Programmable droplet manipulation by a magnetic-act

Science Advances 6, eaay5808 DOI: 10.1126/sciadv.aay5808

Citation Report

#	Article	IF	CITATIONS
1	Anisotropy-induced directional self-transportation of low surface tension liquids: a review. RSC Advances, 2020, 10, 40569-40581.	1.7	15
2	Reconfigurable multifunctional ferrofluid droplet robots. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27916-27926.	3.3	138
3	Cell-free biology using remote-controlled digital microfluidics for individual droplet control. RSC Advances, 2020, 10, 26972-26981.	1.7	11
4	Directed motion of an impinging water droplet—seesaw effect. Journal of Materials Chemistry A, 2020, 8, 7889-7896.	5.2	23
5	Nonspecular Reflection of Droplets. Small, 2021, 17, 2006695.	5.2	14
6	Effective Strategies for Droplet Transport on Solid Surfaces. Advanced Materials Interfaces, 2021, 8, 2001441.	1.9	19
7	Bioinspired Surface with Superwettability for Controllable Liquid Dynamics. Advanced Materials Interfaces, 2021, 8, 2000824.	1.9	21
8	Acoustic Valve for Droplet Microfluidics. , 2021, , .		1
9	Light-controlled versatile manipulation of liquid metal droplets: a gateway to future liquid robots. Materials Horizons, 2021, 8, 3063-3071.	6.4	27
10	Vapor-Induced Liquid Collection and Microfluidics on Superlyophilic Substrates. ACS Applied Materials & amp; Interfaces, 2021, 13, 3454-3462.	4.0	8
11	Rapid generation of hybrid biochemical/mechanical cues in heterogeneous droplets for high-throughput screening of cellular responses. Lab on A Chip, 2021, 21, 2691-2701.	3.1	8
12	Magnetically Responsive Film Decorated with Microcilia for Robust and Controllable Manipulation of Droplets. ACS Applied Materials & amp; Interfaces, 2021, 13, 1754-1765.	4.0	38
13	Design of Continuous Transport of the Droplet by the Contact-Boiling Regime. Langmuir, 2021, 37, 553-560.	1.6	8
14	Electric field assisted motion of a mercury droplet. Scientific Reports, 2021, 11, 2753.	1.6	11
15	Precise Droplet Manipulation Based on Surface Heterogeneity. Accounts of Materials Research, 2021, 2, 230-241.	5.9	22
16	A Magnetically Actuated Superhydrophobic Ratchet Surface for Droplet Manipulation. Micromachines, 2021, 12, 325.	1.4	10
17	Tailoring Flexible Arrays for Artificial Cilia Actuators. Advanced Intelligent Systems, 2021, 3, 2000225.	3.3	26
18	Protein-Based Hybrid Responsive Microparticles for Wound Healing. ACS Applied Materials & Interfaces, 2021, 13, 18413-18422.	4.0	52

CITATION REPORT

#	Article	IF	CITATIONS
19	Directional Droplet Transport on Functional Surfaces with Superwettabilities. Advanced Materials Interfaces, 2021, 8, 2100043.	1.9	41
20	Droplet Microfluidics for Tumor Drugâ€Related Studies and Programmable Artificial Cells. Global Challenges, 2021, 5, 2000123.	1.8	17
21	Tunable Superparamagnetic Ring (tSPRing) for Droplet Manipulation. Advanced Functional Materials, 2021, 31, 2100178.	7.8	19
22	Bioinspired magnetically driven liquid manipulation as microrobot. Cell Reports Physical Science, 2021, 2, 100439.	2.8	15
23	How to adjust bubble's adhesion on solid in aqueous media: Femtosecond laser-ablated patterned shape-memory polymer surfaces to achieve bubble multi-manipulation. Chemical Engineering Journal, 2021, 414, 128694.	6.6	15
24	Magnetic-actuated "capillary container―for versatile three-dimensional fluid interface manipulation. Science Advances, 2021, 7, .	4.7	19
25	Reconfigurable multi-component micromachines driven by optoelectronic tweezers. Nature Communications, 2021, 12, 5349.	5.8	41
26	Magnetoâ€Responsive Microneedle Robots for Intestinal Macromolecule Delivery. Advanced Materials, 2021, 33, e2104932.	11.1	99
27	External-field-induced directional droplet transport: A review. Advances in Colloid and Interface Science, 2021, 295, 102502.	7.0	22
28	Air Bubble Bridgeâ€Based Bioinspired Underwater Adhesion. Small, 2021, 17, e2103423.	5.2	15
29	Liquid crystal–based open surface microfluidics manipulate liquid mobility and chemical composition on demand. Science Advances, 2021, 7, eabi7607.	4.7	39
30	Electromigration-triggered programmable droplet spreading. Chemical Engineering Journal, 2021, 423, 130281.	6.6	4
31	Dynamic thermal trapping enables cross-species smart nanoparticle swarms. Science Advances, 2021, 7, .	4.7	1
32	Magnetic actuation and deformation of a soft shuttle. Biomicrofluidics, 2020, 14, 034103.	1.2	2
33	Lossless, Passive Transportation of Low Surface Tension Liquids Induced by Patterned Omniphobic Liquidlike Polymer Brushes. Advanced Functional Materials, 2022, 32, 2107465.	7.8	39
34	Sharp-edge acoustic microfluidics: Principles, structures, and applications. Applied Materials Today, 2021, 25, 101239.	2.3	18
35	Recent Advances in Field ontrolled Micro–Nano Manipulations and Micro–Nano Robots. Advanced Intelligent Systems, 2022, 4, 2100116.	3.3	39
36	Light-Driven Microrobots: Mechanisms and Applications. , 2022, , 91-111.		4

