CAR T cells: continuation in a revolution of immunothe

Lancet Oncology, The 21, e168-e178 DOI: 10.1016/s1470-2045(19)30823-x

Citation Report

#	Article	IF	CITATIONS
1	Total marrow and total lymphoid irradiation in bone marrow transplantation for acute leukaemia. Lancet Oncology, The, 2020, 21, e477-e487.	10.7	57
2	Plasticity in Pro- and Anti-tumor Activity of Neutrophils: Shifting the Balance. Frontiers in Immunology, 2020, 11, 2100.	4.8	57
3	Immune escape: A critical hallmark in solid tumors. Life Sciences, 2020, 258, 118110.	4.3	91
4	A versatile genetic control system in mammalian cells and mice responsive to clinically licensed sodium ferulate. Science Advances, 2020, 6, eabb9484.	10.3	13
5	Advances in gene therapy for hematologic disease and considerations for transfusion medicine. Seminars in Hematology, 2020, 57, 83-91.	3.4	5
6	Imaging the Cancer Immune Environment and Its Response to Pharmacologic Intervention, Part 2: The Role of Novel PET Agents. Journal of Nuclear Medicine, 2020, 61, 1553-1559.	5.0	16
7	Externally-Controlled Systems for Immunotherapy: From Bench to Bedside. Frontiers in Immunology, 2020, 11, 2044.	4.8	18
8	EZH2 inhibition: aÂpromisingÂstrategy to prevent cancer immune editing. Epigenomics, 2020, 12, 1457-1476.	2.1	37
9	Antibody Targeting of Eph Receptors in Cancer. Pharmaceuticals, 2020, 13, 88.	3.8	27
10	A New Era in Endothelial Injury Syndromes: Toxicity of CAR-T Cells and the Role of Immunity. International Journal of Molecular Sciences, 2020, 21, 3886.	4.1	23
11	Modifying the tumour microenvironment and reverting tumour cells: New strategies for treating malignant tumours. Cell Proliferation, 2020, 53, e12865.	5.3	43
12	CAR T-cell treatment during the COVID-19 pandemic: Management strategies and challenges. Current Research in Translational Medicine, 2020, 68, 111-118.	1.8	30
13	Inhibitory checkpoints in human natural killer cells: IUPHAR Review 28. British Journal of Pharmacology, 2020, 177, 2889-2903.	5.4	10
14	Nanotechnologyâ€Based CARâ€T Strategies for Improving Efficacy and Safety of Tumor Immunotherapy. Advanced Functional Materials, 2021, 31, .	14.9	13
15	Innate and Innate-Like Cells: The Future of Chimeric Antigen Receptor (CAR) Cell Therapy. Trends in Pharmacological Sciences, 2021, 42, 45-59.	8.7	28
16	Considerations in the development and validation of real-time quantitative polymerase chain reaction and its application in regulated bioanalysis to characterize the cellular kinetics of CAR-T products in clinical studies. Bioanalysis, 2021, 13, 115-128.	1.5	11
17	Therapeutic targets in childhood Bâ€acute lymphoblastic leukemia: what about HER2/neu?. Hematological Oncology, 2021, 39, 270-272.	1.7	1
18	Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. British Journal of Cancer, 2021, 124, 359-367.	6.4	590

#	Article	IF	CITATIONS
19	T cell gene therapy to treat immunodeficiency. British Journal of Haematology, 2021, 192, 433-443.	2.5	11
20	Fn14-targeted BiTE and CAR-T cells demonstrate potent preclinical activity against glioblastoma. Oncolmmunology, 2021, 10, 1983306.	4.6	11
21	Spontaneously occurring canine cancer as a relevant animal model for developing novel treatments for human cancers. Translational and Regulatory Sciences, 2021, 3, 51-59.	0.2	1
22	In Vivo Priming of Peritoneal Tumor-Reactive Lymphocytes With a Potent Oncolytic Virus for Adoptive Cell Therapy. Frontiers in Immunology, 2021, 12, 610042.	4.8	6
23	Novel method for effectively amplifying human peripheral blood T cells in vitro. Experimental Cell Research, 2021, 399, 112451.	2.6	2
