Dry reforming of methane by stable Ni–Mo nanocatal

Science 367, 777-781 DOI: 10.1126/science.aav2412

Citation Report

#	Article	IF	CITATIONS
1	Atomically Dispersed Ni-Based Anti-Coking Catalysts for Methanol Dehydrogenation in a Fixed-Bed Reactor. ACS Catalysis, 2020, 10, 12569-12574.	5.5	13
2	Improved Effect of Fe on the Stable NiFe/Al ₂ O ₃ Catalyst in Low-Temperature Dry Reforming of Methane. Industrial & Engineering Chemistry Research, 2020, 59, 17250-17258.	1.8	53
3	Phosphorus-tuned nickel as high coke-resistant catalyst with high reforming activity. International Journal of Hydrogen Energy, 2020, 45, 28325-28336.	3.8	13
4	Investigation of new routes for the preparation of mesoporous calcium oxide supported nickel materials used as catalysts for the methane dry reforming reaction. Catalysis Science and Technology, 2020, 10, 6910-6922.	2.1	5
5	Recent Progresses in the Design and Fabrication of Highly Efficient Ni-Based Catalysts With Advanced Catalytic Activity and Enhanced Anti-coke Performance Toward CO2 Reforming of Methane. Frontiers in Chemistry, 2020, 8, 581923.	1.8	16
6	Catalytic Hydrogen Production from Methane: A Review on Recent Progress and Prospect. Catalysts, 2020, 10, 858.	1.6	183
7	Reaction-Induced Strong Metal–Support Interactions between Metals and Inert Boron Nitride Nanosheets. Journal of the American Chemical Society, 2020, 142, 17167-17174.	6.6	164
8	Synthesizing Highâ€Volume Chemicals from CO ₂ without Direct H ₂ Input. ChemSusChem, 2020, 13, 6066-6089.	3.6	15
9	Hierarchical Fe-modified MgAl ₂ O ₄ as a Ni-catalyst support for methane dry reforming. Catalysis Science and Technology, 2020, 10, 6987-7001.	2.1	22
10	Stable Highâ€Pressure Methane Dry Reforming Under Excess of CO ₂ . ChemCatChem, 2020, 12, 5919-5925.	1.8	17
11	Al2O3-Coated Ni/CeO2 nanoparticles as coke-resistant catalyst for dry reforming of methane. Catalysis Science and Technology, 2020, 10, 8283-8294.	2.1	22
12	Bimetallic Metal-Organic Framework Mediated Synthesis of Ni-Co Catalysts for the Dry Reforming of Methane. Catalysts, 2020, 10, 592.	1.6	18
13	NiYAl-Derived Nanoporous Catalysts for Dry Reforming of Methane. Materials, 2020, 13, 2044.	1.3	1
14	Comment on "Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO― Science, 2020, 368, .	6.0	48
15	Response to Comment on "Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO― Science, 2020, 368, .	6.0	1
16	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie - International Edition, 2020, 59, 16013-16022.	7.2	151
17	Effect of Composition on the Redox Performance of Strontium Ferrite Nanocomposite. Energy & Fuels, 2020, 34, 8644-8652.	2.5	12
18	Dry Reforming of Methane over a Ruthenium/Carbon Nanotube Catalyst. ChemEngineering, 2020, 4, 16.	1.0	6

ARTICLE IF CITATIONS # Support Was the Key toÂSuccess. Joule, 2020, 4, 714-716. 11.7 6 19 Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom 1.6 19 Modulator Approach. Angewandte Chemie, 2020, 132, 16147-16156. 21 Fewer defects, better catalysis?. Science, 2020, 367, 737-737. 6.0 19 Biogas Reforming to Syngas: A Review. IScience, 2020, 23, 101082. 109 Energy pooling mechanism for catalyst-free methane activation in nanosecond pulsed non-thermal 23 6.6 41 plasmas. Chemical Engineering Journal, 2020, 396, 125185. Redox and Nonredox CO₂ Utilization: Dry Reforming of Methane and Catalytic Cyclic Carbonate Formation. ACS Energy Letters, 2020, 5, 1689-1700. 8.8 Towards harnessing local natural clay in power to X technologies: Review on syngas production using low cost catalyst extruded as honeycomb monolith. Materials Today: Proceedings, 2021, 37, 3834-3839. 25 0.9 1 Fundamentals and recent applications of catalyst synthesis using flame aerosol technology. Chemical 26 6.6 19 Engineering Journal, 2021, 405, 126958. Enhanced activity and stability of MgO-promoted Ni/Al2O3 catalyst for dry reforming of methane: Role 27 3.4 87 of MgO. Fuel, 2021, 284, 119082. Atomic Nanoarchitectonics for Catalysis. Advanced Materials Interfaces, 2021, 8, 2001395. Recent advances during CH4 dry reforming for syngas production: A mini review. International 29 3.8 94 Journal of Hydrogen Energy, 2021, 46, 5852-5874. Effect of small quantities of potassium promoter and steam on the catalytic properties of nickel catalysts in dry/combined methane reforming. International Journal of Hydrogen Energy, 2021, 46, 3.8 29 3847-3864. On the enhanced sulfur and coking tolerance of Ni-Co-rare earth oxide catalysts for the dry $\mathbf{31}$ 3.1 46 reforming of methane. Journal of Catalysis, 2021, 393, 215-229. Transformation technologies for CO2 utilisation: Current status, challenges and future prospects. Chemical Engineering Journal, 2021, 409, 128138. 6.6 Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. 33 37 1.6 Angewandte Chemie, 2021, 133, 5835-5841. Alloying Nickel with Molybdenum Significantly Accelerates Alkaline Hydrogen Electrocatalysis. 182 Angewandte Chemie - International Edition, 2021, 60, 5771-5777. Defect Engineering on Carbon-Based Catalysts for Electrocatalytic CO2 Reduction. Nano-Micro 35 14.4 118 Letters, 2021, 13, 5. Elucidating the Promotional Effect of Cerium in the Dry Reforming of Methane. ChemCatChem, 2021, 1.8 13, 553-563.