#	ARTICLE	IF	CITATIONS
37	Programmable droplet manipulation and wetting with soft magnetic carpets. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
38	Thermal field-actuated multifunctional double-emulsion droplet carriers: On-demand migration, core release and released particle focusing. Chemical Engineering Journal, 2022, 431, 134200.	6.6	10
39	Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chemical Reviews, 2022, 122, 7010-7060.	23.0	44
40	Pancake Jumping of Sessile Droplets. Advanced Science, 2022, 9, e2103834.	5.6	39
41	Slippery magnetic track inducing droplet and bubble manipulation. Chemical Communications, 2022, 58, 1207-1210.	2.2	7
42	Driving Droplets on Liquid Repellent Surfaces via Lightâ€Driven Marangoni Propulsion. Advanced Functional Materials, 2022, 32, .	7.8	35
43	Magnetically Responsive Superhydrophobic Surfaces for Microdroplet Manipulation. Advanced Materials Interfaces, 2022, 9, .	1.9	23
44	Electrostatic tweezer for droplet manipulation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	47
45	Super-alcohol-repellent coatings. Journal of Colloid and Interface Science, 2022, 613, 146-154.	5.0	3
46	Magnetic-Actuated Robot Enables High-Performance Underwater Bubble Maneuvering on Laser-Textured Biomimetic Slippery Surfaces. Langmuir, 2022, 38, 2174-2184.	1.6	6
47	Saturated Surface Charging on Micro/Nanoporous Polytetrafluoroethylene for Droplet Manipulation. ACS Applied Nano Materials, 2022, 5, 3342-3351.	2.4	7
48	Reconfigurable Magnetic Liquid Metal Robot for High-Performance Droplet Manipulation. Nano Letters, 2022, 22, 2923-2933.	4.5	57
49	Droplet Bouncing: Fundamentals, Regulations, and Applications. Small, 2022, 18, e2200277.	5.2	34
50	Underwater <scp>Superoleophobicâ€Oleophilic</scp> Chips for Femtomolar Aflatoxins Identification. Chinese Journal of Chemistry, 2022, 40, 1464-1470.	2.6	1
51	Facile Design and Realization of Extremely Water-Repellent Surface by Mimicking the Greta oto's Wings. International Journal of Mechanical Sciences, 2022, 222, 107218.	3.6	7
52	Liquid metal droplets enabled soft robots. Applied Materials Today, 2022, 27, 101423.	2.3	31
53	Programmable Droplet Transport Using Mechanically Adaptive Chemical Gradients with Anisotropic Microtopography. Advanced Intelligent Systems, 2022, 4, .	3.3	5
54	Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nature Communications, 2021, 12, 7136.	5.8	51