24	Acquired cancer cell resistance to T cell bispecific antibodies and CAR T targeting HER2 through JAK2 down-modulation. Nature Communications, 2021, 12, 1237.	12.8	29
25	Chimeric antigen receptor T-cell therapy for the treatment of lymphoid malignancies: is there an excess risk for infection?. Lancet Haematology,the, 2021, 8, e216-e228.	4.6	41
26	In respond to commensal bacteria: γÎT cells play a pleiotropic role in tumor immunity. Cell and Bioscience, 2021, 11, 48.	4.8	5
27	Cardiotoxicities of novel cancer immunotherapies. Heart, 2021, 107, 1694-1703.	2.9	42
28	The therapeutic landscape of hepatocellular carcinoma. Med, 2021, 2, 505-552.	4.4	20
29	The landscape of bispecific T cell engager in cancer treatment. Biomarker Research, 2021, 9, 38.	6.8	90
30	Immune Cells and Immunotherapy for Cardiac Injury and Repair. Circulation Research, 2021, 128, 1766-1779.	4.5	93
31	Combination of CRISPR/Cas9 System and CAR-T Cell Therapy: A New Era for Refractory and Relapsed Hematological Malignancies. Current Medical Science, 2021, 41, 420-430.	1.8	5
32	Adoptive Natural Killer Cell Immunotherapy for Canine Osteosarcoma. Frontiers in Veterinary Science, 2021, 8, 672361.	2.2	8
33	Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnology Advances, 2021, 49, 107760.	11.7	33
34	Cell Fate Reprogramming in the Era of Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 714822.	4.8	27
35	Glioblastoma Therapy: Rationale for a Mesenchymal Stem Cell-based Vehicle to Carry Recombinant Viruses. Stem Cell Reviews and Reports, 2022, 18, 523-543.	3.8	11
36	Complex dynamics of a tumor-immune system with antigenicity. Applied Mathematics and Computation, 2021, 400, 126052.	2.2	6

#	Article	IF	CITATIONS
37	Identification of three immune molecular subtypes associated with immune profiles, immune checkpoints, and clinical outcome in multiple myeloma. Cancer Medicine, 2021, 10, 7395-7403.	2.8	4
38	Frontal predominant encephalopathy with early paligraphia as a distinctive signature of CAR T-cell therapy-related neurotoxicity. Journal of Neurology, 2022, 269, 609-615.	3.6	12
39	PTK7-Targeting CAR T-Cells for the Treatment of Lung Cancer and Other Malignancies. Frontiers in Immunology, 2021, 12, 665970.	4.8	24
40	Chimeric Antigen Receptor-T Cells: A Pharmaceutical Scope. Frontiers in Pharmacology, 2021, 12, 720692.	3.5	20
41	Nanobody-armed T cells endow CAR-T cells with cytotoxicity against lymphoma cells. Cancer Cell International, 2021, 21, 450.	4.1	11
42	Facile Generation of Potent Bispecific Fab via Sortase A and Click Chemistry for Cancer Immunotherapy. Cancers, 2021, 13, 4540.	3.7	6
43	Targeting immune dysfunction in aging. Ageing Research Reviews, 2021, 70, 101410.	10.9	76
44	Epigenetic Profiling and Response to CD19 Chimeric Antigen Receptor T-Cell Therapy in B-Cell Malignancies. Journal of the National Cancer Institute, 2022, 114, 436-445.	6.3	29
45	Interleukinâ€33 is a Novel Immunosuppressor that Protects Cancer Cells from TIL Killing by a Macrophageâ€Mediated Shedding Mechanism. Advanced Science, 2021, 8, 2101029.	11.2	20
46	Recognition of Hematopoietic Stem Cell Transplantation and Cellular Therapy Expertise to Promote Care Accessibility: A Formally Credentialed Area of Focused Competence in Canada. Transplantation and Cellular Therapy, 2021, 27, 702-706.	1.2	2
47	Prognostic and therapeutic TILs of cervical cancer—Current advances and future perspectives. Molecular Therapy - Oncolytics, 2021, 22, 410-430.	4.4	32
48	CARâ€T therapy: Prospects in targeting cancer stem cells. Journal of Cellular and Molecular Medicine, 2021, 25, 9891-9904.	3.6	16