#	Article	IF	Citations
37	MnO ₂ â€Based Materials for Environmental Applications. Advanced Materials, 2021, 33, e2004862.	11.1	252
38	Ce-enhanced LaMnO ₃ perovskite catalyst with exsolved Ni particles for H ₂ production from CH ₄ dry reforming. Sustainable Energy and Fuels, 2021, 5, 5481-5489.	2.5	3
39	Mechanistic and multiscale aspects of thermo-catalytic CO ₂ conversion to C ₁ products. Catalysis Science and Technology, 2021, 11, 6601-6629.	2.1	27
40	A novel CO2 utilization technology for the synergistic co-production of multi-walled carbon nanotubes and syngas. Scientific Reports, 2021, 11, 1417.	1.6	17
41	Promoting dry reforming of methane <i>via</i> bifunctional NiO/dolomite catalysts for production of hydrogen-rich syngas. RSC Advances, 2021, 11, 6667-6681.	1.7	11
42	Encapsulating Ultrastable Metal Nanoparticles within Reticular Schiff Base Nanospaces for Enhanced Catalytic Performance. Cell Reports Physical Science, 2021, 2, 100289.	2.8	16
43	Directed transforming of coke to active intermediates in methanol-to-olefins catalyst to boost light olefins selectivity. Nature Communications, 2021, 12, 17.	5.8	55
44	Soluble porous carbon cage-encapsulated highly active metal nanoparticle catalysts. Journal of Materials Chemistry A, 2021, 9, 13670-13677.	5.2	13
45	Thermodynamic assessment of the stability of bulk and nanoparticulate cobalt and nickel during dry and steam reforming of methane. RSC Advances, 2021, 11, 18187-18197.	1.7	19
46	Bottom-up assembly of bimetallic nanocluster catalysts from oxide-supported single-atom precursors. Journal of Materials Chemistry A, 2021, 9, 8401-8415.	5.2	8
47	2D thin sheets composed of Co _{5.47} N–MgO embedded in carbon as a durable catalyst for the reduction of aromatic nitro compounds. Materials Chemistry Frontiers, 2021, 5, 2798-2809.	3.2	7
48	Photocatalytic and Thermocatalytic Conversion of Methane. Solar Rrl, 2021, 5, 2000596.	3.1	16
49	Unraveling Enhanced Activity, Selectivity, and Coke Resistance of Pt–Ni Bimetallic Clusters in Dry Reforming. ACS Catalysis, 2021, 11, 2398-2411.	5.5	83
50	Recent Developments in Natural Gas Flaring Reduction and Reformation to Energy-Efficient Fuels: A Review. Energy & Fuels, 2021, 35, 3675-3714.	2.5	63
51	Theoretical study of surface segregation and ordering in Ni-based bimetallic surface alloys. Journal of Chemical Physics, 2021, 154, 074702.	1.2	8
52	Rareâ€Earth Incorporated Alloy Catalysts: Synthesis, Properties, and Applications. Advanced Materials, 2021, 33, e2005988.	11.1	84
53	A Doubly Confined Nickelâ€Based Catalyst Derived from Hydrotalciteâ€Montmorillonite Composite: Preparation and Hydrogenation Performance. ChemCatChem, 2021, 13, 2887-2895.	1.8	3
54	Improving Hydrothermal Stability of Supported Metal Catalysts for Biomass Conversions: A Review. ACS Catalysis, 2021, 11, 5248-5270.	5.5	86

#	Article	IF	CITATIONS
55	Tuning Metal–Support Interactions on Ni/Al2O3 Catalysts to Improve Catalytic Activity and Stability for Dry Reforming of Methane. Processes, 2021, 9, 706.	1.3	38
56	Thermodynamic Analysis of Dry Reforming of Methane for Valorization of Landfill Gas and Natural Gas. Energy Technology, 2021, 9, 2100106.	1.8	31
57	Nickel nanoparticles with interfacial confinement mimic noble metal catalyst in methane dry reforming. Applied Catalysis B: Environmental, 2021, 285, 119837.	10.8	36
58	Inhibitor, co-catalyst, or intermetallic promoter? Probing the sulfur-tolerance of MoOx surface decoration on Ni/SiO2 during methane dry reforming. Applied Surface Science, 2021, 548, 149231.	3.1	21
59	Lowâ€Temperature Direct Electrochemical Methanol Reforming Enabled by COâ€Immune Moâ€Based Hydrogen Evolution Catalysts. Chemistry - A European Journal, 2021, 27, 8960-8965.	1.7	0
60	The first observation of Ni nanoparticle exsolution from YSZ and its application for dry reforming of methane. Materials Reports Energy, 2021, 1, 100021.	1.7	9
61	Perovskite materials for highly efficient catalytic CH4 fuel reforming in solid oxide fuel cell. International Journal of Hydrogen Energy, 2021, 46, 24441-24460.	3.8	24
62	Bifunctional Ni-Ca based material for integrated CO2 capture and conversion via calcium-looping dry reforming. Applied Catalysis B: Environmental, 2021, 284, 119734.	10.8	91
63	Microfluidic-enabled ambient-temperature synthesis of ultrasmall bimetallic nanoparticles. Nano Research, 2022, 15, 248-254.	5.8	9
64	Oxidative Reforming of Methane over Rh-Containing Zeolites: Active Species and Role of Zeolite Framework. Industrial & Engineering Chemistry Research, 2021, 60, 8696-8704.	1.8	4
65	Catalytic Light Alkanes Conversion through Anaerobic Ammodehydrogenation. ACS Catalysis, 2021, 11, 7987-7995.	5.5	8
66	Yolk–Shell Nanocapsule Catalysts as Nanoreactors with Various Shell Structures and Their Diffusion Effect on the CO ₂ Reforming of Methane. ACS Applied Materials & Interfaces, 2021, 13, 31699-31709.	4.0	21
67	Coking-resistant dry reforming of methane over Ni/Î ³ -Al2O3 catalysts by rationally steering metal-support interaction. IScience, 2021, 24, 102747.	1.9	34
68	A Cu ₂ Oâ€derived Polymeric Carbon Nitride Heterostructured Catalyst for the Electrochemical Reduction of Carbon Dioxide to Ethylene. ChemSusChem, 2021, 14, 3190-3197.	3.6	18
69	Silicaâ€Enveloped 2Dâ€Sheetâ€ŧoâ€Nanocrystals Conversion for Resilient Catalytic Dry Reforming of Methane. Small, 2021, 17, e2102851.	5.2	9
70	Advances in Hydrogen Production from Natural Gas Reforming. Advanced Energy and Sustainability Research, 2021, 2, 2100097.	2.8	73
71	Dry Reforming of CH ₄ /CO ₂ by Stable Ni Nanocrystals on Porous Singleâ€Crystalline MgO Monoliths at Reduced Temperature. Angewandte Chemie, 2021, 133, 18940-18947.	1.6	10
72	Mechanistic Understanding of Methane Combustion over Ni/CeO ₂ : A Combined Experimental and Theoretical Approach. ACS Catalysis, 2021, 11, 9345-9354.	5.5	26