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Directional and Adaptive Oil Selfâ€Transport on a Multiâ€Bioinspired Grooved Conical Spine. Advanced Functional Materials, 2022, 32, .	7.8	34
56	Ferrofluid annulus in crossed magnetic fields. Physical Review E, 2022, 105, 045106.	0.8	4
57	An Electro-pneumatic Shape Morphing Rolling Robot with Variable Locomotion Modes. , 2022, , .		1
58	A Scientometric Review of Soft Robotics: Intellectual Structures and Emerging Trends Analysis (2010–2021). Frontiers in Robotics and Al, 2022, 9, .	2.0	12
59	Overflow Control for Sustainable Development by Superwetting Surface with Biomimetic Structure. Chemical Reviews, 2023, 123, 2276-2310.	23.0	32
60	Manipulation of swarm ferrofluid droplets on liquid surface. Journal of Magnetism and Magnetic Materials, 2022, 556, 169389.	1.0	2
61	Liquid Film Sculpture via Droplet Impacting on Microstructured Heterowettable Surfaces. Advanced Functional Materials, 2022, 32, .	7.8	15
62	Lightâ€Fueled Submarineâ€Like Droplet. Advanced Science, 2022, 9, .	5.6	7
63	Magnetic manipulation of diamagnetic droplet on slippery liquid-infused porous surface. Physical Review Fluids, 2022, 7, .	1.0	6
64	Hierarchically Structured, All-Aqueous-Coated Hydrophobic Surfaces with pH-Selective Droplet Transfer Capability. ACS Applied Materials & Interfaces, 2022, 14, 26225-26237.	4.0	7
65	Optically controlled coalescence and splitting of femtoliter/picoliter droplets for microreactors. RSC Advances, 2022, 12, 18311-18320.	1.7	3
66	Solid–Liquid State Transformable Magnetorheological Millirobot. ACS Applied Materials & Interfaces, 2022, 14, 30007-30020.	4.0	29
67	Micro-object manipulation by decanol liquid lenses. Lab on A Chip, 2022, 22, 2844-2852.	3.1	5
68	Magnetic Actuation Enables Programmable Lithium Metal Engineering. Advanced Energy Materials, 2022, 12, .	10.2	27
69	Droplet manipulation on superhydrophobic surfaces based on external stimulation: A review. Advances in Colloid and Interface Science, 2022, 306, 102724.	7.0	49
70	Programmable droplet transport on multi-bioinspired slippery surface with tridirectionally anisotropic wettability. Chemical Engineering Journal, 2022, 449, 137831.	6.6	35
71	Bioinspired materials for droplet manipulation: Principles, methods and applications. , 2022, 1, 11-37.		65
72	Biomimetic directional transport for sustainable liquid usage. Biosurface and Biotribology, 0, , .	0.6	0

		CITATION REPORT	
#	Article	IF	Citations
74	Field-controlled flow and shape of a magnetorheological fluid annulus. Physical Review E, 2022, 1	06,. 0.8	1
75	Programmable intelligent liquid matter: material, science and technology. Journal of Micromecha and Microengineering, 2022, 32, 103001.	nics 1.5	4
76	Magnetic vitrimer-based soft robotics. Soft Matter, 2022, 18, 7604-7611.	1.2	9
77	Leechâ€Inspired Shapeâ€Encodable Liquid Metal Robots for Reconfigurable Circuit Welding and Electronics. Advanced Intelligent Systems, 2022, 4, .	Transient 3.3	20
78	Multistimuli-Responsive Hydroplaning Superhydrophobic Microrobots with Programmable Motion and Multifunctional Applications. ACS Nano, 2022, 16, 14895-14906.	ז 7.3	20
79	A review on control of droplet motion based on wettability modulation: principles, design strateg recent progress, and applications. Science and Technology of Advanced Materials, 2022, 23, 473	ies, 2.8 -497.	10
80	Smallâ \in Scale Robotics with Tailored Wettability. Advanced Materials, 2023, 35, .	11.1	14
81	Janus Charged Droplet Manipulation Mediated by Invisible Charge Walls. Advanced Science, 2022	2, 9, . 5.6	6
82	Bidirectional Transport of Split Droplets. Physical Review Applied, 2022, 18, .	1.5	12
83	Light-Driven Liquid Conveyors: Manipulating Liquid Mobility and Transporting Solids on Demand. Nano, 2022, 16, 16353-16362.	ACS 7.3	9
84	High-speed magnetic control of water transport in superhydrophobic tubular actuators. NPG Asia Materials, 2022, 14, .	3.8	5
85	Surface Charge Density Gradient Printing To Drive Droplet Transport: A Numerical Study. Langmu 2022, 38, 13697-13706.	iir, 1.6	2
86	Magnetic Micro/Nanorobots: A New Age in Biomedicines. Advanced Intelligent Systems, 2022, 4,	. 3.3	8
87	Fast and Simple Fabrication of Multimaterial Hierarchical Surfaces Using Acoustic Assembly Photopolymerization (AAP). Advanced Materials Interfaces, 2023, 10, .	1.9	2
88	Magnetic-Field-Driven Reconfigurable Microsphere Arrays for Laser Display Pixels. ACS Nano, 202 1187-1195.	3, 17, 7.3	3
89	Magnetocontrollable droplet mobility on liquid crystal-infused porous surfaces. Nano Research, 2023, 16, 5098-5107.	5.8	2
90	Accurate Magnetoâ€Driven Multiâ€Đimensional Droplet Manipulation. Advanced Functional Mat 2023, 33, .	erials, 7.8	24
91	Sustainable Droplet Manipulation on Ultrafast Lubricant Selfâ€Mediating Photothermal Slippery Surfaces. Advanced Functional Materials, 2023, 33, .	7.8	12

