Iterative Joint Channel Estimation, User Activity Tracki FTN-NOMA Systems Supporting Random Access

IEEE Transactions on Communications 68, 2963-2977 DOI: 10.1109/tcomm.2020.2975169

Citation Report

#	Article	IF	CITATIONS
1	Code Based Channel Shortening for Faster-than-Nyquist Signaling. , 2020, , .		2
2	Joint Data and Active User Detection for Grant-free FTN-NOMA in Dynamic Networks. , 2020, , .		3
3	Joint Channel Estimation and Equalization for Index-Modulated Spectrally Efficient Frequency Division Multiplexing Systems. IEEE Transactions on Communications, 2020, 68, 6230-6244.	7.8	15
4	A Low-Complexity Joint User Activity, Channel and Data Estimation for Grant-Free Massive MIMO Systems. IEEE Signal Processing Letters, 2020, 27, 1290-1294.	3.6	21
5	A Survey on Non-Orthogonal Multiple Access: From the Perspective of Spectral Efficiency and Energy Efficiency. Energies, 2020, 13, 4106.	3.1	23
6	A Simple Variational Bayes Detector for Orthogonal Time Frequency Space (OTFS) Modulation. IEEE Transactions on Vehicular Technology, 2020, 69, 7976-7980.	6.3	127
7	Code-Based Channel Shortening for Faster-Than-Nyquist Signaling: Reduced-Complexity Detection and Code Design. IEEE Transactions on Communications, 2020, 68, 3996-4011.	7.8	25
8	Time-Domain vs. Frequency-Domain Equalization for FTN Signaling. IEEE Transactions on Vehicular Technology, 2020, 69, 9174-9179.	6.3	30
9	Distributed Estimation Framework for Beyond 5G Intelligent Vehicular Networks. IEEE Open Journal of Vehicular Technology, 2020, 1, 190-214.	4.9	19
10	Random Access With Layered Preambles Based on NOMA for Two Different Types of Devices in MTC. IEEE Transactions on Wireless Communications, 2021, 20, 871-881.	9.2	10
11	Grant-Free Access via Bilinear Inference for Cell-Free MIMO With Low-Coherence Pilots. IEEE Transactions on Wireless Communications, 2021, 20, 7694-7710.	9.2	16
12	Channel Estimation and User Identification With Deep Learning for Massive Machine-Type Communications. IEEE Transactions on Vehicular Technology, 2021, 70, 10709-10722.	6.3	5
13	A Low-Complexity and High-Decoding Performance Scheme for the MIMO-SCMA System. Wireless Communications and Mobile Computing, 2021, 2021, 1-12.	1.2	1
14	Successive interference cancelationâ€inspired channel estimation for downlink nonâ€orthogonal multiple access. Transactions on Emerging Telecommunications Technologies, 2021, 32, e4314.	3.9	1
15	Massive Coded-NOMA for Low-Capacity Channels: A Low-Complexity Recursive Approach. IEEE Transactions on Communications, 2021, 69, 3664-3681.	7.8	9
16	Space-Time Coded Generalized Spatial Modulation for Sparse Code Division Multiple Access. IEEE Transactions on Wireless Communications, 2021, 20, 5359-5372.	9.2	8
17	A Novel Sum-Product Detection Algorithm for Faster-Than-Nyquist Signaling: A Deep Learning Approach. IEEE Transactions on Communications, 2021, 69, 5975-5987.	7.8	10
18	The Evolution of Faster-Than-Nyquist Signaling. IEEE Access, 2021, 9, 86535-86564.	4.2	29