#	Article	IF	CITATIONS
73	Dry Reforming of CH ₄ /CO ₂ by Stable Ni Nanocrystals on Porous Singleâ€Crystalline MgO Monoliths at Reduced Temperature. Angewandte Chemie - International Edition, 2021, 60, 18792-18799.	7.2	48
74	Shale gas revolution: Catalytic conversion of C1–C3 light alkanes to value-added chemicals. CheM, 2021, 7, 1755-1801.	5.8	57
75	Optimized Ni-based catalysts for methane reforming with O2-containing CO2. Applied Catalysis B: Environmental, 2021, 289, 120033.	10.8	31
76	Mid/low-temperature solar hydrogen generation via dry reforming of methane enhanced in a membrane reactor. Energy Conversion and Management, 2021, 240, 114254.	4.4	31
77	Nickel/Molybdenum Bimetallic Alloy for Dry Reforming of Methane: A Coverage-Dependence Microkinetic Model Simulation Based on the First-Principles Calculation. Journal of Physical Chemistry C, 2021, 125, 18653-18664.	1.5	16
78	Highly Dispersed Ni <i>_x</i> Ga <i>_y</i> Catalyst and La ₂ O ₃ Promoter Supported by LDO Nanosheets for Dry Reforming of Methane: Synergetic Catalysis by Ni, Ga, and La ₂ O ₃ . Langmuir, 2021, 37, 9744-9754.	1.6	8
79	Topological Transformation of Mgâ€Containing Layered Double Hydroxide Nanosheets for Efficient Photodriven CH ₄ Coupling. Chemistry - A European Journal, 2021, 27, 13211-13220.	1.7	14
80	Layered Double Hydroxide-Derived Intermetallic Ni ₃ GaC _{0.25} Catalysts for Dry Reforming of Methane. ACS Catalysis, 2021, 11, 11091-11102.	5.5	26
81	Quasi-Monolayer Rh Nanoclusters Stabilized on Spinel MgAl ₂ O ₄ Nanosheets for Catalytic CO ₂ Reforming of Methane. ACS Applied Nano Materials, 2021, 4, 9866-9875.	2.4	8
82	Enhanced performance of xNi@yMo-HSS catalysts for DRM reaction via the formation of a novel SiMoOx species. Applied Catalysis B: Environmental, 2021, 291, 120075.	10.8	23
83	Nature of the Active Sites on Ni/CeO ₂ Catalysts for Methane Conversions. ACS Catalysis, 2021, 11, 10604-10613.	5.5	37
84	Feasibility of solar thermochemical natural gas desulphurization and hydrogen generation with a membrane reactor. Journal of Cleaner Production, 2021, 312, 127835.	4.6	4
85	Performance of Alternative Methane Reforms Based on Experimental Kinetic Evaluation and Simulation in a Fixed Bed Reactor. Processes, 2021, 9, 1479.	1.3	3
86	Stabilized CO2 reforming of CH4 on modified Ni/Al2O3 catalysts via in-situ K2CO3-enabled dynamic coke elimination reaction. Fuel, 2021, 298, 120599.	3.4	19
87	Focus on Materials for Sulfur-Resistant Catalysts in the Reforming of Biofuels. Catalysts, 2021, 11, 1029.	1.6	7
88	Configuration matching at atomic level boosting catalytic performance. Chem Catalysis, 2021, 1, 504-506.	2.9	0
89	Quadruple C–H Bond Activations of Methane by Dinuclear Rhodium Carbide Cation [Rh ₂ C ₃] ⁺ . Jacs Au, 2021, 1, 1631-1638.	3.6	6
90	Exceptional stability of hydrotalcite derived spinel Mg(Ni)Al2O4 catalyst for dry reforming of methane. Catalysis Today, 2022, 403, 74-85.	2.2	19

#	Article	IF	CITATIONS
91	Robust and Coke-free Ni Catalyst Stabilized by 1–2 nm-Thick Multielement Oxide for Methane Dry Reforming. ACS Catalysis, 2021, 11, 12409-12416.	5.5	24
92	Diesel reforming to hydrogen over the mesoporous Ni–MgO catalyst synthesized in microfluidic platform. International Journal of Hydrogen Energy, 2021, 46, 36709-36720.	3.8	11
93	High-Performance Binary Mo–Ni Catalysts for Efficient Carbon Removal during Carbon Dioxide Reforming of Methane. ACS Catalysis, 2021, 11, 12087-12095.	5.5	61
94	Trifunctional strategy for the design and synthesis of a Ni-CeO2@SiO2 catalyst with remarkable low-temperature sintering and coking resistance for methane dry reforming. Chinese Journal of Catalysis, 2021, 42, 1808-1820.	6.9	53
95	The promotional role of β-cyclodextrin on Ni-Mo2C/MgO catalyst for biogas reforming. Molecular Catalysis, 2021, 515, 111897.	1.0	7
96	Coupling CO2 utilization and NO reduction in chemical looping manner by surface carbon. Applied Catalysis B: Environmental, 2021, 297, 120472.	10.8	14
97	A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations. Applied Catalysis B: Environmental, 2021, 296, 120210.	10.8	182
98	Superior selective adsorption of MgO with abundant oxygen vacancies to removal and recycle reactive dyes. Separation and Purification Technology, 2021, 275, 119236.	3.9	45
99	In-situ/operando techniques to identify active sites for thermochemical conversion of CO2 over heterogeneous catalysts. Journal of Energy Chemistry, 2021, 62, 153-171.	7.1	38
100	Efficient integration of CO2 capture and conversion over a Ni supported CeO2-modified CaO microsphere at moderate temperature. Chemical Engineering Journal, 2021, 426, 130864.	6.6	54
101	Atomically dispersed nickel species in a two-dimensional molecular sieve: Origin of high activity and stability in dry reforming of methane. Applied Catalysis B: Environmental, 2021, 298, 120627.	10.8	27
102	Experimental and thermodynamic study on sorption-enhanced steam reforming of toluene for H2 production using the mixture of Ni/perovskite-CaO. Fuel, 2021, 305, 121447.	3.4	23
103	Confined Ni-In intermetallic alloy nanocatalyst with excellent coking resistance for methane dry reforming. Journal of Energy Chemistry, 2022, 65, 34-47.	7.1	96
104	Thermo-photo coupled catalytic CO2 reforming of methane: A review. Chemical Engineering Journal, 2022, 428, 131222.	6.6	24
105	Nanowire-Based Materials as Coke-Resistant Catalyst Supports for Dry Methane Reforming. Catalysts, 2021, 11, 175.	1.6	4
106	Metal–Support Interactions and C1 Chemistry: Transforming Pt-CeO ₂ into a Highly Active and Stable Catalyst for the Conversion of Carbon Dioxide and Methane. ACS Catalysis, 2021, 11, 1613-1623.	5.5	39
107	Catalysts for CO ₂ reforming of CH ₄ : a review. Journal of Materials Chemistry A, 2021, 9, 12495-12520.	5.2	93
108	Nanoparticle Ex-solution for Supported Catalysts: Materials Design, Mechanism and Future Perspectives. ACS Nano, 2021, 15, 81-110.	7.3	95

