Methanation through Integration of Ru Nanoparticles with Photothermal MnCo ₂ O ₄ Nanosheets. ACS Nano, 2023, 17, 23761-23771.	14.6	4
734	Tandem Electroâ€Thermoâ€Catalysis for the Oxidative Aminocarbonylation of Arylboronic Acids to Amides from CO ₂ and Water. Angewandte Chemie, 2024, 136, .	2.0	0
735	CO2 hydrogenation to methanol over Cu-ZnO-CeO2 catalyst: Reaction structure–activity relationship, optimizing Ce and Zn ratio, and kinetic study. Chemical Engineering Journal, 2024, 479, 147783.	12.7	1

#	Article	IF	CITATIONS
736	Selective photothermal reduction of CO2 to CH4 via the synergistic effect of Ni-nanoparticle@NiO-nanosheet/V2C-MXene catalyst. Materials Today Energy, 2024, 39, 101470.	4.7	0
737	First-principles study of CO2 hydrogenation on Cd-doped ZrO2: Insights into the heterolytic dissociation of H2. Journal of Chemical Physics, 2023, 159, .	3.0	0
738	Gd doped LaFeCuO3 perovskites for enhanced olefin selectivity in CO2 hydrogenation. New Journal of Chemistry, 0, , .	2.8	0
739	Mechanistic insights into the role of zinc oxide, zirconia and ceria supports in Cu-based catalysts for CO <mml:math altimg="si170.svg" display="inline" id="d1e748" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mnsub><mml:mrow 1998="" altimg="si170.svg" display="inline" id="d1e748" math="" mathml"="" www.w3.org=""></mml:mrow></mml:mnsub></mml:msub><mml:msub></mml:msub><td>12.7</td><td>0</td></mml:math>	12.7	0
740	Highly dispersed Cu-ZnOx regulated in zeolite for promoted performance in CO2 hydrogenation to methanol. Microporous and Mesoporous Materials, 2024, 366, 112937.	4.4	0
741	Characterization of CO Adsorbed to Clean and Partially Oxidized Cu(211) and Cu(111). Journal of Physical Chemistry C, 0, , .	3.1	0
742	A bio-inspired, monolithic catalyst support structure for optimized conductive heat removal in catalytic reactors. Chemical Engineering Research and Design, 2024, 201, 534-550.	5.6	0
743	Single transition metal anchored on defective boron carbide monolayer for efficient and selective CO2 electrochemical reduction: A theoretical study. Molecular Catalysis, 2024, 553, 113771.	2.0	1
744	High-performance Al-doped Cu/ZnO catalysts for CO2 hydrogenation to methanol: MIL-53(Al) source-enabled oxygen vacancy engineering and related promoting mechanisms. Chemical Engineering Journal, 2024, 480, 148195.	12.7	1
745	Key features of nano NixMg1-xAl2O4 spinel for biogas bi-reforming: CO2 activation and coke elimination. International Journal of Hydrogen Energy, 2024, 53, 383-393.	7.1	2
746	Mechanism of methanol synthesis from CO2 on Cu/CeO2 and Cu/W-CeO2: a DFT investigation into the nature of W-doping. Journal of Materials Chemistry A, 0, , .	10.3	0
747	Enhancing CO2 Hydrogenation to Methanol via Constructing Cu–ZnO–La2O3 Interfaces. Catalysis Letters, 0, , .	2.6	0
748	Sheet-Like Morphology CuO/Co3O4 Nanocomposites for Enhanced Catalysis in Hydrogenation of CO2 to Methanol. Nanomaterials, 2023, 13, 3153.	4.1	0
749	Mechanistic Insights in the Catalytic Hydrogenation of CO ₂ over Pt Nanoparticles in UiO-67 Metal–Organic Frameworks. ACS Catalysis, 0, , .	11.2	1
751	Electrocatalytic reduction of CO ₂ to CO by Fe(<scp>iii</scp>) carbazole–porphyrins in homogeneous molecular systems. Catalysis Science and Technology, 2024, 14, 660-666.	4.1	0
752	Zinc oxide–copper model nanocatalysts for CO ₂ hydrogenation: morphology and interface effects. Materials Advances, 2024, 5, 1251-1263.	5.4	0
753	Dealuminated Beta zeolite reverses Ostwald ripening for durable copper nanoparticle catalysts. Science, 2024, 383, 94-101.	12.6	3
754	Electronic Structural Analysis for Designing Singleâ€atom Modified Tiâ€MOFs in Photocatalytic CO2 Reduction to C1 Chemicals. ChemSusChem, 0, , .	6.8	0