49	Implications of Antigen Selection on T Cell-Based Immunotherapy. Pharmaceuticals, 2021, 14, 993.	3.8	6
50	Immune Cycleâ€Based Strategies for Cancer Immunotherapy. Advanced Functional Materials, 2021, 31, 2107540.	14.9	24
51	Patch grafting, strategies for transplantation of organoids into solid organs such as liver. Biomaterials, 2021, 277, 121067.	11.4	15
52	Immunotherapy for targeting cancer stem cells in hepatocellular carcinoma. Theranostics, 2021, 11, 3489-3501.	10.0	35
53	Immunotherapies and immunomodulatory approaches in clinical trials - a mini review. Human Vaccines and Immunotherapeutics, 2021, 17, 1897-1909.	3.3	23
54	In Vivo PET Imaging of Monocytes Labeled with [89Zr]Zr-PLGA-NH2 Nanoparticles in Tumor and Staphylococcus aureus Infection Models. Cancers, 2021, 13, 5069.	3.7	4

\mathbf{C}	TAT	ON	DEE	ODT
	IAL		KEP	UKI

#	Article	IF	CITATIONS
55	NK Cell-Based Immunotherapy and Therapeutic Perspective in Gliomas. Frontiers in Oncology, 2021, 11, 751183.	2.8	10
56	Stereotactic body radiation combined with oncolytic vaccinia virus induces potent anti-tumor effect by triggering tumor cell necroptosis and DAMPs. Cancer Letters, 2021, 523, 149-161.	7.2	22
57	Nanotechnology-based products for cancer immunotherapy. Molecular Biology Reports, 2022, 49, 1389-1412.	2.3	7
58	Chimeric Antigen Receptor T-Cell Therapy in Lung Cancer: Potential and Challenges. Frontiers in Immunology, 2021, 12, 782775.	4.8	23
60	Revisiting the role of pulsed electric fields in overcoming the barriers to in vivo gene electrotransfer. Bioelectrochemistry, 2022, 144, 107994.	4.6	20
61	Targeting the immune checkpoint B7-H3 for next-generation cancer immunotherapy. Cancer Immunology, Immunotherapy, 2022, 71, 1549-1567.	4.2	20
62	Imaging-based Toxicity and Response Pattern Assessment Following CAR T-Cell Therapy. Radiology, 2022, 302, 438-445.	7.3	9
63	Gamma delta TCR anti-CD3 bispecific molecules (GABs) as novel immunotherapeutic compounds. , 2021, 9, e003850.		20
64	Prevention and Treatment of Acute Myeloid Leukemia Relapse after Hematopoietic Stem Cell Transplantation: The State of the Art and Future Perspectives. Journal of Clinical Medicine, 2022, 11, 253.	2.4	10
66	Targeting Tumor Glycans for Cancer Therapy: Successes, Limitations, and Perspectives. Cancers, 2022, 14, 645.	3.7	40
67	Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor (CAR) for tumor immunotherapy; recent progress. Stem Cell Research and Therapy, 2022, 13, 40.	5.5	28
68	Nanobody-based anti-CD22-chimeric antigen receptor T cell immunotherapy exhibits improved remission against B-cell acute lymphoblastic leukemia. Transplant Immunology, 2022, 71, 101538.	1.2	10
69	Immuno-PET imaging of PD-L1 expression in patient-derived lung cancer xenografts with [68Ga]Ga-NOTA-Nb109. Quantitative Imaging in Medicine and Surgery, 2022, 12, 3300-3313.	2.0	5
70	Chimeric antigen receptor T-cell therapy: challenges and opportunities in lung cancer. Antibody Therapeutics, 2022, 5, 73-83.	1.9	5
71	Polymeric Systems for Cancer Immunotherapy: A Review. Frontiers in Immunology, 2022, 13, 826876.	4.8	12
72	Review article: hepatitis B—current and emerging therapies. Alimentary Pharmacology and Therapeutics, 2022, 55, 805-819.	3.7	13
73	Cancer Vaccine in Cold Tumors: Clinical Landscape, Challenges, and Opportunities. Current Cancer Drug Targets, 2022, 22, 437-453.	1.6	2
74	Pan-Cancer Transcriptome and Immune Infiltration Analyses Reveal the Oncogenic Role of Far Upstream Element-Binding Protein 1 (FUBP1). Frontiers in Molecular Biosciences, 2022, 9, 794715.	3.5	0

