Overcoming the translational barriers of tissue adhesiv

Nature Reviews Materials 5, 310-329 DOI: 10.1038/s41578-019-0171-7

Citation Report

#	Article	IF	CITATIONS
1	Bioinspired Mechanically Interlocking Structures. Small Structures, 2020, 1, 2000045.	6.9	53
2	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035.	18.7	54
3	Engineering an Injectable Tough Tissue Adhesive through Nanocellulose Reinforcement. ACS Applied Bio Materials, 2020, 3, 9093-9100.	2.3	8
4	In Vitro Biocompatibility of Diazirineâ€Grafted Biomaterials. Macromolecular Rapid Communications, 2020, 41, e2000235.	2.0	11
5	Swelling-strengthening hydrogels by embedding with deformable nanobarriers. Nature Communications, 2020, 11, 4502.	5.8	77
6	Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chemical Reviews, 2021, 121, 10908-10949.	23.0	216
7	Instant tough bioadhesive with triggerable benign detachment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15497-15503.	3.3	210
8	Nanocomposite adhesive hydrogels: from design to application. Journal of Materials Chemistry B, 2021, 9, 585-593.	2.9	51
9	Tissue adhesives: From research to clinical translation. Nano Today, 2021, 36, 101049.	6.2	90
10	Applications of Fibrin Tissue Sealant. IOP Conference Series: Earth and Environmental Science, 0, 632, 052098.	0.2	1
11	Injectable, self-healing and pH responsive stem cell factor loaded collagen hydrogel as a dynamic bioadhesive dressing for diabetic wound repair. Journal of Materials Chemistry B, 2021, 9, 5887-5897.	2.9	33
12	A Multifunctional Origami Patch for Minimally Invasive Tissue Sealing. Advanced Materials, 2021, 33, e2007667.	11.1	77
13	Chemically Stable, Strongly Adhesive Sealant Patch for Intestinal Anastomotic Leakage Prevention. Advanced Functional Materials, 2021, 31, 2007099.	7.8	34
14	Necessities, opportunities, and challenges for tympanic membrane perforation scaffolding-based bioengineering. Biomedical Materials (Bristol), 2021, 16, 032004.	1.7	12
15	Recent developments of nanotechnology in tissue adhesives. IOP Conference Series: Earth and Environmental Science, 2021, 714, 032089.	0.2	2
16	Enzyme Catalyzed Hydrogel as Versatile Bioadhesive for Tissue Wound Hemostasis, Bonding, and Continuous Repair. Biomacromolecules, 2021, 22, 1346-1356.	2.6	38
18	Degradable and Removable Tough Adhesive Hydrogels. Advanced Materials, 2021, 33, e2008553.	11.1	99
19	Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction. ACS Biomaterials Science and Engineering, 2021, 7, 4048-4076	2.6	89

D

#	Article	IF	CITATIONS
20	Fabrication of cell penetrating peptide-conjugated bacterial cellulose nanofibrils with remarkable skin adhesion and water retention performance. International Journal of Pharmaceutics, 2021, 600, 120476.	2.6	15
21	Efficacy evaluation of an in situ forming tissue adhesive hydrogel as sealant for lung and vascular injury. Biomedical Materials (Bristol), 2021, 16, 044106.	1.7	10
22	Dendrimer-based Hydrogels with Controlled Drug Delivery Property for Tissue Adhesion. Chinese Journal of Polymer Science (English Edition), 2021, 39, 1421-1430.	2.0	16
23	Covalently Crosslinked Hydrogels via Stepâ€Growth Reactions: Crosslinking Chemistries, Polymers, and Clinical Impact. Advanced Materials, 2021, 33, e2006362.	11.1	95
24	Multifaceted Design and Emerging Applications of Tissue Adhesives. Advanced Materials, 2021, 33, e2007663.	11.1	117
25	A New Type of Biological Glue Derived from Fish Swim Bladder: Outstanding Adhesion and Surgical Applications. Advanced Materials Technologies, 2021, 6, 2100303.	3.0	6
26	Injectable non-leaching tissue-mimetic bottlebrush elastomers as an advanced platform for reconstructive surgery. Nature Communications, 2021, 12, 3961.	5.8	32
27	Anastomotic Leak: Toward an Understanding of Its Root Causes. Journal of Gastrointestinal Surgery, 2021, 25, 2966-2975.	0.9	15
28	Mesoporous Silica Nanoparticles and Mesoporous Bioactive Glasses for Wound Management: From Skin Regeneration to Cancer Therapy. Materials, 2021, 14, 3337.	1.3	25
29	A Strong Dual-Component Bioadhesive Based on Solventless Thiol-isocyanate Click Chemistry. ACS Biomaterials Science and Engineering, 2021, 7, 3389-3398.	2.6	2
31	Hydrogel–mesh composite for wound closure. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	62
32	Snake extract–laden hemostatic bioadhesive gel cross-linked by visible light. Science Advances, 2021, 7,	4.7	96
33	Suction Cupsâ€Inspired Adhesive Patch with Tailorable Patterns for Versatile Wound Healing. Advanced Science, 2021, 8, e2100201.	5.6	66
34	Adhesive Tissue Engineered Scaffolds: Mechanisms and Applications. Frontiers in Bioengineering and Biotechnology, 2021, 9, 683079.	2.0	10
35	Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices. Progress in Materials Science, 2021, 120, 100823.	16.0	117
36	Dual Functionalization of Gelatin for Orthogonal and Dynamic Hydrogel Cross-Linking. ACS Biomaterials Science and Engineering, 2021, 7, 4196-4208.	2.6	19
37	Rapid Activation of Diazirine Biomaterials with the Blue Light Photocatalyst. ACS Applied Materials & Interfaces, 2021, 13, 36839-36848.	4.0	10
38	Engineering elastic sealants based on gelatin and elastinâ€like polypeptides for endovascular anastomosis. Bioengineering and Translational Medicine, 2021, 6, e10240.	3.9	8