#	Article	IF	CITATIONS
755	Cu-supported nano-ZrZnOx as a highly active inverse catalyst for low temperature methanol synthesis from CO2 hydrogenation. Applied Catalysis B: Environmental, 2024, 344, 123656.	20.2	1
756	Formation mechanism of carbonaceous materials in fault gouge of Wenchuan earthquake. Journal of Geodynamics, 2024, 159, 102016.	1.6	Ο
757	Covalency-aided electrochemical CO ₂ reduction to CO on sulfide-derived Cu–Sb. Journal of Materials Chemistry A, 0, , .	10.3	0
758	Synergy of Co0-Co2+ in cobalt-based catalysts for CO2 hydrogenation: Quantifying via reduced and exposed atoms fraction. Applied Catalysis A: General, 2024, 670, 119549.	4.3	2
759	Switchable catalysis for methanol and synthetic natural gas synthesis from CO2: A techno-economic investigation. Journal of CO2 Utilization, 2024, 79, 102652.	6.8	0
760	Carbon dioxide hydrogenation to value-added products using Cu-based catalytic materials. IOP Conference Series: Earth and Environmental Science, 2023, 1281, 012063.	0.3	0
761	<i>In situ</i> <scp>DRIFTS</scp> examining the impact of indium doping on activity of <scp>CuIn</scp> / <scp>ZrO₂</scp> catalyst for <scp>CO₂</scp> hydrogenation to methanol. AICHE Journal, 0, , .	3.6	0
762	NH3 plasma synthesis of amino modified NiCo layered double hydroxide nanoflowers for carbon dioxide photoreduction. Journal of Environmental Chemical Engineering, 2024, 12, 111855.	6.7	0
763	Supply Chains for Hydrogen and Carbon Dioxide for Sustainable Production of Base Chemicals. , 0, , .		0
764	PdFe Alloy-Fe5C2 interfaces for efficient CO2 hydrogenation to higher alcohols. Applied Catalysis B: Environmental, 2024, 345, 123691.	20.2	0
765	Toward Next-Generation Heterogeneous Catalysts: Empowering Surface Reactivity Prediction with Machine Learning. Engineering, 2024, , .	6.7	0
766	<i>In situ</i> DRIFTS and DFT study of CO ₂ hydrogenation over the In ₂ O ₃ catalyst. Chemical Communications, 2024, 60, 1872-1875.	4.1	0
767	Tandem catalysis for CO2 conversion to higher alcohols: A review. Applied Catalysis B: Environmental, 2024, 345, 123663.	20.2	3
768	Porphyrin-Based Metal-Organic Framework Materials: Design, Construction, and Application in the Field of Photocatalysis. Molecules, 2024, 29, 467.	3.8	0
769	From catalyst development to reactor Design: A comprehensive review of methanol synthesis techniques. Energy Conversion and Management, 2024, 302, 118070.	9.2	0
770	Theoretical insights into the mechanism of photocatalytic reduction of CO2 and water splitting over II-VI zinc chalcogenide semiconductor. Materials Today Sustainability, 2024, 25, 100686.	4.1	0
771	The curious case of CO2 dissociation on Cu(110). Journal of Chemical Physics, 2024, 160, .	3.0	0
772	CO2 fixation into carbon nanofibres using electrochemical–thermochemical tandem catalysis. Nature Catalysis, 2024, 7, 98-109.	34.4	2

#	Article	IF	CITATIONS
773	Oxidation–Reduction Treatment Initiated <i>In Situ</i> Redispersion of the Supported Cu/Al ₂ O ₃ Catalyst. , 0, , .		0
774	Carbon dioxide and "methanol" economy: advances in the catalytic synthesis of methanol from CO ₂ . Russian Chemical Reviews, 2024, 93, RCR5101.	6.5	0
775	Single Ru–P Site Catalyst Coupling N Sites in a Flexible Polymeric Framework for Efficient CO ₂ Hydrogenation to Formate. ACS Catalysis, 2024, 14, 1595-1607.	11.2	0
776	Catalytic processes for fuels production from CO2-rich streams: Opportunities for industrial flue gases upgrading. , 2024, , 93-118.		0
777	CO ₂ Hydrogenation with High Selectivity by Single Bi Atoms on MXenes Enabled by a Concerted Mechanism. ACS Catalysis, 2024, 14, 1824-1833.	11.2	1
778	Accelerated exploration of heterogeneous CO2 hydrogenation catalysts by Bayesian-optimized high-throughput and automated experimentation. Chem Catalysis, 2024, 4, 100888.	6.1	0
