Functional Biomaterials for Bone Regeneration: A Lesso

Advanced Functional Materials 30, 1909874 DOI: 10.1002/adfm.201909874

Citation Report

#	Article	IF	CITATIONS
1	Stable Reference Genes for qPCR Analysis in BM-MSCs Undergoing Osteogenic Differentiation within 3D Hyaluronan-Based Hydrogels. International Journal of Molecular Sciences, 2020, 21, 9195.	1.8	6
2	Spiral Honeycomb Microstructured Bacterial Cellulose for Increased Strength and Toughness. ACS Applied Materials & Interfaces, 2020, 12, 50748-50755.	4.0	13
3	Topographical regulation of stem cell differentiation by plant-derived micro/nanostructures. Nanoscale, 2020, 12, 18305-18312.	2.8	7
4	Kill two birds with one stone: A novel dual-functional nanobiomaterial platform with a clear translational potential for bone regeneration. Nano Research, 2020, 13, 2311-2312.	5.8	0
5	Simultaneous incorporation of PTH(1–34) and nano-hydroxyapatite into Chitosan/Alginate Hydrogels for efficient bone regeneration. Bioactive Materials, 2021, 6, 1839-1851.	8.6	63
6	A Novel Approach to Enhance Bone Regeneration by Controlling the Polarity of GaN/AlGaN Heterostructures. Advanced Functional Materials, 2021, 31, 2007487.	7.8	17
9	The Therapeutic Potential of Hematopoietic Stem Cells in Bone Regeneration. Tissue Engineering - Part B: Reviews, 2021, , .	2.5	4
10	Large fuzzy biodegradable polyester microspheres with dopamine deposition enhance cell adhesion and bone regeneration in vivo. Biomaterials, 2021, 272, 120783.	5.7	28
11	Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomaterialia, 2021, 127, 56-79.	4.1	131
12	Bioink homogeneity control during 3D bioprinting of multicomponent micro/nanocomposite hydrogel for even tissue regeneration using novel twin screw extrusion system. Chemical Engineering Journal, 2021, 415, 128971.	6.6	42
13	4D Printing of Multiâ€Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate. Advanced Functional Materials, 2021, 31, 2103920.	7.8	48
14	The optimization of pepsin processing time to balance the mechanical and biological properties of xenogeneic bone. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 403-411.	1.6	0
15	Metabolomics in Bone Research. Metabolites, 2021, 11, 434.	1.3	15
16	Microfluidic 3D Printing Responsive Scaffolds with Biomimetic Enrichment Channels for Bone Regeneration. Advanced Functional Materials, 2021, 31, 2105190.	7.8	59
17	Bioactive Calcium Phosphate-Based Composites for Bone Regeneration. Journal of Composites Science, 2021, 5, 227.	1.4	46
18	Glycosaminoglycan content of a mineralized collagen scaffold promotes mesenchymal stem cell secretion of factors to modulate angiogenesis and monocyte differentiation. Materialia, 2021, 18, 101149.	1.3	11
19	0D/1D Heterojunction Implant with Electroâ€Mechanobiological Coupling Cues Promotes Osteogenesis. Advanced Functional Materials, 2021, 31, 2106249.	7.8	26
20	A novel photocrosslinked phosphate functionalized Chitosan-Sr5(PO4)2SiO4 composite hydrogels and in vitro biomineralization, osteogenesis, angiogenesis for bone regeneration application. Composites Part B: Engineering, 2021, 222, 109057.	5.9	31