#	Article	IF	CITATIONS
75	A novel and efficient CD22 CAR-T therapy induced a robust antitumor effect in relapsed/refractory leukemia patients when combined with CD19 CAR-T treatment as a sequential therapy. Experimental Hematology and Oncology, 2022, 11, 15.	5.0	19
76	Increasing Role of Targeted Immunotherapies in the Treatment of AML. International Journal of Molecular Sciences, 2022, 23, 3304.	4.1	6
77	Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes and Diseases, 2023, 10, 1367-1401.	3.4	152
78	Carbonic Anhydrase IX: A Renewed Target for Cancer Immunotherapy. Cancers, 2022, 14, 1392.	3.7	16
79	Identification of the Predictive Models for the Treatment Response of Refractory/Relapsed B-Cell ALL Patients Receiving CAR-T Therapy. Frontiers in Immunology, 2022, 13, 858590.	4.8	4
80	GPC2 Is a Potential Diagnostic, Immunological, and Prognostic Biomarker in Pan-Cancer. Frontiers in Immunology, 2022, 13, 857308.	4.8	28
81	Superior antitumor immunotherapy efficacy of kynureninase modified CAR-T cells through targeting kynurenine metabolism. Oncolmmunology, 2022, 11, 2055703.	4.6	8
82	Alloreactivity of Allogeneic Mesenchymal Stem/Stromal Cells and Other Cellular Therapies: A Concise Review. Stem Cells International, 2022, 2022, 1-8.	2.5	8
83	Kanser immünoterapisinde güncel yaklaşımlar ve immünoterapinin sınırlayıcı etkilerine genel b Turkish Journal of Clinics and Laboratory, 0, , .	akä±ÅŸ.	0
84	Tumor-derived extracellular vesicles induce invalid cytokine release and exhaustion of CD19 CAR-T Cells. Cancer Letters, 2022, 536, 215668.	7.2	11
85	Nanosensors in clinical development of CAR-T cell immunotherapy. Biosensors and Bioelectronics, 2022, 206, 114124.	10.1	5
86	Movement Disorders in Oncology: From Clinical Features to Biomarkers. Biomedicines, 2022, 10, 26.	3.2	5
87	Immunotherapy for anaplastic thyroid carcinoma: the present and future. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang University Medical Sciences, 2021, 50, 675-684.	0.3	2
88	Next generation automated traceless cell chromatography platform for GMP-compliant cell isolation and activation. Scientific Reports, 2022, 12, 6572.	3.3	5
89	Development of CAR T Cell Therapy in Children—A Comprehensive Overview. Journal of Clinical Medicine, 2022, 11, 2158.	2.4	12
90	Guiding the global evolution of cytogenetic testing for hematologic malignancies. Blood, 2022, 139, 2273-2284.	1.4	29
92	Engineering $\hat{I}^{3}\hat{I}$ T Cells: Recognizing and Activating on Their Own Way. Frontiers in Immunology, 2022, 13, .	4.8	12
93	Therapeutic bispecific antibodies against intracellular tumor antigens. Cancer Letters, 2022, 538, 215699.	7.2	12

#	Article	IF	CITATIONS
94	CD147-specific chimeric antigen receptor T cells effectively inhibit T cell acute lymphoblastic leukemia. Cancer Letters, 2022, , 215762.	7.2	4
95	Recent advances and clinical pharmacology aspects of Chimeric Antigen Receptor (CAR) Tâ€cellular therapy development. Clinical and Translational Science, 2022, 15, 2057-2074.	3.1	9
96	Single B Cell Gene Co-Expression Networks Implicated in Prognosis, Proliferation, and Therapeutic Responses in Non-Small Cell Lung Cancer Bulk Tumors. Cancers, 2022, 14, 3123.	3.7	5
97	Spatial delivery of immune cues to lymph nodes to define therapeutic outcomes in cancer vaccination. Biomaterials Science, 2022, 10, 4612-4626.	5.4	2
98	Umbilical Cord Blood as a Source of Less Differentiated T Cells to Produce CD123 CAR-T Cells. Cancers, 2022, 14, 3168.	3.7	8
99	The role of neurologists in the era of cancer immunotherapy: Focus on CAR T-cell therapy and immune checkpoint inhibitors. Frontiers in Neurology, 0, 13, .	2.4	9
