Fusion mechanism of 2019-nCoV and fusion inhibitors t

Cellular and Molecular Immunology 17, 765-767 DOI: 10.1038/s41423-020-0374-2

Citation Report

#	Article	IF	CITATIONS
1	Drug Weaponry to Fight Against SARS-CoV-2. Frontiers in Molecular Biosciences, 2020, 7, 204.	1.6	2
2	<i>In Silico</i> Structure-Based Repositioning of Approved Drugs for Spike Clycoprotein S2 Domain Fusion Peptide of SARS-CoV-2: Rationale from Molecular Dynamics and Binding Free Energy Calculations. MSystems, 2020, 5, .	1.7	24
3	Structural and functional modelling of SARS-CoV-2 entry in animal models. Scientific Reports, 2020, 10, 15917.	1.6	53
4	The Potential of Antiviral Peptides as COVID-19 Therapeutics. Frontiers in Pharmacology, 2020, 11, 575444.	1.6	57
5	Design of novel viral attachment inhibitors of the spike glycoprotein (S) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) through virtual screening and dynamics. International Journal of Antimicrobial Agents, 2020, 56, 106177.	1.1	21
6	anti-HCoV: A web resource to collect natural compounds against human coronaviruses. Trends in Food Science and Technology, 2020, 106, 1-11.	7.8	4
7	In-silico design of a potential inhibitor of SARS-CoV-2 S protein. PLoS ONE, 2020, 15, e0240004.	1.1	36
8	Molecular characterization, pathogen-host interaction pathway and in silico approaches for vaccine design against COVID-19. Journal of Chemical Neuroanatomy, 2020, 110, 101874.	1.0	16
9	Potential of tilapia (Oreochromis niloticus) viscera bioactive peptides as antiviral for SARS-CoV-2 (COVID 19). IOP Conference Series: Earth and Environmental Science, 2020, 584, 012004.	0.2	8
10	Salvianolic acid C potently inhibits SARS-CoV-2 infection by blocking the formation of six-helix bundle core of spike protein. Signal Transduction and Targeted Therapy, 2020, 5, 220.	7.1	52
11	Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27141-27147.	3.3	173
12	Inhibiting fusion with cellular membrane system: therapeutic options to prevent severe acute respiratory syndrome coronavirus-2 infection. American Journal of Physiology - Cell Physiology, 2020, 319, C500-C509.	2.1	9
13	Minireview of progress in the structural study of SARS-CoV-2 proteins. Current Research in Microbial Sciences, 2020, 1, 53-61.	1.4	43
14	COVID-19 vaccine development and a potential nanomaterial path forward. Nature Nanotechnology, 2020, 15, 646-655.	15.6	501
15	Identification of therapeutic target in S2 domain of SARS nCov-2 Spike glycoprotein: Key to design and discover drug candidates for inhibition of viral entry into host cell. Journal of Theoretical and Computational Chemistry, 2020, 19, 2050028.	1.8	3
16	Gaining insights on immune responses to the novel coronavirus, COVID-19 and therapeutic challenges. Life Sciences, 2020, 257, 118058.	2.0	11
17	The epidemiology and therapeutic options for the COVID-19. Precision Clinical Medicine, 2020, 3, 71-84.	1.3	17
18	Evidence supporting the use of peptides and peptidomimetics as potential SARS-CoV-2 (COVID-19) therapeutics. Future Medicinal Chemistry, 2020, 12, 1647-1656.	1.1	49

ATION RED

#	Article	IF	CITATIONS
19	Current and Future Direct-Acting Antivirals Against COVID-19. Frontiers in Microbiology, 2020, 11, 587944.	1.5	16
20	Biochemical parameters and pathogenesis of SARS-CoV-2 infection in vital organs: COVID-19 outbreak in Iran. New Microbes and New Infections, 2020, 38, 100792.	0.8	6
21	SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Frontiers in Cellular and Infection Microbiology, 2020, 10, 587269.	1.8	552
22	Insights into the Origin, Transmission and Outbreak of Coronavirus Disease (Covid 19): A Recent Study. Asian Journal of Chemistry, 2020, 32, 2403-2415.	0.1	0
23	COVID-19: Advances in diagnostic tools, treatment strategies, and vaccine development. Journal of Biosciences, 2020, 45, 1.	0.5	79
24	RBD-Fc-based COVID-19 vaccine candidate induces highly potent SARS-CoV-2 neutralizing antibody response. Signal Transduction and Targeted Therapy, 2020, 5, 282.	7.1	149
25	In Silico Discovery of Antimicrobial Peptides as an Alternative to Control SARS-CoV-2. Molecules, 2020, 25, 5535.	1.7	21
26	Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Advanced Drug Delivery Reviews, 2020, 167, 47-65.	6.6	132
27	Updated information on new coronavirus disease 2019 occurrence, drugs, and prediction of a potential receptor. Journal of Biochemical and Molecular Toxicology, 2020, 34, e22594.	1.4	3
28	Overview of Immune Response During SARS-CoV-2 Infection: Lessons From the Past. Frontiers in Immunology, 2020, 11, 1949.	2.2	345
29	The Global Emergency of Novel Coronavirus (SARS-CoV-2): An Update of the Current Status and Forecasting. International Journal of Environmental Research and Public Health, 2020, 17, 5648.	1.2	49
30	Designing Multi-Epitope Vaccines to Combat Emerging Coronavirus Disease 2019 (COVID-19) by Employing Immuno-Informatics Approach. Frontiers in Immunology, 2020, 11, 1663.	2.2	79
31	An overview of key potential therapeutic strategies for combat in the COVID-19 battle. RSC Advances, 2020, 10, 28243-28266.	1.7	34
32	In silico study of azithromycin, chloroquine and hydroxychloroquine and their potential mechanisms of action against SARS-CoV-2 infection. International Journal of Antimicrobial Agents, 2020, 56, 106119.	1.1	35
33	Unlocking COVID therapeutic targets: A structure-based rationale against SARS-CoV-2, SARS-CoV and MERS-CoV Spike. Computational and Structural Biotechnology Journal, 2020, 18, 2117-2131.	1.9	27
34	An enzyme-based immunodetection assay to quantify SARS-CoV-2 infection. Antiviral Research, 2020, 181, 104882.	1.9	34
35	Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 2020, 41, 1141-1149.	2.8	1,611
36	Investigating Virological, Immunological, and Pathological Avenues to Identify Potential Targets for Developing COVID-19 Treatment and Prevention Strategies. Vaccines, 2020, 8, 443.	2.1	16

#	Article	IF	CITATIONS
37	SARS-CoV-2 Entry Inhibitors: Small Molecules and Peptides Targeting Virus or Host Cells. International Journal of Molecular Sciences, 2020, 21, 5707.	1.8	58
38	Identification of a repurposed drug as an inhibitor of Spike protein of human coronavirus SARS-CoV-2 by computational methods. Journal of Biosciences, 2020, 45, 1.	0.5	40
39	COVID-19 and iron dysregulation: distant sequence similarity between hepcidin and the novel coronavirus spike glycoprotein. Biology Direct, 2020, 15, 19.	1.9	64
40	ACE2 in the Era of SARS-CoV-2: Controversies and Novel Perspectives. Frontiers in Molecular Biosciences, 2020, 7, 588618.	1.6	77
41	COVID-19 update: The race to therapeutic development. Drug Resistance Updates, 2020, 53, 100733.	6.5	49
42	The SARS-CoV-2 Spike Glycoprotein as a Drug and Vaccine Target: Structural Insights into Its Complexes with ACE2 and Antibodies. Cells, 2020, 9, 2343.	1.8	73
43	Inhibition of Coronavirus Entry <i>In Vitro</i> and <i>Ex Vivo</i> by a Lipid-Conjugated Peptide Derived from the SARS-CoV-2 Spike Glycoprotein HRC Domain. MBio, 2020, 11, .	1.8	63
44	Natural Flavonoids as Potential Angiotensin-Converting Enzyme 2 Inhibitors for Anti-SARS-CoV-2. Molecules, 2020, 25, 3980.	1.7	80
45	A computational approach to drug repurposing against SARS-CoV-2 RNA dependent RNA polymerase (RdRp). Journal of Biomolecular Structure and Dynamics, 2020, , 1-8.	2.0	20
46	Entry Inhibitors: Efficient Means to Block Viral Infection. Journal of Membrane Biology, 2020, 253, 425-444.	1.0	35
47	Host DDX Helicases as Possible SARS-CoV-2 Proviral Factors: A Structural Overview of Their Hijacking Through Multiple Viral Proteins. Frontiers in Chemistry, 2020, 8, 602162.	1.8	25
48	Antimicrobial and Amyloidogenic Activity of Peptides. Can Antimicrobial Peptides Be Used against SARS-CoV-2?. International Journal of Molecular Sciences, 2020, 21, 9552.	1.8	45
49	Surveying the Side-Chain Network Approach to Protein Structure and Dynamics: The SARS-CoV-2 Spike Protein as an Illustrative Case. Frontiers in Molecular Biosciences, 2020, 7, 596945.	1.6	9
50	Geranii Herba as a Potential Inhibitor of SARS-CoV-2 Main 3CLpro, Spike RBD, and Regulation of Unfolded Protein Response: An In Silico Approach. Antibiotics, 2020, 9, 863.	1.5	24
51	Potential therapeutic targets and promising drugs for combating <scp>SARS oVâ€2</scp> . British Journal of Pharmacology, 2020, 177, 3147-3161.	2.7	70
52	Ligandâ€centered assessment of SARSâ€CoVâ€2 drug target models in the Protein Data Bank. FEBS Journal, 2020, 287, 3703-3718.	2.2	35
53	The antiâ€HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoVâ€2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVIDâ€19 infections. Journal of Medical Virology, 2020, 92, 2087-2095.	2.5	127
54	Current development of COVID-19 diagnostics, vaccines and therapeutics. Microbes and Infection, 2020, 22, 231-235.	1.0	44

