Joint Control of Random Access and Dynamic Uplink Re MTC in 5G NR Based on SCMA

IEEE Internet of Things Journal 7, 5042-5063 DOI: 10.1109/jiot.2020.2974402

Citation Report

#	Article	IF	CITATIONS
1	The Wireless Solution to Realize Green IoT: Cellular Networks with Energy Efficient and Energy Harvesting Schemes. Energies, 2020, 13, 5875.	3.1	9
2	Throughput Analysis and User Barring Design for Uplink NOMA-Enabled Random Access. IEEE Transactions on Wireless Communications, 2021, 20, 6298-6314.	9.2	19
3	An Improved Random Access Scheme Using Directional Beams for 5G Massive Machine-Type Communications. IEEE Internet of Things Journal, 2022, 9, 8913-8924.	8.7	3
4	A New Contention-Based PUSCH Resource Allocation in 5G NR for mMTC Scenarios. IEEE Communications Letters, 2021, 25, 802-806.	4.1	7
5	Priority-based Distributed Queuing Random Access Mechanism for mMTC/uRLLC Terminals Coexistence. , 2021, , .		9
6	P-persistent massive random access mechanism for machine type communication. Telecommunication Systems, 2021, 78, 169-185.	2.5	1
7	Energy-Efficient MAC for Cellular IoT: State-of-the-Art, Challenges, and Standardization. IEEE Transactions on Green Communications and Networking, 2021, 5, 587-599.	5.5	11
8	Channel-Aware and QoS-Aware Downlink Resource Allocation for Multi-numerology Based 5G NR Systems. , 2021, , .		2
9	Modeling and Analysis of Tagged Preamble Transmissions in Random Access Procedure for mMTC Scenarios. IEEE Transactions on Wireless Communications, 2021, 20, 4296-4312.	9.2	12
10	Resource Allocation in Uplink NOMA-IoT Networks: A Reinforcement-Learning Approach. IEEE Transactions on Wireless Communications, 2021, 20, 5083-5098.	9.2	47
11	RAN Slicing for Massive IoT and Bursty URLLC Service Multiplexing: Analysis and Optimization. IEEE Internet of Things Journal, 2021, 8, 14258-14275.	8.7	13
12	Resource Allocation for SCMA-Based IoT Systems With Layered Multicast. IEEE Access, 2021, 9, 144776-144785.	4.2	3
13	Joint Adaptive M-QAM Modulation and Power Adaptation for a Downlink NOMA Network. IEEE Transactions on Communications, 2022, 70, 783-796.	7.8	7
14	Device Access Optimization for Virtual Power Plants in Heterogeneous Networks. IEEE Transactions on Smart Grid, 2022, 13, 1478-1489.	9.0	10
15	A Large-Scale SCMA Codebook Optimization and Codeword Allocation Method. IEICE Transactions on Communications, 2022, E105.B, 788-796.	0.7	1
16	Adaptive Channel Status Based Access Class Barring Scheme in C-V2X Networks. , 2021, , .		0
17	Energy Efficiency Optimization for Irregular Repetition Slotted ALOHA-Based Massive Access. IEEE Wireless Communications Letters, 2022, 11, 982-986.	5.0	6
18	Performance Analysis of Turbo Codes for 5G Massive Machine-Type Communication(mMTC). , 2021, , .		Ο

#	Article	IF	CITATIONS
19	Double QoS Guarantee for NOMA-Enabled Massive MTC Networks. IEEE Internet of Things Journal, 2022, 9, 22657-22668.	8.7	2
20	Equilibrated and Fast Resources Allocation for Massive and Diversified MTC Services Using Multiagent Deep Reinforcement Learning. IEEE Internet of Things Journal, 2023, 10, 664-681.	8.7	1
21	CeRA-eSP: Code-Expanded Random Access to Enhance Success Probability of Massive MTC. Sensors, 2022, 22, 7959.	3.8	3
22	A Flexible Encoding/Decoding Procedure for 6G SCMA Wireless Networks via Adversarial Machine Learning Techniques. IEEE Transactions on Vehicular Technology, 2023, 72, 3288-3303.	6.3	1
23	An Energy-Efficient DL-Aided Massive Multiple Access Scheme for IoT Scenarios in Beyond 5G Networks. IEEE Internet of Things Journal, 2022, , 1-1.	8.7	0
24	A Design of Low-Projection SCMA Codebooks for Ultra-Low Decoding Complexity in Downlink IoT Networks. IEEE Transactions on Wireless Communications, 2023, 22, 6608-6623.	9.2	2
25	Connection-Based Aloha: Modeling, Optimization, and Effects of Connection Establishment. IEEE Transactions on Wireless Communications, 2024, 23, 1008-1023.	9.2	0
26	Latency and Reliability Analysis of a 5G-Enabled Internet of Musical Things System. IEEE Internet of Things Journal, 2024, 11, 1228-1240.	8.7	5
27	An intelligent resource allocation strategy for machine type communication environment. International Journal of Communication Systems, 2024, 37, .	2.5	0
28	Integrated 2–4 Step Random Access for Heterogeneous and Massive IoT Devices. IEEE Transactions on Green Communications and Networking, 2024, 8, 441-452.	5.5	0