779	Regulating the coordination environment of Co@C catalysts for selective hydrogenation of adiponitrile to hexamethylenediamine. Journal of Catalysis, 2024, 430, 115312.	6.2	0
780	CO2 hydrogenation to methanol over the copper promoted In2O3 catalyst. Journal of Energy Chemistry, 2024, 93, 135-145.	12.9	0
781	Role of H ₂ 0 in Catalytic Conversion of C ₁ Molecules. Journal of the American Chemical Society, 2024, 146, 2857-2875.	13.7	0
782	Hydrogenation of СО2 into Hydrocarbons on Bifunctional Catalysts. Petroleum Chemistry, 2023, 63, 1235-1243.	1.4	0
783	Overturning CO ₂ Hydrogenation Selectivity via Strong Metal–Support Interaction. ACS Catalysis, 2024, 14, 2409-2417.	11.2	0
784	Level-Shifted Embedded Cluster Method for Modeling the Chemistry of Metal Oxides. Journal of Chemical Theory and Computation, 2024, 20, 1386-1397.	5.3	0
785	Mn-promoted MoS ₂ catalysts for CO ₂ hydrogenation: enhanced methanol selectivity due to MoS ₂ /MnO _{<i>x</i>} interfaces. Catalysis Science and Technology, 2024, 14, 1138-1147.	4.1	0
786	Mitigating the Poisoning Effect of Formate during CO ₂ Hydrogenation to Methanol over Co-Containing Dual-Atom Oxide Catalysts. Jacs Au, 2024, 4, 1048-1058.	7.9	0
787	Azaphosphatrane/Ag2O catalyzed the carboxylative cyclization of propargylic alcohols and CO2. Molecular Catalysis, 2024, 555, 113892.	2.0	0
788	Experimental and theoretical study of Pd-Pt/In2O3 bimetallic catalysts for enhancing methanol production from CO2. Chemical Engineering Journal, 2024, 483, 149370.	12.7	0
789	From CO ₂ to Methanol on Cu/ZnO/Al ₂ O ₃ Industrial Catalyst. What Do We Know about the Active Phase and the Reaction Mechanism?. ACS Catalysis, 2024, 14, 2730-2745.	11.2	0
790	Hydrogenation of CO ₂ into Valueâ€added Chemicals Using Solidâ€Supported Catalysts. Chemistry - an Asian Journal, 0, , .	3.3	0

#	Article	IF	CITATIONS
791	Application of Intermetallic Compounds as Catalysts for the Selective Hydrogenation of CO ₂ to Methanol. ChemCatChem, 0, , .	3.7	0
792	CO ₂ to dimethyl ether (DME): structural and functional insights of hybrid catalysts. Catalysis Science and Technology, 2024, 14, 1387-1427.	4.1	0
793	A new boron modified carbon nitride metal-free catalyst for the cycloaddition of CO2 and bisepoxides. Applied Catalysis A: General, 2024, 675, 119615.	4.3	0
794	Preparation of Copper-Based Catalysts for Obtaining Methanol by the Chemical Impregnation Method. Materials, 2024, 17, 847.	2.9	0
795	Highly Dispersed K- and Pd-Comodified Fe Catalyst for CO ₂ Hydrogenation to Higher Alcohols. ACS Sustainable Chemistry and Engineering, 2024, 12, 3322-3330.	6.7	0
796	Modulation of Al2O3 and ZrO2 composite in Cu/ZnO-based catalysts with enhanced performance for CO2 hydrogenation to methanol. Applied Catalysis A: General, 2024, 674, 119618.	4.3	0
797	MOF-derived Cu-ZnO-ZrO2 catalysts for CH3OH synthesis from CO2 hydrogenation. Molecular Catalysis, 2024, 556, 113942.	2.0	0
798	InNi3C0.5/Fe3O4 catalyst for the CO2 hydrogenation to methanol: Co-precipitation preparation, performance and mechanistic insight. Fuel, 2024, 365, 131111.	6.4	0
799	Selectivity Control by Relay Catalysis in CO and CO ₂ Hydrogenation to Multicarbon Compounds. Accounts of Chemical Research, 2024, 57, 714-725.	15.6	0
800	Structure Sensitivity of ZnZrO _{<i>x</i>} Catalysts in CO ₂ Hydrogenation to Methanol: Significance of Surface Oxygen Content and Synthesis Strategy. ACS Catalysis, 2024, 14, 3074-3089.	11.2	0
801	Beyond Hydrogen Storage: Metal Hydrides for Catalysis. ACS Catalysis, 2024, 14, 3139-3157.	11.2	0
802	Enhanced Methanol Synthesis via CO2 Hydrogenation over ZnO/ZrO2 Catalysts by the Regulation of Precipitation Method. Catalysis Letters, 0, , .	2.6	0
803	The relationship between structure and performance of Mo-ZrO2 catalysts in CO2 hydrogenation. Applied Catalysis A: General, 2024, 674, 119631.	4.3	0