#	Article	IF	CITATIONS
21	Minimally invasive co-injection of modular micro-muscular and micro-vascular tissues improves in situ skeletal muscle regeneration. Biomaterials, 2021, 277, 121072.	5.7	12
22	A baicalin-loaded coaxial nanofiber scaffold regulated inflammation and osteoclast differentiation for vascularized bone regeneration. Bioactive Materials, 2022, 8, 559-572.	8.6	28
23	Binding enhancements of antibody functionalized natural and synthetic fibers. RSC Advances, 2021, 11, 30353-30360.	1.7	0
24	A Hierarchical‧tructured Mineralized Nanofiber Scaffold with Osteoimmunomodulatory and Osteoinductive Functions for Enhanced Alveolar Bone Regeneration. Advanced Healthcare Materials, 2022, 11, e2102236.	3.9	29
25	Mechanistically Scoping Cellâ€Free and Cellâ€Dependent Artificial Scaffolds in Rebuilding Skeletal and Dental Hard Tissues. Advanced Materials, 2022, 34, e2107922.	11.1	5
26	Chapter 5. Inorganic Biomaterials to Support the Formation and Repair of Bone Tissue. Inorganic Materials Series, 2021, , 242-304.	0.5	0
27	Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordination and molecular clicking. Nature Communications, 2022, 13, 160.	5.8	66
28	Titanium alloy composited with dual-cytokine releasing polysaccharide hydrogel to enhance osseointegration via osteogenic and macrophage polarization signaling pathways. International Journal of Energy Production and Management, 2022, 9, .	1.9	20
29	Transcriptome Analysis Revealed the Symbiosis Niche of 3D Scaffolds to Accelerate Bone Defect Healing. Advanced Science, 2022, 9, e2105194.	5.6	31
30	Marine Collagen: A Promising Biomaterial for Wound Healing, Skin Anti-Aging, and Bone Regeneration. Marine Drugs, 2022, 20, 61.	2.2	71
31	Clinically relevant preclinical animal models for testing novel cranioâ€maxillofacial bone 3Dâ€printed biomaterials. Clinical and Translational Medicine, 2022, 12, e690.	1.7	15
32	Fabrication of Naturally Derived Double-Network Hydrogels With a Sustained Aspirin Release System for Facilitating Bone Regeneration. Frontiers in Chemistry, 2022, 10, 874985.	1.8	7
33	Strategies for Enhancing Vascularization of Biomaterialâ€Based Scaffold in Bone Regeneration. Chemical Record, 2022, 22, e202200008.	2.9	6
34	Regulation of macrophage subtype via injectable micro/nano-structured porous microsphere for reprogramming osteoimmune microenvironment. Chemical Engineering Journal, 2022, 439, 135692.	6.6	11
35	Experimental Characterization and Mathematical Modeling of the Adsorption of Proteins and Cells on Biomimetic Hydroxyapatite. ACS Omega, 2022, 7, 908-920.	1.6	3
36	Personalized 3D printed bone scaffolds: A review. Acta Biomaterialia, 2023, 156, 110-124.	4.1	57
37	In Situ-Forming Collagen/poly-γ-glutamic Acid Hydrogel System with Mesenchymal Stem Cells and Bone Morphogenetic Protein-2 for Bone Tissue Regeneration in a Mouse Calvarial Bone Defect Model. Tissue Engineering and Regenerative Medicine, 2022, 19, 1099-1111.	1.6	5
38	Heterostructured Metal–Organic Frameworks/Polydopamine Coating Endows Polyetheretherketone Implants with Multimodal Osteogenicity and Photoswitchable Disinfection. Advanced Healthcare Materials, 2022, 11, e2200641.	3.9	15

CITATION REPORT

#	Article	IF	CITATIONS
39	The construction of a self-assembled coating with chitosan-grafted reduced graphene oxide on porous calcium polyphosphate scaffolds for bone tissue engineering. Biomedical Materials (Bristol), 2022, 17, 045016.	1.7	2
40	Bone formation and bone repair: The roles and crosstalk of osteoinductive signaling pathways. Process Biochemistry, 2022, 118, 252-262.	1.8	5
41	Interactions Between Immunomodulatory Biomaterials and Immune Microenvironment: Cues for Immunomodulation Strategies in Tissue Repair. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	5
43	Degradation of 3D-printed magnesium phosphate ceramics in vitro and a prognosis on their bone regeneration potential. Bioactive Materials, 2023, 19, 376-391.	8.6	13
44	Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering. International Journal of Molecular Sciences, 2022, 23, 5831.	1.8	25
45	Lowâ€Temperature Printed Hierarchically Porous Inducedâ€Biomineralization Polyaryletherketone Scaffold for Bone Tissue Engineering. Advanced Healthcare Materials, 2022, 11, .	3.9	7
46	Osteoimmunityâ€Regulating Biomimetically Hierarchical Scaffold for Augmented Bone Regeneration. Advanced Materials, 2022, 34, .	11.1	90
47	Functionalized silk promotes cell migration into calcium phosphate cements by providing macropores and cell adhesion motifs. Ceramics International, 2022, 48, 31449-31460.	2.3	2
48	A scaffold with zinc-whitlockite nanoparticles accelerates bone reconstruction by promoting bone differentiation and angiogenesis. Nano Research, 2023, 16, 757-770.	5.8	10
49	Musculoskeletal tissues-on-a-chip: role of natural polymers in reproducing tissue-specific microenvironments. Biofabrication, 2022, 14, 042001.	3.7	7
50	Standard in vitro evaluations of engineered bone substitutes are not sufficient to predict in vivo preclinical model outcomes. Acta Biomaterialia, 2023, 156, 177-189.	4.1	5
51	Recent advances in biofunctional guided bone regeneration materials for repairing defective alveolar and maxillofacial bone: A review. Japanese Dental Science Review, 2022, 58, 233-248.	2.0	19
52	Electrospun nanofibers for bone regeneration: from biomimetic composition, structure to function. Journal of Materials Chemistry B, 2022, 10, 6078-6106.	2.9	12
53	Injectable enzyme-catalyzed crosslinking hydrogels as BMSCs-laden tunable scaffold for osteogenic differentiation. Journal of Biomaterials Science, Polymer Edition, 0, , 1-19.	1.9	0
54	Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. Materials, 2022, 15, 6952.	1.3	9
55	Bio-inspired dual-adhesive particles from microfluidic electrospray for bone regeneration. Nano Research, 2023, 16, 5292-5299.	5.8	25
56	Oneâ€Pot Facile Encapsulation of Dimethyloxallyl Glycine by Nanoscale Zeolitic Imidazolate Frameworksâ€8 for Enhancing Vascularized Bone Regeneration. Advanced Healthcare Materials, 2023, 12,	3.9	14
57	Facile Construction of Hybrid Hydrogels with High Strength and Biocompatibility for Cranial Bone Regeneration. Gels, 2022, 8, 745.	2.1	4