100	Identification of BST2 Contributing to the Development of Glioblastoma Based on Bioinformatics Analysis. Frontiers in Genetics, 0, 13, .	2.3	1
101	The role of imaging in targeted delivery of nanomedicine for cancer therapy. Advanced Drug Delivery Reviews, 2022, 189, 114447.	13.7	24
102	T-cell-engaging antibodies for the treatment of solid tumors: challenges and opportunities. Current Opinion in Oncology, 2022, 34, 552-558.	2.4	17
103	Feasibility of in vivo CAR T cells tracking using streptavidin–biotin-paired positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 0, , .	6.4	0
104	Severe infections in recipients of cancer immunotherapy: what intensivists need to know. Current Opinion in Critical Care, 2022, 28, 540-550.	3.2	5
105	Reprogramming tumor-immune cell communication with a radiosensitive nanoregulator for immunotherapy. Science China Materials, 2023, 66, 352-362.	6.3	5
106	Identification of methylation signatures associated with CAR T cell in B-cell acute lymphoblastic leukemia and non-hodgkin's lymphoma. Frontiers in Oncology, 0, 12, .	2.8	2
107	Preoperative prediction of glypican-3 positive expression in solitary hepatocellular carcinoma on gadoxetate-disodium enhanced magnetic resonance imaging. Frontiers in Immunology, 0, 13, .	4.8	9
108	Roles of exosomes as drug delivery systems in cancer immunotherapy: a mini-review. Discover Oncology, 2022, 13, .	2.1	13
109	Macrophages in melanoma: A double‑edged sword and targeted therapy strategies (Review). Experimental and Therapeutic Medicine, 2022, 24, .	1.8	9
110	CAR-T Therapy: A Promising Cancer Treatment. , 0, 8, 100-110.		0
111	Patch grafting of organoids of stem/progenitors into solid organs can correct genetic-based disease states. Biomaterials, 2022, 288, 121647.	11.4	7

#	Article	IF	CITATIONS
112	Assessing the role of radiotherapy in patients with refractory or relapsed high-grade B-cell lymphomas treated with CAR T-cell therapy. Radiotherapy and Oncology, 2022, 175, 65-72.	0.6	13
113	CD137 (4-1BB) Signaling Drives a TcR-Independent Exhaustion Program in CD8 T Cells. SSRN Electronic Journal, 0, , .	0.4	0
114	Polarized Autologous Macrophages (PAM) Can Be a Tumor Vaccine. Oncologie, 2022, 24, 441-449.	0.7	6
115	Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduction and Targeted Therapy, 2022, 7, .	17.1	97
116	Long Noncoding RNA LINC02249 Is a Prognostic Biomarker and Correlates with Immunosuppressive Microenvironment in Skin Cutaneous Melanoma. Journal of Oncology, 2022, 2022, 1-12.	1.3	3
117	Gene Electrotransfer into Mammalian Cells Using Commercial Cell Culture Inserts with Porous Substrate. Pharmaceutics, 2022, 14, 1959.	4.5	4
118	The potential for treg-enhancing therapies in nervous system pathologies. Clinical and Experimental Immunology, 2023, 211, 108-121.	2.6	7
119	Technology meets TILs: Deciphering TÂcell function in the -omics era. Cancer Cell, 2023, 41, 41-57.	16.8	17
120	Natural cell based biomimetic cellular transformers for targeted therapy of digestive system cancer. Theranostics, 2022, 12, 7080-7107.	10.0	5
121	Tumor Microenvironment in Hepatocellular Carcinoma: Key Players for Immunotherapy. Journal of Hepatocellular Carcinoma, 0, Volume 9, 1109-1125.	3.7	11
122	Cellular Senescence in Immunity against Infections. International Journal of Molecular Sciences, 2022, 23, 11845.	4.1	11
124	Tumor buster - where will the CAR-T cell therapy â€ [~] missile' go?. Molecular Cancer, 2022, 21, .	19.2	23
125	Prognostic value and immunological role of BAIAP2L2 in liver hepatocellular carcinoma: A pan-cancer analysis. Frontiers in Surgery, 0, 9, .	1.4	4