#	Article	IF	CITATIONS
39	Biomimetic Glycopolypeptide Hydrogels with Tunable Adhesion and Microporous Structure for Fast Hemostasis and Highly Efficient Wound Healing. Advanced Functional Materials, 2021, 31, 2105628.	7.8	123
40	Bioinspired Underwater Adhesives. Advanced Materials, 2021, 33, e2102983.	11.1	178
41	Osteo-mucosal engineered construct: In situ adhesion of hard-soft tissues. Materials Science and Engineering C, 2021, 128, 112255.	3.8	9
42	Rational engineering and applications of functional bioadhesives in biomedical engineering. Biotechnology Journal, 2021, 16, e2100231.	1.8	9
43	Strong, Multifaceted Guanidinium-Based Adhesion of Bioorganic Nanoparticles to Wet Biological Tissue. Jacs Au, 2021, 1, 1399-1411.	3.6	16
44	A pH-driven genipin gelator to engineer decellularized extracellular matrix-based tissue adhesives. Acta Biomaterialia, 2021, 131, 211-221.	4.1	20
45	Applications of Bioadhesives: A Mini Review. Frontiers in Bioengineering and Biotechnology, 2021, 9, 716035.	2.0	33
46	Switchable Photonic Bioâ€Adhesive Materials. Advanced Materials, 2021, 33, e2103674.	11.1	33
47	Polyelectrolyte Gels: Fundamentals, Fabrication and Applications. Gels, 2021, 7, 148.	2.1	17
48	Physiologicallyâ€Regulated Adhesion of Hydrogels for Wound Dressing. Advanced Materials Interfaces, 2021, 8, 2101131.	1.9	20
49	Engineering air-in-water emulsion as adaptable multifunctional sealant. Chemical Engineering Journal, 2022, 429, 132200.	6.6	8
50	Degradable and self-luminescence porous silicon particles as tissue adhesive for wound closure, monitoring and accelerating wound healing. Journal of Colloid and Interface Science, 2022, 607, 1239-1252.	5.0	8
51	A hydra tentacle-inspired hydrogel with underwater ultra-stretchability for adhering adipose surfaces. Chemical Engineering Journal, 2022, 428, 131049.	6.6	24
52	Polymeric Tissue Adhesives. Chemical Reviews, 2021, 121, 11336-11384.	23.0	306
53	Preparation and characterization of antibacterial and anti-inflammatory hyaluronic acid-chitosan-dexamethasone hydrogels for peri-implantitis repair. Journal of Biomaterials Applications, 2022, 36, 1141-1150.	1.2	6
54	Solventâ€Free Musselâ€Inspired Adhesive with Rapid Underwater Curing Capability. Advanced Materials Interfaces, 2021, 8, 2101544.	1.9	13
56	An Injectable Asymmetricâ€Adhesive Hydrogel as a GATA6 ⁺ Cavity Macrophage Trap to Prevent the Formation of Postoperative Adhesions after Minimally Invasive Surgery. Advanced Functional Materials, 2022, 32, 2110066.	7.8	42
57	Polymer Adhesion: Seeking New Solutions for an Old Problem. Macromolecules, 2021, 54, 10617-10644.	2.2	59