#	Article	IF	CITATIONS
109	Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 2020, 49, 8584-8686.	18.7	610
110	Methane Dry Reforming by Ni–Cu Nanoalloys Anchored on Periclase-Phase MgAlO _{<i>x</i>} Nanosheets for Enhanced Syngas Production. ACS Applied Materials & Interfaces, 2021, 13, 48838-48854.	4.0	25
111	Active exsolved metalâ€oxide interfaces in porous single rystalline ceria monoliths for efficient and durable CH4/CO2 reforming. Angewandte Chemie, 0, , .	1.6	6
112	Active Exsolved Metal–Oxide Interfaces in Porous Singleâ€Crystalline Ceria Monoliths for Efficient and Durable CH ₄ /CO ₂ Reforming. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
113	Stabilized Ni-Mo at the edges of single-crystalline MgO for CO2 reforming. , 0, , .		0
114	Support Induced Effects on the Ir Nanoparticles Activity, Selectivity and Stability Performance under CO2 Reforming of Methane. Nanomaterials, 2021, 11, 2880.	1.9	23
115	Comparison of preparation methods for improving coke resistance of Ni-Ru/MgAl ₂ O ₄ catalysts in dry reforming of methane for syngas production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 10755-10765.	1.2	2
116	Inorganic Catalysis for Methane Conversion to Chemicals. , 2021, , .		0
117	Simple mechanisms of CH ₄ reforming with CO ₂ and H ₂ O on a supported Ni/ZrO ₂ catalyst. Physical Chemistry Chemical Physics, 2021, 23, 26392-26400.	1.3	4
118	Recent progress in anti-coking Ni catalysts for thermo-catalytic conversion of greenhouse gases. Chemical Engineering Research and Design, 2021, 156, 598-616.	2.7	31
119	Carbon deposition behaviors in dry reforming of CH4 at elevated pressures over Ni/MoCeZr/MgAl2O4-MgO catalysts. Fuel, 2022, 310, 122449.	3.4	18
120	Fuel Generation from CO2. Advances in Science, Technology and Innovation, 2022, , 63-78.	0.2	0
121	Automated synthesis and data accumulation for fast production of high-performance Ni nanocatalysts. Journal of Industrial and Engineering Chemistry, 2022, 106, 449-459.	2.9	6
122	One-Pot Synthesis of a Highly Active and Stable Ni-Embedded Hydroxyapatite Catalyst for Syngas Production via Dry Reforming of Methane. Energy & Fuels, 2021, 35, 19568-19580.	2.5	15
123	Stabilization of Exposed Metal Nanocrystals in Highâ€īemperature Heterogeneous Catalysis. Advanced Materials, 2022, 34, e2108727.	11.1	22
124	Introducing Methane Activation. , 2022, , 23-41.		3
125	Combined steam and CO2 reforming of methane over Co–Ce/AC-N catalyst: Effect of preparation methods on catalyst activity and stability. International Journal of Hydrogen Energy, 2022, 47, 2914-2925.	3.8	19
126	Coke-Resistant Ni–Co/ZrO ₂ –CaO-Based Microwave Catalyst for Highly Effective Dry Reforming of Methane by Microwave Catalysis. Industrial & Engineering Chemistry Research, 2021, 60, 17458-17468.	1.8	11