#	Article	IF	CITATIONS
55	Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity. Journal of Virology, 2020, 94, .	1.5	164
56	Potential Drugs Targeting Early Innate Immune Evasion of SARS-Coronavirus 2 via 2'-O-Methylation of Viral RNA. Viruses, 2020, 12, 525.	1.5	75
57	In silico fight against novel coronavirus by finding chromone derivatives as inhibitor of coronavirus main proteases enzyme. Structural Chemistry, 2020, 31, 1831-1840.	1.0	41
58	From SARS-CoV to SARS-CoV-2: safety and broad-spectrum are important for coronavirus vaccine development. Microbes and Infection, 2020, 22, 245-253.	1.0	36
59	A profiling analysis on the receptor ACE2 expression reveals the potential risk of different type of cancers vulnerable to SARS-CoV-2 infection. Annals of Translational Medicine, 2020, 8, 481-481.	0.7	64
60	Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sciences, 2020, 256, 117883.	2.0	114
61	Exploring the genomic and proteomic variations of SARS-CoV-2 spike glycoprotein: A computational biology approach. Infection, Genetics and Evolution, 2020, 84, 104389.	1.0	84
62	Identification of Human Single-Domain Antibodies against SARS-CoV-2. Cell Host and Microbe, 2020, 27, 891-898.e5.	5.1	227
63	A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells, 2020, 9, 1267.	1.8	400
64	Overview of lethal human coronaviruses. Signal Transduction and Targeted Therapy, 2020, 5, 89.	7.1	218
65	Drug repurposing using computational methods to identify therapeutic options for COVID-19. Journal of Diabetes and Metabolic Disorders, 2020, 19, 691-699.	0.8	45
66	Inhibitors of SARS-CoV-2 Entry: Current and Future Opportunities. Journal of Medicinal Chemistry, 2020, 63, 12256-12274.	2.9	183
67	COVID-19 Pandemic: Cardiovascular Complications and Future Implications. American Journal of Cardiovascular Drugs, 2020, 20, 311-324.	1.0	98
68	Broad-Spectrum Coronavirus Fusion Inhibitors to Combat COVID-19 and Other Emerging Coronavirus Diseases. International Journal of Molecular Sciences, 2020, 21, 3843.	1.8	37
69	The broad-spectrum antiviral recommendations for drug discovery against COVID-19. Drug Metabolism Reviews, 2020, 52, 408-424.	1.5	14
70	Opportunities and Challenges for Biosensors and Nanoscale Analytical Tools for Pandemics: COVID-19. ACS Nano, 2020, 14, 7783-7807.	7.3	284
71	Silibinin and SARS-CoV-2: Dual Targeting of Host Cytokine Storm and Virus Replication Machinery for Clinical Management of COVID-19 Patients. Journal of Clinical Medicine, 2020, 9, 1770.	1.0	42
72	Inhibition of SARS-CoV-2 (previously 2019-nCoV)Âinfection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Research, 2020, 30, 343-355.	5.7	1,083

#	Article	IF	CITATIONS
73	The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Military Medical Research, 2020, 7, 11.	1.9	2,937
74	Severe Acute Respiratory Syndrome Coronavirus 2: From Gene Structure to Pathogenic Mechanisms and Potential Therapy. Frontiers in Microbiology, 2020, 11, 1576.	1.5	32
75	SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy. Theranostics, 2020, 10, 7448-7464.	4.6	180
76	Coronavirus Disease 2019–COVID-19. Clinical Microbiology Reviews, 2020, 33, .	5.7	767
77	Clinical and Analytical Performance of an Automated Serological Test That Identifies S1/S2-Neutralizing IgG in COVID-19 Patients Semiquantitatively. Journal of Clinical Microbiology, 2020, 58, .	1.8	137
78	COVID-19 and Heart: From Clinical Features to Pharmacological Implications. Journal of Clinical Medicine, 2020, 9, 1944.	1.0	36
79	COVID-19: Progress in diagnostics, therapy and vaccination. Theranostics, 2020, 10, 7821-7835.	4.6	121
80	Association of Comorbidities with Coronavirus Disease 2019: A Review. Annals of the National Academy of Medical Sciences (India), 2020, 56, 102-111.	0.2	7
81	The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. Journal of Autoimmunity, 2020, 109, 102434.	3.0	704
82	The First Disease X is Caused by a Highly Transmissible Acute Respiratory Syndrome Coronavirus. Virologica Sinica, 2020, 35, 263-265.	1.2	67
83	Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease. Physiological Genomics, 2020, 52, 217-221.	1.0	82
84	COVID-19 Outbreak: an Update on Therapeutic Options. SN Comprehensive Clinical Medicine, 2020, 2, 379-380.	0.3	14
85	Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Research, 2020, 178, 104792.	1.9	635
86	Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detection, mechanisms and treatment. International Journal of Antimicrobial Agents, 2020, 55, 105950.	1.1	131
87	Updated Approaches against SARS-CoV-2. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	198
88	Pharmacological Therapeutics Targeting RNA-Dependent RNA Polymerase, Proteinase and Spike Protein: From Mechanistic Studies to Clinical Trials for COVID-19. Journal of Clinical Medicine, 2020, 9, 1131.	1.0	112
89	COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turkish Journal of Medical Sciences, 2020, 50, 620-632.	0.4	351
90	SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells. Science China Life Sciences, 2020, 63, 1413-1416.	2.3	104

#	ARTICLE	IF	CITATIONS
91	Structural Basis of SARS-CoV-2– and SARS-CoV–Receptor Binding and Small-Molecule Blockers as Potential Therapeutics. Annual Review of Pharmacology and Toxicology, 2021, 61, 465-493.	4.2	36
92	Effect of preâ€existing diseases on COVIDâ€19 infection and role of new sensors and biomaterials for its detection and treatment. Medical Devices & Sensors, 2021, 4, e10140.	2.7	5
93	Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nature Immunology, 2021, 22, 25-31.	7.0	403
94	Insights on 3D Structures of Potential Drugâ€targeting Proteins of SARSâ€CoVâ€2: Application of Cavity Search and Molecular Docking. Molecular Informatics, 2021, 40, e2000096.	1.4	13
95	Molecular Insights into Smallâ€Molecule Drug Discovery for SARS oVâ€2. Angewandte Chemie - International Edition, 2021, 60, 9789-9802.	7.2	50
96	Molecular Insights into Smallâ€Molecule Drug Discovery for SARS oVâ€2. Angewandte Chemie, 2021, 133, 9873-9886.	1.6	9
97	One year update on the COVID-19 pandemic: Where are we now?. Acta Tropica, 2021, 214, 105778.	0.9	142
98	Advances in developing small molecule SARS 3CLpro inhibitors as potential remedy for corona virus infection. Tetrahedron, 2021, 77, 131761.	1.0	21
99	Essential functional molecules associated with SARS-CoV-2 infection: Potential therapeutic targets for COVID-19. Gene, 2021, 768, 145313.	1.0	22
100	Prefusion spike protein stabilization through computational mutagenesis. Proteins: Structure, Function and Bioinformatics, 2021, 89, 399-408.	1.5	5
101	SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiological Genomics, 2021, 53, 51-60.	1.0	100
102	The biogenesis of SARS-CoV-2 spike glycoprotein: multiple targets for host-directed antiviral therapy. Biochemical and Biophysical Research Communications, 2021, 538, 80-87.	1.0	21
103	Pathological and molecular examinations of postmortem testis biopsies reveal SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID-19 patients. Cellular and Molecular Immunology, 2021, 18, 487-489.	4.8	115
104	Targeted therapy strategies against SARSâ€CoVâ€2 cell entry mechanisms: A systematic review of in vitro and in vivo studies. Journal of Cellular Physiology, 2021, 236, 2364-2392.	2.0	65
105	SARSâ€CoVâ€2: Mechanism of infection and emerging technologies for future prospects. Reviews in Medical Virology, 2021, 31, e2168.	3.9	28
106	Application of Nanotechnology in the COVID-19 Pandemic. International Journal of Nanomedicine, 2021, Volume 16, 623-649.	3.3	60
107	Ultra-large-scale ab initio quantum chemical computation of bio-molecular systems: The case of spike protein of SARS-CoV-2 virus. Computational and Structural Biotechnology Journal, 2021, 19, 1288-1301.	1.9	21
108	Structure of SARS-CoV-2 Proteins. , 2021, , 91-120.		0

#	Article	IF	CITATIONS
109	Review on COVID-19 Etiopathogenesis, Clinical Presentation and Treatment AvailableÂwith Emphasis on ACE2. Indian Journal of Clinical Biochemistry, 2021, 36, 3-22.	0.9	8
110	Facing the challenge of viral mutations in the age of pandemic: Developing highly potent, broadâ€spectrum, and safe COVIDâ€19 vaccines and therapeutics. Clinical and Translational Medicine, 2021, 11, e284.	1.7	11
111	Special Features of Human Lung ACE2 Sensitivity to SARS-CoV-2 Spike Glycoprotein. , 2021, , 583-599.		0
112	Clinical Manifestations of Cytokine Storm and Immune Response to COVID-19: Literature Review. Open Journal of Internal Medicine, 2021, 11, 151-174.	0.1	0
113	Interaction of serum proteins with SARS-CoV-2 RBD. Nanoscale, 2021, 13, 12865-12873.	2.8	14
114	<i>In Silico</i> Exploration of Phytoconstituents From <i>Phyllanthus emblica</i> and <i>Aegle marmelos</i> as Potential Therapeutics Against SARS-CoV-2 RdRp. Bioinformatics and Biology Insights, 2021, 15, 117793222110274.	1.0	14
115	Similarities and differences between HIV and SARS-CoV-2. International Journal of Medical Sciences, 2021, 18, 846-851.	1.1	34
116	Accurate Evaluation on the Interactions of SARS-CoV-2 with Its Receptor ACE2 and Antibodies CR3022/CB6*. Chinese Physics Letters, 2021, 38, 018701.	1.3	38
117	Potential compounds from several Indonesian plants to prevent SARS-CoV-2 infection: A mini-review of SARS-CoV-2 therapeutic targets. Heliyon, 2021, 7, e06001.	1.4	19
118	A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent. Nature Structural and Molecular Biology, 2021, 28, 202-209.	3.6	110
119	Unraveling the molecular basis of host cell receptor usage in SARS-CoV-2 and other human pathogenic β-CoVs. Computational and Structural Biotechnology Journal, 2021, 19, 759-766.	1.9	5
120	Enfuvirtide, an HIV-1 fusion inhibitor peptide, can act as a potent SARS-CoV-2 fusion inhibitor: an <i>in silico</i> drug repurposing study. Journal of Biomolecular Structure and Dynamics, 2022, 40, 5566-5576.	2.0	26
121	Spike S2 Subunit: The Dark Horse in the Race for Prophylactic and Therapeutic Interventions against SARS-CoV-2. Vaccines, 2021, 9, 178.	2.1	23
122	Epidemiology, Pathogenesis, and Healing Strategies of COVID-19. , 0, , .		0
123	Why Is COVID-19 More Severe in Patients With Diabetes? The Role of Angiotensin-Converting Enzyme 2, Endothelial Dysfunction and the Immunoinflammatory System. Frontiers in Cardiovascular Medicine, 2020, 7, 629933.	1.1	43
124	A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. IScience, 2021, 24, 102021.	1.9	66
125	COVID-19: a new emerging respiratory disease from the neurological perspective. Environmental Science and Pollution Research, 2021, 28, 40445-40459.	2.7	21
126	COVID-19: molecular pathophysiology, genetic evolution and prospective therapeutics—a review. Archives of Microbiology, 2021, 203, 2043-2057.	1.0	9