		Citation Report		
#	Article	I	IF	CITATIONS
58	Adhesive anastomosis for organ transplantation. Bioactive Materials, 2022, 13, 260-268.	;	8.6	16
59	Injectable Doubleâ€Crosslinked Adhesive Hydrogels with High Mechanical Resilience and Effective Energy Dissipation for Joint Wound Treatment. Advanced Functional Materials, 2022, 32, 210968	7.	7.8	81
61	Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chemical Reviews, 2022, 5604-5640.	122,	23.0	238
62	Electrostatic Interaction-Based High Tissue Adhesive, Stretchable Microelectrode Arrays for the Electrophysiological Interface. ACS Applied Materials & Interfaces, 2022, 14, 4852-4861.		4.0	20
63	A Tissue Adhesion ontrollable and Biocompatible Small‣cale Hydrogel Adhesive Robot. Adva Materials, 2022, 34, e2109325.	nced	11.1	70
64	Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nature Communications, 2022, 13, 358.		5.8	160
65	An off-the-shelf bioadhesive patch for sutureless repair of gastrointestinal defects. Science Translational Medicine, 2022, 14, eabh2857.	1	5.8	67
66	Photocurable silk fibroin-based tissue sealants with enhanced adhesive properties for the treatmen of corneal perforations. Journal of Materials Chemistry B, 2022, 10, 2912-2925.	ht	2.9	21
67	Ascidian-inspired aciduric hydrogels with high stretchability and adhesiveness promote gastric hemostasis and wound healing. Biomaterials Science, 2022, 10, 2417-2427.	:	2.6	15
68	Bioadhesive Nanoparticles for Local Drug Delivery. International Journal of Molecular Sciences, 202 23, 2370.	22,	1.8	16
69	Poly(propylene fumarate)-Based Adhesives with a Transformable Adhesion Force for Suture-Free Fixation of Soft Tissue Wounds. ACS Applied Polymer Materials, 2022, 4, 1855-1866.	:	2.0	4
70	A Biodegradable Multifunctional Film as a Tissue Adhesive for Instant Hemostasis and Wound Clos Macromolecular Rapid Communications, 2022, 43, e2200031.	ure.	2.0	1
71	An Injectable Antibiotic Hydrogel that Scavenges Proinflammatory Factors for the Treatment of Severe Abdominal Trauma. Advanced Functional Materials, 2022, 32, .		7.8	32
72	Hydrogel Bioadhesives with Extreme Acidâ€Tolerance for Gastric Perforation Repairing. Advanced Functional Materials, 2022, 32, .		7.8	41
73	Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing. Bioactive Materials, 2022, 16, 388-402.	1	8.6	95
74	Tough Hydrogel Bioadhesives for Sutureless Wound Sealing, Hemostasis and Biointerfaces. Advan Functional Materials, 2022, 32, .	ced .	7.8	67
75	Multifunctional Single omponent Polypeptide Hydrogels: The Gelation Mechanism, Superior Biocompatibility, High Performance Hemostasis, and Scarless Wound Healing. Advanced Healthca Materials, 2022, 11, e2101809.	re	3.9	19
76	An injectable hemostatic PEG-based hydrogel with on-demand dissolution features for emergency care. Acta Biomaterialia, 2022, 145, 106-121.		4.1	29