#	Article	IF	CITATIONS
127	Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane. Journal of Energy Chemistry, 2022, 68, 124-142.	7.1	41
128	Dry reforming of methane on Ni(1 1 1) surface with different Mo doping ratio: DFT-assisted microkinetic study. Applied Surface Science, 2022, 581, 152310.	3.1	20
129	Activation and catalytic transformation of methane under mild conditions. Chemical Society Reviews, 2022, 51, 376-423.	18.7	45
130	Hard Carbon Derived from Graphite Anode by Mechanochemistry and the Enhanced Lithiumâ€lon Storage Performance. ChemElectroChem, 2022, 9, .	1.7	9
131	Contribution of DFT to the optimization of Ni-based catalysts for dry reforming of methane: a review. Catalysis Reviews - Science and Engineering, 2023, 65, 1468-1520.	5.7	13
132	Elucidating the role of earth alkaline doping in perovskite-based methane dry reforming catalysts. Catalysis Science and Technology, 2022, 12, 1229-1244.	2.1	6
133	Ni/Ce0.9Eu0.1O1.95 with enhanced coke resistance for dry reforming of methane. Journal of Catalysis, 2022, 407, 77-89.	3.1	37
134	Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: Insights from experimental work and theoretical analysis. International Journal of Hydrogen Energy, 2022, 47, 9183-9200.	3.8	78
135	CO2 conversion via dry reforming of methane on a core-shell Ru@SiO2 catalyst. Journal of CO2 Utilization, 2022, 57, 101893.	3.3	18
136	Remarkable basic-metal oxides promoted confinement catalysts for CO2 reforming. Fuel, 2022, 315, 123167.	3.4	27
137	Evidence of new Ni-O-K catalytic sites with superior stability for methane dry reforming. Applied Catalysis B: Environmental, 2022, 307, 121148.	10.8	19
138	Atomically Dispersed Znâ€Stabilized Ni ^{δ+} Enabling Tunable Selectivity for CO ₂ Hydrogenation. ChemSusChem, 2022, 15, .	3.6	10
139	Engineering metal-oxide interface by depositing ZrO2 overcoating on Ni/Al2O3 for dry reforming of methane. Chemical Engineering Journal, 2022, 436, 135195.	6.6	25
140	Identification of CO2 adsorption sites on MgO nanosheets by solid-state nuclear magnetic resonance spectroscopy. Nature Communications, 2022, 13, 707.	5.8	17
141	Fe/HZSM-5 synergizes with biomass pyrolysis carbon to reform CH4–CO2 to syngas in microwave field. International Journal of Hydrogen Energy, 2022, 47, 11153-11163.	3.8	14
142	Hydrogen production through methane reforming processes using promoted-Ni/mesoporous silica: A review. Journal of Industrial and Engineering Chemistry, 2022, 107, 20-30.	2.9	79
143	Effects of alloying for steam or dry reforming of methane: a review of recent studies. Catalysis Science and Technology, 2022, 12, 3387-3411.	2.1	32
144	Methane transformation by photocatalysis. Nature Reviews Materials, 2022, 7, 617-632.	23.3	114

#	Article	IF	CITATIONS
145	Lightâ€Induced Redox Looping of a Rhodium/Ce _{<i>x</i>} WO ₃ Photocatalyst for Highly Active and Robust Dry Reforming of Methane. Angewandte Chemie - International Edition, 2022, 61, .	7.2	48
146	Harnessing Strong Metal–Support Interaction to Proliferate the Dry Reforming of Methane Performance by In Situ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 12140-12148.	4.0	19
147	The role of water in bi-reforming of methane: a micro-kinetic study. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 705.	0.8	0
148	Promoting Dry Reforming of Methane Catalysed by Atomicallyâ€Dispersed Ni over Ceriaâ€Upgraded Boron Nitride. Chemistry - an Asian Journal, 2022, 17, .	1.7	6
149	The 10th Anniversary of Nanomaterials—Recent Advances in Environmental Nanoscience and Nanotechnology. Nanomaterials, 2022, 12, 915.	1.9	1
150	Lightâ€Induced Redox Looping of a Rhodium/Ce _{<i>x</i>} WO ₃ Photocatalyst for Highly Active and Robust Dry Reforming of Methane. Angewandte Chemie, 2022, 134, .	1.6	7
151	Technical benefits of using methane as a pyrolysis medium for catalytic pyrolysis of Kraft lignin. Bioresource Technology, 2022, 353, 127131.	4.8	10
152	Promoted solar-driven dry reforming of methane with Pt/mesoporous-TiO2 photo-thermal synergistic catalyst: Performance and mechanism study. Energy Conversion and Management, 2022, 258, 115496.	4.4	27
153	Modulating local environment of Ni with W for synthesis of carbon nanotubes and hydrogen from plastics. Journal of Cleaner Production, 2022, 352, 131620.	4.6	11
154	CH4 valorisation reactions: A comparative thermodynamic analysis and their limitations. Fuel, 2022, 320, 123877.	3.4	10
155	Recent progress in the application of Ni-based catalysts for the dry reforming of methane. Catalysis Reviews - Science and Engineering, 2023, 65, 1300-1357.	5.7	16
156	Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. Advanced Energy Materials, 2022, 12, .	10.2	33
157	CO2 capture and in-situ conversion: recent progresses and perspectives. Green Chemical Engineering, 2022, 3, 189-198.	3.3	54
158	High-Performance Catalytic Four-Channel Hollow Fibers with Highly Dispersed Nickel Nanoparticles Prepared by Atomic Layer Deposition for Dry Reforming of Methane. Industrial & Engineering Chemistry Research, 2022, 61, 10377-10386.	1.8	4
159	In Situ Fabrication of Ultrasmall Ni Nanoparticles from Ni(OH) ₂ Precursors for Efficient CO ₂ Reforming of Methane. Industrial & Engineering Chemistry Research, 2022, 61, 198-206.	1.8	12
160	Evidence of undissociated CO2 involved in the process of C-H bond activation in dry reforming of CH4. Journal of Catalysis, 2022, 410, 266-279.	3.1	5
161	Conversion of CH ₄ Catalyzed by Gas Phase Ions Containing Metals. Chemistry - A European Journal, 2022, 28, e202200062.	1.7	5
162	Low Temperature Nano Mechano-electrocatalytic CH ₄ Conversion. ACS Nano, 2022, 16, 8684-8693.	7.3	19