#	Article	IF	CITATIONS
127	Axial Chiral Binaphthoquinone and Perylenequinones from the Stromata of <i>Hypocrella bambusae</i> Are SARS-CoV-2 Entry Inhibitors. Journal of Natural Products, 2021, 84, 436-443.	1.5	24
128	A Biochemical Perspective of the Nonstructural Proteins (NSPs) and the Spike Protein of SARS CoV-2. Protein Journal, 2021, 40, 260-295.	0.7	24
129	Structural stability predictions and molecular dynamics simulations of RBD and HR1 mutations associated with SARS-CoV-2 spike glycoprotein. Journal of Biomolecular Structure and Dynamics, 2021, , 1-13.	2.0	11
130	Characterizing genomic variants and mutations in SARS-CoV-2 proteins from Indian isolates. Gene Reports, 2021, 25, 101044.	0.4	22
131	Enhancement versus neutralization by SARS-CoV-2 antibodies from a convalescent donor associates with distinct epitopes on the RBD. Cell Reports, 2021, 34, 108699.	2.9	110
132	Drug Repurposing of Itraconazole and Estradiol Benzoate against COVIDâ€19 by Blocking SARSâ€CoVâ€2 Spike Proteinâ€Mediated Membrane Fusion. Advanced Therapeutics, 2021, 4, 2000224.	1.6	21
133	SARS-CoV-2: phylogenetic origins, pathogenesis, modes of transmission, and the potential role of nanotechnology. VirusDisease, 2021, 32, 1-12.	1.0	28
134	Insights into biological therapeutic strategies for COVID-19. Fundamental Research, 2021, 1, 166-178.	1.6	2
135	Worldwide remerging of SARS CoV-2 (Severe acute respiratory syndrome coronavirus 2) linked with COVID-19: current status and prospects. Global Journal of Clinical Virology, 2021, , 012-020.	0.0	0
136	Percutaneous microwave ablation applications for liver tumors: recommendations for COVID-19 patients. Heliyon, 2021, 7, e06454.	1.4	6
137	Immunotoxic role of organophosphates: An unseen risk escalating SARS-CoV-2 pathogenicity. Food and Chemical Toxicology, 2021, 149, 112007.	1.8	31
138	A potential peptide inhibitor of SARS-CoV-2 S and human ACE2 complex. Journal of Biomolecular Structure and Dynamics, 2022, 40, 6671-6681.	2.0	5
139	Cellâ€Based Delivery Systems: Emerging Carriers for Immunotherapy. Advanced Functional Materials, 2021, 31, 2100088.	7.8	60
141	An Overview of a Year with COVID-19: What We Know?. Electronic Journal of General Medicine, 2021, 18, em286.	0.3	2
142	Repurposing of anticancer phytochemicals for identifying potential fusion inhibitor for SARS-CoV-2 using molecular docking and molecular dynamics (MD) simulations. Journal of Biomolecular Structure and Dynamics, 2022, 40, 7744-7761.	2.0	16
143	Rapid transmission of SARS-2 among Individuals - A Mini Review. Pakistan Journal of Surgery and Medicine, 2021, 1, e300.	0.4	0
144	A review on the phytochemical and pharmacological properties of Hyptis suaveolens (L.) Poit. Future Journal of Pharmaceutical Sciences, 2021, 7, 65.	1.1	18
145	Broad-Spectrum Anti-coronavirus Vaccines and Therapeutics to Combat the Current COVID-19 Pandemic and Future Coronavirus Disease Outbreaks. Stem Cell Reports, 2021, 16, 398-411.	2.3	18

~		_		
СТТ	ATION			DT
	AIIUI	N IVI	LFO	IV I

#	Article	IF	CITATIONS
146	COVID-19: pathogenesis, advances in treatment and vaccine development and environmental impact—an updated review. Environmental Science and Pollution Research, 2021, 28, 22241-22264.	2.7	24
147	Precision therapeutic targets for COVID-19. Virology Journal, 2021, 18, 66.	1.4	40
148	A Comprehensive Review of the Global Efforts on COVID-19 Vaccine Development. ACS Central Science, 2021, 7, 512-533.	5.3	217
149	Immunobiology and nanotherapeutics of severe acute respiratory syndrome 2 (SARS-CoV-2): a current update. Infectious Diseases, 2021, 53, 559-580.	1.4	7
150	Enhancing the Prefusion Conformational Stability of SARS-CoV-2 Spike Protein Through Structure-Guided Design. Frontiers in Immunology, 2021, 12, 660198.	2.2	28
151	Can ketone bodies inactivate coronavirus spike protein? The potential of biocidal agents against SARSâ€CoVâ€2. BioEssays, 2021, 43, e2000312.	1.2	5
152	Analysis of the SARS-CoV-2-host protein interaction network reveals new biology and drug candidates: focus on the spike surface glycoprotein and RNA polymerase. Expert Opinion on Drug Discovery, 2021, 16, 1-15.	2.5	6
153	Computational Design of a Potential Therapeutic Peptide Against Spike Protein of SARS-CoV-2. Journal of Computational Biophysics and Chemistry, 2021, 20, 337-346.	1.0	4
154	D936Y and Other Mutations in the Fusion Core of the SARS-CoV-2 Spike Protein Heptad Repeat 1: Frequency, Geographical Distribution, and Structural Effect. Molecules, 2021, 26, 2622.	1.7	21
155	SARS-CoV-2 Entry Inhibitors Targeting Virus-ACE2 or Virus-TMPRSS2 Interactions. Current Medicinal Chemistry, 2022, 29, 682-699.	1.2	5
156	Neuropathophysiology of coronavirus disease 2019: neuroinflammation and blood brain barrier disruption are critical pathophysiological processes that contribute to the clinical symptoms of SARS-CoV-2 infection. Inflammopharmacology, 2021, 29, 939-963.	1.9	42
157	Association of ACE inhibitors and angiotensin type II blockers with ACE2 overexpression in COVID-19 comorbidities: A pathway-based analytical study. European Journal of Pharmacology, 2021, 896, 173899.	1.7	29
158	Capturing Cytokines with Advanced Materials: A Potential Strategy to Tackle COVIDâ€19 Cytokine Storm. Advanced Materials, 2021, 33, e2100012.	11.1	43
159	COVID-19 Impacts, Diagnosis and Possible Therapeutic Techniques: A Comprehensive Review. Current Pharmaceutical Design, 2021, 27, 1170-1184.	0.9	13
160	A Canadian perspective on severe acute respiratory syndrome coronavirus 2 infection and treatment: how prevalent underlying inflammatory disease contributes to pathogenesis. Biochemistry and Cell Biology, 2021, 99, 173-194.	0.9	3
161	Antimicrobial peptides and other peptide-like therapeutics as promising candidates to combat SARS-CoV-2. Expert Review of Anti-Infective Therapy, 2021, 19, 1205-1217.	2.0	36
162	Coronavirus Disease 2019: An Overview of the Complications and Management. , 0, , 1-28.		1
163	DNA vaccination induced protective immunity against SARS CoV-2 infection in hamsterss. PLoS Neglected Tropical Diseases, 2021, 15, e0009374.	1.3	18

#	Article	IF	CITATIONS
164	Spectrum of Immunopathogenesis in Coronavirus Disease 2019 (COVID-19): An Updated Review. International Journal of Pharmacology, 2021, 17, 358-369.	0.1	0
166	Therapeutic approaches for SARS-CoV-2 infection. Methods, 2021, 195, 29-43.	1.9	14
167	STATE-OF-THE-ART NANOTECHNOLOGY BASED DRUG DELIVERY STRATEGIES TO COMBAT COVID-19. International Journal of Applied Pharmaceutics, 0, , 18-29.	0.3	2
169	SARS-CoV-2 cell entry and targeted antiviral development. Acta Pharmaceutica Sinica B, 2021, 11, 3879-3888.	5.7	21
171	Characterization of a Novel SARS-CoV-2 Genetic Variant with Distinct Spike Protein Mutations. Viruses, 2021, 13, 1029.	1.5	4
172	Targeting the viralâ€entry facilitators of SARSâ€CoVâ€2 as a therapeutic strategy in COVIDâ€19. Journal of Medical Virology, 2021, 93, 5260-5276.	2.5	26
173	A review on COVID-19 for medical students. Indian Journal of Medical Sciences, 0, 73, 30-35.	0.1	0
174	Exploring SARS-CoV-2 Spikes Glycoproteins for Designing Potential Antiviral Targets. Viral Immunology, 2021, 34, 510-521.	0.6	3
175	Plausible blockers of Spike RBD in SARS-CoV2—molecular design and underlying interaction dynamics from high-level structural descriptors. Journal of Molecular Modeling, 2021, 27, 191.	0.8	10
176	New Approaches and Repurposed Antiviral Drugs for the Treatment of the SARS-CoV-2 Infection. Pharmaceuticals, 2021, 14, 503.	1.7	6
177	Potential role of IFN- \hat{l} ± in COVID-19 patients and its underlying treatment options. Applied Microbiology and Biotechnology, 2021, 105, 4005-4015.	1.7	25
178	Covid-19: Urgent Call to Action. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2021, 20, 118-122.	1.1	3
179	Lipopeptide-based pan-CoV fusion inhibitors potently inhibit HIV-1 infection. Microbes and Infection, 2021, 23, 104840.	1.0	2
180	The Spike of Concern—The Novel Variants of SARS-CoV-2. Viruses, 2021, 13, 1002.	1.5	92
181	The Chronicle of COVID-19 and Possible Strategies to Curb the Pandemic. Current Medicinal Chemistry, 2021, 28, 2852-2886.	1.2	20
182	Current Strategies of Antiviral Drug Discovery for COVID-19. Frontiers in Molecular Biosciences, 2021, 8, 671263.	1.6	75
183	Compelling Evidence for the Activity of Antiviral Peptides against SARS-CoV-2. Viruses, 2021, 13, 912.	1.5	16
184	Antimicrobial Activity of Cyclic-Monomeric and Dimeric Derivatives of the Snail-Derived Peptide Cm-p5 against Viral and Multidrug-Resistant Bacterial Strains. Biomolecules, 2021, 11, 745.	1.8	6