#	Article	IF	CITATIONS
77	Bioactive hydrogels based on polysaccharides and peptides for soft tissue wound management. Journal of Materials Chemistry B, 2022, 10, 7148-7160.	2.9	13
78	Hotmelt tissue adhesive with supramolecularly-controlled sol-gel transition for preventing postoperative abdominal adhesion. Acta Biomaterialia, 2022, 146, 80-93.	4.1	14
79	Hemostatic biomaterials to halt non-compressible hemorrhage. Journal of Materials Chemistry B, 2022, 10, 7239-7259.	2.9	25
80	Dual-core coaxial bioprinting of double-channel constructs with a potential for perfusion and interaction of cells. Biofabrication, 2022, 14, 035012.	3.7	7
81	Strong and bioactive bioinspired biomaterials, next generation of bone adhesives. Advances in Colloid and Interface Science, 2022, 305, 102706.	7.0	21
82	Addressing the Shortcomings of Polyphenol-Derived Adhesives: Achievement of Long Shelf Life for Effective Hemostasis. ACS Applied Materials & amp; Interfaces, 2022, 14, 25115-25125.	4.0	18
83	Fibrin Sealants: Challenges and Solutions. ACS Biomaterials Science and Engineering, 2022, 8, 2220-2231.	2.6	15
84	Engineered Hemostatic Biomaterials for Sealing Wounds. Chemical Reviews, 2022, 122, 12864-12903.	23.0	79
85	A double-network strategy for the tough tissue adhesion of hydrogels with long-term stability under physiological environment. Soft Matter, 2022, 18, 6192-6199.	1.2	10
86	Biomedical engineering of polysaccharide-based tissue adhesives: Recent advances and future direction. Carbohydrate Polymers, 2022, 295, 119787.	5.1	23
87	Tissue Adhesives in Reconstructive and Aesthetic Surgery—Application of Silk Fibroin-Based Biomaterials. International Journal of Molecular Sciences, 2022, 23, 7687.	1.8	6
88	Rapid Ultratough Topological Tissue Adhesives. Advanced Materials, 2022, 34, .	11.1	31
89	Robust hydrogel adhesives for emergency rescue and gastric perforation repair. Bioactive Materials, 2023, 19, 703-716.	8.6	25
90	A double crosslinking adhesion mechanism for developing tough hydrogel adhesives. Acta Biomaterialia, 2022, 150, 199-210.	4.1	6
91	Smart Internal Bioâ \in Glues. Advanced Science, 2022, 9, .	5.6	21
92	Biocompatibility of novel albumin-aldehyde surgical adhesive. Scientific Reports, 2022, 12, .	1.6	2
93	Visibleâ€Lightâ€Curable Acrylic Resins toward UVâ€Lightâ€Blocking Adhesives for Foldable Displays. Advanced Materials, 2023, 35, .	11.1	17
94	An Injectable Rapidâ€Adhesion and Antiâ€&welling Adhesive Hydrogel for Hemostasis and Wound Sealing. Advanced Functional Materials, 2022, 32, .	7.8	50

#	Article	IF	CITATIONS
95	Liquid-infused microstructured bioadhesives halt non-compressible hemorrhage. Nature Communications, 2022, 13, .	5.8	37
96	Injectable Adhesive Hydrogels for Soft tissue Reconstruction: A Materials Chemistry Perspective. Chemical Record, 2022, 22, .	2.9	8
97	Sprayable Hydrogel for Instant Sealing of Vascular Anastomosis. Advanced Materials, 2022, 34, .	11.1	12
98	Supramolecular Adhesive Materials with Antimicrobial Activity for Emerging Biomedical Applications. Pharmaceutics, 2022, 14, 1616.	2.0	3
99	3D Printing of PEDOT:PSS-PU-PAA Hydrogels with Excellent Mechanical and Electrical Performance for EMG Electrodes. Lecture Notes in Computer Science, 2022, , 295-304.	1.0	1
100	Gradient Modulus Tissue Adhesive Composite for Dynamic Wound Closure. Advanced Functional Materials, 2022, 32, .	7.8	10
101	Recent progress in fabrications and applications of functional hydrogel films. Journal of Polymer Science, 2023, 61, 1026-1039.	2.0	6
102	Morphing-to-Adhesion Polysaccharide Hydrogel for Adaptive Biointerfaces. ACS Applied Materials & Interfaces, 2022, 14, 42420-42429.	4.0	15
103	Bio-macromolecular design roadmap towards tough bioadhesives. Chemical Society Reviews, 2022, 51, 9127-9173.	18.7	31
104	Controlled afterglow luminescent particles for photochemical tissue bonding. Light: Science and Applications, 2022, 11, .	7.7	10
105	Efficient Wet Adhesion through Musselâ€Inspired Protoâ€Coacervates. Advanced Materials Interfaces, 2023, 10, .	1.9	5
106	Hydrogel interfaces for merging humans and machines. Nature Reviews Materials, 2022, 7, 935-952.	23.3	153
107	Mechanoactive Nanocomposite Hydrogel to Accelerate Wound Repair in Movable Parts. ACS Nano, 2022, 16, 20044-20056.	7.3	31
108	Tetra-armed PEG-based rapid high-adhesion, antibacterial and biodegradable pre-clinical bioadhesives for preventing pancreas leakage. Materials and Design, 2022, 224, 111281.	3.3	5
109	Design of biopolymer-based hemostatic material: Starting from molecular structures and forms. Materials Today Bio, 2022, 17, 100468.	2.6	10
110	A comparative highâ€resolution physicochemical analysis of commercially available fibrin sealants: Impact of sealant osmolality on biological performance. Journal of Biomedical Materials Research - Part A, 2023, 111, 488-501.	2.1	2
111	Multifunctional Dual Cross‣inked Bioadhesive Patch with Low Immunogenic Response and Wet Tissues Adhesion. Advanced Healthcare Materials, 2023, 12, .	3.9	9
112	A Dualâ€Network Nerve Adhesive with Enhanced Adhesion Strength Promotes Transected Peripheral Nerve Repair. Advanced Functional Materials, 2023, 33, .	7.8	16