126	High frequency of hyperglycaemia observed during <scp>CAR</scp> Tâ€cell treatment. Diabetic Medicine, 0, , .	2.3	0
127	Cellular immunotherapy for medulloblastoma. Neuro-Oncology, 2023, 25, 617-627.	1.2	7
128	Nanobody-based CAR T cells targeting intracellular tumor antigens. Biomedicine and Pharmacotherapy, 2022, 156, 113919.	5.6	7
129	Polymer- and lipid-based gene delivery technology for CAR T cell therapy. Journal of Controlled Release, 2023, 353, 196-215.	9.9	11
130	The signaling and the metabolic differences of various CAR T cell designs. International Immunopharmacology, 2023, 114, 109593.	3.8	2

#	Article	IF	CITATIONS
131	Development of Nectin4/FAP-targeted CAR-T cells secreting IL-7, CCL19, and IL-12 for malignant solid tumors. Frontiers in Immunology, 0, 13, .	4.8	9
132	High-Throughput and Efficient Intracellular Delivery Method via a Vibration-Assisted Nanoneedle/Microfluidic Composite System. ACS Nano, 2023, 17, 2101-2113.	14.6	6
133	Inferencing Bulk Tumor and Single-Cell Multi-Omics Regulatory Networks for Discovery of Biomarkers and Therapeutic Targets. Cells, 2023, 12, 101.	4.1	0
134	Activation of cancer immunotherapy by nanomedicine. Frontiers in Pharmacology, 0, 13, .	3.5	4
135	Acute Kidney Injury in Cancer Immunotherapy Recipients. Cells, 2022, 11, 3991.	4.1	4
136	Outcomes of Older Adults with Non-Hodgkin Lymphoma Undergoing Autologous Stem Cell Transplantation: A Mayo Clinic Cohort Analysis. Transplantation and Cellular Therapy, 2023, 29, 176.e1-176.e8.	1.2	0
137	Immunotherapeutic approaches in Hepatocellular carcinoma: Building blocks of hope in near future. European Journal of Cell Biology, 2023, 102, 151284.	3.6	8
138	Diselenideâ€Based Dualâ€Responsive Prodrug as Pyroptosis Inducer Potentiates Cancer Immunotherapy. Advanced Healthcare Materials, 2023, 12, .	7.6	11
139	Live ell Glycocalyx Engineering. ChemBioChem, 2023, 24, .	2.6	1
140	Cancer stem cellâ€immune cell collusion in immunotherapy. International Journal of Cancer, 2023, 153, 694-708.	5.1	1
141	Thermal immuno-nanomedicine in cancer. Nature Reviews Clinical Oncology, 2023, 20, 116-134.	27.6	60
142	Improved cancer immunotherapy strategies by nanomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	7
143	Multifunctional Nanoâ€Biomaterials for Cancer Therapy via Inducing Enhanced Immunogenic Cell Death. Small Methods, 2023, 7, .	8.6	12
144	ANXA2 is a potential biomarker for cancer prognosis and immune infiltration: A systematic pan-cancer analysis. Frontiers in Genetics, 0, 14, .	2.3	1
145	Expression of CD22 in Triple-Negative Breast Cancer: A Novel Prognostic Biomarker and Potential Target for CAR Therapy. International Journal of Molecular Sciences, 2023, 24, 2152.	4.1	4
146	Research Status of CAR-T Cell Immunotherapy in Tumor Treatment. Journal of Biosciences and Medicines, 2023, 11, 24-36.	0.2	0
147	Immunotherapy: Targeting Cancer Cells. Biological and Medical Physics Series, 2023, , 179-217.	0.4	0
148	CAR t-cell therapy in BOlogNa–NEUrotoxicity TReatment and Assessment in Lymphoma (CARBON–NEUTRAL): proposed protocol and results from an Italian study. Journal of Neurology, 2023, 270. 2659-2673.	3.6	5

#	Article	IF	Citations
149	Genetically Programmable Vesicles for Enhancing CARâ€T Therapy against Solid Tumors. Advanced Materials, 2023, 35, .	21.0	7
150	Development of a risk model to predict prognosis in breast cancer based on cGAS-STING-related genes. Frontiers in Genetics, 0, 14, .	2.3	2
151	CAR T-cells to treat brain tumors. Brain Research Bulletin, 2023, 196, 76-98.	3.0	7
152	Case report: Reversible punctate inflammatory foci in the corpus callosum: A novel radiological finding of CAR T-cell therapy-related neurotoxicity. Frontiers in Neurology, 0, 14, .	2.4	2