#	Article	IF	CITATIONS
185	Virtual Screening of Phytochemicals by Targeting HR1 Domain of SARS-CoV-2 S Protein: Molecular Docking, Molecular Dynamics Simulations, and DFT Studies. BioMed Research International, 2021, 2021, 1-19.	0.9	20
186	Curcumin as a Potential Treatment for COVID-19. Frontiers in Pharmacology, 2021, 12, 675287.	1.6	79
187	Disruption of disulfides within RBD of SARSâ€CoVâ€2 spike protein prevents fusion and represents a target for viral entry inhibition by registered drugs. FASEB Journal, 2021, 35, e21651.	0.2	44
188	Molecular biology of the SARsâ€CoVâ€2 spike protein: A review of current knowledge. Journal of Medical Virology, 2021, 93, 5729-5741.	2.5	37
189	A brief molecular insight of COVID-19: epidemiology, clinical manifestation, molecular mechanism, cellular tropism and immuno-pathogenesis. Molecular and Cellular Biochemistry, 2021, 476, 3987-4002.	1.4	6
190	Antimicrobial Peptides and Physical Activity: A Great Hope against COVID 19. Microorganisms, 2021, 9, 1415.	1.6	16
192	Novel inhibitors of the main protease enzyme of SARS-CoV-2 identified via molecular dynamics simulation-guided in vitro assay. Bioorganic Chemistry, 2021, 111, 104862.	2.0	30
193	The significance of bioengineered nanoplatforms against SARS-CoV-2: From detection to genome editing. Life Sciences, 2021, 274, 119289.	2.0	9
194	Pinpointing the potential hits for hindering interaction of SARS-CoV-2 S-protein with ACE2 from the pool of antiviral phytochemicals utilizing molecular docking and molecular dynamics (MD) simulations. Journal of Molecular Graphics and Modelling, 2021, 105, 107874.	1.3	37
195	Natural variants in SARS-CoV-2 Spike protein pinpoint structural and functional hotspots with implications for prophylaxis and therapeutic strategies. Scientific Reports, 2021, 11, 13120.	1.6	11
196	Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduction and Targeted Therapy, 2021, 6, 233.	7.1	203
197	Immunoinformatics based prediction of recombinant multi-epitope vaccine for the control and prevention of SARS-CoV-2. AEJ - Alexandria Engineering Journal, 2021, 60, 3087-3097.	3.4	9
198	Emergence of a New Zoonotic COVID-19 that Creates a Pandemic: Update on Current Pharmacotherapeutics and Future Prospective of Plasma Therapy. Coronaviruses, 2021, 2, 422-430.	0.2	0
200	Computational design of ultrashort peptide inhibitors of the receptor-binding domain of the SARS-CoV-2 S protein. Briefings in Bioinformatics, 2021, 22, .	3.2	18
202	SARS-CoV-2 and its new variants: a comprehensive review on nanotechnological application insights into potential approaches. Applied Nanoscience (Switzerland), 2023, 13, 65-93.	1.6	8
203	Novel Coronavirus Disease 2019 (COVID-19) Current Update: Perspective on Epidemiology, Diagnosis, Drug Targets and Vaccines. Coronaviruses, 2021, 2, .	0.2	1
204	SARS_CoV2 RBD gene transcription cannot be driven by CMV promoter. Virology, 2021, 558, 22-27.	1.1	2
205	A Review on SARS-CoV-2-Induced Neuroinflammation, Neurodevelopmental Complications, and Recent Updates on the Vaccine Development. Molecular Neurobiology, 2021, 58, 4535-4563.	1.9	31

#	Article	IF	CITATIONS
206	A bivalent protein targeting glycans and HR1 domain in spike protein potently inhibited infection of SARS-CoV-2 and other human coronaviruses. Cell and Bioscience, 2021, 11, 128.	2.1	9
207	SARS-CoV-2 spike protein and RNA dependent RNA polymerase as targets for drug and vaccine development: A review. Biosafety and Health, 2021, 3, 249-263.	1.2	16
208	Recent advances in developing small-molecule inhibitors against SARS-CoV-2. Acta Pharmaceutica Sinica B, 2022, 12, 1591-1623.	5.7	57
209	SARS-CoV-2: Origin, Pathogenesis and Therapeutic Interventions. Coronaviruses, 2021, 2, .	0.2	2
210	Discovery of Small Molecule Entry Inhibitors Targeting the Fusion Peptide of SARS-CoV-2 Spike Protein. ACS Medicinal Chemistry Letters, 2021, 12, 1267-1274.	1.3	16
211	SARS-CoV-2 Mutations and their Viral Variants. Cytokine and Growth Factor Reviews, 2022, 63, 10-22.	3.2	113
213	SARS-CoV 2 spike protein S1 subunit as an ideal target for stable vaccines: A bioinformatic study. Materials Today: Proceedings, 2022, 49, 904-912.	0.9	14
214	COVID-19 Vaccine in Pregnant and Lactating Women: A Review of Existing Evidence and Practice Guidelines. Infectious Disease Reports, 2021, 13, 685-699.	1.5	72
215	Dual inhibition of COVID-19 spike glycoprotein and main protease 3CLpro by Withanone from Withania somnifera. Chinese Herbal Medicines, 2021, 13, 359-369.	1.2	21
216	Structural and functional basis for pan-CoV fusion inhibitors against SARS-CoV-2 and its variants with preclinical evaluation. Signal Transduction and Targeted Therapy, 2021, 6, 288.	7.1	38
217	Intranasal Administration of RBD Nanoparticles Confers Induction of Mucosal and Systemic Immunity against SARS-CoV-2. Vaccines, 2021, 9, 768.	2.1	38
218	Synopsis of Pharmotechnological Approaches in Diagnostic and Management Strategies for Fighting Against COVID-19. Current Pharmaceutical Design, 2021, 27, 4086-4099.	0.9	3
219	Binding of SARS-CoV-2 Fusion Peptide to Host Endosome and Plasma Membrane. Journal of Physical Chemistry B, 2021, 125, 7732-7741.	1.2	32
220	Structural Insight into the Binding of Cyanovirin-N with the Spike Glycoprotein, Mpro and PLpro of SARS-CoV-2: Protein–Protein Interactions, Dynamics Simulations and Free Energy Calculations. Molecules, 2021, 26, 5114.	1.7	11
221	Current knowledge of COVID-19: Advances, challenges and future perspectives. Biosafety and Health, 2021, 3, 202-209.	1.2	4
222	Key Interacting Residues between RBD of SARS-CoV-2 and ACE2 Receptor: Combination of Molecular Dynamics Simulation and Density Functional Calculation. Journal of Chemical Information and Modeling, 2021, 61, 4425-4441.	2.5	100
223	Exploring peptide studies related to SARS-CoV to accelerate the development of novel therapeutic and prophylactic solutions against COVID-19. Journal of Infection and Public Health, 2021, 14, 1106-1119.	1.9	4
224	Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies. Signal Transduction and Targeted Therapy, 2021, 6, 317.	7.1	68

#	Article	IF	CITATIONS
225	COVID-19: the CaMKII-like system of S protein drives membrane fusion and induces syncytial multinucleated giant cells. Immunologic Research, 2021, 69, 496-519.	1.3	6
226	O uso da Hidroxicloroquina no decorrer da pandemia da COVID-19: um estudo de revisão bibliográfica. Research, Society and Development, 2021, 10, e444101019118.	0.0	0
227	Opportunities and challenges to the use of neutralizing monoclonal antibody therapies for COVID-19. BioScience Trends, 2021, 15, 205-210.	1.1	8
228	Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virology Journal, 2021, 18, 166.	1.4	105
229	Peptideâ€Based Inhibitors for SARSâ€CoVâ€2 and SARSâ€CoV. Advanced Therapeutics, 2021, 4, 2100104.	1.6	11
231	A highly potent and stable pan-coronavirus fusion inhibitor as a candidate prophylactic and therapeutic for COVID-19 and other coronavirus diseases. Acta Pharmaceutica Sinica B, 2022, 12, 1652-1661.	5.7	24
232	Review of antiviral peptides for use against zoonotic and selected non-zoonotic viruses. Peptides, 2021, 142, 170570.	1.2	9
233	Medicinal chemistry strategies towards the development of effective SARS-CoV-2 inhibitors. Acta Pharmaceutica Sinica B, 2022, 12, 581-599.	5.7	33
234	Harnessing immunological targets for COVID-19 immunotherapy. Future Virology, 2021, , .	0.9	1
235	Refining the N-Termini of the SARS-CoV-2 Spike Protein and Its Discrete Receptor-Binding Domain. Journal of Proteome Research, 2021, 20, 4427-4434.	1.8	4
236	In silico identification of SARS-CoV-2 cell entry inhibitors from selected natural antivirals. Journal of Molecular Graphics and Modelling, 2021, 109, 108038.	1.3	9
237	Prospect of 3D bioprinting over cardiac cell therapy and conventional tissue engineering in the treatment of COVID-19 patients with myocardial injury. Regenerative Therapy, 2021, 18, 447-456.	1.4	4
238	Repurposing fusion inhibitor peptide against <scp>SARS oV</scp> â€2. Journal of Computational Chemistry, 2021, 42, 2283-2293.	1.5	14
239	Evaluation of Inhibitory Activity In Silico of In-House Thiomorpholine Compounds between the ACE2 Receptor and S1 Subunit of SARS-CoV-2 Spike. Pathogens, 2021, 10, 1208.	1.2	0
241	Pathomechanisms, therapeutic targets and potent inhibitors of some beta-coronaviruses from bench-to-bedside. Infection, Genetics and Evolution, 2021, 93, 104944.	1.0	9
242	Environmental perspectives of COVID-19 outbreaks: A review. World Journal of Gastroenterology, 2021, 27, 5822-5850.	1.4	3
243	Therapeutically effective covalent spike protein inhibitors in treatment of SARS-CoV-2. Journal of Proteins and Proteomics, 2021, 12, 257-270.	1.0	8
244	A bioluminescent and homogeneous SARS-CoV-2 spike RBD and hACE2 interaction assay for antiviral screening and monitoring patient neutralizing antibody levels. Scientific Reports, 2021, 11, 18428.	1.6	10