# 113	ARTICLE Advancing pressure-sensitive adhesives for internal wound closure. Nature Reviews Materials, 2023, 8, 3-5.	IF 23.3	CITATIONS
114	A sandwiched patch toward leakage-free and anti-postoperative tissue adhesion sealing of intestinal injuries. Bioactive Materials, 2023, 24, 112-123.	8.6	7
115	A Choline Phosphoryl-Conjugated Chitosan/Oxidized Dextran Injectable Self-Healing Hydrogel for Improved Hemostatic Efficacy. Biomacromolecules, 2023, 24, 690-703.	2.6	18
116	Strong Biopolymer-Based Nanocomposite Hydrogel Adhesives with Removability and Reusability for Damaged Tissue Closure and Healing. ACS Applied Materials & Interfaces, 2022, 14, 54488-54499.	4.0	11
117	Realâ€Time Monitoring of Wound States via Rationally Engineered Biosensors. , 2024, 3, .		1
118	Silk Fibroin-Based Tough Hydrogels with Strong Underwater Adhesion for Fast Hemostasis and Wound Sealing. Biomacromolecules, 2023, 24, 319-331.	2.6	8
119	A Super Tough, Rapidly Biodegradable, Ultrafast Hemostatic Bioglue. Advanced Materials, 2023, 35, .	11.1	24
120	An Ultrasoundâ€Driven Bioadhesive Triboelectric Nanogenerator for Instant Wound Sealing and Electrically Accelerated Healing in Emergencies. Advanced Materials, 2023, 35, .	11.1	38
121	One‣tep Soaking Strategy toward Anti‣welling Hydrogels with a Stiff "Armorâ€: Advanced Science, 2023, 10, .	5.6	19
122	A natural biological adhesive from snail mucus for wound repair. Nature Communications, 2023, 14, .	5.8	44
123	Adhesive cryogel particles for bridging confined and irregular tissue defects. Military Medical Research, 2023, 10, .	1.9	0
124	Bioadhesives based on multifunctional biopolymers for biomedical applications. Macromolecular Research, 0, , .	1.0	0
125	Nano-enabled DNA supramolecular sealant for soft tissue surgical applications. Nano Today, 2023, 50, 101825.	6.2	5
126	Programmable bio-ionic liquid functionalized hydrogels for in situ 3D bioprinting of electronics at the tissue interface. Materials Today Advances, 2023, 17, 100352.	2.5	2
127	Tissue adhesives for wound closure. , 2023, 2, .		8
128	Combinational System of Lipid-Based Nanocarriers and Biodegradable Polymers for Wound Healing: An Updated Review. Journal of Functional Biomaterials, 2023, 14, 115.	1.8	12
129	Polyâ€Catecholic Functionalization of Biomolecules for Rapid Gelation, Robust Injectable Bioadhesion, and Nearâ€Infrared Responsiveness. Advanced Healthcare Materials, 2023, 12, .	3.9	4
130	Thiol-ene-mediated degradable POSS-PEG/PEG hybrid hydrogels as potential cell scaffolds in tissue engineering. Polymer Degradation and Stability, 2023, 211, 110316.	2.7	0

		CITATION REPORT		
#	Article		IF	CITATIONS
131	Controlled Release of a Therapeutic Peptide in Sprayable Surgical Sealant for Preventic Postoperative Abdominal Adhesions. ACS Applied Materials & amp; Interfaces, 0, , .	n of	4.0	2
132	Structural Strategies for Supramolecular Hydrogels and Their Applications. Polymers, 2	:023, 15, 1365.	2.0	4
133	Development of polydopamine functionalized porous starch for bleeding control with of NIR light. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 1876-1890.	the assistance	1.9	0
134	Long-Term Degradation Assessment of a Polyurethane-Based Surgical Adhesive—Ass Critical Consideration of Preclinical In Vitro and In Vivo Testing. Journal of Functional B 2023, 14, 168.	essment and iomaterials,	1.8	3
137	Bioadhesives for clinical applications $\hat{a} \in \hat{a}$ a mini review. Materials Advances, 2023, 4, 2	062-2069.	2.6	5
140	Catechol Conjugation for Bioadhesion in Photo-Cross-Linkable Biomaterials. , 2023, 5,	1672-1683.		6
147	Biomedical adhesives: Qualification, specification, quality control, and risk mitigation.	, 2023, , 877-908.		0
164	Designing self-healing hydrogels for biomedical applications. Materials Horizons, 2023	, 10, 3929-3947.	6.4	15