ION RE

#	Article	IF	CITATIONS
19	Joint Identification and Channel Estimation for Fault Detection in Industrial IoT With Correlated Sensors. IEEE Access, 2021, 9, 116692-116701.	4.2	8
20	Parametric Bilinear Iterative Generalized Approximate Message Passing Reception of FTN Multi-Carrier Signaling. IEEE Transactions on Communications, 2021, 69, 8443-8458.	7.8	9
21	Joint Activity Detection and Channel Estimation in Massive MIMO Systems With Angular Domain Enhancement. IEEE Transactions on Wireless Communications, 2022, 21, 2999-3011.	9.2	9
22	Compressed Sensing Based Multiuser Detection of Grant-Free NOMA With Dynamic User Activity. IEEE Communications Letters, 2022, 26, 143-147.	4.1	4
23	Massive Grant-Free OFDMA With Timing and Frequency Offsets. IEEE Transactions on Wireless Communications, 2022, 21, 3365-3380.	9.2	7
24	Generalized Approximate Message Passing Equalization for Multi-Carrier Faster-Than-Nyquist Signaling. IEEE Transactions on Vehicular Technology, 2022, 71, 3309-3314.	6.3	9
25	A Novel Low Complexity Faster-than-Nyquist (FTN) Signaling Detector for Ultra High-Order QAM. IEEE Open Journal of the Communications Society, 2021, 2, 2566-2580.	6.9	12
26	Expectation maximization algorithm over Fourier series (EMoFS). Signal Processing, 2022, 194, 108453.	3.7	2
27	Low-Complexity Factor Graph-Based Joint Channel Estimation and Equalization for SEFDM Signaling. , 2020, , .		0
28	Bidirectional Approximate Message Passing for RIS-Assisted Multi-User MISO Communications. , 2021, , .		1
29	Faster-Than-Nyquist Asynchronous NOMA Outperforms Synchronous NOMA. IEEE Journal on Selected Areas in Communications, 2022, 40, 1128-1145.	14.0	17
30	Massive Connectivity Over MIMO-OFDM: Joint Activity Detection and Channel Estimation With Frequency Selectivity Compensation. IEEE Transactions on Wireless Communications, 2022, 21, 6920-6934.	9.2	5
31	Real-time data transmission of cross-border e-commerce based on big data considering data complexity. , 2022, , .		0
32	Towards spectral efficiency enhancement for IoT-aided smart transportation: a compressive OFDM transmission and regularized recovery approach. Eurasip Journal on Advances in Signal Processing, 2022, 2022, .	1.7	3
33	Forward-Reverse Orthogonal Matching Pursuit-Union-Subspace Pursuit-Based Multiuser Detector for Uplink Grant-Free NOMA Networks. Electronics (Switzerland), 2022, 11, 125.	3.1	2
34	Joint Channel Estimation and Signal Recovery for RIS-Empowered Multiuser Communications. IEEE Transactions on Communications, 2022, 70, 4640-4655.	7.8	49
35	Ergodic Capacity of MIMO Faster-Than-Nyquist Transmission Over Triply-Selective Rayleigh Fading Channels. IEEE Transactions on Communications, 2022, 70, 5046-5058.	7.8	2
36	Multiuser Detection of GF-NOMA with Dynamic-Active Users and Temporal-Correlated Channels. IEEE Communications Letters, 2022, , 1-1.	4.1	1

#	Article	IF	CITATIONS
37	Asynchronous Multi-User Detection for Code-Domain NOMA: Expectation Propagation Over 3D Factor-Graph. IEEE Transactions on Vehicular Technology, 2022, 71, 10770-10781.	6.3	4
38	Low-Complexity Dynamic Channel Estimation in Multi-Antenna Grant-Free NOMA. , 2022, , .		0
39	Sparsity Constrained Joint Activity and Data Detection for Massive Access: A Difference-of-Norms Penalty Framework. IEEE Transactions on Wireless Communications, 2023, 22, 1480-1494.	9.2	4
40	Message Passing-based mmWave MIMO-NOMA with User Grouping and Power Allocation. IEEE Transactions on Vehicular Technology, 2022, , 1-6.	6.3	0
41	Asynchronous Activity Detection for Cell-Free Massive MIMO: From Centralized to Distributed Algorithms. IEEE Transactions on Wireless Communications, 2023, 22, 2477-2492.	9.2	7
42	Statistical Device Activity Detection for OFDM-Based Massive Grant-Free Access. IEEE Transactions on Wireless Communications, 2023, 22, 3805-3820.	9.2	3
43	Power-Domain-Multiplexed Precoded Faster-Than-Nyquist Signaling for NOMA Downlink. , 2022, , .		2
45	Joint Location and Beamforming Design for STAR-RIS Assisted NOMA Systems. IEEE Transactions on Communications, 2023, 71, 2532-2546.	7.8	7
46	Capacity and Outage Probability Analysis of Faster-Than-Nyquist Cooperative NOMA. IEEE Wireless Communications Letters, 2023, 12, 1632-1636.	5.0	1
47	An improved deep learning framework for enhancing mimo-Noma system performance. Multimedia Tools and Applications, 2024, 83, 22581-22608.	3.9	0
48	Lightweight Infrared Object Detection Network based on Improved SSD. , 2023, , .		0
49	Integration of Multidimensional Features for Infrared Image Enhancement. , 2023, , .		0

CITATION REPORT