ARTICLE IF CITATIONS # Immunogenic amino acid motifs and linear epitopes of COVID-19 mRNA vaccines. PLoS ONE, 2021, 16, 245 1.1 11 e0252849. Evaluation of spike protein antigens for SARS-CoV-2 serology. Journal of Virological Methods, 2021, 246 1.0 296, 114222. 247 Structure of SARS-CoV-2 spike protein. Current Opinion in Virology, 2021, 50, 173-182. 2.6 122 A robust high-throughput fluorescent polarization assay for the evaluation and screening of 248 2.0 SARS-CoV-2 fusion inhibitors. Bioorganic Chemistry, 2021, 116, 105362. Pan-coronavirus fusion inhibitors possess potent inhibitory activity against HIV-1, HIV-2, and simian 251 3.0 15 immunodeficiency virus. Emerging Microbes and Infections, 2021, 10, 810-821. Multi-Organ Involvement in COVID-19: Beyond Pulmonary Manifestations. Journal of Clinical Medicine, 1.0 2021, 10, 446. Potential detrimental role of soluble ACE2 in severe COVIDâ€19 comorbid patients. Reviews in Medical 253 3.9 52 Virology, 2021, 31, 1-12. Elucidating the Interactions Between Heparin/Heparan Sulfate and SARS-CoV-2-Related Proteins—An Important Strategy for Developing Novel Therapeutics for the COVID-19 Pandemic. Frontiers in 254 1.6 Molecular Biosciences, 2020, 7, 628551. Structure of SARS-CoV-2 Spike Glycoprotein for Therapeutic and Preventive Target. Immune Network, 255 1.6 3 2021, 21, e8. Recent progress in the development of potential drugs against SARS-CoV-2. Current Research in 1.7 Pharmacology and Drug Discovery, 2021, 2, 100057 An update of coronavirus disease 2019 (COVID-19): an essential brief. Modern Medical Laboratory 257 0.2 0 Journal, 2021, 4, 19-38. Pan-coronavirus fusion inhibitors as the hope for today and tomorrow. Protein and Cell, 2021, 12, 4.8 84-88. The epidemiology and clinical information about COVID-19. European Journal of Clinical Microbiology 259 1.3 424 and Infectious Diseases, 2020, 39, 1011-1019. Structural Proteins in Severe Acute Respiratory Syndrome Coronavirus-2. Archives of Medical 1.5 288 Research, 2020, 51, 482-491. Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19. Bioorganic Chemistry, 261 2.0 74 2020, 104, 104269. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug Resistance Updates, 2020, 53, 100721. Nanotheranostics against COVID-19: From multivalent to immune-targeted materials. Journal of 263 4.8 35 Controlled Release, 2020, 328, 112-126. Potential Role of Oxygen–Ozone Therapy in Treatment of COVID-19 Pneumonia. American Journal of 276 Case Reports, 2020, 21, e925849.

#	Article	IF	CITATIONS
277	A comparative analysis of remdesivir and other repurposed antivirals against SARSâ€CoVâ€2. EMBO Molecular Medicine, 2021, 13, e13105.	3.3	62
278	Existing antiviral options against SARS-CoV-2 replication in COVID-19 patients. Future Microbiology, 2020, 15, 1747-1758.	1.0	31
279	Coronavirus infections in children: from SARS and MERS to COVID-19, a narrative review of epidemiological and clinical features. Acta Biomedica, 2020, 91, e2020032.	0.2	7
280	COVID-19: Targeting the cytokine storm via cholinergic anti-inflammatory (Pyridostigmine). International Journal of Clinical Virology, 2020, 4, 041-046.	0.1	5
281	Proteasome Inhibitors as a Possible Therapy for SARS-CoV-2. International Journal of Molecular Sciences, 2020, 21, 3622.	1.8	45
282	Targeting CoV-2 Spike RBD: ACE-II complex with phenolic compounds from Cistus (Cistus L.) Bee Pollen for COVID-19 treatment by Molecular Docking Study. Journal of Apitherapy and Nature, 0, , .	0.4	7
283	Epidemiology, genomic structure, the molecular mechanism of injury, diagnosis and clinical manifestations of coronavirus infection: An overview. Indian Journal of Nephrology, 2020, 30, 143.	0.2	6
284	Current Concepts on Immunopathology of COVID-19 and Emerging Therapies. Archives of Pediatric Infectious Diseases, 2020, 8, .	0.1	1
285	Current Status of COVID-19 Diagnostics. , 0, , .		0
286	Long Term Immune Response Produced by the SputnikV Vaccine. International Journal of Molecular Sciences, 2021, 22, 11211.	1.8	9
287	Emerging SARS-CoV-2 Variants: A Review of Its Mutations, Its Implications and Vaccine Efficacy. Vaccines, 2021, 9, 1195.	2.1	90
288	Peptides-based therapeutics: Emerging potential therapeutic agents for COVID-19. Therapie, 2022, 77, 319-328.	0.6	16
289	Peptides and peptidomimetics as therapeutic agents for Covidâ€19. Peptide Science, 2022, 114, e24245.	1.0	8
290	COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms. Molecular Systems Biology, 2021, 17, e10387.	3.2	53
291	Temporal-Geographical Dispersion of SARS-CoV-2 Spike Glycoprotein Variant Lineages and Their Functional Prediction Using in Silico Approach. MBio, 2021, 12, e0268721.	1.8	3
292	Post-Translational Modifications of Proteins Exacerbate Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2). , 0, , .		0
293	COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks. International Journal of Biological Macromolecules, 2021, , .	3.6	14
294	Genomic Variations in the Structural Proteins of SARS-CoV-2 and Their Deleterious Impact on Pathogenesis: A Comparative Genomics Approach. Frontiers in Cellular and Infection Microbiology, 2021, 11, 765039.	1.8	43

#	Article	IF	CITATIONS
295	Spike Glycoprotein Is Central to Coronavirus Pathogenesis-Parallel Between m-CoV and SARS-CoV-2. Annals of Neurosciences, 2021, 28, 201-218.	0.9	7
296	Optical Detection of SARS-CoV-2 Utilizing Antigen-Antibody Binding Interactions. Sensors, 2021, 21, 6596.	2.1	5
297	COVID-19: an updated review. Russian Journal of Infection and Immunity, 2020, 10, 247-258.	0.2	2
301	COVID-19: A Centennial Pandemic from Origin to Clinical Trials. Acta Biologica Marisiensis, 2020, 3, 30-52.	0.1	1
305	Covid-19 Pandemic-Insights and Challenges. Journal of Biomedical Research & Environmental Sciences, 2020, 1, 070-087.	0.1	0
307	Vaccine development and technology for SARSâ€CoVâ€2: Current insight. Journal of Medical Virology, 2022, 94, 878-896.	2.5	8
308	A Review of Human Coronaviruses' Receptors: The Host-Cell Targets for the Crown Bearing Viruses. Molecules, 2021, 26, 6455.	1.7	36
309	Silver nanoparticles against SARS-CoV-2 and its potential application in medical protective clothing – a review. Journal of the Textile Institute, 2022, 113, 2825-2838.	1.0	8
310	25-Hydroxycholesterol-Conjugated EK1 Peptide with Potent and Broad-Spectrum Inhibitory Activity against SARS-CoV-2, Its Variants of Concern, and Other Human Coronaviruses. International Journal of Molecular Sciences, 2021, 22, 11869.	1.8	16
312	SARS-CoV-2: desde sus aspectos genómicos y estructurales hasta su tratamiento. Atención Familiar, 0, 27, 3.	0.0	1
314	GENOMICS OF SARS-COV-2: A STUDY. , 2020, , 36-37.		0
315	Hypothesis about pathogenic action of Sars-COV-2. , 2020, 4, 021-022.		Ο
316	Transient Receptor Potential Vanilloid Subtype 1: Potential Role in Infection, Susceptibility, Symptoms and Treatment of COVID-19. Frontiers in Medicine, 2021, 8, 753819.	1.2	8
317	Insights on the SARS-CoV-2 genome variability: the lesson learned in Brazil and its impacts on the future of pandemics. Microbial Genomics, 2021, 7, .	1.0	1
318	Nanomedicine for the Diagnosis and Therapy of COVID-19. Frontiers in Bioengineering and Biotechnology, 2021, 9, 758121.	2.0	2
320	Current trends and possible therapeutic options against COVID-19. Journal of Microbiology and Infectious Diseases, 0, , 110-120.	0.1	2
321	The COVID-19 pandemic and the potential treatment of the novel coronavirus SARS-CoV-2. American Journal of Translational Research (discontinued), 2021, 13, 871-881.	0.0	1
323	Prediction of potential small interfering RNA molecules for silencing of the spike gene of SARS-CoV-2. Indian Journal of Medical Research, 2021, 153, 182-189.	0.4	4