ARTICLE IF CITATIONS # Improving Anti-Coking Properties of Ni/Al2O3 Catalysts via Synergistic Effect of Metallic Nickel and 163 1.311 Nickel Phosphides in Dry Methane Reforming. Materials, 2022, 15, 3044. Interfacial engineering of carbon-based materials for efficient electrocatalysis: Recent advances and 164 10.1 future. EnergyChem, 2022, 4, 100074. Quo Vadis Dry Reforming of Methane?â€"A Review on Its Chemical, Environmental, and Industrial 165 9 1.6 Prospects. Catalysts, 2022, 12, 465. Optimization of Ni-Based Catalysts for Dry Reforming of Methane via Alloy Design: A Review. Energy 29 & Fuels, 2022, 36, 5102-5151. Unraveling the promotional effects of NiCo catalysts over defective boron nitride nanosheets in dry 167 2.2 11 reforming of methane. Catalysis Today, 2022, 402, 283-291. Nano-crumples induced Sn-Bi bimetallic interface pattern with moderate electron bank for highly 5.8 99 efficient CO2 electroreduction. Nature Communications, 2022, 13, 2486. Engineering the oxygen vacancies enables Ni single-atom catalyst for stable and efficient C-H 169 10.8 61 activation. Applied Catalysis B: Environmental, 2022, 314, 121516. Simultaneous production of hydrogen and carbon nanotubes from biogas over mono- and bimetallic 3.3 catalyst. Journal of Environmental Chemical Engineering, 2022, 10, 107910. Efficient Photothermochemical Dry Reforming of Methane over Ni Supported on ZrO2 with CeO2 171 2.2 5 Incorporation. Catalysis Today, 2022, , . Combining electrolysis with thermocatalysis for dry reforming of methane in a naturally stratifying 1.7 liquid alloy-salt catalytic system. Materials Today Chemistry, 2022, 25, 100949. Ultra-durable Ni-Ir/MgAl2O4 catalysts for dry reforming of methane enabled by dynamic balance 173 2.9 20 between carbon deposition and elimination. Chem Catalysis, 2022, 2, 1748-1763. Precise Modulation of Tripleâ€Phase Boundaries towards a Highly Functional Exsolved Catalyst for Dry 174 1.6 Reforming of Methane under a Dilutionâ€Free System. Angewandte Chemie, 2022, 134, . Precise Modulation of Tripleâ€Phase Boundaries towards a Highly Functional Exsolved Catalyst for Dry Reforming of Methane under a Dilutionâ€Free System. Angewandte Chemie - International Edition, 2022, 175 7.2 12 61,. Surface-induced gas-phase redistribution effects in plasma-catalytic dry reforming of methane: numerical investigation by fluid modeling. Journal Physics D: Applied Physics, 2022, 55, 355201. 1.3 Coking- and Sintering-Resistant Ni Nanocatalysts Confined by Active BN Edges for Methane Dry 177 4.0 14 Reforming. ACS Applied Materials & amp; Interfaces, 2022, 14, 25439-25447. Producing ultrastable Ni-ZrO2 nanoshell catalysts for dry reforming of methane by flame synthesis and Ni exsolution. Chem Catalysis, 2022, 2, 2262-2274. Sintering- and coking-resistant nickel catalysts embedded in boron nitride supported nickel aluminate 179 2.217 spinels for dry reforming of methane. Applied Catalysis A: General, 2022, 642, 118706. Ni/CeO2 Catalyst Prepared via Microimpinging Stream Reactor with High Catalytic Performance for CO2 Dry Reforming Methane. Catalysts, 2022, 12, 606.

#	Article	IF	CITATIONS
181	Mesoporous silica supported Ni-based catalysts for methane dry reforming: A review of recent studies. International Journal of Hydrogen Energy, 2022, 47, 41596-41620.	3.8	45
182	A density functional theory study of methane activation on MgO supported Ni9M1 cluster: role of M on C-H activation. Frontiers of Chemical Science and Engineering, 2022, 16, 1485-1492.	2.3	10
183	High Fuel Yields, Solarâ€ŧoâ€Fuel Efficiency, and Excellent Durability Achieved for Confined NiCo Alloy Nanoparticles Using MgO Overlayers for Photothermocatalytic CO ₂ Reduction. Solar Rrl, 0, , .	3.1	4
184	Light-Driven Hydrogen Production from Steam Methane Reforming via Bimetallic PdNi Catalysts Derived from Layered Double Hydroxide Nanosheets. Energy & Fuels, 2022, 36, 11627-11635.	2.5	28
185	Silica samurai: Aristocrat of energy and environmental catalysis. Chem Catalysis, 2022, 2, 1893-1918.	2.9	6
186	CH4 reforming with CO2 using a nanosecond pulsed dielectric barrier discharge plasma. Journal of CO2 Utilization, 2022, 62, 102073.	3.3	19
187	Understanding the mechanism of carbon deposition of Ni3Co catalysts for methane dry reforming. Applied Surface Science, 2022, 599, 154002.	3.1	14
188	Optimizing Barium Oxide Promoter for Nickel Catalyst Supported on Yttria–Stabilized Zirconia in Dry Reforming of Methane. SSRN Electronic Journal, 0, , .	0.4	3
189	Light-driven efficient dry reforming of methane over Pt/La ₂ O ₃ with long-term durability. Journal of Materials Chemistry A, 2022, 10, 16016-16028.	5.2	12
190	A General Route to Flame Aerosol Synthesis and In Situ Functionalization of Mesoporous Silica. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
191	A General Route to Flame Aerosol Synthesis and in situ Functionalization of Mesoporous Silica. Angewandte Chemie, 0, , .	1.6	1
192	Cascade and hybrid processes for co-generating solar-based fuels and electricity via combining spectral splitting technology and membrane reactor. Renewable Energy, 2022, 196, 782-799.	4.3	10
193	How to reach carbon emission targets with technology and public awareness. Matter, 2022, , .	5.0	1
194	CO2 methanation over γ-Al2O3 nanosheets-stabilized Ni catalysts: Effects of MnOx and MoOx additives on catalytic performance and reaction pathway. Journal of CO2 Utilization, 2022, 63, 102113.	3.3	6
195	Recent progress in single-molecule fluorescence technology in nanocatalysis. Nano Research, 2022, 15, 10316-10327.	5.8	5
196	Computational Catalyst Design for Dry Reforming of Methane: A Review. Energy & Fuels, 2022, 36, 9844-9865.	2.5	11
197	Effect of interstitial carbon atoms in core-shell Ni3ZnC0.7/Al2O3 catalyst for high-performance dry reforming of methane. Applied Catalysis B: Environmental, 2022, 317, 121806.	10.8	14
198	Enhanced carbon tolerance of hydrotalcite-derived Ni-Ir/Mg(Al)O catalysts in dry reforming of methane under elevated pressures. Fuel Processing Technology, 2022, 237, 107446.	3.7	9