154	A close look at current Î 3 δT-cell immunotherapy. Frontiers in Immunology, 0, 14, .	4.8	9
155	Novel strategies for cancer immunotherapy: counter-immunoediting therapy. Journal of Hematology and Oncology, 2023, 16, .	17.0	14
156	Identification of Membrane-expressed CAPRIN-1 as a Novel and Universal Cancer Target, and Generation of a Therapeutic Anti-CAPRIN-1 Antibody TRK-950. Cancer Research Communications, 2023, 3, 640-658.	1.7	1
157	Regulation of CD19 CAR-T cell activation based on an engineered downstream transcription factor. Molecular Therapy - Oncolytics, 2023, 29, 77-90.	4.4	1
158	Integrated pan-cancer analysis of centromere protein F and experimental verification of its role and clinical significance in cholangiocarcinoma. Functional and Integrative Genomics, 2023, 23, .	3.5	0
159	Transformative Materials for Interfacial Drug Delivery. Advanced Healthcare Materials, 2023, 12, .	7.6	2
160	A Tetramethylpyrazine Releasing Hydrogel can Potentiate CAR-T Cell Therapy against Triple Negative Breast Cancer by Reprogramming Tumor Vasculatures. Fundamental Research, 2023, , .	3.3	1
161	Revealing the impact of CD70 expression on the manufacture and functions of CAR-70ÂT-cells based on single-cell transcriptomics. Cancer Immunology, Immunotherapy, 2023, 72, 3163-3174.	4.2	2
162	Combination of CARâ€ʿT cell therapy and radiotherapy: Opportunities and challenges in solid tumors (Review). Oncology Letters, 2023, 26, .	1.8	5
163	Case Report: IBD-like colitis following CAR T cell therapy for diffuse large B cell lymphoma. Frontiers in Oncology, 0, 13, .	2.8	2
164	Immunotherapy in leukaemia. Acta Biochimica Et Biophysica Sinica, 2023, 55, 974-987.	2.0	1
165	Feasibility of an acoustophoresis-based system for a high-throughput cell washing: application to bioproduction. Cytotherapy, 2023, 25, 891-899.	0.7	1
166	Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurology, The, 2023, 22, 578-590.	10.2	30
167	Are CAR T cells the answer to myasthenia gravis therapy?. Lancet Neurology, The, 2023, 22, 545-546.	10.2	1

#	Article	IF	CITATIONS
168	Harnessing the Immune System: Current and Emerging Immunotherapy Strategies for Pediatric Acute Lymphoblastic Leukemia. Biomedicines, 2023, 11, 1886.	3.2	1
169	Application of adoptive cell therapy in hepatocellular carcinoma. Immunology, 2023, 170, 453-469.	4.4	6
170	Exploration of cuprotosis-related genes for predicting prognosis and immunological characteristics in acute myeloid leukaemia based on genome and transcriptome. Aging, 2023, 15, 6467-6486.	3.1	0
171	Advancement and Applications of Nanotherapy for Cancer Immune Microenvironment. Current Medical Science, 2023, 43, 631-646.	1.8	0
172	Phytochemical-Based Nanomedicine for Targeting Tumor Microenvironment and Inhibiting Cancer Chemoresistance: Recent Advances and Pharmacological Insights. Molecular Pharmaceutics, 2023, 20, 5254-5277.	4.6	2
173	Pan ancer analysis: <scp>SPAG5</scp> is an immunological and prognostic biomarker for multiple cancers. FASEB Journal, 2023, 37, .	0.5	Ο
174	Modulation of Radiation Doses and Chimeric Antigen Receptor T Cells: A Promising New Weapon in Solid Tumors—A Narrative Review. Journal of Personalized Medicine, 2023, 13, 1261.	2.5	1
175	Incidence of CD19-negative relapse after CD19-targeted immunotherapy in R/R BCP acute lymphoblastic leukemia: a review. Leukemia and Lymphoma, 2023, 64, 1615-1633.	1.3	1
176	CAR-T in the Treatment of Acute Myeloid Leukemia: Barriers and How to Overcome Them. HemaSphere, 2023, 7, e937.	2.7	3