#	Article	IF	CITATIONS
324	Insights into the evolutionary and prophylactic analysis of SARS-CoV-2: A review. Journal of Virological Methods, 2022, 300, 114375.	1.0	2
325	Stapled Peptides Targeting SARS-CoV-2 Spike Protein HR1 Inhibit the Fusion of Virus to Its Cell Receptor. Journal of Medicinal Chemistry, 2021, 64, 17486-17495.	2.9	14
326	Mutations of SARS-CoV-2 spike protein: Implications on immune evasion and vaccine-induced immunity. Seminars in Immunology, 2021, 55, 101533.	2.7	72
327	Mutations in the SARS CoV2 Spike Gene and Their Reflections on the Spike Protein. Clinical and Experimental Health Sciences, 0, , .	0.1	0
328	Human Genetic Polymorphisms Associated with Susceptibility to COVID-19 Infection and Response to Treatment. , 0, , .		0
329	Why are some coronavirus variants more infectious?. Journal of Biosciences, 2021, 46, 1.	0.5	18
330	Antiviral Activities of Halogenated Emodin Derivatives against Human Coronavirus NL63. Molecules, 2021, 26, 6825.	1.7	8
331	SARS-CoV-2 may affect the immune response via direct inhibition of T cell receptor: Mechanistic hypothesis and rationale. Biochimie, 2022, 195, 86-89.	1.3	4
332	Evolutionary and Phenotypic Characterization of Two Spike Mutations in European Lineage 20E of SARS-CoV-2. MBio, 2021, 12, e0231521.	1.8	6
333	Nanometer-resolution in situ structure of the SARS-CoV-2 postfusion spike protein. Proceedings of the United States of America, 2021, 118, .	3.3	30
336	Denaturation of the SARS-CoV-2 spike protein under non-thermal microwave radiation. Scientific Reports, 2021, 11, 23373.	1.6	7
337	Tracking the amino acid changes of spike proteins across diverse host species of severe acute respiratory syndrome coronavirus 2. IScience, 2022, 25, 103560.	1.9	5
338	Prediction of potential small interfering RNA molecules for silencing of the spike gene of SARS-CoV-2. Indian Journal of Medical Research, 2021, 153, 182.	0.4	7
339	A comprehensive overview of identified mutations in SARS CoV-2 spike glycoprotein among Iranian patients. Gene, 2022, 813, 146113.	1.0	8
340	ACE2 Overexpressing Mesenchymal Stem Cells Alleviates COVID-19 Lung Injury by Inhibiting Pyroptosis. SSRN Electronic Journal, 0, , .	0.4	0
341	STRUCTURAL PROTEINS OF THE SARS-COV-2 CORONAVIRUS: ROLE, IMMUNOGENICITY, SUPERANTIGENIC PROPERTIES AND POTENTIAL USE FOR THERAPEUTIC PURPOSES. , 2021, 78, 18-27.		2
342	SARS-CoV-2–host cell surface interactions and potential antiviral therapies. Interface Focus, 2022, 12, 2020081.	1.5	4
343	Clinical Application of Antibody Immunity Against SARS-CoV-2: Comprehensive Review on Immunoassay and Immunotherapy. Clinical Reviews in Allergy and Immunology, 2023, 64, 17-32.	2.9	10

#	Article	IF	CITATIONS
344	The "LLQY" motif on SARS-CoV-2 spike protein affects S incorporation into virus particles. Journal of Virology, 2022, , jvi0189721.	1.5	1
345	Comprehensive mapping of SARS-CoV-2 peptide epitopes for development of a highly sensitive serological test for total and neutralizing antibodies. Protein Engineering, Design and Selection, 2022, 35, .	1.0	6
346	Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission. Cell Host and Microbe, 2022, 30, 373-387.e7.	5.1	138
347	Plant-Based Vaccines in Combat against Coronavirus Diseases. Vaccines, 2022, 10, 138.	2.1	13
348	Potential Antiviral Action of Alkaloids. Molecules, 2022, 27, 903.	1.7	29
349	Tracking the circulating SARS-CoV-2 variant of concern in South Africa using wastewater-based epidemiology. Scientific Reports, 2022, 12, 1182.	1.6	27
350	Role of structural biology methods in drug discovery. , 2022, , 357-371.		1
351	Two short low complexity regions (LCRs) are hallmark sequences of the Delta SARS-CoV-2 variant spike protein. Scientific Reports, 2022, 12, 936.	1.6	1
352	Identification of SARS-CoV-2 surface therapeutic targets and drugs using molecular modeling methods for inhibition of the virus entry. Journal of Molecular Structure, 2022, 1256, 132488.	1.8	11
353	Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduction and Targeted Therapy, 2022, 7, 26.	7.1	139
354	Discovery of novel TMPRSS2 inhibitors for COVID-19 using in silico fragment-based drug design, molecular docking, molecular dynamics, and quantum mechanics studies. Informatics in Medicine Unlocked, 2022, 29, 100870.	1.9	22
355	Neutralizing monoclonal antibodies against highly pathogenic coronaviruses. Current Opinion in Virology, 2022, 53, 101199.	2.6	2
357	Herbal Remedies, Nutraceuticals, and Dietary Supplements for COVID-19 Management: An Update. Clinical Complementary Medicine and Pharmacology, 2022, 2, 100021.	0.9	42
358	Insights into the mutation T1117I in the spike and the lineage B.1.1.389 of SARS-CoV-2 circulating in Costa Rica. Gene Reports, 2022, 27, 101554.	0.4	13
359	SARS-CoV-2 spreads through cell-to-cell transmission. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	145
360	Why are some coronavirus variants more infectious?. Journal of Biosciences, 2021, 46, .	0.5	2
361	Conserved Molecular Signatures in the Spike, Nucleocapsid, and Polymerase Proteins Specific for the Genus Betacoronavirus and Its Different Subgenera. Genes, 2022, 13, 423.	1.0	1
362	Molecular Interactions of Tannic Acid with Proteins Associated with SARS-CoV-2 Infectivity. International Journal of Molecular Sciences, 2022, 23, 2643.	1.8	21

363	Anti-COVID-19 Nanomaterials: Directions to Improve Prevention, Diagnosis, and Treatment. Nanomaterials, 2022, 12, 783.	1.9	10
364	Molecular variants of SARS-CoV-2: antigenic properties and current vaccine efficacy. Medical Microbiology and Immunology, 2022, 211, 79-103.	2.6	9
365	Structure/Function Analysis of Truncated Amino-Terminal ACE2 Peptide Analogs That Bind to SARS-CoV-2 Spike Glycoprotein. Molecules, 2022, 27, 2070.	1.7	3
367	The Molecular Basis of the Effect of Temperature on the Structure and Function of SARS-CoV-2 Spike Protein. Frontiers in Molecular Biosciences, 2022, 9, 794960.	1.6	6
368	Recombinant subunits of SARSâ€CoVâ€2 spike protein as vaccine candidates to elicit neutralizing antibodies. Journal of Clinical Laboratory Analysis, 2022, 36, e24328.	0.9	2
369	Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain potency against B.1.617. Nature Communications, 2022, 13, 1638.	5.8	11
370	Antimicrobial peptides: A plausible approach for COVID-19 treatment. Expert Opinion on Drug Discovery, 2022, 17, 473-487.	2.5	10
371	Antigen–Antibody Complex-Guided Exploration of the Hotspots Conferring the Immune-Escaping Ability of the SARS-CoV-2 RBD. Frontiers in Molecular Biosciences, 2022, 9, 797132.	1.6	3
374	A Five-Helix-Based SARS-CoV-2 Fusion Inhibitor Targeting Heptad Repeat 2 Domain against SARS-CoV-2 and Its Variants of Concern. Viruses, 2022, 14, 597.	1.5	22
375	The N1038S Substitution and 1153EQTRPKKSV1162 Deletion of the S2 Subunit of QX-Type Avian Infectious Bronchitis Virus Can Synergistically Enhance Viral Proliferation. Frontiers in Microbiology, 2022, 13, 829218.	1.5	2
376	Contextualized Design of IoT (Internet of Things) Finance for Edge Artificial Intelligence Computing. Computational Intelligence and Neuroscience, 2022, 2022, 1-10.	1.1	1
377	A Palmitic Acid-Conjugated, Peptide-Based pan-CoV Fusion Inhibitor Potently Inhibits Infection of SARS-CoV-2 Omicron and Other Variants of Concern. Viruses, 2022, 14, 549.	1.5	13
378	Inhibition of calcium-triggered secretion by hydrocarbon-stapled peptides. Nature, 2022, 603, 949-956.	13.7	39
379	Peptide candidates for the development of therapeutics and vaccines against β-coronavirus infection. Bioengineered, 2022, 13, 9435-9454.	1.4	6
380	EK1 with dual Q1004E/N1006I mutation: a promising fusion inhibitor for the HR1 domain of SARS-CoV-2. Journal of Infection, 2022, 84, 579-613.	1.7	2
381	COVID-19 Vaccination During Pregnancy. , 2022, 2, 1-7.		0
382	Advances in Pathogenesis, Progression, Potential Targets and Targeted Therapeutic Strategies in SARS-CoV-2-Induced COVID-19. Frontiers in Immunology, 2022, 13, 834942.	2.2	10
383	ACE2 overexpressing mesenchymal stem cells alleviates COVID-19 lung injury by inhibiting pyroptosis. IScience, 2022, 25, 104046.	1.9	4

#	Article	IF	CITATIONS
384	Azadirachta indica A. Juss bark extract and its Nimbin isomers restrict β-coronaviral infection and replication. Virology, 2022, 569, 13-28.	1.1	15
385	A global picture: therapeutic perspectives for COVID-19. Immunotherapy, 2022, 14, 351-371.	1.0	56
387	COMPARATIVE ANALYSIS OF HUMAN AND LIVESTOCK ĐĐ¡Đ•2 RECEPTORS FOR SARS-COV-2. Animal Breeding an Genetics, 0, 62, 120-129.	^d o.o	0
388	Immune dysfunction in COVID-19 and judicious use of antirheumatic drugs for the treatment of hyperinflammation. Turkish Journal of Medical Sciences, 2021, 51, 3391-3404.	0.4	3
389	Discovery of Highly Potent Fusion Inhibitors with Potential Pan-Coronavirus Activity That Effectively Inhibit Major COVID-19 Variants of Concern (VOCs) in Pseudovirus-Based Assays. Viruses, 2022, 14, 69.	1.5	5
390	A Narrative Review of COVID-19 Vaccines. Vaccines, 2022, 10, 62.	2.1	40
391	Post Covid-19 Complications: A New Dimension of Awareness for Healthcare Workers. Asian Journal of Nursing Education and Research, 2021, , 455-458.	0.1	4
392	The Fusion of Eye Movement and Piezoelectric Sensing Technology Assists Ceramic Art Process Optimization and Mechanical Characterization. Journal of Sensors, 2021, 2021, 1-11.	0.6	9
393	COVID-19: The question of genetic diversity and therapeutic intervention approaches. Genetics and Molecular Biology, 2021, 44, e20200452.	0.6	1
394	Peptide-Based Dual HIV and Coronavirus Entry Inhibitors. Advances in Experimental Medicine and Biology, 2022, 1366, 87-100.	0.8	1
395	Virus Entry Inhibitors: Past, Present, and Future. Advances in Experimental Medicine and Biology, 2022, 1366, 1-13.	0.8	3
396	Recent and advanced nano-technological strategies for COVID-19 vaccine development. Methods in Microbiology, 2022, , .	0.4	0
397	Coronavirus Entry Inhibitors. Advances in Experimental Medicine and Biology, 2022, 1366, 101-121.	0.8	3
399	Severe Acute Respiratory Syndrome Coronavirus 2 Variants of Concern: A Perspective for Emerging More Transmissible and Vaccine-Resistant Strains. Viruses, 2022, 14, 827.	1.5	14
400	Annotating Spike Protein Polymorphic Amino Acids of Variants of SARS-CoV-2, Including Omicron. Biochemistry Research International, 2022, 2022, 1-7.	1.5	3
406	Comprehensive role of SARS oVâ€2 spike glycoprotein in regulating host signaling pathway. Journal of Medical Virology, 2022, 94, 4071-4087.	2.5	5
407	A glucose-like metabolite deficient in diabetes inhibits cellular entry of SARS-CoV-2. Nature Metabolism, 2022, 4, 547-558.	5.1	14
408	A Multi-dimensional Review on Severe Acute Respiratory Syndrome CoronaVirus-2. Current Pharmaceutical Biotechnology, 2022, 23, .	0.9	1