804	Homogeneously Distributed Cu-ZnO(-Al ₂ O ₃) Nanoparticles Encapsulated with SiO ₂ Shells for Superior CO ₂ Hydrogenation Activity to Methanol. ACS Sustainable Chemistry and Engineering, 2024, 12, 4245-4254.	6.7	0
805	lonic Porous Organic Polymer Loaded with Zn(II) Ions for Efficient Cycloaddition of CO ₂ and Epoxides to Cyclic Carbonate. Energy & Fuels, 2024, 38, 4417-4428.	5.1	0
806	Selective Light Hydrocarbon Production from CO ₂ Hydrogenation over Na/ZnFe ₂ O ₄ and CHA-Zeolite Hybrid Catalysts. ACS Catalysis, 2024, 14, 3492-3503.	11.2	0
807	Methionine and its hydroxy analogues: the paths toward their sustainable chemical synthesis. Green Chemistry, 2024, 26, 4242-4269.	9.0	0
808	Chemical recycling of waste plastics: current challenges and perspectives. Fundamental Research, 2024, , .	3.3	0

#	Article	IF	CITATIONS
809	Development of Silicalite-1 encapsulated Cu-ZnO catalysts for methanol synthesis by CO2 hydrogenation. Chemical Engineering Journal, 2024, 485, 149896.	12.7	0
810	Modified 1,8-Diazabicyclo[5.4.0]undec-7-ene Catalytic System for the Etherification of Lignin-Derived Phenolic Compounds with Green Dimethyl Carbonate. ACS Sustainable Chemistry and Engineering, 2024, 12, 3402-3407.	6.7	0
811	Hydrogenation of CO2 to CH3OH catalyzed by a ruthenium-triphos complex: Theoretical free energy profile and microkinetic modeling. Journal of Catalysis, 2024, 431, 115386.	6.2	0
812	Origin of Autocatalytic Behavior of Water over CuZn Alloy in CO ₂ Hydrogenation. , 2024, 1, 274-282.		0
813	In2O3 crystal phase variation on In2O3/Co3O4 to boost CO2 hydrogenation to methanol. Molecular Catalysis, 2024, 557, 113998.	2.0	0
814	Unveiling mechanisms in Cu2O-catalyzed electroreduction of CO2 through theoretical resolution using periodic boundary and saturation cluster models. Applied Surface Science, 2024, 657, 159828.	6.1	0
815	Nanometric Cu-ZnO Particles Supported on N-Doped Graphitic Carbon as Catalysts for the Selective CO2 Hydrogenation to Methanol. Nanomaterials, 2024, 14, 476.	4.1	0
816	ZnO-In2O3 solid solution hollow tube improved CO2 hydrogenation to methanol via the formate route. Fuel, 2024, 366, 131394.	6.4	0
817	A Ce-CuZn catalyst with abundant Cu/Zn-OV-Ce active sites for CO2 hydrogenation to methanol. Nature Communications, 2024, 15, .	12.8	0
818	A new perspective on hydrogenation of CO2 into methanol over heterogeneous catalysts. Progress in Natural Science: Materials International, 2024, , .	4.4	0
819	Carbon dioxide enabled hydrogen storage by methanol: Highly selective and efficient catalysis with well-defined heterogeneous catalysts. Coordination Chemistry Reviews, 2024, 508, 215775.	18.8	0
820	Fundamentals of Reaction, Kinetics and Mechanism of Methanol Production. , 2024, , .		Ο
821	Theoretical study of CO2 hydrogenation to methanol on modified Au/In2O3 catalysts: Effects of hydrogen spillover and activation energy prediction for hydrogen transfer. Surface Science, 2024, 744, 122469.	1.9	0
822	Reporting the Bismuth Promotion for Green Methanol Synthesis by CO2 Hydrogenation over MgO-Supported Cu-Zn Catalysts. International Journal of Energy Research, 2024, 2024, 1-8.	4.5	0
823	Molecular-level insights into CO2 activation on Ni(111) from in situ infrared spectroscopy. Cell Reports Physical Science, 2024, 5, 101890.	5.6	0
824	Construction of Ni/In ₂ O ₃ Integrated Nanocatalysts Based on MIL-68(In) Precursors for Efficient CO ₂ Hydrogenation to Methanol. ACS Applied Materials & Interfaces, 2024, 16, 16186-16202.	8.0	0
825	Gas-phase continuous synthesis of metal-organic framework-derived hybrid catalysts for combined CO2 and CO hydrogenation to methanol. Advanced Powder Technology, 2024, 35, 104407.	4.1	0