#	Article	IF	CITATIONS
199	Anti-coking NiCe /HAP catalyst with well-balanced carbon formation and gasification in methane dry reforming. Fuel, 2022, 329, 125477.	3.4	5
200	Enhanced dry reforming of methane by microwave-mediated confined catalysis over Ni-La/AC catalyst. Chemical Engineering Journal, 2023, 451, 138616.	6.6	10
201	Thermocatalytic and solar thermochemical carbon dioxide utilization to solar fuels and chemicals: A review. International Journal of Energy Research, 2022, 46, 19929-19960.	2.2	5
202	A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector. Sustainability, 2022, 14, 11206.	1.6	28
203	Nanotubular g-C3N4 confining AuPd particle for the improved catalytic reactivity in hydrogen production from formic acid. Materials Today Chemistry, 2022, 26, 101140.	1.7	1
204	Low temperature mechano-catalytic biofuel conversion using liquid metals. Chemical Engineering Journal, 2023, 452, 139350.	6.6	6
205	Promotion of microwave discharge over carbon catalysts for CO2 reforming of CH4 to syngas. Fuel, 2023, 331, 125914.	3.4	9
206	The role of Mo species in Ni–Mo catalysts for dry reforming of methane. Physical Chemistry Chemical Physics, 2022, 24, 21461-21469.	1.3	4
207	Counting Point Defects at Nanoparticle Surfaces by Electron Holography. Nano Letters, 2022, 22, 6936-6941.	4.5	1
208	Ni–Cu Alloy Nanoparticles Confined by Physical Encapsulation with SiO ₂ and Chemical Metal–Support Interaction with CeO ₂ for Methane Dry Reforming. Inorganic Chemistry, 2022, 61, 15619-15628.	1.9	27
209	Selective depolymerization of lignin into phenolic products over NixZn1Ââ^'Âx/ZrO2-MgO. Biomass Conversion and Biorefinery, 0, , .	2.9	1
210	Review of carbon dioxide utilization technologies and their potential for industrial application. Journal of CO2 Utilization, 2022, 65, 102239.	3.3	22
211	Underlying physics and chemistry of ferroic-photocatalysis: a critical review. Journal of Materials Chemistry A, 2022, 10, 22977-22991.	5.2	5
212	Impact of Nickel Phosphides Over Ni/SiO2 Catalysts in Dry Methane Reforming. Catalysis Letters, 2023, 153, 2787-2802.	1.4	4
213	Surface Acidity/Basicity and Oxygen Defects of Metal Oxide: Impacts on Catalytic Performances of CO2 Reforming and Hydrogenation Reactions. Topics in Catalysis, 2023, 66, 299-325.	1.3	8
214	Sorption-enhanced chemical looping steam reforming of glycerol with CO2 in-situ capture and utilization. Chemical Engineering Journal, 2023, 452, 139703.	6.6	20
215	Sandwich-structured nickel/kaolinite catalyst with boosted stability for dry reforming of methane with carbon dioxide. Chemical Engineering Journal, 2023, 453, 139694.	6.6	7
216	Conceptual modeling of a reactor bed of a nickel-copper bi-metallic catalyst for dry reforming of methane. Chemical Engineering Science, 2023, 267, 118315.	1.9	4

#	Article	IF	CITATIONS
217	Technological solution for distributing vehicular hydrogen using dry plasma reforming of natural gas and biogas. Renewable Energy, 2022, 201, 11-21.	4.3	2
218	Enhanced CO2 utilization in dry reforming of methane achieved through nickel-mediated hydrogen spillover in zeolite crystals. Nature Catalysis, 2022, 5, 1030-1037.	16.1	67
219	Promoting Methane Dry Reforming over Ni Catalysts via Modulating Surface Electronic Structures of BN Supports by Doping Carbon. ACS Catalysis, 2022, 12, 14152-14161.	5.5	26
220	Production of syngas by methane dry reforming over the catalyst <scp>ZNi_{1â€x}Ce_x</scp> : effects of catalyst calcination and reduction temperature. Journal of Chemical Technology and Biotechnology, 2023, 98, 691-705.	1.6	1
221	A new automated synthesis of a coke-resistant Cs-promoted Ni-supported nanocatalyst for sustainable dry reforming of methane. Journal of Materials Chemistry A, 2023, 11, 1666-1675.	5.2	4
222	Methane Dry Reforming. RSC Green Chemistry, 2022, , 187-207.	0.0	1
223	Doping low amount of Zirconium in Rh-LTO to prepare durable catalysts for dry reforming of methane. Molecular Catalysis, 2023, 535, 112822.	1.0	3
224	Recent advances in reducible metal oxide catalysts for C1 reactions. Catalysis Science and Technology, 0, , .	2.1	1
225	A critical review of heterogeneous catalyst design for carbon nanotubes synthesis: Functionalities, performances, and prospects. Fuel Processing Technology, 2023, 241, 107624.	3.7	10
226	Upgrading heterogeneous Ni catalysts with thiol modification. Innovation(China), 2023, 4, 100362.	5.2	6
227	Plasma-assisted Ni catalysts: Toward highly-efficient dry reforming of methane at low temperature. International Journal of Hydrogen Energy, 2023, 48, 8921-8931.	3.8	6
228	H ₂ Production from Methane Reforming over Molybdenum Carbide Catalysts: From Surface Properties and Reaction Mechanism to Catalyst Development. ACS Catalysis, 2022, 12, 15501-15528.	5.5	14
229	A highly efficient and stable TiO2@NH2-MIL-125 material for enhanced photocatalytic conversion of CO2 and CH4. Separation and Purification Technology, 2023, 310, 123174.	3.9	15
230	Modern Technologies of Hydrogen Production. Processes, 2023, 11, 56.	1.3	17
231	Reforming process design and modeling: Steam, dry, and autothermal reforming. , 2023, , 123-140.		0
232	Dry reforming for syngas production. , 2023, , 97-118.		0
233	Introduction to syngas products and applications. , 2023, , 3-25.		0
234	Membrane technology for syngas production. , 2023, , 291-304.		0