CITATION REPORT

#	Article	IF	CITATIONS
58	Strontium and simvastatin dual loaded hydroxyapatite microsphere reinforced poly(ε-caprolactone) scaffolds promote vascularized bone regeneration. Journal of Materials Chemistry B, 2023, 11, 1115-1130.	2.9	6
59	Positive space acquiring asymmetric membranes for guiding alveolar bone regeneration under infectious conditions. , 2023, 145, 213252.		3
60	Nanohydroxyapatite/Titanate Nanotube Composites for Bone Tissue Regeneration. Journal of Functional Biomaterials, 2022, 13, 306.	1.8	2
61	Calcium peroxide-mediated bioactive hydrogels for enhanced angiogenic paracrine effect and osteoblast proliferation. Journal of Industrial and Engineering Chemistry, 2023, 120, 121-130.	2.9	3
62	Dopamineâ€integrated Nanointerface between Fibrillar Matrix and Hydrophilic Nanohydroxyapatite Regulates Immune Microenvironment to Boost Endogenous Bone Regeneration. Advanced Functional Materials, 2023, 33, .	7.8	10
63	Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Progress in Materials Science, 2023, 134, 101072.	16.0	32
64	Programming Delayed Dissolution Into Sacrificial Bioinks For Dynamic Temporal Control of Architecture within 3Dâ€Bioprinted Constructs. Advanced Functional Materials, 2023, 33, .	7.8	12
65	Extrafibrillarly Demineralized Dentin Matrix for Bone Regeneration. Advanced Healthcare Materials, 2023, 12, .	3.9	2
66	Stimuli-responsive piezoelectricity in electrospun polycaprolactone (PCL)/Polyvinylidene fluoride (PVDF) fibrous scaffolds for bone regeneration. Journal of Materials Research and Technology, 2023, 23, 379-390.	2.6	11
67	Biocompatibility of Veratric Acid–Encapsulated Chitosan/Methylcellulose Hydrogel: Biological Characterization, Osteogenic Efficiency with In Silico Molecular Modeling. Applied Biochemistry and Biotechnology, 2023, 195, 4429-4446.	1.4	4
68	Enhancing osteoinduction and bone regeneration of biphasic calcium phosphate scaffold thought modulating the balance between pro-osteogenesis and anti-osteoclastogenesis by zinc doping. Materials Today Chemistry, 2023, 29, 101410.	1.7	5
69	Covalently Grafted Biomimetic Matrix Reconstructs the Regenerative Microenvironment of the Porous Gradient Polycaprolactone Scaffold to Accelerate Bone Remodeling. Small, 2023, 19, .	5.2	7
70	Osteoregenerative Potential of 3D-Printed Poly Îμ-Caprolactone Tissue Scaffolds In Vitro Using Minimally Manipulative Expansion of Primary Human Bone Marrow Stem Cells. International Journal of Molecular Sciences, 2023, 24, 4940.	1.8	3
71	Coupling BCP Ceramics with Microâ€Vibration Stimulation Field for Cascade Amplification from Immune Activation to Bone Regeneration. Advanced Functional Materials, 2023, 33, .	7.8	3
72	Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals, 2023, 16, 454.	1.7	24
73	Sustained delivery of a heterodimer bone morphogenetic protein-2/7 via a collagen hydroxyapatite scaffold accelerates and improves critical femoral defect healing. Acta Biomaterialia, 2023, 162, 164-181.	4.1	2
74	Incorporation of synthetic water-soluble curcumin polymeric drug within calcium phosphate cements for bone defect repairing. Materials Today Bio, 2023, 20, 100630.	2.6	1
75	Osteogenesis Enhancement with 3D Printed Gene-Activated Sodium Alginate Scaffolds. Gels, 2023, 9, 315.	2.1	3

CITATION REPORT

#	Article	IF	CITATIONS
99	Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. Journal of Materials Chemistry B, 2023, 11, 11405-11425.	2.9	4
105	A responsive cascade drug delivery scaffold adapted to the therapeutic time window for peripheral nerve injury repair. Materials Horizons, 2024, 11, 1032-1045.	6.4	1