177	Pan-cancer analysis and experimental validation revealed the m6A methyltransferase KIAA1429 as a potential biomarker for diagnosis, prognosis, and immunotherapy. Aging, 2023, 15, 8664-8691.	3.1	1
178	Effectiveness and safety of <scp>CD22</scp> and <scp>CD19</scp> dualâ€targeting chimeric antigen receptor Tâ€cell therapy in patients with relapsed or refractory Bâ€cell malignancies: A metaâ€analysis. Cancer Medicine, 2023, 12, 18767-18785.	2.8	0
179	The long and winding road of faecal microbiota transplants to targeted intervention for improvement of immune checkpoint inhibition therapy. Expert Review of Anticancer Therapy, 2023, 23, 1179-1191.	2.4	0
181	Exploring potential of exosomes drug delivery system in the treatment of cancer: Advances and prospective. Medicine in Drug Discovery, 2023, 20, 100163.	4.5	2
182	Targeting of tumor cells by custom antigen transfer: a novel approach for immunotherapy of cancer. Frontiers in Oncology, 0, 13, .	2.8	0
183	Application of exosomes as nanocarriers in cancer therapy. Journal of Materials Chemistry B, O, , .	5.8	1
184	Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity. Journal of Experimental and Clinical Cancer Research, 2023, 42, .	8.6	1
185	Current Situation and Prospect of Adoptive Cellular Immunotherapy for Malignancies. Technology in Cancer Research and Treatment, 2023, 22, .	1.9	0
186	Adoptive cell immunotherapy for breast cancer: harnessing the power of immune cells. Journal of Leukocyte Biology, 0, , .	3.3	0

#	Article	IF	CITATIONS
187	17.ÂCancer., 2023,,.		0
188	Regulation of telomerase towards tumor therapy. Cell and Bioscience, 2023, 13, .	4.8	0
189	Expression of Interleukin-13 Receptor Alpha 2 in Brainstem Gliomas. Cancers, 2024, 16, 228.	3.7	0
190	NK cells as powerful therapeutic tool in cancer immunotherapy. Cellular Oncology (Dordrecht), 0, , .	4.4	0
191	SMAD7 expression in CAR-T cells improves persistence and safety for solid tumors. , 2024, 21, 213-226.		1
192	New CEACAM-targeting 2A3 single-domain antibody-based chimeric antigen receptor T-cells produce anticancer effects in vitro and in vivo. Cancer Immunology, Immunotherapy, 2024, 73, .	4.2	0
193	Non-viral delivery of RNA for therapeutic T cell engineering. Advanced Drug Delivery Reviews, 2024, 208, 115215.	13.7	0
194	Multi-omics analysis of TLCD1 as a promising biomarker in pan-cancer. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	0
196	Immunotherapeutics: Advancing precision medicine in cancer treatment. IP International Journal of Comprehensive and Advanced Pharmacology, 2024, 9, 17-23.	0.3	0
197	PDCL3 is a prognostic biomarker associated with immune infiltration in hepatocellular carcinoma. European Journal of Medical Research, 2024, 29, .	2.2	0
198	Coactosin-Like Protein 1 (COTL1) Could Be an Immunological and Prognostic Biomarker: From Pan-Cancer Analysis to Low-Grade Glioma Validation. Journal of Inflammation Research, 0, Volume 17, 1805-1820.	3.5	0
199	Combination of theoretical analysis and experiments: Exploring the role of PLA2G7 in human cancers, including renal cancer. Heliyon, 2024, 10, e27906.	3.2	0
200	Novel CAR-T cells targeting TRKB for the treatment of solid cancer. Apoptosis: an International Journal on Programmed Cell Death, 0, , .	4.9	0
201	Adoptive T-Cell Therapy for the Treatment of Lung Cancer. , 2024, , 101-130.		0
202	Primary vs. pre-emptive anti-seizure medication prophylaxis in anti-CD19 CAR T-cell therapy. Neurological Sciences, 0, , .	1.9	0
204	Immune modulation in malignant pleural effusion: from microenvironment to therapeutic implications. Cancer Cell International, 2024, 24, .	4.1	0