#	Article	IF	CITATIONS
409	Therapeutic approaches and vaccination in fighting COVID-19 infections: A review. Gene Reports, 2022, 27, 101619.	0.4	3
410	Using the Improved SSD Algorithm to Motion Target Detection and Tracking. Computational Intelligence and Neuroscience, 2022, 2022, 1-10.	1.1	Ο
411	In Silico Screening and Testing of FDA-Approved Small Molecules to Block SARS-CoV-2 Entry to the Host Cell by Inhibiting Spike Protein Cleavage. Viruses, 2022, 14, 1129.	1.5	3
412	Healthy humans can be a source of antibodies countering COVID-19. Bioengineered, 2022, 13, 12598-12624.	1.4	0
413	The Association of Covid-19 Outbreak with Cancer Patients. Pakistan Biomedical Journal, 0, , 38-43.	0.0	0
414	Could a Lower Toll-like Receptor (TLR) and NF-κB Activation Due to a Changed Charge Distribution in the Spike Protein Be the Reason for the Lower Pathogenicity of Omicron?. International Journal of Molecular Sciences, 2022, 23, 5966.	1.8	9
415	Effect of the Graphene Nanosheet on Bio-Functions of the Spike Protein at Open and Closed States: The Comparison Between SARS-CoV-2 WT and Omicron Variant. SSRN Electronic Journal, 0, , .	0.4	0
416	Polyphosphate in Antiviral Protection: A Polyanionic Inorganic Polymer in the Fight Against Coronavirus SARS-CoV-2 Infection. Progress in Molecular and Subcellular Biology, 2022, , 145-189.	0.9	4
418	ACE2, a drug target for COVID-19 treatment?. Irish Journal of Medical Science, 0, , .	0.8	0
419	Severe acute respiratory syndrome coronavirus 2 variants–Possibility of universal vaccine design: A review. Computational and Structural Biotechnology Journal, 2022, 20, 3533-3544.	1.9	3
420	Integrative structural studies of the SARS-CoV-2 spike protein during the fusion process (2022). Current Research in Structural Biology, 2022, , .	1.1	0
421	Novel Engineered SARS-CoV-2 HR1 Trimer Exhibits Improved Potency and Broad-Spectrum Activity against SARS-CoV-2 and Its Variants. Journal of Virology, 2022, 96, .	1.5	9
422	Translocating Peptides of Biomedical Interest Obtained from the Spike (S) Glycoprotein of the SARS-CoV-2. Membranes, 2022, 12, 600.	1.4	3
423	Potential linear B-cells epitope change to a helix structure in the spike of Omicron 21L or BA.2 predicts increased SARS-CoV-2 antibodies evasion. Virology, 2022, 573, 84-95.	1.1	1
424	Genomic, proteomic and metabolomic profiling of severe acute respiratory syndrome-Coronavirus-2. , 2022, , 49-76.		0
425	Interaction between Sars-CoV-2 structural proteins and host cellular receptors: From basic mechanisms to clinical perspectives. Advances in Protein Chemistry and Structural Biology, 2022, , 243-277.	1.0	4
426	Clinically available/under trial drugs and vaccines for treatment of SARS-COV-2. , 2022, , 451-488.		0
427	An engineered 5-helix bundle derived from SARS-CoV-2 S2 pre-binds sarbecoviral spike at both serological- and endosomal-pH to inhibit virus entry. Emerging Microbes and Infections, 2022, 11, 1920-1935.	3.0	7

#	Article	IF	CITATIONS
428	Dimethoxycurcumin Acidifies Endolysosomes and Inhibits SARS-CoV-2 Entry. Frontiers in Virology, 0, 2,	0.7	2
429	Will Peptides Help to Stop COVID-19?. Biochemistry (Moscow), 2022, 87, 590-604.	0.7	1
430	Spike Mutation Profiles Associated With SARS-CoV-2 Breakthrough Infections in Delta Emerging and Predominant Time Periods in British Columbia, Canada. Frontiers in Public Health, 0, 10, .	1.3	3
431	Construction of Enterprise English Adaptive Learning Platform Based on Big Data Analysis. Scientific Programming, 2022, 2022, 1-10.	0.5	0
432	Molecular mechanisms involved in pathogenicity of SARS-CoV-2: Immune evasion and implications for therapeutic strategies. Biomedicine and Pharmacotherapy, 2022, 153, 113368.	2.5	6
433	A quantitative study on the approximation error and speed-up of the multi-scale MCMC (Monte Carlo) Tj ETQq1	1	4 <u>гд</u> ВТ /Оve
434	Host Cell Proteases Mediating SARS-CoV-2 Entry: An Overview Current Topics in Medicinal Chemistry, 2022, 22, .	1.0	7
435	Effectiveness of SARS-CoV-2 Vaccines for Short- and Long-Term Immunity: A General Overview for the Pandemic Contrast. International Journal of Molecular Sciences, 2022, 23, 8485.	1.8	6
437	Squalene in oil-based adjuvant improves the immunogenicity of SARS-CoV-2 RBD and confirms safety in animal models. PLoS ONE, 2022, 17, e0269823.	1.1	5
438	Absolute binding free energies of mucroporin and its analog mucroporin-M1 with the heptad repeat 1 domain and RNA-dependent RNA polymerase of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 2023, 41, 6957-6968.	2.0	1
439	A Comprehensive Review on COVID-19: Emphasis on Current Vaccination and Nanotechnology Aspects. Recent Patents on Nanotechnology, 2022, 16, .	0.7	0
440	<scp>SARSâ€CoV</scp> â€2 spike trimer vaccine expressed in <i>Nicotiana benthamiana</i> adjuvanted with Alum elicits protective immune responses in mice. Plant Biotechnology Journal, 0, , .	4.1	3
441	A Uniquely Stable Trimeric Model of SARS-CoV-2 Spike Transmembrane Domain. International Journal of Molecular Sciences, 2022, 23, 9221.	1.8	1
442	Prediction of infectivity of SARS-CoV-2 virus based on Spike-hACE-2 interaction. VirusDisease, 0, , .	1.0	0
443	Mast cells promote viral entry of SARS-CoV-2 via formation of chymase/spike protein complex. European Journal of Pharmacology, 2022, 930, 175169.	1.7	14
444	Multivalent ACE2 engineering—A promising pathway for advanced coronavirus nanomedicine development. Nano Today, 2022, 46, 101580.	6.2	7
445	Beyond the vaccines: a glance at the small molecule and peptide-based anti-COVID19 arsenal. Journal of Biomedical Science, 2022, 29, .	2.6	16
446	A Positron Emission Tomography Tracer Targeting the S2 Subunit of SARS-CoV-2 in Extrapulmonary Infections. Molecular Pharmaceutics, 2022, 19, 4264-4274.	2.3	2

#	Article	IF	Citations
447	Modular nanoarray vaccine for SARS-CoV-2. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 46, 102604.	1.7	2
448	Antimicrobial peptides: A promising tool to combat multidrug resistance in SARS CoV2 era. Microbiological Research, 2022, 265, 127206.	2.5	5
449	Antibody-mediated immunity to SARS-CoV-2 spike. Advances in Immunology, 2022, , 1-69.	1.1	12
450	Strain Variation Based on Spike Glycoprotein Gene of SARS-CoV-2 in Kuwait from 2020 to 2021. Pathogens, 2022, 11, 985.	1.2	0
451	S2 Subunit of SARS-CoV-2 Spike Protein Induces Domain Fusion in Natural Pulmonary Surfactant Monolayers. Journal of Physical Chemistry Letters, 2022, 13, 8359-8364.	2.1	1
452	Intranasal Immunization with Liposome-Displayed Receptor-Binding Domain Induces Mucosal Immunity and Protection against SARS-CoV-2. Pathogens, 2022, 11, 1035.	1.2	10
453	Natural furin inhibitor(s) as potent therapeutic molecule to mitigate SARS-CoV-2 infection. Journal of Biomolecular Structure and Dynamics, 2023, 41, 7365-7371.	2.0	0
454	Green Synthesis–Mediated Nanoparticles and Their Curative Character Against Post COVID-19 Skin Diseases. Current Pharmacology Reports, 2022, 8, 409-417.	1.5	2
455	Panâ€coronavirus fusion inhibitors to combat COVIDâ€19 and other emerging coronavirus infectious diseases. Journal of Medical Virology, 2023, 95, .	2.5	10
456	A novel cyclic γ-AApeptide-based long-acting pan-coronavirus fusion inhibitor with potential oral bioavailability by targeting two sites in spike protein. Cell Discovery, 2022, 8, .	3.1	13
457	Nanomolar inhibition of SARS-CoV-2 infection by an unmodified peptide targeting the prehairpin intermediate of the spike protein. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	21
458	Targeting the SARS-CoV-2 HR1 with Small Molecules as Inhibitors of the Fusion Process. International Journal of Molecular Sciences, 2022, 23, 10067.	1.8	11
459	A potent synthetic nanobody with broad-spectrum activity neutralizes SARS-CoV-2 virus and the Omicron variant BA.1 through a unique binding mode. Journal of Nanobiotechnology, 2022, 20, .	4.2	10
460	Recent advances in small-molecular therapeutics for COVID-19. Precision Clinical Medicine, 2022, 5, .	1.3	9
461	Looking for SARS-CoV-2 Therapeutics Through Computational Approaches. Current Medicinal Chemistry, 2023, 30, 3158-3214.	1.2	3
462	Molecular-Level Targets for the Development of Therapies Against Coronavirus Diseases. Methods in Pharmacology and Toxicology, 2021, , 69-84.	0.1	0
463	Safety and Efficacy of antiviral drugs against covid-19 infection: an updated systemic review. , 2022, 1, 45-55.		3
464	Insight into genomic organization of pathogenic coronaviruses, SARS-CoV-2: Implication for emergence of new variants, laboratory diagnosis and treatment options. Frontiers in Molecular Medicine, 0, 2, .	0.6	0