#	Article	IF	CITATIONS
92	Inkjet-Assisted Electroformation of Magnetically Guidable Water Striders for Interfacial Microfluidic Manipulation. ACS Applied Materials & Interfaces, 0, , .	4.0	1
93	Mosaic Patterned Surfaces toward Generating Hardlyâ€Volatile Capsular Droplet Arrays for Highâ€Precision Dropletâ€Based Storage and Detection. Small, 2023, 19, .	5.2	14
94	A review on microrobots driven by optical and magnetic fields. Lab on A Chip, 2023, 23, 848-868.	3.1	20
95	Miniaturizing chemistry and biology using droplets in open systems. Nature Reviews Chemistry, 2023, 7, 439-455.	13.8	8
96	Bioinspired hydrogel actuator for soft robotics: Opportunity and challenges. Nano Today, 2023, 49, 101764.	6.2	28
97	Nonlinear coupling effects of the thermocapillarity and insoluble surfactants to droplet migration under Poiseuille flow. Physical Review Fluids, 2023, 8, .	1.0	1
98	The dynamics of directional transport of a droplet in programmable electrowetting channel. Physics of Fluids, 2023, 35, .	1.6	2
99	Aggregation of Magnetic Particles in a Triangular Oscillating Magnetic Field. Lecture Notes in Electrical Engineering, 2023, , 1666-1674.	0.3	0
100	Achieving ultralong directional liquid transportation spontaneously with a high velocity. Journal of Materials Chemistry A, 2023, 11, 10164-10173.	5.2	9
101	Advancements in droplet reactor systems represent new opportunities in chemical reactor engineering: A perspective. Canadian Journal of Chemical Engineering, 2023, 101, 5189-5207.	0.9	1
102	Noncontact Charge Shielding Knife for Liquid Microfluidics. Journal of the American Chemical Society, 2023, 145, 6420-6427.	6.6	8
103	Regulating droplet impact symmetry by surface engineering. , 2023, 2, .		14
104	Multifunctional Droplets Formed by Interfacially Self-Assembled Fluorinated Magnetic Nanoparticles for Biocompatible Single Cell Culture and Magnet-Driven Manipulation. ACS Applied Materials & Interfaces, 2023, 15, 17324-17334.	4.0	2
105	Fundamentals and Manipulation of Bare Droplets and Liquid Marbles as Open Microfluidic Platforms. Processes, 2023, 11, 983.	1.3	2
106	Active Droplet Transport Induced by Moving Meniscus on a Slippery Magnetic Responsive Micropillar Array. Langmuir, 0, , .	1.6	4
107	Ultrasonic tweezer for multifunctional droplet manipulation. Science Advances, 2023, 9, .	4.7	22
111	Magnetically Actuated Superhydrophilic Robot Sphere Fabricated by a Femtosecond Laser for Droplet Steering. Nano Letters, 2023, 23, 4947-4955.	4.5	7
117	Dancing Delicacies: Designing Computational Food for Dynamic Dining Trajectories. , 2023, , .		1

#	Article	IF	CITATIONS
119	Untethered Small-Scale Machines for Microrobotic Manipulation: From Individual and Multiple to Collective Machines. ACS Nano, 2023, 17, 13081-13109.	7.3	11
127	Liquid interfaces: an emerging platform for energy conversion and harvesting. Journal of Materials Chemistry A, 2023, 11, 21009-21028.	5.2	2
138	Magnetically Controllable Liquid Metal Droplet Robots. Lecture Notes in Computer Science, 2023, , 434-442.	1.0	0
158	Open microfluidics: droplet microarrays as next generation multiwell plates for high throughput screening. Lab on A Chip, 2024, 24, 1064-1075.	3.1	0