#	Article	IF	CITATIONS
235	Autothermal reforming and trireforming for syngas production. , 2023, , 119-148.		0
236	Ordered mesoporous Ni-La2O3/Al2O3 catalysts towards efficient plasma-assisted dry reforming of methane. Fuel Processing Technology, 2023, 243, 107676.	3.7	8
237	Ni/Y2O3-ZrO2 catalysts for dry reforming of methane: Increased Y content boosted the performance via enhancing metal-support interaction and surface oxygen species. Fuel, 2023, 340, 127543.	3.4	6
238	Syngas production from CO2 reforming of glycerol by mesoporous Ni/CeO2 catalysts. Fuel, 2023, 341, 127717.	3.4	8
239	Effects of Metal-Support Interactions and Interfaces on Catalytic Performance over M2O3- (<math) 0="" 0<="" etqq0="" td="" tj=""><td>rgBT /Ove 2.2</td><td>erlock 10 Tf 5 2</td></math)>	rgBT /Ove 2.2	erlock 10 Tf 5 2
240	Controllable Preparation of Nano-Ni to Eliminate Step Edges of Carbon Deposition on Ni-Based Catalysts for Methane Dry Reforming. Industrial & Engineering Chemistry Research, 0, , .	1.8	1
241	Sintering-free catalytic ammonia cracking by vertically standing 2D porous framework supported Ru nanocatalysts. Chemical Engineering Journal, 2023, 463, 142474.	6.6	2
242	Functionalization of inert silica to construct Si-O-Ni interfacial sites for stable dry reforming of methane. Chemical Engineering Journal, 2023, 465, 142808.	6.6	3
243	The study of CO2 reforming of methane over Ce/Sm-promoted NiCaAl catalysts. Chemical Engineering Research and Design, 2023, 174, 235-242.	2.7	5
244	Vanadium doped Ni/Al2O3: Efficient and coke resistant catalysts for methane dry reforming. Catalysis Today, 2023, 418, 114041.	2.2	6
245	Impacts of catalyst and process parameters on Ni-catalyzed methane dry reforming via interpretable machine learning. Applied Catalysis B: Environmental, 2023, 330, 122593.	10.8	7
246	Preparation adjacent Ni-Co bimetallic nano catalyst for dry reforming of methane. Fuel, 2023, 343, 128013.	3.4	7
247	Structural evolution of robust Ni3Fe1 alloy on Al2O3 in dry reforming of methane: Effect of iron-surplus strategy from Ni1Fe1 to Ni3Fe1. Applied Catalysis B: Environmental, 2023, 331, 122669.	10.8	8
248	Engineering oxygen vacancy-rich CeOx overcoating onto Ni/Al2O3 by atomic layer deposition for bi-reforming of methane. Chemical Engineering Journal, 2023, 459, 141611.	6.6	12
249	A review on catalyst development for conventional thermal dry reforming of methane at low temperature. Canadian Journal of Chemical Engineering, 2023, 101, 3180-3212.	0.9	6
250	Maximizing Active Fe Species in ZSM-5 Zeolite Using Organic-Template-Free Synthesis for Efficient Selective Methane Oxidation. Journal of the American Chemical Society, 2023, 145, 5888-5898.	6.6	13
251	Atypical stability of exsolved Ni-Fe alloy nanoparticles on double layered perovskite for CO2 dry reforming of methane. Applied Catalysis B: Environmental, 2023, 328, 122479.	10.8	11
252	NiO-MgO Prepared by the Complex-Decomposition Method as a Catalyst for Carbon Dioxide Reforming of Methane. Processes, 2023, 11, 596.	1.3	1

#	Article	IF	CITATIONS
253	Synergistic promotions between CO2 capture and in-situ conversion on Ni-CaO composite catalyst. Nature Communications, 2023, 14, .	5.8	41
254	Effect of hydroxyl and Mo doping on activity and carbon deposition resistance of hydroxyapatite supported NixMoy catalyst for syngas production via DRM reaction. International Journal of Hydrogen Energy, 2023, 48, 19033-19045.	3.8	8
255	Unraveling the effects of Ni particle size and facet on CH4 activation: From cluster to nanoparticle. International Journal of Hydrogen Energy, 2023, 48, 19486-19493.	3.8	12
256	Development of a Highly Stable Ternary Alloy Catalyst for Dry Reforming of Methane. ACS Catalysis, 2023, 13, 3541-3548.	5.5	10
257	Atomically dispersed metals as potential coke-resistant catalysts for dry reforming of methane. Cell Reports Physical Science, 2023, 4, 101310.	2.8	6
258	Optimizing barium promoter for nickel catalyst supported on yttriaâ€stabilized zirconia in dry reforming of methane. Energy Science and Engineering, 0, , .	1.9	0
259	Onâ€line Optimization of Integrated Carbon Capture and Conversion Process via the Ratings Concept: A Combined DFT and Microkinetic Modeling Approach. ChemCatChem, 0, , .	1.8	0
260	High fuel production rate and excellent durability for photothermocatalytic CO ₂ reduction achieved <i>via</i> the surface plasma effect of NiCu alloy nanoparticles. Catalysis Science and Technology, 2023, 13, 2500-2507.	2.1	4
261	Unraveling the Unique Promotion Effects of a Triple Interface in Ni Catalysts for Methane Dry Reforming. Industrial & Engineering Chemistry Research, 2023, 62, 4965-4975.	1.8	10
262	Effects of Operating Parameters and Feed Gas Compositions on the Dry Reforming of Methane over the Ni/Al2O3 Catalyst. Catalysts, 2023, 13, 602.	1.6	2
263	3D porous catalysts for Plasma-Catalytic dry reforming of Methane: How does the pore size affect the Plasma-Catalytic Performance?. Chemical Engineering Journal, 2023, 464, 142574.	6.6	4
264	Nanomaterials in Catalysis Applications. Catalysts, 2023, 13, 627.	1.6	1
265	One-step synthesis of oxygen vacancy-rich α-Bi2O3-Bi4O7-BiO2 â^ x heterojunctions for photocatalytic degradation of organic pollutants. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	1
266	Enhancing Coke Resistance of Mg _{1–x} Ni _x Al ₂ O ₄ Catalysts for Dry Reforming of Methane via a Dopingâ€5egregation Strategy. ChemCatChem, 2023, 15, .	1.8	5
277	Synthesis of nanoparticles via microfluidic devices and integrated applications. Mikrochimica Acta, 2023, 190, .	2.5	3
310	Ammonia-assisted reforming and dehydrogenation toward efficient light alkane conversion. Green Chemistry, 2023, 25, 7904-7915.	4.6	1
317	Confinement effects over Ni-based catalysts for methane dry reforming. Catalysis Science and Technology, 2023, 13, 6089-6101.	2.1	1
351	Integrated CO ₂ capture and utilization: a review of the synergistic effects of dual function materials. Catalysis Science and Technology, 2024, 14, 790-819.	2.1	0

ARTICLE

IF CITATIONS