The changing role of organic nitrates in the removal and NO<sub&gt;&lt;i&gt;x&lt;

Atmospheric Chemistry and Physics 20, 267-279 DOI: 10.5194/acp-20-267-2020

Citation Report

#	Article	IF	CITATIONS
1	A study of the conformational isomerism of n-propyl nitrate by microwave spectroscopy. Journal of Molecular Spectroscopy, 2020, 374, 111376.	0.4	1
2	Sensitivity of Tropospheric Ozone Over the Southeast USA to Dry Deposition. Geophysical Research Letters, 2020, 47, e2020GL087158.	1.5	11
3	Evidence of Nighttime Production of Organic Nitrates During SEAC 4 RS, FRAPPÉ, and KORUSâ€AQ. Geophysical Research Letters, 2020, 47, e2020GL087860.	1.5	7
5	Impacts of sectoral, regional, species, and day-specific emissions on air pollution and public health in Washington, DC. Elementa, 2021, 9, .	1.1	6
6	The production and hydrolysis of organic nitrates from OH radical oxidation of <i>l²</i> -ocimene. Atmospheric Chemistry and Physics, 2021, 21, 129-145.	1.9	16
7	On the importance of atmospheric loss of organic nitrates by aqueous-phase â—OH oxidation. Atmospheric Chemistry and Physics, 2021, 21, 4915-4937.	1.9	6
8	Estimation of particulate organic nitrates from thermodenuder–aerosol mass spectrometer measurements in the North China Plain. Atmospheric Measurement Techniques, 2021, 14, 3693-3705.	1.2	12
9	Surface ozone in the North American pollution outflow region of Nova Scotia: Long-term analysis of surface concentrations, precursor emissions and long-range transport influence. Atmospheric Environment, 2021, 261, 118536.	1.9	6
10	Quantifying burning efficiency in megacities using the NO ₂ â^•CO ratio from the Tropospheric Monitoring Instrument (TROPOMI). Atmospheric Chemistry and Physics, 2020, 20, 10295-10310.	1.9	23
11	An inversion of NO _{<i>x</i>} and non-methane volatile organic compound (NMVOC) emissions using satellite observations during the KORUS-AQ campaign and implications for surface ozone over East Asia. Atmospheric Chemistry and Physics. 2020. 20. 9837-9854.	1.9	30
12	Measurement of NO _{<i>x</i>} and NO _{<i>y</i>} with a thermal dissociation cavity ring-down spectrometer (TD-CRDS): instrument characterisation and first deployment. Atmospheric Measurement Techniques, 2020, 13, 5739-5761.	1.2	10
13	Direct estimates of biomass burning NO _{<i>x</i>} emissions and lifetimes using daily observations from TROPOMI. Atmospheric Chemistry and Physics, 2021, 21, 15569-15587.	1.9	30
14	Leaf Stomatal Uptake of Alkyl Nitrates. Environmental Science and Technology Letters, 2022, 9, 186-190.	3.9	7
15	Nocturnal Atmospheric Oxidative Processes in the Indoâ€Gangetic Plain and Their Variation During the COVIDâ€19 Lockdowns. Geophysical Research Letters, 2022, 49, .	1.5	6
16	Fate of the nitrate radical at the summit of a semi-rural mountain site in Germany assessed with direct reactivity measurements. Atmospheric Chemistry and Physics, 2022, 22, 7051-7069.	1.9	4
17	Quantifying NO _{<i>x</i>} emissions in Egypt using TROPOMI observations. Atmospheric Chemistry and Physics, 2022, 22, 11505-11527.	1.9	6
18	Observation and modeling of organic nitrates on a suburban site in southwest China. Science of the Total Environment, 2023, 859, 160287.	3.9	2
19	Estimation of OH in urban plumes using TROPOMI-inferred NO ₂ â^• CO. Atmospheric Chem and Physics, 2022, 22, 16053-16071.	istry 1.9	5

#	Article	IF	CITATIONS
20	Metal-free catalysis on the reactions of nitric acid with aliphatic aldehydes: A new potential source of organic nitrates. Atmospheric Environment, 2023, 299, 119673.	1.9	1
21	Variable effects of spatial resolution on modeling of nitrogen oxides. Atmospheric Chemistry and Physics, 2023, 23, 3031-3049.	1.9	2

CITATION REPORT