#	Article	IF	CITATIONS
465	Novel chimeric proteins mimicking SARS-CoV-2 spike epitopes with broad inhibitory activity. International Journal of Biological Macromolecules, 2022, 222, 2467-2478.	3.6	6
466	COVID-19 vaccine update: vaccine effectiveness, SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection. Journal of Biomedical Science, 2022, 29, .	2.6	77
467	Design Strategies for and Stability of mRNA–Lipid Nanoparticle COVID-19 Vaccines. Polymers, 2022, 14, 4195.	2.0	13
468	Rapid Generation of Circulating and Mucosal Decoy Human ACE2 using mRNA Nanotherapeutics for the Potential Treatment of SARSâ€CoVâ€2. Advanced Science, 2022, 9, .	5.6	17
469	Targeting an evolutionarily conserved "E-L-L―motif in spike protein to identify a small molecule fusion inhibitor against SARS-CoV-2. , 2022, 1, .		7
470	Immunoglobulin Y Specific for SARS-CoV-2 Spike Protein Subunits Effectively Neutralizes SARS-CoV-2 Infectivity and Ameliorates Disease Manifestations In Vivo. Biomedicines, 2022, 10, 2774.	1.4	0
471	Effect of the Graphene Nanosheet on Functions of the Spike Protein in Open and Closed States: Comparison between SARS-CoV-2 Wild Type and the Omicron Variant. Langmuir, 2022, 38, 13972-13982.	1.6	3
472	Identification of phytochemicals in Qingfei Paidu decoction for the treatment of coronavirus disease 2019 by targeting the virus-host interactome. Biomedicine and Pharmacotherapy, 2022, 156, 113946.	2.5	7
473	Astersaponin I from Aster koraiensis is a natural viral fusion blocker that inhibits the infection of SARS-CoV-2 variants and syncytium formation. Antiviral Research, 2022, 208, 105428.	1.9	4
474	Peptides, lipopeptides, and severe acute respiratory syndrome coronavirus-2. , 2023, , 381-422.		0
475	mRNA vaccines for COVID-19. , 2023, , 611-624.		0
476	Molecular dynamics simulations of the spike trimeric ectodomain of the SARS-CoV-2 Omicron variant: structural relationships with infectivity, evasion to immune system and transmissibility. Journal of Biomolecular Structure and Dynamics, 2023, 41, 9326-9343.	2.0	4
478	Features of Damage to Vital Organs Due to SARS-CoV-2 Infection. Nephrology (Saint-Petersburg), 2022, 26, 9-17.	0.1	1
479	Small-molecule metabolites in SARS-CoV-2 treatment: a comprehensive review. Biological Chemistry, 2022, .	1.2	0
480	A bias of Asparagine to Lysine mutations in SARS-CoV-2 outside the receptor binding domain affects protein flexibility. Frontiers in Immunology, 0, 13, .	2.2	4
481	Exploring Highly Conserved Regions of SARS-CoV-2 Spike S2 Subunit as Targets for Fusion Inhibition Using Chimeric Proteins. International Journal of Molecular Sciences, 2022, 23, 15511.	1.8	3
482	Dendrimer-Peptide Conjugates for Effective Blockade of the Interactions between SARS-CoV-2 Spike Protein and Human ACE2 Receptor. Biomacromolecules, 2023, 24, 141-149.	2.6	5
483	SKI-1/S1P Facilitates SARS-CoV-2 Spike Induced Cell-to-Cell Fusion via Activation of SREBP-2 and Metalloproteases, Whereas PCSK9 Enhances the Degradation of ACE2. Viruses, 2023, 15, 360.	1.5	3

~			<u> </u>	
	ΙΤΔΤΙ	ON	REDC	ND L
\sim	/			

#	Article	IF	CITATIONS
485	Peptide-based inhibitors hold great promise as the broad-spectrum agents against coronavirus. Frontiers in Microbiology, 0, 13, .	1.5	2
486	Primary ChAdOx1 vaccination does not reactivate pre-existing, cross-reactive immunity. Frontiers in Immunology, 0, 14, .	2.2	3
487	Combating COVID-19 by employing machine learning predictions and projections. , 2023, , 175-203.		0
488	Proteomic understanding of SARS-CoV-2 infection and COVID-19: Biological, diagnostic, and therapeutic perspectives. , 2023, , 61-85.		0
489	Respiratory Viruses and Virus-like Particle Vaccine Development: How Far Have We Advanced?. Viruses, 2023, 15, 392.	1.5	4
490	Aspects of Nanotechnology for COVID-19 Vaccine Development and Its Delivery Applications. Pharmaceutics, 2023, 15, 451.	2.0	6
492	Dimerized fusion inhibitor peptides targeting the HR1–HR2 interaction of SARS-CoV-2. RSC Advances, 2023, 13, 8779-8793.	1.7	2
494	Electrical biosensing system utilizing ion-producing enzymes conjugated with aptamers for the sensing of severe acute respiratory syndrome coronavirus 2. Sensing and Bio-Sensing Research, 2023, 39, 100549.	2.2	2
495	Quantitative profiling of N-glycosylation of SARS-CoV-2 spike protein variants. Glycobiology, 2023, 33, 188-202.	1.3	7
496	SARS-CoV-2 Omicron subvariants exhibit distinct fusogenicity, but similar sensitivity, to pan-CoV fusion inhibitors. Emerging Microbes and Infections, 2023, 12, .	3.0	13
497	SpikeScape: A Tool for Analyzing Structural Diversity in Experimental Structures of the SARS-CoV-2 Spike Glycoprotein. Journal of Chemical Information and Modeling, 2023, 63, 1087-1092.	2.5	0
498	Towards Quantum-Chemical Level Calculations of SARS-CoV-2 Spike Protein Variants of Concern by First Principles Density Functional Theory. Biomedicines, 2023, 11, 517.	1.4	4
499	A Potential Role of the Spike Protein in Neurodegenerative Diseases: A Narrative Review. Cureus, 2023, ,	0.2	4
500	COVID-19: Attacks Immune Cells and Interferences With Antigen Presentation Through MHC-Like Decoy System. Journal of Immunotherapy, 2023, 46, 75-88.	1.2	2
501	Nigelladine A among Selected Compounds from Nigella sativa Exhibits Propitious Interaction with Omicron Variant of SARS-CoV-2: An In Silico Study. International Journal of Clinical Practice, 2023, 2023, 1-14.	0.8	2
502	Design and characterization of novel SARS-CoV-2 fusion inhibitors with N-terminally extended HR2 peptides. Antiviral Research, 2023, 212, 105571.	1.9	6
503	Promising Repurposed Antiviral Molecules to Combat SARS-CoV-2: A Review. Current Pharmaceutical Biotechnology, 2023, 24, 1727-1739.	0.9	1
504	CRISPR techniques and potential for the detection and discrimination of SARS-CoV-2 variants of concern. TrAC - Trends in Analytical Chemistry, 2023, 161, 117000.	5.8	11

#	Article	IF	CITATIONS
505	The SARS-CoV-2 Virus and the Cholinergic System: Spike Protein Interaction with Human Nicotinic Acetylcholine Receptors and the Nicotinic Agonist Varenicline. International Journal of Molecular Sciences, 2023, 24, 5597.	1.8	5
506	A Comprehensive Review of Natural Flavonoids with Anti-SARS-CoV-2 Activity. Molecules, 2023, 28, 2735.	1.7	6
507	Comprehensive review on the evolution of SARS-CoV-2(COVID-19): From emergence, outbreak,molecular characterization to the clinical challenges in designing and developing potential drugs, vaccines and therapies to counter SARSCoV-2. Journal of Human Virology & Retrovirology, 2020, 8, 43-48.	0.1	0
508	Antiviral Lipid Nanocarrier Loaded with Remdesivir Effective Against SARS-CoV-2 in vitro Model. International Journal of Nanomedicine, 0, Volume 18, 1561-1575.	3.3	3
509	Natural Products as Potential Therapeutic Agents for SARS-CoV-2: A Medicinal Chemistry Perspective. Current Topics in Medicinal Chemistry, 2023, 23, 1664-1698.	1.0	4
510	The influence of single-point mutation D614G on the binding process between human angiotensin-converting enzyme 2 and the SARS-CoV-2 spike protein-an atomistic simulation study. RSC Advances, 2023, 13, 9800-9810.	1.7	0
511	Cellâ€Based Biomaterials for Coronavirus Disease 2019 Prevention and Therapy. Advanced Healthcare Materials, 2023, 12, .	3.9	0
512	Isopeptide Bond Bundling Superhelix For Designing Antivirals Against Enveloped Viruses with Class I Fusion Proteins: A Review. Current Pharmaceutical Biotechnology, 2023, 24, .	0.9	0
513	Factor Xa cleaves SARS-CoV-2 spike protein to block viral entry and infection. Nature Communications, 2023, 14, .	5.8	1
514	Therapeutic strategies for COVID-19: progress and lessons learned. Nature Reviews Drug Discovery, 2023, 22, 449-475.	21.5	112
515	Discovery of Highly Potent Small Molecule Pan-Coronavirus Fusion Inhibitors. Viruses, 2023, 15, 1001.	1.5	1
518	Targetable elements in SARS-CoV-2 S2 subunit for the design of pan-coronavirus fusion inhibitors and vaccines. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	15
520	Medical Perspective on COVID-19. Contributions To Economics, 2023, , 15-103.	0.2	0
532	Antiviral Phytocompounds Against Animal-to-Human Transmittable SARS-CoV-2. , 2023, , 189-224.		0
533	Medicinal plants, phytoconstituents and traditional formulation as potential therapies for SARS-CoV-2: a review update. Vegetos, 0, , .	0.8	0
537	Traditional Herbal Medicines and Their Active Constituents in Combating SARS-CoV-2 Infection. , 2023, , 137-188.		0
550	Visualizing chemical functionality and structural insights into SARS-CoV-2 proteins. , 2024, , 257-275.		0